45
Eitan Sharon, CVPR’04 Segmentation by Weighted Aggregation Eitan Sharon Division of Applied Mathematics, Brown University

Division of Applied Mathematics, Brown University

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Segmentation by Weighted Aggregation

Eitan Sharon

Division of Applied Mathematics, Brown University

Page 2: Division of Applied Mathematics, Brown University

Eitan Sharon, Meirav Galun, Ronen Basri, Achi Brandt

Hierarchical Adaptive Texture Segmentationor

Segmentation by Weighted Aggregation (SWA)

Dept. of CS and Applied Mathematics,The Weizmann Institute of Science,

Rehovot, Israel

Page 3: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Image Segmentation

Page 4: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Local Uncertainty

Page 5: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Global Certainty

Page 6: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Local Uncertainty

Page 7: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Global Certainty

Page 8: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Hierarchy in SWA

Page 9: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Segmentation by Weighted Aggregation

A multiscale algorithm:• Optimizes a global measure• Returns a full hierarchy of segments• Linear complexity• Combines multiscale measurements:

– Texture– Boundary integrity

Page 10: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

The Pixel Graph

Couplings

Reflect intensity similarity

Low contrast –strong coupling

High contrast –weak coupling

{ }ijw

Page 11: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Normalized-Cut Measure

∉∈

=SiSi

ui 01

Page 12: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Normalized-Cut Measure

2( ) ( )ij i ji j

E S w u u≠

= −∑

∉∈

=SiSi

ui 01

Page 13: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Normalized-Cut Measure

2( ) ( )ij i ji j

E S w u u≠

= −∑

∉∈

=SiSi

ui 01

( ) ij i jN S w u u=∑

Page 14: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Normalized-Cut Measure

2( ) ( )ij i ji j

E S w u u≠

= −∑

∉∈

=SiSi

ui 01

( ) ij i jN S w u u=∑

( )( )( )

E SSN S

Γ =

Minimize:

Page 15: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Normalized-Cut Measure

High-energy cut

Minimize:

( )( )( )

E SSN S

Γ =

Page 16: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Normalized-Cut MeasureLow-energy cut

Minimize:

( )( )( )

E SSN S

Γ =

Page 17: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Matrix Formulation

,( ) ikk k iij

ij

w i jl

w i j≠

== − ≠

∑Define matrix by

Define matrix byW 0ijw > 0iiw =

L

We minimize ( ) 12

T

T

u Luuu Wu

Γ =

Page 18: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Coarsening the Minimization Problem

iu ju

Page 19: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Coarsening – Choosing a Coarse Grid

iu julU

kU

Representative subset

1 2( , ,..., )NU U U U=

Page 20: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Coarsening –Interpolation Matrix

iu ju

2

11

2

.

..

Nn

u

U

P

u

Uu

U

For a salient segment (globally minimizing solutions):

P ( )n N× , sparse interpolation matrix

kU

lU

Page 21: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Coarsening – Matrix Formulation

( )( )

( ) 1 12 2

T TT

T T T

U P LP Uu Luuu Wu U P WP U

Γ = ≈

Given such an appropriate interpolation matrix P

Existence of from Algebraic Multigrid (AMG)for solving the equivalent Eigen-Value problem:

P

Lu Duλ= for minimal 0λ >solve

Page 22: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Weighted Aggregation

ijwi

jjlp

aggregate k aggregate l

ijk ik jli j

l p pwW≠

= ∑

klWikp

Page 23: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Importance of Soft Relations

Page 24: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

SWA

Linear in # of points(a few dozen operations per point)

Detects the salient segments

Hierarchical structure

Page 25: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Coarse-Scale Measurements

• Average intensities of aggregates

• Multiscale intensity-variances of aggregates

• Multiscale shape-moments of aggregates

• Boundary alignment between aggregates

Page 26: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Coarse Measurements for Texture

Page 27: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

A Chicken and Egg Problem

Problem:Coarse measurements mix neighboring statistics

Solution:Support of measurements is determined as the segmentation process proceeds

Hey, I was here first

Page 28: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Adaptive vs. Rigid Measurements

AveragingOur algorithm - SWA Geometric

Original

Page 29: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Our algorithm - SWA

Adaptive vs. Rigid Measurements

Interpolation Geometric

Original

Page 30: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Recursive Measurements: Intensity

i

ikpk

aggregate k

j

iq intensity of pixel i

ik ii

kik

i

p qQ

p=∑∑

average intensityof aggregate

Page 31: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Use Averages to Modify the Graph

Page 32: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Hierarchy in SWA

•Average intensity•Texture•Shape

Page 33: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Texture Examples

Page 34: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Isotropic Texture in SWA

( ) ( )22k kk

V I I= −Intensity Variance

Isotropic Texture of aggregate –average of variances in all scales

Page 35: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Oriented Texture in SWA

Shape Moments

Oriented Texture of aggregate –orientation, width and length in all scales

2 2, , , ,x y xy x y

•center of mass•width•length•orientation

with Meirav Galun

Page 36: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Implementation

• Our SWA algorithm (CVPR’00 + CVPR’01 + orientations Texture)run-time: << 1 seconds.

images on a Pentium III 1000MHz PC:200 200×

400 400×

run-time: 2-3 seconds.

Page 37: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Isotropic Texture

Our Algorithm (SWA)

Page 38: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Isotropic Texture

Our Algorithm (SWA)

Page 39: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Isotropic Texture

Our Algorithm (SWA)

Page 40: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Isotropic Texture

Our Algorithm (SWA)

Page 41: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Isotropic Texture

Our Algorithm (SWA)

Page 42: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Our Algorithm (SWA)

Our previous

Page 43: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Our Algorithm (SWA)

Our previous

Page 44: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Our Algorithm (SWA)

Our previous

Page 45: Division of Applied Mathematics, Brown University

Eitan Sharon, CVPR’04

Our Algorithm (SWA)

Our previous