87
CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA - CONCYT - SECRETARIA NACIONAL DE CIENCIA Y TECNOLOGÍA - SENACYT - FONDO NACIONAL DE CIENCIA Y TECNOLOGÍA - FONACYT - FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA INFORME FINAL Los cuerpos de agua de la Región Maya Tikal –Yaxhá: Importancia de la vegetación acuática asociada, su conservación y el valor desde el uso humano PROYECTO FODECYT No. 25-2008 Elsa María de Fátima Reyes Morales Investigadora Principal GUATEMALA, 31 DE OCTUBRE DE 2009.

Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

Embed Size (px)

Citation preview

Page 1: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA - CONCYT - SECRETARIA NACIONAL DE CIENCIA Y TECNOLOGÍA - SENACYT -

FONDO NACIONAL DE CIENCIA Y TECNOLOGÍA - FONACYT - FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

INFORME FINAL

Los cuerpos de agua de la Región Maya Tikal –Yaxhá:

Importancia de la vegetación acuática asociada,

su conservación y el valor desde el uso humano

PROYECTO FODECYT No. 25-2008

Elsa María de Fátima Reyes Morales Investigadora Principal

GUATEMALA, 31 DE OCTUBRE DE 2009.

Page 2: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

1

AGRADECIMIENTOS La realización de este trabajo, ha sido posible gracias al apoyo financiero dentro del Fondo Nacional de Ciencia y Tecnología, -FONACYT-, otorgado por la Secretaría Nacional de Ciencia y Tecnología -SENACYT- y al Consejo Nacional de Ciencia y Tecnología -CONCYT-.

Page 3: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

2

OTROS AGRADECIMIENTOS Se agradece a todas las personas e instituciones que de una u otra forma colaboraron para realizar este estudio y muy especialmente a los guarda recursos: Ernesto, Luis, José Luis, Abraham, Marvin e Israel del Centro de Estudios Conservacionistas - CECON - y a Erick Márquez del Parque Nacional Tikal, que siempre nos apoyaron y guiaron desde la localización de los sitios de muestreo, identificación de especies hasta la toma de datos. Al Centro de Estudios Conservacionistas - CECON -, particularmente a la Dirección que nos apoyo como contraparte institucional y nos facilitaron el desarrollo administrativo y logístico del proyecto de investigación. Al Parque Nacional Tikal, Parque Nacional Yaxhá - Nakum - Naranjo y Consejo Nacional de Áreas Protegidas CONAP en especial a la Licda. Mirta Cano, al Lic. Nelson Carabeo y Luis Guerra por el apoyo y facilitación de áreas de trabajo y descanso. A Pablo López, Gabriela Girón, Victoria Ríos y Kevin Pérez por el apoyo en el trabajo de campo y de laboratorio. Y a todas aquellas personas que apoyaron de una u otra forma el desarrollo de esta investigación para que llegara a término.

Page 4: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

3

EQUIPO DE INVESTIGACIÓN

Licda. Elsa María de Fátima Reyes Morales, Investigadora Principal

Lic. Julio Enrique Morales Can, Investigador Asociado

Br. Michelle Bustamante Castillo, Investigadora Asociada

Lic. Edgar Gustavo Ruano Fajardo, Auxiliar de Investigación

Br. Vivian Elieth Monzón Gómez, Auxiliar de Investigación

Page 5: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

4

INDICE

CONTENIDO PAGINA

RESUMEN ....................................................................................................................... i

SUMARY ........................................................................................................................ ii

PARTE I ..........................................................................................................................8

I.1 INTRODUCCIÓN ....................................................................................................8

I.2 PLANTEAMIENTO DEL PROBLEMA ...............................................................10

I.2.1 Antecedentes en Guatemala ...............................................................................10

I.2.2 Justificación del Trabajo de Investigación .........................................................11

I.3 OBJETIVOS E HIPOTESIS ...................................................................................12

I.3.1 Objetivos ............................................................................................................12

I.3.1.1 General ........................................................................................................12

I.3.1.2 Específicos ..................................................................................................12

I.3.2 Hipótesis.............................................................................................................12

I.4 MATERIALES Y MÉTODOS ...............................................................................13

I.4.1 Localización ........................................................................................................13

