DOM unit-I

Embed Size (px)

Citation preview

  • 8/16/2019 DOM unit-I

    1/48

    Dynamics of Machinery Unit I: Force Analysis

    Unit-I

    Force Analysis

    Inertia force

    • The inertia force is an imaginary force, which when acts upon a

    rigid body, brings it an equilibrium position

    • It is equal to the accelerating force in magnitude, but opposite in

    direction

    Mathematically,

      Inertia force ! " Accelerating force

    D-Alembert’s Principle 

    D#Alembert$s principle states that the resultant force acting on a

    body together with the reversed effective force (or inertia force! are in

    e"uilibrium# 

    According to %ewton$s second law of motion,

      F $ m#a

    &here

    m ! Mass of the body, and

    a ! 'inear acceleration of the centre of gra(ity of the body

      F % m#a $ &

    If the quantity % m#a be treated as a force, equal, opposite

      FI $ % m#a

    )ub FI in (alue in equation *+ 

    F ' FI $ &

    Application

      This principle is used to reduce a dynamic problem into an

    equi(alent static problem

    Dynamic Analysis of )lider cran* mechanism

    *i -raphical method

    *ii Analytical method

    +raphical methods 

    + .lien$s construction,

    / 0itterhaus$s construction, and

    1 2ennett$s construction

    ,ote

    • -raphical methods gi(en the accurate answer 

    • Analytical methods gi(en appro3imate solution

     Dynamic analysis of slider-cran* mechanism by analytical

    method

     After rotation of cran* by angle

    Dept.of Mechanical Engg. AAMEC Page 1

    (1)

  • 8/16/2019 DOM unit-I

    2/48

    Dynamics of Machinery Unit I: Force Analysis

    l  # 'ength of connecting rod between the centers,

    r # 0adius of cran4 or cran4 pin circle,

    5 # Inclination of connecting rod to the line of stro4e

    n # l 6r #0atio of length of connecting rod to the radius of cran4

    .o find

    • 7elocity of piston

    • Acceleration of piston

    • Angular 7elocity of connecting rod

    • Angular Acceleration of connecting rod

    /elocity of the piston

    From the geometry

      3 ! 898 ! 89 ; 8 ! *89

    *8> !l cos ?@ >! r cos

      3 ! *l  = r ; *l  cos ? = r cos

    ,cos#*+,cos+*   φ θ    l r    +−=

     

    +−= ,cos#*+

    r  ,cos+*   φ θ   l 

      [ ],cos#n*+,cos+*   φ θ   +−=  r 

    From triangles

    sin? ! 6 8<  ! 8< sin?

    ! l sin?

    From triangles

    sin ! 6 <

      ! < sin

    ! r sin

    From equ */ and *1

      ! l sin? ! r sin

    l 6r !sin 6 sin?

    &here n ! l 6r 

    n ! sin 6sin?

    sin 5 ! sin 6n

    &e 4now that

    ( ) /+

    /sin+cos   φ φ    −=

    /+

    /

    /sin

    +cos    

      

     −=

    n

    θ φ 

    B3panding the abo(e e3pression by binomial theorem, we get

    sin

    /

    ++cos

    /

    /

    +×−=n

    θ φ 

      *%eglecting higher terms

    /

    /

    /

    sincos+

    n

    θ φ  =−

    )ubstituting the (alue of *+ " cos 5 in equation (0! we have 

    Dept.of Mechanical Engg. AAMEC Page 2

    (1)

    (2)

    (3)

    (4)

  • 8/16/2019 DOM unit-I

    3/48

    Dynamics of Machinery Unit I: Force Analysis

    ( )

    ×+−=

    /

    /

    /

    sin cos+

    nnr  x

      θ θ 

    ( )

    +−=

    nr 

    /

    sin cos+

    /θ 

    θ 

    Differentiating equation *C with respect to

    +=n

    r d 

    dx

    /

    cossin/sin

      θ θ θ 

    θ 

    +=

    nr 

    dx

    /

    cossin/sin

      θ θ θ 

    θ 

    +=n

    r /

     /sinsin

      θ θ 

      ( )θ θ θ  /sincossin/   =

    ∴ 7elocity of 8 with respect to *or (elocity of the piston 8

    dt 

    dx

    dt 

    dxvv  p PO

    θ 

    θ ×===

    ω θ 

    ×=d 

    dx

    *0atio of change of angular (elocity ! !d 6 dt

    )ubstituting the (alue of d36d from equation *E, we ha(e

       

      

    +== nr vv  p PO //sin

    sin

      θ 

    θ ω 

    Acceleration of the piston 

    )ince the acceleration is the rate of change of (elocity, therefore

    acceleration of the piston 8,

    ω θ 

    θ 

    θ ×=×==

    dv

    dt 

    dv

    dt 

    dva

      p p p p

    Differentiating equation * with respect to ,

      

      

        ×+=n

    r d 

    dv p

    /

    //coscos

      θ θ ω 

    θ 

      

      

      +=n

    r d 

    dv p   θ θ ω 

    θ 

    /coscos

    )ubstitute d( p6d (alue in equation *G we ha(e

    ω θ 

    θ ω    ×   

       +=

    nr a p

    /coscos

       

       +=

    nr a p

    θ θ ω 

    /coscos

    /

    Angular /elocity and Angular Acceleration of the 1onnecting 2od

    Angular /elocity

    From the geometry of the figure,

    CQ = l sin Ø = r sin θ  

    n ! sin 6sin ?

     n

    θ φ 

    sinsin   =

    Differentiating both sides with respect to time t, 

    Dept.of Mechanical Engg. AAMEC Page 3

    (5)

    (6)

    (7)

    (8)

    ()

  • 8/16/2019 DOM unit-I

    4/48

    Dynamics of Machinery Unit I: Force Analysis

    dt 

    ndt 

    d    θ θ φ φ    ×=×

    coscos

      ω θ φ 

    φ    ×=×ndt 

    d  coscos    

      

       =ω 

    θ 

    dt 

    φ 

    ω θ φ 

    cos

    cos ×=ndt 

    Angular (elocity of connecting rod

    dt 

    d  PC 

    φ ω    =

    φ 

    ω θ 

    cos

    cos×=

    n

    &e 4now that

    ( ) /+

    /sin+cos   φ φ    −=     

        =

    n

    θ φ 

    sinsin

     /+

    /

    /sin+cos    

      

     −=n

    θ φ 

    /

    +

    /

    /sin+

    cos

       

      

     −

    ×=

    n

    n PC 

    θ 

    θ ω ω 

      ( ) /+

    // sin+

    cos

    θ 

    θ ω 

    ×=

    nn

    n

    ( ) /+

    // sin

    cos

    θ 

    θ ω ω 

    =

    n

     PC 

    Angular acceleration of the connecting rod PC : 

    H8

  • 8/16/2019 DOM unit-I

    5/48

    Dynamics of Machinery Unit I: Force Analysis

      *Di(iding and multiplying by *n/#sin/ +6/

    ( )

    ( )  

    −−−=

    /1

    //

    ///

    sin

    cossinsin

    θ 

    θ θ θ ω 

    n

    n

    ( )( )[ ]θ θ 

    θ 

    θ ω    ///

    /1

    //

    cossin

    sin

    sin+−

    −=   n

    n

    ( )[ ]+

    sin

    sin   /

    /1

    //

    −=   n

    n   θ 

    θ ω 

      *sin/=cos/!+

    ( )   [ ]( )   /

    1//

    //

    sin

    +sin

    θ 

    θ ω ω 

    θ 

    ω α 

    −−=×=

    n

    n

    d   PC  PC 

    The negati(e sign shows that the sense of the acceleration of the

    connecting rod is such that it tends to reduce the angle 5

    ,otes

    Angular (elocity of connecting rod ( )   /

    +//

    sin

    cos

    θ 

    θ ω ω 

    =

    n PC 

    Angular Acceleration of connecting

    ( )

