16
Supporting Information Fully Photon Modulated Heterostructure for Neuromorphic Computing Huilin Li a , Xiantao Jiang b , Wenbin Ye c , Han Zhang b , Li Zhou a , Feng Zhang b , Donghong She c , Ye Zhou* d and Su-Ting Han* a a Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China. c School of electronics and information engineering, Shenzhen University, Shenzhen, 518060, P. R. China. d Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China. ⁎Corresponding authors. E-mail addresses: [email protected] (Y. Zhou) [email protected] (Su-Ting Han) 1

DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Supporting Information

Fully Photon Modulated Heterostructure for Neuromorphic Computing

Huilin Lia, Xiantao Jiangb, Wenbin Yec, Han Zhangb, Li Zhoua, Feng Zhangb, Donghong Shec, Ye Zhou*d and Su-Ting Han*a

a Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China. c School of electronics and information engineering, Shenzhen University, Shenzhen, 518060, P. R. China.d Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.Corresponding authors. E-mail addresses: [email protected]⁎ (Y. Zhou)

[email protected] (Su-Ting Han)

1

Page 2: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S1. AFM image of the surfaces of top ZnO film (a), middle PbS CQDs films (b) and bottom ZnO film (c). (d) Height profiles along the white lines in (a), (b) and (c).

2

Page 3: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S2. Memristive behaviors under sweeping voltage stimulation. (a) different sweeping voltages, (b) switching characteristic with ±5V sweeping voltage.

3

Page 4: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S3. PSC characteristic with different pulse voltages (a) from 0.5 V to 3 V and (c) from -0.5 V to -3 V. (b) and (d) The changing of current differential (A) between pre- and post-pulse with different pulse voltages in the (a) and (c). The STP characteristic with 10000 pulses of (e) EPSC and (f) IPSC.

4

Page 5: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S4. PSCs characteristic with different base voltages (a) from 0.1 V to 0.8 V and (c) from -0.1 V to -0.8 V. (b) and (d) The changing of A with different pulse voltages in the (a) and (c). The LTP characteristic with 10000 pulses of (e) EPSC and (f) IPSC.

5

Page 6: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S5. Current with 10 pulses stimulations at different frequencies: (a) positive pulse, (b) negative pulses.

6

Page 7: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S6. (a) PPF and PTP curves fitted with an exponential function. (b) PPD and PTD curves fitted with an exponential function.

7

Page 8: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S7. Resistive switching mechanism of the ZnO/PbS device in the electrical modulation mode.

8

Page 9: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Table S1. The exciton lifetime of PL decay traces of ZnO, PbS and ZnO/PbS films in the microsecond time window in the Figure 1h and 1i, using a bi-exponential fitting. The short (τ1) and long (τ2) lifetime are obtained, according to the mean lifetime calculation equation

τ=∑iAi τ i

2/∑iAi τ i, where τi is lifetime constant, Ai is the corresponding weight factor.

λex (nm) Film τ1 (μs) τ2 (μs)

365

PbS 1.8 11.3

ZnO 1.9 12.0

ZnO/PbS 1.1 5.7

980PbS 1.9 21.5

ZnO/PbS 1.5 11.7

9

Page 10: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S8. (a) Schematic illustration of the ZnO/PbS device testing under light illumination. (b) The photograph of the ZnO/PbS device on the probe station, and the light is irradiated from the side. (c) The photograph of triple prisms used in the test to change the light direction from the side to the top of the triple prism.

10

Page 11: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S9. (a) and (b) Curve changes of the pinched hysteresis under IR light illumination, corresponding to Fig.4a left and inset pictures. (b) Emulated EPSC plasticity of the first three pulses using UV light pulses, corresponding to Fig.4b inset pictures. (c) Emulated IPSC plasticity of the first three pulses using IR light pulses, corresponding to Fig.4c inset pictures.

11

Page 12: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S10. PSCs characteristic in 250 light pulses with different UV (a) and IR (b) light intensity.

12

Page 13: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S11. (a) The energy consumption with respect to the cell area (20 μm×20 μm, 100 μm×100 μm and 500 μm×500 μm). (b) Comparison of energy consumption with the active layer materials in synaptic device, including Ge2SbTe5 [1, 2], SiOxNy [3], InZnO [4], Black phosphorus [5], TiO2-x/Al2O3 [6], MoS2/PTCDA [7], CsPbBr3/PMMA [8].

13

Page 14: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S12. Curve changes of the pinched hysteresis with (a) and without (b) IR light illumination for the glass/ITO/ZnO/Al device. (c) The current characteristic under the IR light illumination for the glass/ITO/ZnO/Al device.

14

Page 15: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

Figure S13. Color map showing the differential absorbance of (a) ZnO, (b) PbS and (c) ZnO/PbS films, pump wavelength: 365 nm; incident average power: 100 W. (d) Time profiles of the ZnO, PbS and ZnO/PbS heterostructure, probing wavelength: 635nm (ZnO), 575 nm (PbS) and 590 nm (ZnO/PbS).

15

Page 16: DOI: 10 · Web viewa Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China. b Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,

References

[1] Z. Cheng, C. Ríos, W.H.P. Pernice, C.D. Wright, H. Bhaskaran, On-chip photonic synapse, Sci. Adv. 3 (2017) 1700160.[2] D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.S.P. Wong, Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing, Nano. Lett. 12 (2012) 2179-2186.[3] Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater. 16 (2016) 101-110.[4] L.Q. Zhu, C.J. Wan, P.Q. Gao, Y.H. Liu, H. Xiao, J.C. Ye, Q. Wan, Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane, ACS Appl. Mater. Interfaces 8 (2016) 21770-21775.[5] H. Tian, Q. Guo, Y. Xie, H. Zhao, C. Li, J.J. Cha, F. Xia, H. Wang, Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications, Adv. Mater. 28 (2016) 4991-4997.[6] M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature 521 (2015) 61-64.[7] S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, Y. Shi, D.W. Zhang, H. Zhou, X. Wang, P. Zhou, A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility, Adv. Mater. 31 (2019) 1806227.[8] Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, S.-T. Han, Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing, Adv. Mater. 30 (2018) 1802883.

16