I.4.2 Área de Estudio ...................................................................................................13

I.4.3 Tratamientos........................................................................................................14

I.4.4 Colecta.................................................................................................................15

I.4.5 Evaluación de hábitat y caracterización fisicoquímica .......................................15

I.4.6 Análisis de los datos............................................................................................17

PARTE II ......................................................................................................................19

II.1 MARCO TEÓRICO ..............................................................................................19

II.1.1 Las plantas acuáticas y funciones naturales......................................................19

II.1.2 Adaptaciones de las plantas acuáticas sumergidas ...........................................20

II.1.3 Formas de Vida de las plantas Acuáticas..........................................................21

II.1.4 Importancia de las Plantas acuáticas.................................................................22

II.1.5 Plantas acuáticas como indicadores ..................................................................25

II.1.6 Factores que determinan el crecimiento de las plantas acuáticas .....................26

Page 6: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

5

II.1.7 Diversidad Florística de los Cuerpos de Agua..................................................28

II.1.8 Los cuerpos de agua y su importancia social y biológica.................................29

II.1.9 Características del sitio de Estudio ...................................................................30

II.1.10 Estudios anteriores ..........................................................................................32

PARTE III .....................................................................................................................34

III.1 RESULTADOS: ...................................................................................................34

III.1.1 Caracterización de la Vegetación de los Cuerpos de Agua la Región Maya

Tikal –Yaxhá ................................................................................................34

III.1.2 Estructura de la vegetación Acuática por su forma de Vida............................35

III.1.3 Riqueza y Diversidad.......................................................................................36

III.1.3.1 Riqueza y Diversidad α por Sitios de muestreo ......................................36

III.1.3.2 Curvas de acumulación de especies..........................................................36

III.1.3.3 Riqueza y Diversidad por Tratamiento.....................................................38

III.1.4 Análisis Multivariado ......................................................................................41

III.1.5 Comparación entre Tratamientos.....................................................................45

III.2 DISCUSIÓN DE RESULTADOS ........................................................................46

III.2.1 Caracterización de la Vegetación Acuática de los Cuerpos de Agua la

Región Maya Tikal –Yaxhá..........................................................................46

III.2.1 Importancia de la vegetación acuática.............................................................50

PARTE IV .....................................................................................................................52

IV.1 CONCLUSIONES: ..............................................................................................52

IV.2 RECOMENDACIONES ......................................................................................54

IV.3 REFERENCIAS BIBLIOGRAFICAS.................................................................55

IV.4 ANEXOS..............................................................................................................60

PARTE V.......................................................................................................................85

V.1 INFORME FINANCIERO ....................................................................................85

Page 7: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

6

RESUMEN

Las áreas protegidas de la región de Tikal - Yaxhá, Petén; constituyen actualmente un vacío de información en el estudio de la composición florística de los cuerpos de agua del norte de Petén. El presente trabajo estudió la vegetación asociada a los cuerpos de agua en la Región Maya de Tikal-Yaxhá, pues es considerada como un importante indicador de la conservación de estos. Se caracterizó la vegetación asociada a los cuerpos de agua y se relacionaron los patrones de distribución de la vegetación con el estado de conservación del cuerpo de agua, por último se estableció la importancia de la vegetación acuática para el mantenimiento de la biodiversidad y la cultura forestal sostenible de El Petén. Los cuerpos de agua donde se evalúo la vegetación acuática asociada fueron la Laguna Yaxhá, Sacnab, Quexil, Petenchel, Macanché, Salpetén, Sacpuy, al Lago Peten Itzá y a las aguadas del Cerro Cahuí, Zotz, El Palmar, Tikal y Dimick. Los usos del suelo tomados en cuenta en el muestreo fueron bosques, potreros y poblados. En cada sitio se realizaron transectos de 100 mts. en donde se colectaron muestras de plantas acuáticas, además se realizó una caracterización de hábitat para determinar la riqueza y estructura de los cuerpos de agua.