    ( )   /1

    //

    //

    sin

    +sin

    θ 

    θ ω ω 

    θ 

    ω α 

    −−=×=

    n

    n

    d   PC  PC 

      )ince sin/ is small as compared to n/, therefore it may be neglected in

    angular (elocity equation and angular acceleration equations of the

    connecting rod

    Therefore, Angular (elocityn

     PC 

    θ ω ω 

    cos=

    Angular Acceleration ( )

    1

    // +sin

    n

    n pc

    −−=

      θ ω α 

    Also in abo(e equation unity is small as compared to n34 hence the term

    unity may be neglected 

    Angular Accelerationn

     pc

    θ ω α 

    sin/−

    =

    0# In a slider cran* mechanism! the length of the cran* and connecting

    rod are 05& mm and 6&& mm respectively# .he cran* position is 6&7

    from inner dead centre# .he cran* shaft speed is 85& r#p#m#

    (cloc*wise# Using analytical method! determine

    i# /elocity and acceleration of the slider! and

    ii Angular velocity and angular acceleration of the connecting

    rod

    +iven

  • 8/16/2019 DOM unit-I

    6/48

    Dynamics of Machinery Unit I: Force Analysis

    'ength of the connecting rod l ! E mm ! E m@

  • 8/16/2019 DOM unit-I

    7/48

    Dynamics of Machinery Unit I: Force Analysis

    +cos/cos/ =−+   θ θ n

    +cos111cos// =−+   θ θ 

    ( ) ( )

    //

    +/K111111cos

    /

    ×××+±−

    =θ 

    cos !/E  !C

    =angine

    (,eglecting the ?eight of the 1onnecting 2od  

    F8 # 8iston effort

    F % # Thrust on the sides of the cylinder walls *or normal reaction on the

    guide bars

    F> # Force acting along the connecting rod

    FT #

  • 8/16/2019 DOM unit-I

    8/48

    Dynamics of Machinery Unit I: Force Analysis

      ,resistancefrictionalg*%eglectinFF I'  =

      ,resistancefrictionalng*2   +=   ( )5Acoscos

    F p +×=φ 

     

    %# Crank effort (or Turning moment (or) Tor&ue on the crank shaft: (T) 

    1ran* effort

      T ! FT  r( )

    r ×+

    = 5cos5AsinF8

         

      

     

    −+×=

    Asinn/

    sin/AsinAr FT

    //8

    ( )r ×

    +=

    φ 

    φ θ 

    cos

    sinFT 8  

    )in *A=2 ! )inA

  • 8/16/2019 DOM unit-I

    9/48

    Dynamics of Machinery Unit I: Force Analysis

      ,/sinsincos/*   θ θ θ    =

    r n

     F T   P    ×   

      

     

    −+=

    θ 

    θ θ 

    //sin/

    /sinsin

    ;# .he cran*-pin circle radius of a hori@ontal engine is ;&& mm# .hemass of the reciprocating part is 35& *g# ?hen the cran* has travelled

    6&7 from I#D#1#! the difference between the driving and the bac* 

    pressures is 5 ,:mm3# .he connecting rod length between centers is

    0#3 m and the cylinder bore is m# If the engine runs at 35& rpm

    and if the effect of piston rod diameter is neglected! 1alculate

    i# Pressure on slide bars!

    ii# .hrust in the connecting rod!

    iii# .angential force on the cran*-pin! and

    iv# .urning moment on the cran* shaft#

    +iven

    r ! 1 mm ! 1 m@

    m0  ! /C 4g@

    ! EJ@ p+ " p/ ! 1C %6mm

    /@

      l  ! +/ m@

      D ! C m ! C mm@

      % ! /C rpm)olution

    ! / L /C6E ! /E/ rad6s8iston effort F p !F' # FI *#(e sign for acceleration of the piston

    ( ) //+' DK

    L p pF   ×−=   /C

    K

    L1C   ××=    % EG1=

    0atio of length of connecting rod and cran4 

    r ln =   1I/+=   K=

       

       +=

    n

    cos/AcosAr mF

    /0 I   ( )    

      

       +××=

    K

    +/cosEcos1///E/C

    FI ! +N1E %

    F p ! EG1 " +N1E ! KNK/K % ! KNK/K 4%

    (i Pressure on slide bars

    tan5FF  p %  =  

    n

    sinAsin5 =

    K

    Esin= /+EC=

    ( )/+ECsin5 +−=   +/C=

     tan+/CKNK/KF %  =  %+NE= 4%NE+=

    (ii .hrust in the connecting rod

    cos5FF p

    >  =cos+/CKNK/K=  %CE/= 4%E/C=

    (iii .angential force on the cran*-pin

    ( )5AsinFF >T   +=   ( )+/CEsinCE/   +=  ! KG/G4%

    (iv.urning moment on the cran* shaft

    T ! FT r ! KG/G1 ! +KKGK 4%

    8#  A vertical double acting steam engine has a cylinder ;&& mm

    diameter and 85& mm stro*e and runs at 3&& rpm# .he reciprocating

    part has a mass of 335 *g and the piston rod is 5& mm diameter# .heconnecting rod is 0#3 m long# ?hen the cran* has turned through 0357

    from the top dead centre! the steam pressure above the piston is

    ;&*,:m3  and below the piston is 0#5 *,:m3# 1alculate the effective

    turning moment on the cran* shaft#

    Dept.of Mechanical Engg. AAMEC Page

  • 8/16/2019 DOM unit-I

    10/48

  • 8/16/2019 DOM unit-I

    11/48

    Dynamics of Machinery Unit I: Force Analysis

    )olution

    ! /L +G6E ! +GGC/ rad6s@

    0# Net load on the gudgeon !in 

    F#F I'= P  F 

    ( ) 1C/% GKL

      pDK

    L

     F//

    '   =××=×=

       

       +==

    n

    cos/AcosAr mamF

    /0 0 0 I  

    ( )  

    +−=

    nr  x

    /sin cos+

    /

    θ θ 

     n ! l 6r  ! /6C ! K

    ( )  

    ×

    +−×=×   −−K/

    sin cos++C++

    /11   θ θ 

    ( )  

    +−=

    G

    sin cos+C+

    /θ 

    θ 

    ( )

    +

    −=

    G

    sin

    G

     cos+GC+

    /θ θ 

    ( ) ( )   θ θ  /sin cos+GC6+G   +−=×

    θ θ /

    sincosGGE+   +−=

    θ θ /

    cos+cosGGE+   −+−=   ( )θ θ  // cos+sin   −=  E+coscosGN

    / =−−−   θ θ   

    KcosGcos/ =−+   θ θ 

    )ol(ing the abo(e quadratic equation

    cos ! G1

    ! cos#+*G1 ! 11+

       

      

    +== ncos/A

    cosAr mamF/

    0 0 0 I

       

       +××=

    K

    cosEEcos11C+GGC/+ /

    FI ! +E+ %

     F#FF I'8  = +E+#1C/=  !+GKN %

    3# Thrust in the connecting rod  

    cos5

    FF 8>  =

    nθ φ  sin sin   = K

    11sin = KCKKE= +1E+=

    ( )+1E+sin +−=φ  G/=

    cos5

    FF 8>  =

    cosG/

    +GKN=  %+GEE1=

    ;# 'eaction between the !iston and cylinder 

    F % ! F8 tan !+GKN tanG/ϕ ! /CK %

    8# >ngine speed at which the above values will become @ero 

    F p ! F' # FI

    ! F' # FI  &hen Fp $ &

      FI $ FC 

     p D   ×=   

       + //+0 

    Kn

    cos/AcosAr m

      π 

    Dept.of Mechanical Engg. AAMEC Page 11

  • 8/16/2019 DOM unit-I

    12/48

    Dynamics of Machinery Unit I: Force Analysis

    GKK

    cosEEcos11C+

    //+   ××= 

      

