36
DLR TAU Simulations for the Second AIAA Sonic Boom Prediction Workshop > Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz DLR TAU Code > 07 Jan 2016 DLR.de Chart 1 Jochen Kirz Ralf Rudnik

DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

DLR TAU Simulations for the Second AIAA Sonic

Boom Prediction Workshop

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 1

Jochen Kirz

Ralf Rudnik

Page 2: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

• Flow Solver and Computing platform

• Cases analyzed and Grids used

• Simulation Settings and Flow Solver Convergence

• Simulation Results

• Highlights

• Summary / Conclusions

• Questions / Discussion

Outline

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 2

Page 3: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

• DLR TAU Code

• Unstructured finite-volume

• Euler, RANS

• Hybrid grids

• Backward Euler and Runge-Kutta timestepping

• Central and upwind schemes (Roe, Van Leer, AUSMDV, AUSMP(W+))

• 2nd order upwind limiter functions (Barth Jesperson, Venkatakrishnan,

SRR)

• C²A²S²E-2 Cluster

• parallel

• distributed memory

• 1 computing node (24 cores) per 300.000 grid nodes

Flow Solver and Computing Platform

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 3

Page 4: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Cases Analyzed and Grids Used

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 4

AXIE JWB C25D flow through

axie-inv-mixed-256 jwb-invisc.C100 c25d-flo-inv-mixed-200 c25d-flo-visc-mixed-200

axie-inv-mixed-200 jwb-invisc.C080 c25d-flo-inv-mixed-160 c25d-flo-visc-mixed-160

axie-inv-mixed-160 jwb-invisc.C064 c25d-flo-inv-mixed-128 c25d-flo-visc-mixed-128

axie-inv-mixed-128 c25d-flo-inv-mixed-100 c25d-flo-visc-mixed-100

axie-inv-mixed-100 c25d-flo-inv-mixed-080 c25d-flo-visc-mixed-080

c25d-flo-inv-mixed-064 c25d-flo-visc-mixed-064

axie-inv-tet-256 jwb-inv-tet-100 c25d-flo-inv-tet-200 c25d-flo-visc-tet-200

axie-inv-tet-200 jwb-inv-tet-083 c25d-flo-inv-tet-160 c25d-flo-visc-tet-160

axie-inv-tet-160 jwb-inv-tet-070 c25d-flo-inv-tet-128 c25d-flo-visc-tet-128

axie-inv-tet-128 c25d-flo-inv-tet-100 c25d-flo-visc-tet-100

axie-inv-tet-100 c25d-flo-inv-tet-080 c25d-flo-visc-tet-080

c25d-flo-inv-tet-064 c25d-flo-visc-tet-064

black: workshop-provided grids blue: CENTAUR-generated grids

Page 5: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

• Hybrid Euler grids

• Unaligned tetrahedrons in

cylindrical inner part

• Mach cone aligned

hexahedrons in farfield

Cases Analyzed and Grids Used CENTAUR-generated Grids for JWB case

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 5

CENTAUR provided

jwb-inv-tet-100

Page 6: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

• Surface resolution (triangles) of

coarse CENTAUR grid similar to

coarse workshop-provided grid

Cases Analyzed and Grids Used CENTAUR-generated Grids for JWB case

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 6

CENTAUR provided

jwb-inv-tet-100

Page 7: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Cases Analyzed and Grids Used CENTAUR-generated Grids

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 7

Grid Nodes Hexahedrons Tetrahedrons

jwb-invisc.C100 8,122,061 4,268,264 20,694,950

jwb-invisc.C080 15,110,113 8,412,624 36,385,888

jwb-invisc.C064 29,292,032 16,877,552 68,351,196

jwb-inv-tet-100 6,491,425 - 37,397,159

• Hybrid Euler grids

• Unaligned tetrahedrons in

cylindrical inner part

• Mach cone aligned

hexahedrons in farfield

• Series of uniformly refined grids

• Surface resolution (triangles) of

coarse CENTAUR grid similar to

coarse workshop-provided grid

Page 8: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Simulation Settings and Flow Solver Convergence Typical Convergence History (jwb-inv-tet-070)

• Euler / SA in negative

formulation for viscous

calculations

• LUSGS

• AUSMDV 2nd order

• Venkatakrishnan limiter

• Green Gauss

reconstruction of

gradients

• Mach and CFL ramping

• Convergence criteria

15000 Iterations

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 8

Page 9: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Simulation Settings and Flow Solver Convergence Typical Convergence History (jwb-inv-tet-070)

• Euler / SA in negative

formulation for viscous

calculations

• LUSGS

• AUSMDV 2nd order

• Venkatakrishnan limiter

• Green Gauss

reconstruction of

gradients

• Mach and CFL ramping

• Convergence criteria

15000 Iterations

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 9

Page 10: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

• Flow Solver and Computing platform

• Cases analyzed and Grids used

• Simulation Settings and Flow Solver Convergence

• Simulation Results

• Highlights

• Summary / Conclusions

• Questions / Discussion

Outline

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 10

Page 11: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results AXIE Pressure Contours and near field signatures

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 11

increasing H/L

increasing H/L

Page 12: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results AXIE Signature Convergence

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 12

• No obvious

convergence with

grid resolution

• Positions of the

shocks and

expansions are

similar for the

medium to fine grids,

but vary for the

coarsest grids

• Tetrahedral grids

result in higher peak

pressures

Page 13: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results JWB Pressure Contours and near field signatures