Se colectaron un total de 429 muestras de plantas acuáticas asociadas a cuerpos de agua de la Región Maya Tikal –Yaxhá, las cuales comprenden un total de 269 especies distribuidas en 83 familias. En base a los resultados obtenidos y análisis realizados se encontró que la distribución de la vegetación acuática asociada a los cuerpos de agua de la Región Maya de Tikal-Yaxhá está relacionada al uso de la tierra, sustrato y conductividad del agua. Cabe mencionar que se obtuvo una mayor diversidad de especies en el uso de potreros debido a que las plantas acuáticas se desarrollan mejor con una alta disponibilidad de luz y poca profundidad.

En algunas lagunas donde hay actividad humana y ganadera se observo que hay un

leve proceso de eutrofización debido a la presencia de malezas acuáticas tales como Eichornia crassipes, Pistia stratiotes, Najas guadalupensis, Potamogeton ilinoensis y Salvinia minima. El aporte de sedimentos, nutrientes y contaminantes proveniente de los diversos afluentes tanto naturales como artificiales han provocado este cambio.

i

Page 8: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

7

SUMARY Vegetation associated to bodies of water has been considered to be a very important indicator of their conservation status. This proyect investigated the vegetation present in lakes and lagoons in the Mayan region of Tikal-Yaxhá. We characterized the vegetation in the bodies of water, related the patterns of distribution of vegetation with the conservation status and establish the importance of the aquatic vegetation for the maintenance of biodiversity and the sustainable forest culture of Petén. The bodies of water that were evaluated for their associated aquatic vegetation were Yaxhá, Sacnab, Quexil, Petenchel, Macanché, Salpetén, Sacpuy, Lago Peten Itzá and the “aguadas” of Cerro Cahuí, Zotz, El Palmar, Tikal and Dimick. Land uses taken into account in sampling were forest, communities and pastures. In all the sampling sites we collect plants and characterize their habitat for determinate the richness and structure of the bodies of water. We colected a total of 429 samples of acuatic plants associated with bodies of water in the Maya Tikal- Yaxhá region. Based on the records and analysis obtained we find that the distribution of vegetation associated within the bodies of water in this region were related to the land use, substrate and water conductivity. It is worth mentioning that the higher species diversity were in the pastures use, this was due to a better condition of light and low depth of water that help a mayor development of aquatic plants. In some lagoons and lakes were there is more human and pastures presence their is a mild eutrophication process due to the registration of aquatic weeds such as Eichornia crassipes, Pistia stratiotes, Najas guadalupensis, Potamogeton ilinoensis and Salvinia minima. The input of sediments, nutrients and contaminants from the multiple tributaries of natural and artificial had provoked this change.

ii

Page 9: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

8

PARTE I I.1 INTRODUCCIÓN

El presente estudio trata sobre las plantas acuáticas, estas comprenden un grupo

variada que se ha adaptado parcial o totalmente a la vida en agua dulce. Se encuentran

presentes en diversos cuerpos de agua, tanto lénticos (lagos y lagunas) como lóticos

(ríos). Cuando las plantas acuaticas se encuentran presenten en bajas densidades,

resultan beneficiosas a ecosistemas acuaticos ya que: producen oxigeno, proporcionan

un hábitat adecuado para los peces y otros organismos. Así mismo condicionan las

propiedades fisicoquímicas del agua y la estructura de las comunidades bióticas.

Los recursos naturales en la Reserva de Biosfera Maya están siendo altamente

presionados, la perdida de cobertura vegetal se debe a incendios, tala ilegal de madera,

agricultura e invasiones. Estos factores afectan la conservación de los cuerpos de agua y

pueden llevarlos a niveles bajos de su espejo de agua o a su desaparición la mayor parte

del año y en el peor de los casos a su desaparición total.

Debido al tipo de suelo que existe en Petén los afloramientos de agua no existen, por

lo que las aguadas y lagunas de la región a estudiar, son los únicos cuerpos de agua

disponibles para la fauna, la flora y las comunidades humanas. A lo largo de la historia

las aguadas y lagunas no solo han tenido importancia social y ecológica, sino también

ritual y antropológica. Para poder entender el funcionamiento y mejorar el manejo de

estos importantes recursos, es necesario estudiar sus componentes.