       +××

      π 

    1C/K /+  =

    KGNKK61C//+   ==

    rad6sE/1+ ="uivalent Dynamical )ystem

    In order to determine the motion of a rigid body, under the action of 

    e3ternal forces, it is usually con(enient to replace the rigid body by two

    masses placed at a fi3ed distance apart, in such a way that,

      + The sum of their masses is equal to the total mass of the body

      / The centre of gra(ity of the two masses coincides with that of the

     body and

      1 The sum of mass moment of inertia of the masses about their centre

    of gra(ity is equal to the mass moment of inertia of the body

      &hen these three conditions are satisfied, then it is said to be an

    e&uialent dynamical system# 

  • 8/16/2019 DOM unit-I

    13/48

    Dynamics of Machinery Unit I: Force Analysis

     ( )

    ( ) /

    /+

    /+/+! 

    l l 

    l l l l =

    +

    +

     /

    /+   ! l l    =

      This equation gi(es the essential condition of placing the two masses,

    so that the system becomes dynamical equi(alent

    ,ote

    &hen the radius of gyration * + is not *nown, then the position of the

    second mass may be obtained by considering the body as a compound

    pendulum

    'ength of the simple pendulum which gi(es the same frequency as the

    rigid body *ie compound pendulum is

    ( )

    h

    h! 

     # 

    // +

    =  O *0eplacing h by l +

     ( )

    +

    /+

    /

    l !  #  

      +=

    &e 4now that

    l $%l & = '!  ( &

      /++

    /+/+ l l 

    l l l  #   +=

    +=

      This means that the second mass is situated at the centre of 

    oscillation or percussion of the body, which is at a distance of

    l & = '!  ( & )l $ 

    %# The connecting rod of a gasoline engine is ** mm long between its

    centers# +t has a mass of ," kg and mass moment of inertia of 

    -***kgmm. # +ts centre of graity is at .** mm from its small end centre#

     /etermine the dynamical e&uialent twomass system of the connecting rod if one of the masses is located at the small end centre #

    +iven

     l ! 1 mm@

    m ! +C 4g@

    I ! 4g#mm/@

    l+ ! / mm

    )olution

    Mass moment of inertia *I, ( )/

    ! " *  =( ) /+C ! ×=

    ( ) KEE+C6/ ==! 

    ""!  E/+=

    &e 4now that

    For a dynamical equi(alent system,

    l $%l & = *4 - /

    l & = *4 - / )l $ ! KEE6/ ! /11 mm

    m+ ! Mass placed at the small end centre, and

    m/ ! Mass placed at a distance l / from the centre of gra(ity -

    /+

    /+

     mm

    l l 

    +=

    11//

    +C11/

    =   !g +=

    Dept.of Mechanical Engg. AAMEC Page 13

  • 8/16/2019 DOM unit-I

    14/48

    Dynamics of Machinery Unit I: Force Analysis

    /+

    +/

     mm

    l l 

    +=

    11//

    /+C

    =   !g G1+K=

    -#  0 connecting rod is sus!ended from a !oint ." mm aboe the centre of 

    small end1 and %"* mm aboe its centre of graity1 its mass being -#"kg#

    2hen !ermitted to oscillate1 the time !eriod is found to be ,#3-seconds#

    Find the dynamical e&uialent system constituted of two masses1 one of 

    which is located at the small end centre#

    +iven

     h ! EC mm ! EC m@

     l+ ! EC " /C ! E/C mm ! E/C m@

    m ! 1C 4g@

    t p ! +G s

    )olutionFor a compound pendulum, time period of oscillation *t p,

    ( )

     gh

    h! t     p

    //

    /  +

    =   π 

    ( )

     gh

    h! //

    /G+  +

    =   π 

    )quaring both sides

    ( )

    1GE

    K//CGGC

    / +=   ! 

    ( ) ( ) K//C1GEGGC/ −×=!  !+K/C m/

    "!  1+K/C   ==

    For a dynamically equi(alent system

      *4 - / ! l $%l &

      l / ! *4 - /6l $ !+K/C6E/C! //Gm

    /+

    /+

     mm

    l l 

    +=

    //GE/C

    C1//G

    +×=   !g +=

    /+

    +/

     mm

    l l 

    +=

    //GE/C

    C1E/C

    =   !g C/=

    3#  The following data relate to a connecting rod of a reci!rocating 

    engine:

     4ass 5 "" kg6 /istance between bearing centers 5 3"* mm6 /iameter of 

    small end bearing 5 -" mm6 /iameter of big end bearing 5 ,** mm6Time of oscillation when the connecting rod is sus!ended from small 

    end 5 ,#3 s6 Time of oscillation when the connecting rod is sus!ended 

     from big end 5 ,#%3 s# /etermine:

    ,# The radius of gyration of the rod about an a7is !assing through the

    centre of graity and !er!endicular to the !lane of oscillation6

    .# The moment of inertia of the rod about the same a7is6 and

    # the dynamically e&uialent system for the connecting rod1 constituted 

    of two masses1 one of which is situated at the small end centre#  

    +iven m ! CC 4g

    l ! GC mm ! GC m

    d+ ! C mm ! C m

    d/ ! + mm ! + m

    t p+ ! +G1 s

    Dept.of Mechanical Engg. AAMEC Page 14

  • 8/16/2019 DOM unit-I

    15/48

    Dynamics of Machinery Unit I: Force Analysis

    t p/ ! +EG s

    )olution

    First of all, let us find the lengths of the equi(alent simple pendulum when

    suspended

    (a) From the to! of small end bearing6 and 

    (b) From the to! of big end bearing  

    &e 4now that for a simple pendulum

     g 

     #t  p

    ++ /π =

     g 

     #t  p +/

    +

    /=  

     

      

     π 

      ... (Squaring both sides)

    /

    +

    +/      

      

     = π 

     pt  g  #

    /

    /

    G1+G+N        = π  "G1/=

    )imilarly,/

    /

    //    

      

      

     =

    π 

     pt  g  #

    /

    /

    EG+G+N    

      

      =

    π "=

    0# 'adius of gyration of the rod about an a7is !assing through the centre

    of graity and !er!endicular to the !lane of oscillation: 

    Bqui(alent length of simple pendulum  ( )

    h

    h!  #  

    // +=

    ( )   ,*// h #hh #h!    −=−=

    &hen the rod is suspended from the top of small end bearing,

    ( ) ,* +++/

    h #h!    −=   *i

    and when the rod is suspended from the top of big end bearing

    ( )   ,* ////

    h #h!    −=   *ii

    Also, from the geometry of the Fig

    //

    /+

    /+

    hh   ++=+

     /

    +GC

    /

    C++=

    h+=h/ !N1C m

    h/ !N1C # h+ 

    From equations *i and *ii,

    ( )   ,* ///+++   h #hh #h   −=−

    )ubstituting the (alue of h/ from equation *iii,

    ( ) ,,N1C*,*N1C*G1/ ++++   hhhh   −−−=−

    ( ) ( ) /++/++ +C+//1G1/   hhhh   −+−=−/111K1 + =h

    "h EC1K16/11+   == %ow from equation *i,

    ( ) ,ECG1/*EC/ −=!  ++G1=

    ( )   "!  1K1++G1   ==

    3# =oment of inertia of the rod 

    ( )/

    ! " *  =   ( )//

    m#4gC+E1K1CC   ==

    ;# Dynamically e"uivalent system for the rod 

    )ince one of the masses *m+ is situated at the centre of small end

     bearing, therefore its distance from the centre of gra(ity, -, is

    Dept.of Mechanical Engg. AAMEC Page 15

  • 8/16/2019 DOM unit-I

    16/48

    Dynamics of Machinery Unit I: Force Analysis

      "hl  E+/C1CEC,/6C*++   =−=−=

     m/ ! Magnitude of the second mass, and

    l / ! Distance of the second mass from the centre of gra(ity, -, towards big

    end bearing

    For a dynamically equi(alent system

      *4 - / ! l $%l &

    l & = *4 - / )l $ =+%$$-)+%.$&/= +%$0-"

