35

Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Embed Size (px)

Citation preview

Page 1: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 2: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Douglas Hanahan , Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674

2000

Page 3: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Douglas Hanahan , Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674

2011

Page 4: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 5: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

La cellula tumorale acquisisce queste caratteristiche

mediante

• mutazioni

• alterazioni epigenetiche

in un processo mutagenico multi-step

Page 6: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Mutazioni

Mutazioni puntiformi

Brevi inserzioni/delezioni

CNA (copy number abnormalities): gain, loss, amplificazioni

Aberrazioni cromosomiche bilanciate: traslocazioni, inversioni

Page 7: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Mutazioni di oncogeni:gain-of-function, amplificazione, e/o

iperespressione

Mutazioni di oncosoppressori: loss-of-function, delezione, e/o

silenziamento epigenetico

Page 8: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 9: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 10: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Walther A. et al., Nature Review Cancer 2009

Two forms of genetic instability are described in CRC:•Microsatellite Instability (MIN): characterized by a deficiency of the mismatch repair system that leads to slippage in microsatellites

Chromosomal Instability (CIN): comprise 85% cases and it is characterized by aneuploidy.

Page 11: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Teoria della selezione clonale

Page 12: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Eterogeneità clonale

Più cloni (derivati da una unica cellula di origine del tumore, ma caratterizzati da eterogeneità genetica) possono coesistere contemporaneamente nella massa tumorale

Page 13: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

TUMOR

MUCOSA

Colorectal Cancer

Page 14: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Intratumor heterogeneity by double-sampling data

Mean of correlation coefficient in 18 double sampling pairs

Within pairs 0.75

Between pairs 0.19

0.8

Page 15: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 16: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 17: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA.

The Cancer Genome Atlas (TCGA) project was started in 2006 with the goal of collecting and profiling over 10,000 tumor samples from at least 20 tumor types. Half of these studies have been completed so far. The globally coordinated International Cancer Genome Consortium (ICGC), of which TCGA is a member, will add thousands more samples and additional tumor types

Page 18: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

The cancer genome hyperbola

The distribution of SFEs in tumors indicates that the number of copy number alterations in a sample (x axis) is approximately anticorrelated with the number of somatic mutations in a sample (y axis).

Page 19: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 20: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 21: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

We separated cases (84%) with a mutation rate of < 8.24 per 106 and those with mutation rates of >12 per 106 (median number of total mutations 728), which we designated as hypermutated

Page 22: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Mutazioni “driver” che portano a variazioni funzionali importanti per il fenotipo tumorale

Mutazioni “passenger” : neutrali, dovute all’instabilità del genoma delle celluletumorali

Page 23: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 24: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 25: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Overall, we identified 32 somatic recurrently mutated genes in the hypermutated and nonhypermutated cancers. After removal of non-expressed genes, there were 15 and 17 in the hypermutated and non-hypermutated cancers, respectively

Page 26: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 27: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000
Page 28: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Leucemia Mieloide Cronica (LMC)

Dimostrabile nel 95% dei pazienti affetti da LMC

Il cromosoma Philadelphia: l’anomalia citogenetica responsabile della malattia

1 2 3 4 5

6 7 8 10 119 12

13 14 15 16 17 18

19 20 21 22 x Y

Page 29: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Janet Davison Rowley (born April 5, 1925) the first scientist to identify a chromosomal translocation as the cause of leukemia and other cancers.

Page 30: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Formazione del cromosoma Philadelphia (Ph)La traslocazione t (9;22)

Proteina di fusione con attività

tirosina-chinasica leucemogenica

22

bcr

abl

9

Ph

Bcr-Abl

9+Cromosoma

Cromosoma

Cromosoma

Cromosoma

Page 31: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

ABL ABL

Tyr Tyr

BCR BCR

Autophosphorylation by dimerization

P

Phosphorylation of substrates

The constitutive TK activity of BCR-ABL isthe primary factor causing the expansion

of the Ph-positive clone

Page 32: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

NUCLEUS

Cell Cycle

BCR/ABL

Paxillin

F-actin

2. Changes in adhesion to stromal layer

General overview

3- Inhibition of

apoptosis

PIK3 -AKT

RAS

JAK-STAT

1. Activation of proliferation

MYC

Page 33: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Glivec (imatinib) Inibitore selettivo della tirosina-chinasi Bcr-AblMeccanismo d’azione

Goldman JM, Milo JV, NEJM 2001, 344:1084-1086

ProteinaBcr-Abl

Substrato

Substrato

Effettore

ATP

P

Y

Y

PP

P

ProteinaBcr-Abl

Substrato

Substrato

Effettore

GLIVEC

Y

Y

Y = TirosinaP = Fosfato

Page 34: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

LEUCEMIA PROMIELOCITICA ACUTA

Page 35: Douglas Hanahan, Robert A. Weinberg Hallmarks of Cancer: The Next Generation Cell Volume 144, Issue 5 2011 646 - 674 2000

Role of transcription factors involved in promyelocytic acute leukemia

Apoptosis Terminal myeloid differentiation

Oncogenesis

(via p53 and/or Rb)