El presente proyecto formó parte del estudio “Flora acuática de Guatemala”,

coordinado por el herbario USCG, del Centro de estudios Conservacionistas de la

USAC. Estos estudios pretenden contribuir con la conservación y manejo de los

recursos naturales del país por medio de la investigación ecológica y taxonómica de la

vegetación asociada a recursos hídricos y la caracterización de estos recursos. Este

proyecto también contó con el apoyo del proyecto “Flora acuática de Mesoamérica”

Coordinado por la Universidad Autónoma de Morelos, México y financiado por la Red

Mesoamericana de Recurso Bióticos.

Page 10: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

9

Se trabajaron ocho cuerpos de agua dentro de la Región Maya Tikal-Yaxhá, en los

cuales se consideraron tres tipos de uso de suelo. Se colectaron muestras de plantas

acuáticas y se realizó una caracterización de hábitat para determinar la riqueza y

estructura de los cuerpos de agua. Este trabajo consideró dentro del “Área Maya de

Tikal-Yaxhá”, las siguientes áreas protegidas: Parque Nacional Tikal, Parque Nacional

Yaxhá – Nakun - Naranjo, Biotopo Protegido Cerro Cahuí, Biotopo Protegido el Zotz -

San Miguel la Palotada, el Lago Petén Itzá y lagunas adyacentes.

Page 11: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

10

I.2 PLANTEAMIENTO DEL PROBLEMA

I.2.1 Antecedentes en Guatemala Las áreas protegidas de la región de Tikal - Yaxhá, Petén; constituyen actualmente

un vacío de información en el estudio de la composición florística de los cuerpos de agua del norte de Petén. Esta información ya ha sido recabada por el herbario USCG para el Parque Nacional Sierra de Lacandón (Morales y Flores 2001), Parque Nacional Laguna del Tigre (Morales 2001), Lago Petén Itzá, Parque Nacional Río Azul (Flores 2002) y parcialmente en el Parque Nacional Tikal (Reyes y Morales 2004). Por lo que cubriendo este territorio, se contribuiría a llenar un vacío de información, útil para comprender la distribución de la flora acuática del norte de Petén.

Adicionalmente, debido al tipo de suelo que existe en Petén los afloramientos de

agua son escasos, por lo que las aguadas y lagunas de la región a estudiar, son los únicos cuerpos de agua disponibles para la fauna, la flora y los pobladores que sustentan la cultura forestal de Petén.

Los incendios forestales son una problemática constante en Petén y la vegetación

asociada a los cuerpos de agua, por guardar mas humedad, tiene mayor probabilidad de permanecer como parches de bosque, ante la presencia de incendios de baja intensidad (Morales 2001).

El propósito final es la promoción de la conservación y manejo integrado de los

recursos naturales, así como promover la sustentabilidad de los bienes y servicios que estos prestan. Con esta información se promoverá la conservación a nivel regional puesto que constituye una zona de alta distribución de especies endémicas regionales de plantas, vertebrados e invertebrados. El proyecto plantea el conocimiento básico de la flora asociada a los cuerpos de agua en cuanto a su estructura y diversidad.

Adicionalmente, debido al tipo de suelo que existe en Petén los afloramientos de

agua son escasos, por lo que las aguadas y lagunas de la región a estudiar, son los únicos cuerpos de agua disponibles para la fauna, la flora y los pobladores que sustentan la cultura forestal de Petén.

Page 12: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

11

I.2.2 Justificación del Trabajo de Investigación La escasez de ríos superficiales en la región Maya, las aguadas y lagunas son un

recurso hídrico de suma importancia, tanto para las poblaciones humanas, como para las poblaciones de flora y fauna. Estas juegan papeles trascendentes en actividades como cacería, extracción de xate, pita floja, chicle y pimienta, lo que ha contribuido en la historia reciente a la conservación de los bosques peteneros. Esto hace fundamentales a estos cuerpos de agua para el sustento de la cultura forestal de Petén relacionada con la extracción y aprovechamiento de recursos maderables y no maderables, cultura que ha sido compatible a través de los años, con la conservación de los bosques.

Las plantas acuáticas cumplen papeles básicos en el funcionamiento de los

ecosistemas. Integrando el conocimiento, el manejo y la protección de forma interactiva, se contribuye a la resolución de un problema de conservación, por medio de la resolución de un problema de taxonomía y distribución de macrófitas acuáticas y viceversa.