    /+

    /+

     mm

    l l 

    +=

    //GE+/C

    CC+N1

    =   !g +G+1=

    1orrection 1ouple to be applied to ma*e .wo-=ass )ystem

    Dynamically >"uivalent 

    The torque required to accelerate the body  α α  /,* ! " * T    ==   ############## *i

    Torque required to accelerate the two#mass system placed arbitrarily

    α α  /+++ ,*   ! " * T    ==   111111111111111111 'ii(

    Difference between the torques required accelerating the two#mass system

    and the torque required to accelerate the rigid body

    α α  //++P

    ,*,* ! "! "T T T    −=−=   α //

    + ,*,* ! ! "   −= 111111 'iv(

      The difference of the torques TP is 4nown as correction couple# .his

    couple must be applied! when the masses are placed arbitrarily to ma4e

    the system dynamical equi(alent

      *4 - / ! l $%l &

      *4 + / ! l $%l -

  • 8/16/2019 DOM unit-I

    17/48

    Dynamics of Machinery Unit I: Force Analysis

    the line of centers# The radius of gyration about an a7is through the

    C#9# !er!endicular to the !lane of rotation is ,,* mm# Find the

    e&uialent dynamical system if only one of the masses is located at 

     gudgeon !in#

     +f the connecting rod is re!laced by two masses1 one at the gudgeon

     !in and the other at the crank !in and the angular acceleration of therod is . *** rads. clockwise1 determine the correction cou!le a!!lied to

    the system to reduce it to a dynamically e&uialent system #

    +iven

     m ! / 4g@

    l ! /C mm ! /C m@

    l $ ! + mm ! +m@

     4 - ! ++ mm ! ++ m @

    H ! /1 rad6s/

    )olution

    >"uivalent dynamical system

    It is gi(en that one of the masses is located at the gudgeon pin

    'et the other mass be located at a distance l/ from the centre of gra(ity

    For an e"uivalent dynamical system

    *4 - / ! l $%l &

    l & = *4 - / )l $ !++

    /6+! +/+m

    m+ ! Mass placed at the gudgeon pin,

    m/ ! Mass placed at a distance l / from

  • 8/16/2019 DOM unit-I

    18/48

    Dynamics of Machinery Unit I: Force Analysis

    .urning moment diagram The turning moment diagram *also 4nown as

    cran4# effort diagram is the graphical representation of the turning

    moment or cran4#effort for (arious positions of the cran4

    .urning =oment Diagram for a )ingle 1ylinder Double Acting )team

    >ngine:

    Turning moment r n

     F T   P    ×   

      

     

    −+=

    θ 

    θ θ 

    //sin/

    /sinsin

    .urning =oment Diagram for a Four )tro*e 1ycle Internal

    1ombustion >ngine:

     

    .urning =oment Diagram for a =ulti-cylinder >ngine:

    Dept.of Mechanical Engg. AAMEC Page 18

  • 8/16/2019 DOM unit-I

    19/48

    Dynamics of Machinery Unit I: Force Analysis

    Ma3Fluctuation of Bnergy Q B!Ma3imum energy " Minimum energy

  • 8/16/2019 DOM unit-I

    20/48

    Dynamics of Machinery Unit I: Force Analysis

    nergy )tored in a Flywheel

    Mean 4inetic energy of the flywheel, /

    /

    +ω  *  4  = //

    /

    +ω "! =

    Ma3imum fluctuation of energy R 4 ! Ma3imum .B " Minimum .B

     //

    /+ I

    /

    + I

    /

    + B   −=∆  

    ( )///++ I/

    +  −=

    ( ) ( )[ ]/+/+ I/

    +  −+=∆ 4 

    ( )/+ I  −=   ω   

      +=

    /

    /+   ω ω ω 

      

      

        −=ω 

    ω  /+/ I   

     

      

        −=ω 

    ω  /+/ I 

     sC /I  ω =  

      −=

    ω 

    ω ω  /+ sC 

     sC //m4   ω =   [ ]/"!  *  =

    RB ! / 4 C )

    =/

    /

    +

    ω  *  4 

      The radius of gyration *!  may be ta4en equal to the mean radius of 

    the rim * 5, because the thic4ness of rim is (ery small as compared to the

    diameter of rim Therefore, substituting ! ! 5

     

     s s   C "5C  4 ////m4   ω ω    ==∆

       sC "v 4 /=∆   [ ] 5v   ω =

    Dept.of Mechanical Engg. AAMEC Page 2!

  • 8/16/2019 DOM unit-I

    21/48

    Dynamics of Machinery Unit I: Force Analysis

    ,ote

    )ince ! / π 3 6E, therefore equation may be written as

     

     

     

     

     −×=∆

    E

     %/

    E

     %/

    E

     %/I B /+

      π π π   ( )/+

    /

    I

    1E

    K   3  3  3    −××=  π 

      ( )/+/

    /

    m4 N

       3  3  3    −××=  π 

      sC  3    ×××=

    ///

    m4 N

     π 

        

      

        −=

     3 

     3  3 C  s

    /+

    ,,# The mass of flywheel of an engine is %#" tonnes and the radius of 

     gyration is ,#3 metres# +t is found from the turning moment diagram that 

    the fluctuation of energy is "% kNm# +f the mean s!eed of the engine is

    ,.* r#!#m#1 find the ma7imum and minimum s!eeds#

    +ivenMass m ! EC t ! EC 4g@

    0adius of gyration 4 ! +G m@

    Fluctuation of energyR B ! CE 4%#m ! CE +1 %#m@

    )peed % ! +/ rpm

    )olution

     %+ and %/ ! Ma3imum and minimum speeds respecti(ely

    Fluctuation of energy  sC  3 "!  4 //

    /

    N×=∆

      π 

    ,*N

    +CE /+/

    /

    1  3  3  3 "!    −×=×   π 

      ,*+/G+EN

    /+/

    /

     3  3   −×××=  π 

      ,*/+CCE /+   3  3   −=   *+

    Mean speed , /

    /+   3  3  3   +

    =

    /+/I   /+

      3  3   +=

    /+//+   ×=+ 3  3 /K/+   =+ 3  3    */

    )ol(ing equations (,) and (.)1 

     %+ ! +/+ rpm

      %/! ++N rpm

    Dept.of Mechanical Engg. AAMEC Page 21

  • 8/16/2019 DOM unit-I

    22/48

    Dynamics of Machinery Unit I: Force Analysis

    03# .he flywheel of a steam engine has a radius of gyration of 0 m and

    mass 35&& *g# .he starting tor"ue of the steam engine is 05&& ,-m and

    may be assumed constant# Determine

    i# .he angular acceleration of the flywheel! and

    ii .he *inetic energy of the flywheel after 0&

    seconds from the start#+iven

     * $ 0 m4

    m $ 35&& *g4

    . $ 05&& ,-m 

    )olution

    0# Angular acceleration of the flywheel 

    H ! Angular acceleration of the flywheel

    Mass moment of inertia of the flywheel

    I = "%! & ! 2500 × 12 = 2500 kg-m2

    )tarting torque of the engine T ! I H

    +C ! *%6 

    +C! /C H

    H ! +C 6 /C !E rad 6s/

     ;inetic energy of the flywheel:

    Assuming uniform acceleration

    + ! Angular speed at rest !