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 13

increasing Phi

Page 14: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results JWB Signature Convergence

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 14

• Smooth pressure rise

for the provided grids

• Slight expansions at

the pressure rise for

the generated grids

• Positions of shocks

and expansions agree

for all grids

• CENTAUR grids lead

to higher peak

pressures, especially

in the aft part of the

signature

finer grid

Page 15: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results C25D flow-through Pressure Contours and near field signatures

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 15

increasing H/L

Page 16: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results C25D flow-through Signature Convergence

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 16

• Fine grids lead to

stronger shocks and

expansions than

coarse grids

finer grid

Page 17: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results C25D flow-through Viscous in comparison to inviscid calculations

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 17

• Fine grids lead to

stronger shocks and

expansions than

coarse grids

• Influence of viscosity

stronger than

influence of grid

resolution

Page 18: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 18

• Unphysical pressures for

fine tetrahedrons with large

aspect ratio in combination

with least square

reconstruction of gradients

(red line)

• Unphysical pressures for

large H/L at inflow, outflow

and farfield boundary

conditions (blue line)

Page 19: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights Unphysical pressures for fine tetrahedrons with large aspect ratio

in combination with least square reconstruction of gradients

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 19

• Only appearing on purely tetrahedral

grids

• Most significant on fine grids

• Independent of chosen upwind

scheme and limiter

Example: jwb_R0003_jwb-inv-tet-070 (least square)

Page 20: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights Unphysical pressures for fine tetrahedrons with large aspect ratio

in combination with least square reconstruction of gradients

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 20

• Only appearing on purely tetrahedral

grids

• Most significant on fine grids

• Independent of chosen upwind

scheme and limiter

Resolved before submission by

switching to Green Gauss

reconstruction of gradients

Example: jwb_R0103_jwb-inv-tet-070 (Green Gauss)

Page 21: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield

boundary conditions

• The strength of the error follows clear

patterns:

• purely tetrahedral > mixed-element

• viscous > inviscid

• coarse > fine

• for off-track angles up to 50 degrees

the effect is lower but still existent

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 21

Example: jwb_R0026_c25d-flo-visc-tet-200 (old FF)

Page 22: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield

boundary conditions

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 22

Example: jwb_R1026_c25d-flo-visc-tet-200 (new FF)

• The strength of the error follows clear

patterns:

• purely tetrahedral > mixed-element

• viscous > inviscid

• coarse > fine

• for off-track angles up to 50 degrees

the effect is lower but still existent

Contacted by the committee

Solution improved by changing the

inflow, outflow and farfield boundary

conditions, not completely resolved

Work-around by increasing the farfield

radius

Page 23: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 23

Summary and Conclusions

• Positions of shocks and expansions

• Similar for grids with medium to fine resolution

• Different for very coarse grids

• Strength of shocks and expansions

• Higher for fine grids compared to coarse grids

• Higher for purely tetrahedral grids compared to mixed-element grids

• Influence of grid setup (tet/mixed) stronger than influence of grid resolution

• Influence of viscosity stronger than influence of grid setup

• Strong influence of numerical settings especially for tetrahedral farfields

The prediction of near-field pressure signatures with the DLR TAU Code is

possible

Understanding of the origin of numerical errors in the farfield can be

improved further

Questions/Discussion

Page 24: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Backup Slides

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 24

Page 25: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 25

Normalization

• Mach angle 𝜇:

𝑋𝑛 = 𝑋 −𝐻

tan 𝜇

• Body length 𝐿:

𝐻/𝐿 𝑋𝑛/𝐿

H

𝑋𝑛 𝑋

𝜇

L

Page 26: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results AXIE Signatures H/L=1 (new FF)

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 26

Page 27: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results AXIE Signatures H/L=3 (new FF)

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 27

Page 28: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results AXIE Signatures H/L=3 (new FF)

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 28

Page 29: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Mesh Induced Shocks and Expansions axie_R0101_axie-inv-mixed-256

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 29

Page 30: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results JWB Pressure Contours and near field signatures

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 30

Page 31: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results JWB Signature Convergence

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 31

Page 32: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results C25D flow-through Pressure Contours and near field signatures

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 32

Page 33: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Results C25D flow-through Signature Convergence

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 33

Page 34: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights Inflow and Farfield Boundary Condition Changes

• Supersonic inflow/outflow

• Compute boundary fluxes with approximate Riemann solver

instead of setting conservative variables at the boundary

• The gradients of all variables are set to zero in the direction

normal to the boundary

• Farfield

• The farfield fluxes are evaluated via a characteristic method

that is in line with the interior face-flux computation.

• The corresponding flux parameters are inherited from the

central, matrix-dissipative scheme

• Convergence improved as side effect (more robust start,

significantly less iterations needed and residual lowered by 1-2

orders of magnitude)

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 34

Page 35: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield

boundary conditions

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 35

Page 36: DLR TAU Simulations for the Second AIAA Sonic Boom ......•DLR TAU Code •Unstructured finite-volume •Euler, RANS •Hybrid grids •Backward Euler and Runge-Kutta timestepping

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield

boundary conditions

> Second AIAA Sonic Boom Prediction Workshop > Jochen Kirz • DLR TAU Code > 07 Jan 2016 DLR.de • Chart 36