Existe el compromiso de que los resultados que se obtengan, se integren en el plan

maestro de cada área, para el manejo y monitoreo de los cuerpos de agua. Por otra parte, su integración a los planes de Manejo se convierte en una herramienta de evaluación del manejo integrado de recursos naturales de estas áreas Protegidas.

Estos estudios pretenden contribuir con la conservación y manejo de los recursos

naturales del país por medio de la investigación ecológica y taxonómica de la vegetación asociada a recursos hídricos y la caracterización de estos recursos.

Page 13: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

12

I.3 OBJETIVOS E HIPOTESIS

I.3.1 Objetivos

I.3.1.1 General • Conservación y manejo de los cuerpos de agua y su flora asociada en la región Maya

Tikal – Yaxhá, Petén, Guatemala

I.3.1.2 Específicos • Caracterizar la vegetación asociada a los cuerpos de agua de la región de Tikal-

Yaxhá, Petén.

• Relacionar los patrones de distribución de la vegetación con el estado de conservación del cuerpo de agua

• Establecer la importancia de la vegetación acuática para el mantenimiento de la

biodiversidad y la cultura forestal sostenible de El Petén.

I.3.2 Hipótesis Las diferencias en el estado de conservación de los cuerpos de agua provocan cambios en los patrones de distribución y diversidad de la vegetación acuática.

Page 14: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

13

I.4 MATERIALES Y MÉTODOS

I.4.1 Localización

La Región Maya Tikal – Yaxhá está localizada en la Plataforma de Yucatán, el área

está localizada entre las coordenadas - 90.066, - 89.320 latitud norte y 17.315, 16.859

longitud oeste, tiene una elevación máxima de 400 msnm. El suelo es de tipo karst

desarrolladas sobre calizas terciarias y al sur algunas calizas cretáceas (Lundell, 1937;

Plan maestro Parque Nacional Tikal).

El área de estudio según Holdridge, se encuentran dentro de la zona denominada

“Bosque húmedo subtropical (cálido)”. El clima de la zona es cálido húmedo en época

lluviosa (julio – noviembre, diciembre) y cálido seco durante la época seca (enero -

junio). Los rangos de temperatura oscilan entre 21 y 28 grados centígrados. La

precipitación total anual es de 1736.8 mm en la estación San Pedro Nactún (Pérez,

1997), con una evapotranspiración promedio de 136.19 (Castillo, 2001),

I.4.2 Área de Estudio Se seleccionaron 13 sitios de muestreo los cuales se encuentran distribuidos de la siguiente forma: 8 lagunas y 5 aguadas, todos se localizan en la Región Maya Tikal – Yaxhá. La selección de los sitios dependió de la dimensión y la complejidad de los cuerpos de agua. Los sitios se ubicaron a partir de la fotointerpretación. El listado final de sitios de muestreo se elaboró después de una evaluación de campo, en la que se confirmó la presencia de vegetación acuática y las características de cada lugar. Con la finalidad de evaluar como el uso del suelo y el estado de conservación provocan cambios en los patrones de distribución y diversidad de la vegetación acuática, Se propuso un diseño de muestreo con tres tratamientos. Estos tratamientos se basan en el uso del suelo de las áreas circundantes a los cuerpos de agua. En cada tratamiento se ubicaron tres transectos de muestreo, en los que se tomaron muestras de plantas acuáticas, se evalúo identidad de las especies. El universo de trabajo estuvo constituido por todas las especies de plantas acuáticas presentes en los cuerpos de Agua la Región Maya Tikal –Yaxhá. Los sitios de muestro se enlistan a continuación

Page 15: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

14

I.4.3 Tratamientos Los tratamientos que se evaluaron fueron áreas boscosas, áreas de potreros y áreas de poblado. En cada tratamiento se realizaron tres transectos al azar de 100 mts. cada uno, y en cada transecto ser realizaron tres parcelas de 5 mts2. cada una. En cada parcela se tomaron datos de identidad de las especies presentes en el cuadrante, además se registraron especies de la vegetación ribereña. Se obtuvieron un total de 51 transectos, 32 en bosque, 12 en potreros y 7 en poblados (Tabla 1). Tabla 1. Numero de Parcelas, Transectos y Tratamientos por cada sitio de Muestreo.