    / ! Angular speed after + seconds,

    t ! Time in seconds

    &e 4now that

      / ! + = H t  ! = E +! E rad 6s

    .inetic energy of the flywheel   ( ) ///

    +ω  * ×=   ( ) /E/C

    /

    +×=

    m# %KC=

    0;# A hori@ontal cross compound steam engine develops ;&& *?at9&

    r#p#m# .he coefficient of fluctuation of energy as found from the

    turning moment diagram is to be and the fluctuation of speed is to

    be *ept within E of the mean speed# Find the weight of theflywheel re"uired! if the radius of gyration is 3 metres#

    +iven

    8 ! 1 4& ! 1 +1 &@

     % ! N rpm@

  • 8/16/2019 DOM unit-I

    23/48

    Dynamics of Machinery Unit I: Force Analysis

    Ma3imum fluctuation of energy RB ! &or4 done per cycle < B

    ! / +1 + ! / +1 %#m

    m ! Mass of the flywheel

    Ma3imum fluctuation of energy RB $m#* 3#3#1)

    / +1 ! m //  *NK/E/  +

    /! 1CCK mm !/ +161CCK ! CE1 4g

    ,

  • 8/16/2019 DOM unit-I

    24/48

    Dynamics of Machinery Unit I: Force Analysis

    ,"# The turning moment diagram for a multi cylinder engine has been

    drawn to a scale , mm5 %** Nm ertically and , mm5 = hori>ontally#

    The interce!ted areas between the out!ut tor&ue cure and the meanresistance line1 taken in order from one end1 are as follows:

    ? ".1 @ ,. $m#* 

    3

    #

    3#

    1) CKK ! m *C/  *E/GK/  1

    m ! CKK 6 /NE ! +G1 4g

    Dept.of Mechanical Engg. AAMEC Page 24

  • 8/16/2019 DOM unit-I

    25/48

    Dynamics of Machinery Unit I: Force Analysis

    ,%# 0 shaft fitted with a flywheel rotates at ."* r#!#m# and dries a

    machine# The tor&ue of machine aries in a cyclic manner oer a !eriod 

    of reolutions# The tor&ue rises from -"* Nm to *** Nm uniformlyduring ,. reolution and remains constant for the following reolution#

     +t then falls uniformly to -"* Nm during the ne7t ,. reolution and 

    remains constant for one reolution1 the cycle being re!eated thereafter#

     /etermine the !ower re&uired driing the machine and !ercentage

     fluctuation in s!eed1 if the driing tor&ue a!!lied to the shaft is constant 

    and the mass of the flywheel is "** kg with radius of gyration of %** mm

    +iven

     % ! /C rpm

    m ! C 4g @4 ! E mm ! E m

    )olution

    ! /L /C6E ! /E/ rad6s

    The turning moment diagram for the complete cycle is shown in Fig

    Torque required for one complete cycle! Area of figure A2

  • 8/16/2019 DOM unit-I

    26/48

    Dynamics of Machinery Unit I: Force Analysis

      8

     89 

     A

     #9 =

     C1

    +GC1

    −−

    =π 

     #9 

      'M ! CL

    From similar triangles

  • 8/16/2019 DOM unit-I

    27/48

    Dynamics of Machinery Unit I: Force Analysis

    T/

     !+C %#m

    /

    ! G

    wrt D< !+G=G !/E

     wrt ID<

    &or4 done per cycle ! Area of triangle A- = Area of triangle -')

       

       ××+ 

      

       ××=   #9 :  A8O

    /

    +

    /

    +

         

       ××+ 

      

       ××= +C

    /+/

    /+ π π 

      !+C L %#m ############ *i

    &or4 done per cycle ! Tmean  / L %#m ######## *ii

    From equations *i and *ii,

    Tmean ! +C L 6 / L ! GC %#m

    From similar triangles A

  • 8/16/2019 DOM unit-I

    28/48

    Dynamics of Machinery Unit I: Force Analysis

      O8 A8

     A4 C4    ×=   O8

     A8

     48 A8×

    −=  

    N

    K

    /

    GC/   π ×

    −=   rad 

    K

    π =

    KN

    K   π π θ    −=C    rad 

    1E

    π =  

    π 

    π  +G

    1E

    ×= 1C=

    Again from similar triangles ABD and A2-,

     A8

     A4 

     8

     4D =

       8 A8

     A4  4D   ×= ,*   O8O

     A8

     48 A8−×

    −=

       

       −×

    −=

    N

    K

    /

    GC/   π π   

    rad  4DN

    G/   π =

    N

    G/

    N

    K   π π θ    += D   rad 

    N

    GE   π =  π 

    π  +G

    N

    GE ×= ! +1E 

    ,3# 0 three cylinder single acting engine has its cranks set e&ually at 

    ,.*= and it runs at %** r#!#m# The tor&uecrank angle diagram for each

    cycle is a triangle for the !ower stroke with a ma7imum tor&ue of 8* Nm

    at %*=from dead centre of corres!onding crank# The tor&ue on the

    return stroke is sensibly >ero# /etermine

    i# Power deelo!ed#

    ii% Coefficient of fluctuation of s!eed1 if the mass of the flywheel is

    ,.kg and has a radius of gyration of 3* mm1

    iii# Coefficient of fluctuation of energy1 andi# 4a7imum angular acceleration of the flywheel#

    +iven

     % ! E rpm

    Tma3 ! N %#m@

    m ! +/ 4g@

    4 ! G mm ! G m

    )olution

    8ower de(eloped ! wor4 done6cycle ! Area of three triangles

      N/

    +1   ×××=   π  m# %K/K=

     eangle6cycl

  • 8/16/2019 DOM unit-I

    29/48

    Dynamics of Machinery Unit I: Force Analysis

      ( )KCCEE/

    +−××=

      π  ! CGN %#m !a

    a/!Area of triangle 2b<P

    /

    +;; 8C  ××=

      O*2< ! E !L61 rad

      ( )CEN1/

    + −××=   π    m# %G++=

      ECK1a   aaa   ====

     %ow, let the total energy at A ! B, then referring to Fig

    Bnergy at 2 ! B " CGN

    Bnergy at < ! B " CGN = ++G ! B = CGN

    Bnergy at D ! B = CGN " ++G ! B " CGN

    Bnergy at B ! B " CGN = ++G ! B = CGN

    Bnergy at - ! B = CGN " ++G ! B " CGN

    Bnergy at V ! B " CGN = ++G ! B = CGN

    Bnergy at ! B = CGN " CGN ! B ! Bnergy at A

    Ma3imum energy! B = CGN

    Minimum energy! B " CGN

    =a

  • 8/16/2019 DOM unit-I

    30/48

    Dynamics of Machinery Unit I: Force Analysis

    It is assumed to be triangular during compression and e3pansion stro4es,

    neglecting the suction and e3haust stro4es

    n = 3)& ! 1 6 / ! +C&or4 done6cycle ! P .+ ) n ! / +1 E 6 +C ! G %#m OO *i

    eangle6cycl

  • 8/16/2019 DOM unit-I

    31/48

    Dynamics of Machinery Unit I: Force Analysis

    Assuming the resisting tor"ue to be uniform! find the mass of the rim

    of a flywheel re"uired to *eep the speed between 3&3 and 09B r#p#m#

    .he mean radius of the rim is 0#3m#

    +iven

    )uction stro4e a$ = +%/ $+ 2- "& >

    B3haust stro4e a = +%./ $+ 2- "&>

    + m/of area !1 M%#m 

     3 $ = &+& r%p%">

     3 & = $0 r%p%"%>

     5 = $%& " )olution

    The turning moment cran4 angle diagram for a four stro4e engine is shown

    in Figure

    The areas below the Yero line of pressure are ta4en as negati(e while the

    areas abo(e the Yero line of pressure are ta4en as positi(e

     %et area ! a1 " *a+=a/=aK

    ( ) ( ) ( ) ( )( )1111 +EC+++KC+GE   −−−− ×+×+×−×=  ! K+#1m/

    Bnergy scale is + m

    /

     ! 1 M%#m! 1 +

    E

     %#m %et wor4 done per cycle ! K + "1  1 +E ! +/ +1 %#m (i) 