Número Total Número Total Localidad Tratamiento

Transectos Parcelas Localidad Tratamiento

Transectos Parcelas

Bosque 3 9 Bosque 3 9 Potrero 3 9 Potrero 3 9

Lago Petén Itzá

Poblados 3 9

Laguna Macanché

Poblados 3 9 Bosque 2 5 Bosque 3 9 Potrero 3 9 Potrero 3 9

Laguna Sacpuy

Poblados 1 3

Laguna Salpetén

Laguna Sacnab

Bosque 3 9 Laguna

Petenchel Bosque 3 9

Laguna Yaxhá

Bosque 3 9 Laguna Quexil

Bosque 3 9

Aguada Tikal

Bosque 3 9 Aguada Dimick

Bosque 1 3

Aguada El Zotz

Bosque 1 3 Aguada

El Palmar Bosque 3 9

Aguada Cahuí

Bosque 1 1 Totales Bosque

Potreros Poblados

33 12 7

93 36 21

Fuente: FODECYT 25-2008

Page 16: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

15

I.4.4 Colecta

La colecta fue manual en su mayoría, excepto en algunos sitios donde se utilizó un rastrillo o escoba plástica para colectar plantas sumergidas, las plantas emergentes y riparias fueron colectadas manualmente. Con fines de complementar el listado general de plantas del sitio se colectaron plantas afuera de la parcela asignada a cada sitio. En los sitios se realizó una identificación preliminar de las muestras.

Posterior a la colecta, se procedió a herborizar todas las plantas colectadas, se

utilizaron las técnicas respectivas para preservar los especimenes y se anotó su información correspondiente. Para transportar las muestras se preservaron en papel periódico y/o encerado, se colocaron en bolsas plásticas de 100 lbs. con alcohol al 95%. A cada muestra se le escribió el nombre del colector, el número de colecta, localidad y si se sabe el nombre científico también se anota.

Todos los especímenes colectados en los viajes de campo fueron identificados

utilizando Flora de Guatemala, Flora de Nicaragua, Flora Mesoamericana, Manual de Plantas Acuáticas y Manual de Plantas de Costa Rica. Las muestras ya identificadas se proceden a etiquetar y montar, para ser ingresadas a la colección de referencia del Herbario USCG.

I.4.5 Evaluación de hábitat y caracterización fisicoquímica Se tomaron otros datos adicionales como temperatura ambiental, humedad relativa ambiental, temperatura del agua y ambiente, pH, conductividad y sólidos disueltos. La mediciones fisicoquímicas se realizaron con un Multiparamétrico Portátil MULTILI 340i WTW y Potenciómetro Portátil HACH SensIon. Todos los sitios tuvieron coordenadas de referencia y altitud (Tabla 2). Además se caracterizó el hábitat del sitio por medio de boletas. La caracterización del hábitat evaluaba factores como uso de la tierra, fuentes de contaminación, tipo de sedimentos o sustrato, presencia de aceites en el agua y sedimento, olor del agua y sedimentos, especies dominantes en la vegetación riparia y vegetación acuática.

Page 17: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

16

Tabla 2. Sitios de muestreo, coordenadas de ubicación y localidad de la Región Maya Tikal –Yaxhá.

Sitios de Muestreo Coordenadas Localidad

Laguna Yaxhá 17º03'46", 89º28'16"

Laguna Sacnab 17º03'59", 89º21'41"

Parque Nacional Yaxhá - Nakun -Naranjo, Flores, Petén

Laguna Quexil 16º55'34", 89º48'46"

Laguna Petenchel 16º54'57", 89º50'08" Flores, Petén

Laguna Macanché 16º58'24", 89º37'08"

Laguna Salpetén 16º58'40", 89º40'15" Aldea Ixlú, Flores, Petén

Laguna Sacpuy 16º58'48", 90º00'34" Aldea Sacpuy, San Andrés, Petén

Lago Peten Itzá 16º57'37", 89º55'51" San José – Flores, Petén

Aguada Cahuí 17º13'24", 89º36'47" Biotopo Cerro Cahuí, El Remate Flores, Petén

Aguada Zotz - El Palmar 17º13'30", 89º46'03" Biotopo San Miguel La Palotada - El Zotz, San José, Petén

Aguada Tikal - Dimick 17º13'40", 89º36'08" Parque Nacional Tikal, Flores, Petén

Fuente: FODECYT 25-2008

Figura 1. Mapa de localización Geográfica de los Sitios de colecta en la Región Maya Tikal – Yaxhá.