    &or4 done per cycle! T "ean  ?   (ii) 

    From equations *i( and 'ii(, 

    T "ean x ? = $& $+- 

    T "ean = $& $+- ) ?  = 0// 31" 

    &or4 done during e3pansion stro4e! a-  4nergB scale 

    ! EG + "1  1 +E

      ! /K +1 %#m (iii) 

    &or4 done during e3pansion stro4e ! Area of triangle A8C  

    ! X  8C A 

    ! X L  A ! +C+  A 

    *iv( 

    From equations (iii) and (i)1 

     A = &+% $+- )$%/@$ = $& 0/ 31" 

    Dept.of Mechanical Engg. AAMEC Page 31

  • 8/16/2019 DOM unit-I

    32/48

    Dynamics of Machinery Unit I: Force Analysis

    B3cess torque,

    T excess = AF  ! A 2 F ! +/ NGC " NCC = $& +-+ 31" 

    )imilar triangles AD4 and A8C, 

     A

     AF 

     8C 

     D4 =

     8C  A

     AF  D4    ×=   π ×=+/NGC

    +/1 radN/=

    Ma3imum fluctuation of energy

    R 4 =Area o E AD4    AF  D4  ××=/

    ++/1N/

    /

    +××= = $@ 31

    "

     4ass of the rim of a flywheel  

    /

    /+   3  3  3   +

    =/

    +NG// += =&++ rp"

    Ma3imum fluctuation of energy *R 4 (, H  $m#k . #D.#C  E  

    ( )/+/

    /

    N+KKK   3  3  3 "5   −×=

     π 

    ( ) ( )+NG////+N

    +KKK/

    /

    −××××=   "π 

    4g+1G+1E+/6+KKK   =="

    30# .he turning moment curve for an engine is represented by the

    e"uation!

    . $ (3& &&& ' 95&& sin 3% 5&& cos 3 ,-m! where is the angle

    moved by the cran* from inner dead centre# If the resisting tor"ue isconstant! find

    i# Power developed by the engine4

    ii =oment of inertia of flywheel in *g-m 3! if the

    total fluctuation of speed is not e

  • 8/16/2019 DOM unit-I

    33/48

    Dynamics of Machinery Unit I: Force Analysis

    The turning moment diagram for one stro4e*ie Valf re(olution of the

    cran4shaft is shown in Fig

    )ince at points 2and D, the torque e3erted on the cran4shaft is equal to the

    mean resisting torque on the flywheel

    Therefore, T ! Tmean

    / = NC sin /" C cos / ! / NC sin / ! C cos /

    tan /! sin /6cos / ! C6NC ! E

      ∴ /! 1+J or 

      ! +CCJ

    ∴2! +CCJ and

     D! NJ = +CCJ ! +CCJ

    Ma3imum fluctuation of energy, ( )∫ =∆ D

     8

     4 

    θ 

    θ 

    θ dT#T mean

    ( )∫    +=∆C+C

    C+C

    d/#Ccos/#NCsin//   θ θ θ  4 

    C+C

    C+C/

    Csin/#

    /

    NCcos/

    −=

      θ θ   m# %++G=

    Ma3imum fluctuation of energyH  $m#k . #D.#C  E  

    ++G ! I *+GGC/ +

    ++G ! 1CC I

    I ! ++G61CC ! 1+/+ 4g#m/

    Angular acceleration of the flywheel

    'et H! Angular acceleration of the flywheel,

    and

    ! Angle turned by the cran4 from inner 

    dead centre ! KCJ *-i(en

    The angular acceleration in the flywheel is produced by the e3cess torque o(er the mean torque

    B3cess torque at any instant   "eanexcess   T T T    −=

    /#Ccos/#NCsin//   θ θ +=θ θ  Ccos/#NCsin/=

    B3cess torque at KCJ

      ! NC sin NJ " C cos NJ ! NC %#m

    B3cess torque!IH ! 1+/+ H *ii

    From equations *iand *ii

    H! NC61+/+ ! 1KK rad 6s/

    33# A certain machine re"uires a tor"ue of (5&&& ' 5&& sin ,-m to

    drive it! where is the angle of rotation of shaft measured from

    certain datum# .he machine is directly coupled to an engine which

    produces a tor"ue of (5&&& ' 6&& sin 3,-m# .he flywheel and the

    Dept.of Mechanical Engg. AAMEC Page 33

  • 8/16/2019 DOM unit-I

    34/48

    Dynamics of Machinery Unit I: Force Analysis

    other rotating parts attached to the engine has a mass of 5&& *g at a

    radius of gyration of m# If the mean speed is 05& r#p#m#! find

    i# .he fluctuation of energy!

    ii .he total percentage fluctuation of speed! and

    iii .he ma

  • 8/16/2019 DOM unit-I

    35/48

    Dynamics of Machinery Unit I: Force Analysis

    Differentiating this e3pression with respect to and equating to Yero for 

    ma3imum or minimum (alues

    ( ) sinC/sinE   =−∴   θ θ θ d 

    cosC/cos+/   =−   θ θ 

    cosC/cos+/   =−   θ θ   *cos/!/cos/#+

    +/cosCcos/K/ =−−   θ θ 

    ( )

    /K/

    /K+/K/CCcos

    ×××+±

    =θ   KG

    11KC ±= !G+G *or #E+K

    ! 1CJ or +/EJ

    )ubstituting ! 1CJ in equation (i)1 we hae ma7imum tor&ue 

    T "ax = .++ sin @+ 2 /++ sin -/ 

    T "ax = &@@ 31" 

    )ubstituting !+/EJ in equation (i) we hae minimum tor&ue 

    T "in = .++ sin &//%& 2 /++ sin $&@%. ! " NE %#m

    Ma3imum acceleration * 

    T ma3ma3 =α  /

    ma3

    "! 

    T =

      *"  * = "%! & ( 

    ( ) /KC

    /

    ×= /rad6sKE1=

    Minimum acceleration *or ma3imum retardation, * 

    T minmin =α  /

    min

    "! 