Fuente: FODECYT 25-2008

Page 18: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

17

I.4.6 Análisis de los datos Se elaboraron bases de datos con toda la información obtenida. En base a las especies encontradas se realizó una descripción general de los datos encontrados en tres diferentes tratamientos (que consta de bosque, potrero y poblados). También se hizo una caracterización de las especies comunes en las diferentes estructuras de vegetación acuática con diferentes formas de vida. Para estimar la riqueza total representada de la región en los diferentes cuerpos de agua y vegetación asociada se realizaron curvas de acumulación de especies, con los estimadores ICE y Chao 2 basados en la incidencia de especies (Presencia/Ausencia) (Chao, 2005). Se utilizó Chao 2 por su mejor desempeño con pocas muestras (Coldwell y Coddington, 1994). Se utilizó el programa EstimateS 8.0 para todas las estimaciones (Coldwell, 2005). La diversidad (α) por cuerpo de agua y tratamiento se evaluó por medio de un índice de riqueza promedio (riqueza total por muestra) con sus desviaciones estándar - DE - para hacer comparaciones entre ellos, así de esta forma determinar en que sitio y tratamiento se encuentra la mayor riqueza. Este método fue optado debido a los diferentes tamaños muestrales en cada cuerpo de agua y así no sobreestimar su riqueza por un mayor esfuerzo de muestreo (Halffter y Moreno, 2005). En cada tratamiento se evaluó la similitud de los ensambles que conforman cada cuerpo de agua y entre cuerpos de agua. Para llevar acabo esto se utilizó la diversidad (ß) o de similitud con el índice de “Chao - Sorensen Estimado”. Este índice se basa en el la frecuencia de incidencia de cada muestra y formula una medida de - DE - por medio de re-muestreo Bootstrap (500 randomizations). Este método es para pocas muestras con diferente esfuerzo y genera un estimado más robusto que otros índices de incidencia especialmente Jaccard y Sorensen clásicos (Chao et al., 2005). Las estimaciones fueron realizadas en el programa EstimateS 8.0 (Coldwell, 2005).

Los datos de igual forma se analizaron mediante métodos multivariados. Estos se utilizaron para evaluar la distribución de la vegetación acuática en los diferentes sitios de muestreo y encontrar que variables ambientales podría estar influenciando su distribución. Para determinar el largo del gradiente de respuesta, es decir, si las variables se comportaban de una forma lineal o unimodal, se realizó un Análisis de Correspondencia con efecto de arco corregido - DCA -. En base a que el gradiente es largo, es decir, con “respuesta unimodal” se decidió utilizar el método de Análisis de Correspondencia Canónica - CCA - el cual es idóneo para ese tipo de datos (James y McCulloch, 1990; McGarical et al., 2000).

Page 19: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

18

Se tomó en cuenta para decidir que ejes utilizar la varianza de explicación de cada eje (>5%) y la relación entre el Eigenvalor del eje y el Eigenvalor de “Broken-Stick” aunque para un criterio descriptivo generalmente se utilizaron los tres primeros ejes. Para escoger entre las variables y especies que están asociadas a cada uno de los ejes se realizó una correlación de Pearson y Tau, para tomar en cuenta su efecto se consideró que debería tener un valor de R > 0.5. Por último, se analizaron los componentes principales que explicaban la mayor varianza y se relacionaron descriptivamente la ordenación de los sitios de muestreo y sus diferentes tratamientos. Basado en los resultados del CCA se decidió hacer comparaciones entre los tres usos de la tierra propuestos, esto para ver si existía una diferencia significativa en el cambio de riqueza. Para poder obtener pruebas paramétricas se transformaron los datos para normalizarlos, se utilizó una transformación de raíz cuadrada, posteriormente se realizó un ANDEVA de muestras desiguales y una prueba de Comparación Múltiple de Tukey – Kramer para encontrar quien era la que tenía diferencia entre los tratamientos. Para evitar un efecto de pseudo-replicación en el análisis estadístico se utilizaron solo los datos de las lagunas que presentaran condiciones espaciales, fisicoquímicas y de conservación similares.