    T =

      *"  * 

    = "%! & (

     ( ) /KC

    NE

    ×=

    /rad6s/+/=

    3;# .he e"uation of the turning moment curve of a three cran* 

    engine is (5&&& ' 05&& sin ; ,-m! where is the cran* angle in

    radians# .he moment of inertia of the flywheel is 0&&& *g-m3

    and themean speed is ;&& r#p#m# 1alculate

    i# Power of the engine! and

    ii .he ma

     3 = -++ r%p%"% or 

    ! / L 16E ! 1+K/ rad 6s)olution 

    0# Power of the engine

     &or4 done per re(olution ∫    +=π 

    θ θ 

    /

    ,d+Csin1*C

    π θ 

    θ 

    /

    1

    +Ccos1C

    −= ! + L %#m

    ∴ Mean resisting torqueπ 

    π 

    π  /

    +

    /

    6==

      rev

  • 8/16/2019 DOM unit-I

    36/48

    Dynamics of Machinery Unit I: Force Analysis

    )ince the resisting torque is constant, therefore the torque e3erted on the

    shaft is equal to the mean resisting torque on the flywheel

    T = T "ean 

    C = +C sin 1 ! C

    +C sin 1 ! or sin 1 ! 1 ! J or +GJ

    ! J or EJ

    Ma3imum fluctuation of energy, ( )∫ =∆E

    mean dT#T   θ  4 

    ( )∫    +=E

    dC#+Csin1C   θ θ  ∫ =E

    d+Csin1   θ θ 

    E

    1

    +Ccos1

    −=

      θ 

    R B!+%#m

    Ma3imum fluctuation of energy H  $m#k . #D.#C  E 

    + = $+++ '-$%&(& C   

    + ! NG /+E C   

    C   = $+++ ) 0@ &$. = +%++$ or +%$H

    (ii) 2hen resisting tor&ue is ("*** ? %** sin ) Nm 

    The turning moment diagram is shown in Fig,

    )ince at points 8 and C, the torIJe e3erted on the shaft is equal to the

    mean resisting torque on the flywheel

    Therefore

    C = +C sin 1 ! C = E sin

    /C sin 1 ! sin /C *1 sin " K sin1 !sin

    *" sin 1 ! 1 sin " K sin1

    1 " K sin/ ! K

      *Di(iding by /C sin

    K

    K1sin

    /   −=θ  !EC

    )in!GE/

    ! C1J or +/E1J

    2 ! C1J, and

  • 8/16/2019 DOM unit-I

    37/48

    Dynamics of Machinery Unit I: Force Analysis

    [ ]∫    −=∆1+/E

    C1

    dEsin+Csin1   θ θ θ  4 

    1+/E

    C1

    cosE1

    1cos+C

    +−

    =   θ θ 

    ! " +ECE %#mMa3imum fluctuation of energy , H  $m#k . #D.#C  E 

    +ECE = $+++ '-$%&(&  C   

    +ECE! NG /+E C   

    C   = $./. ) 0@ &$.  = +%++ $. or +%$.H 

    38# .he turning moment diagram for a multi-cylinder engine has been

    drawn to a scale of 0 mm to 5&& ,-m tor"ue and 0 mm to 67 of cran* 

    displacement# .he intercepted areas between output tor"ue curve and

    mean resistance line ta*en in order from one end! in s"# mm are

     % ;&! ' 80&! % 3B&! ' ;3&! % ;;&! ' 35&! % ;6&! ' 3B&! % 36& s"#

    mm! when the engine is running at B&& r#p#m#.he engine has a stro*e of ;&& mm and the fluctuation of 

    speed is not to e

  • 8/16/2019 DOM unit-I

    38/48

    Dynamics of Machinery Unit I: Force Analysis

    Turning moment scale is

    + mm ! C %#m and

    cran4 angle scale is+ mm ! EJ! L 61 rad

    + mm/ on the turning moment diagram

    ! C L 6 1 ! C/1 %#m

    Bnergy at A = 4, then reerring to Fig  

    Bnergy at 8 = 4 2 -+  (=inimum energy 

    Bnergy at C = 4 2 -+ G $+ ! 4 G -+ 

    Bnergy at D = 4 G -+ 2 &+ ! 4 G $++ 

    Bnergy at 4 = 4 G $++ G -&+ ! 4 G &+  (=a

     D = & " or 

     5 = $ " >

     L = @&++ !g)"- 

    )olution

    = & ? + ).+ = % rad)s 

    )ince the fluctuation of speed is S / of mean speed, therefore total

    fluctuation of speed,

    + " / ! K

    + " / ! K

  • 8/16/2019 DOM unit-I

    39/48

    Dynamics of Machinery Unit I: Force Analysis

    Ma3imum fluctuation of energy

    R 4 =

  • 8/16/2019 DOM unit-I

    40/48

    Dynamics of Machinery Unit I: Force Analysis

    Bnergy at 8 = 4 G $.+ 

    Bnergy at C = 4 G $.+ 2 $@&  = 4 2 $& 

    Bnergy at D = 4 2 $& G $. = 4 G $/.  

    Bnergy at 4 = 4 G $/. 2 $0$ = 4 2 -/  (=inimum energy 

    Bnergy at F = 4 2 -/ G $0@  = 4 G $.&  (=a

    a& = &$ $+2/ "&>

    a- = / $+2/ "&>

    a = $+2/ "&>

    Dept.of Mechanical Engg. AAMEC Page 4!

  • 8/16/2019 DOM unit-I

    41/48

    Dynamics of Machinery Unit I: Force Analysis

     3 & = 0 r%p%"%>

     3 $ = $+& r%p%"%>

     L = $/+ !g)"->

     N = @%/ 9Pa = @%/ $+.  3)"&

    olJtion:

    The tJrning "o"ent1cran! angle diagra" or a oJr stro!e engine is shown in Fig%

    The areas ;elow the ero line o pressJre are ta!en as negative while the

    areas a;ove the ero line o pressJre are ta!en as positive

     3et area = a- 2 'a$ G a& G a (

      = / $+/ 2 '/ $+/ G &$ $+ 2/ G $+ 2/ ( 

    = /$ $+ 2/ "&

    $"& = $ 931"= $ $+.  31" o wor! 

    Thereore

     3et wor! done per cBcle= /$ $+ 2/  $ $+. = @$+ 31"%%%(i) 

  • 8/16/2019 DOM unit-I

    42/48

    Dynamics of Machinery Unit I: Force Analysis

    /

    /+   3  3 C  s−

    =/

    NG+/ −=  = +%+

     9axi"J" lJctJation o energB 'E4(

     E4 = *%&%C 

    $+ $.+ = * '$+%@(&  +%+

    $+$.+ = %-/ *

     * = $+$.+ ) %-/ = &-$@ !g1"&

     Ei>e of flywheel  

     7oop stress  N=L % v&

    @%/ $+.  = $/+ v&

    N/G+C

    +CE

    / =×

    =v

    m6s 11=vv = ?D3).+

     D = v .+)?3 = -+%- .+)? $++

     D= /%@. "

     9axi"J" lJctJation o energB, E4 = "%v& C   

    $+ $.+ = " '-+%-(&  +%+

    $+$.+ = -.%@& "

    " = $+ $.+)-.%@& = &@.%@ !g

    " = MolJ"e densitB g 

     A D  ρ 

    π    ××= g 

    t ; D  ρ 

    π    ×××=

    G+N

    +GKGEC/E

    K×××××=   t t π 

    &@.%@ = /0%-$+t &

    t & =&@.%@) '/0%-$+ ( =%..$+1

    t=+%+&$."=&$%.""

    ; = t = &$%. = .% ""

    .3# 0n Gtto cycle engine deelo!s "* k2 at ,"* r#!#m# with -" e7!losions

     !er minute# The change of s!eed from the commencement to the end of 

     !ower stroke must not e7ceed *#"B of mean on either side# Find the

    mean diameter of the flywheel and a suitable rim crosssection haing 

    width four times the de!th so that the hoo! stress does not e7ceed <

     4Pa# 0ssume that the flywheel stores ,%," times the energy stored by

    the rim and the work done during !ower stroke is ,#

  • 8/16/2019 DOM unit-I

    43/48

    Dynamics of Machinery Unit I: Force Analysis

    ince the explosions per "inJte are eIJal to 3)&, thereore, the engine is a

     oJr stro!e cBcle engine%

  • 8/16/2019 DOM unit-I

    44/48

    Dynamics of Machinery Unit I: Force Analysis

    @-$ = ?D A L

    @-$ = ? - t &  @&++

    @-$ = &@$ .0 t &

    t & = -$) &@$ .0 = +%+&

    t = +%$@" = $@+ ""

    ; = t = $@+ = .+ ""Flywheel in Punching Press:

    .8# Punching !ress is drien by a constant tor&ue electric motor# The

     !ress is !unching !ress is drien by a constant tor&ue electric motor# The

     !ress is !roided with a flywheel that rotates at ma7imum s!eed of .."

    r#!#m# The radius of gyration of the flywheel is *#" m# The !ress !unches

    -.* holes !er hour6 each !unching o!eration takes . second and 

    re&uires ," kNm of energy# Find the !ower of the motor and the

    minimum mass of the flywheel if s!eed of the same is not to fall below

    .** r# !# m

    9ien:

     3 =&&/ r%p%" >

     ! = +%/ " >

     7ole pJnched = @&+ per hr>

     4= $/ !31"= $/ $+- 31" >

     3=&++ r%p%"%

     Eolution:

     Power o the "otor 

    Total energB reIJired per second  = 4nergB reIJired ) hole 3o% o holes ) 

     s

    =$/ $+- @&+)-.++ = -+++ 31")s

     Power o the "otor = -+++

  • 8/16/2019 DOM unit-I

    45/48

    Dynamics of Machinery Unit I: Force Analysis

     Power of the motor re&uired 

    heared area,  A =? d t = ? - -& =-&+ ""&

    ince the energB reIJired to pJnch a hole is @ 31")""& o sheared area,

    thereore total energB reIJired per hole,

     4 $ = @ -&+ = &.@+ 31"

     Also the ti"e reIJired to pJnch a hole is $+ second, thereore energBreIJired or pJnching wor! per second 

    = &. @+)$+ = &.@ 31")s

     Power o the "otor reIJired = &.@

    ! = +%. " >

     3 $ = -++ r%p%"%

     Eolution

    $ = &? -++).+ = -$%& rad)s

     E!eed of the flywheel immediately after rieting  

    &= AngJlar speed o the lBwheel i""ediatelB ater riveting 

     4nergB sJpplied ;B the "otor,  4 & = -!< = -+++ < = -+++31")s

     8Jt energB a;sor;ed dJring one riveting operation which ta!es $ second,

     4 $ = $+ +++ 31"

    ∴ 4nergB to ;e sJpplied ;B the lBwheel or each riveting operation per 

     second or the "axi"J" lJctJation o energB

     E4 = 4 $ S 4 & = $+ +++ S -+++ = @+++ 31"

     9axi"J" lJctJation o energB 'E4(,

    ( ) ( )[ ]///+//

    +ω ω    −××=∆   "!  4 

    ( ) ( )[ ]/

    /

    //

    K/1+E+C/

    +   ω −××=

    ( ) ///NGF/FFIII   ω −=& = 0@%& 2 '@+++) &@( = @&

    = &.%0 rad)s

    Dept.of Mechanical Engg. AAMEC Page 45

    D i f M hi U i I F A l i

  • 8/16/2019 DOM unit-I

    46/48

    Dynamics of Machinery Unit I: Force Analysis

    Corresponding speed in r%p%"%

     3 & = &.%0 .+) & ? = &/@%. r%p%"

     Number of riets that can be closed !er minute 

    ince the energB a;sor;ed ;B each riveting operation which ta!es $

     second is $+ +++ 31",

    Thereore, nJ";er o rivets that can ;e closed per "inJte

    E+

    / ×= 4 

     4 E

    +

    1×=  =$

    .# 0 !unching !ress is re&uired to !unch

     4nergB reIJired = . 31")""&>

    Ti"e = $)$+ s = +%$ s>

     3 $ = $.+ r%p%"%>

     3 & = $+ r%p%"%>

    ! = $"

     Eolution: 

    heared area per hole = ? d %t = ? + $/ = $/ ""&

     4nergB reIJired to pJnch a hole 4 $ = . $/ = $$ -$+ 31"

     4nergB reIJired or pJnching wor! per second=4nergB reIJired per hole3o% o holes per second 

    = $$ -$+ -+).+ = /.// 31")s

    ince the pJnching ta!es $)$+ o a second,

    Thereore, energB sJpplied ;B the "otor in $)$+ second,

     4 & = /.// $)$+ = /./%/ 31"

     4nergB to ;e sJpplied ;B the lBwheel dJring pJnching a hole or "axi"J"

     lJctJation o energB o the lBwheel 

     E4 = 4 $ S 4 & = $$ -$+ S /./%/ = $+ @%/ 31"

     9ean speed o the lBwheel

    /

    /+   3  3  3   +

    =/

    +K+E += =$/+ rp"

     9axi"J" lJctJation o energB 'E4(

    ( )/+/

    /

    N 3  3  3 "!  4    −××=∆

      π 

    ( )+K+E+C+N

    C+KK //

    −×××=   "π 

    $+ @%/ = --"

    " = $+@%/ ) -- = -&@ !g

    # 0 !unching machine makes ." working strokes !er minute and is

    ca!able of !unching ." mm diameter holes in ,3 mm thick steel !lates

    haing ultimate shear strength ** 4Pa# The !unching o!eration takes

     !lace during ,,*th of a reolution of the crankshaft#

     stimate the !ower needed for the driing motor1 assuming a

    mechanical efficiency of 8" !ercent# /etermine suitable dimensions for 

    the rim crosssection of the flywheel1 haing width e&ual to twice

    thickness# The flywheel is to reole at 8 times the s!eed of the

    crankshaft# The !ermissible coefficient of fluctuation of s!eed is *#,#

    The flywheel is to be made of cast iron haing a working stress

    (tensile) of % 4Pa and density of -."* kgm # The diameter of the

     flywheel must not e7ceed ,#< m owing to s!ace restrictions# The hub and 

    the s!okes may be assumed to !roide "B of the rotational inertia of thewheel#

    9ien :

    n = &/>

     d $ = &/ "" = +%+&/ ">

    Dept.of Mechanical Engg. AAMEC Page 46

    D i f M hi U it I F A l i

  • 8/16/2019 DOM unit-I

    47/48

    Dynamics of Machinery Unit I: Force Analysis

     t $ = $ "" = +%+$ " >

    = -++ 9Pa= -++ $+.  3)"& >

    = 0/H = +%0/ >

     C   = +%$>

    N = . 9Pa = . $+.  3)"&>

     L = @&/+ !g)"

    -

     D = $% " or>

     5 = +%@ "

     Eolution:

     Power needed for the driing motor  

     Area o plate sheared,  A s = ?d $  t $ = ? +%+&/ +%+$ = $$ $+S. "&

     9axi"J" shearing orce reIJired or pJnching 

    J s s   A F    τ ×= 

    = $$ $+S. -++ $+.  = & &++3

     4nergB reIJired per stro!e= Average shear orce Thic!ness o plate

    +/+ t  F  s ××= +GK/K//

    + ××== -$@% 31"

     4nergB reIJired per "in=4nergB)stro!e 3o% o wor!ing stro!es)"in

      = -$@% &/ = 0/ /+ 31"

     Power needed or the driving "otor    "η ×

    =E

    min perrequiredBnergy

    NCE

    NCKC

    ×=

    = $.@/

  • 8/16/2019 DOM unit-I

    48/48

    Dynamics of Machinery Unit I: Force Analysis

    Dept.of Mechanical Engg. AAMEC Page 48