Page 20: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

19

PARTE II II.1 MARCO TEÓRICO

II.1.1 Las plantas acuáticas y funciones naturales

Las plantas que se han adaptado a ambientes acuáticos, generalmente se les define

como plantas acuáticas. Los ciclos vitales de estas, deben efectuarse en asociación con

el medio acuático, ya sea sumergida, emergida o flotante.

Las plantas acuáticas dentro de los ecosistemas, generalmente cubren grandes

extensiones de tierra como sucede en los bordes de los ríos, los pantanos y manglares.

Estos vegetales son los encargados de producir energía en forma de materia orgánica

para que otros organismos tengan acceso a tomar directamente de ellas el alimento, que

sean el abrigo y en muchos casos el substrato donde puedan desarrollarse (Lot y

Novelo, 2004).

Las macrophytas son todas aquellas plantas enraizadas que se encuentran en lagos,

lagunas, aguadas y arroyos. Son generalmente grandes y notorias aunque algunas son lo

suficientemente pequeñas como para sostener mas de una docena de ellas en una sola

mano.

Las agrupaciones de las hidrófitas en diversas comunidades constituyen la

vegetación acuática y subacuatica de una región. Su presencia, cobertura y estructura

constituyen el paisaje ecológico de los llamados genéricamente humedales y su salud

permite la conservación de los ecosistemas acuáticos en su conjunto.

Algunas de las funciones de las hidrófitas que son reconocidas por su alto

significado en la conservación del hábitat y en consecuencia de la diversidad biológica y

desarrollo de sus comunidades (Lot y Novelo, 2004). Por ejemplo, un paisaje natural

con diversas comunidades expresa una alta diversidad biológica y, con ello, un

ecosistema poco alterado.

Page 21: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

20

II.1.2 Adaptaciones de las plantas acuáticas sumergidas

Una comparación entre las plantas acuáticas y las plantas terrestrs revela

características estructurales – adaptaciones al ambiente acuático – que ocurren con

fecuencia en las primeras. Éstas incluyen tendentcias diversas como (Crow, 2002):

a. Tallos más alargados, a menudo con entrenudos largos.

b. Hojas más largas, mas angostas/más delgadas, en una adaptación a

intensidades de luz más bajas,

c. El desarrollo de tricomas se reduce o elimina.

d. Ausencia general de estomas y de superficie cuticularizada o presencia de

una cutícula muy delgada. Esta es una adaptación para la interacción directa

de las células con el agua, para el intercambio de gas y la absorción de

nutrientes.

e. El parenquima de empalizada con frecuencia no se desarrolla o es

reemplazado por un parénquima esponjoso con grandes espacios de aires,

conocido como tejido aerénquima.

f. Las células epidérmicas son ricas en cloroplastos.

g. Las células epidérmicas son más alargadas que en las hojas de las plantas

terrestres.

h. Las hojas carecen de superficies cetáceas y por ese tieneden a mantenerse

húmedas.

i. Hay una reducción (no ausencia) en el desarrollo del sistema vascular,

particularmente el xilema.

j. Ausencia general de tejidos de apoyo, como leños para sostén.

k. Tienen una red muy desarrollada de espacios intercelulares, para que la

difusión de gas en los medios acáticos retarde el espape de oxígeno generado

por la fotosíntesis.

Page 22: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

21

l. Presencia de una cutícula muy delgada. Esta es una adaptación para la

interacción directa de las células con el agua, para el intercambio de gas y la

absorción de nutrientes, entre otros.

Las angiospermas acuáticas descienden de sus parientes terrestres, la mayoría ha

conservado mecanismos de polinización similares a los de sus antepasados. Sin

embargo el principal problema para la mayoría de las plantas sumergidas es que las

flores deben emerger sobre la superficie del agua para poder ser polinizada. La

polinización más comun es la Entomofilia (polinización por insectos) y la anemofilia

(polinización por el viento). La Hidrofilia es una adaptación especial de polinización en

el medio acuático y es extremadamente raro.

II.1.3 Formas de Vida de las plantas Acuáticas

Las macrófitas se dividen en tres formas básicas; sumergidas, emergentes y

flotantes. Las formas de vida reflejan el espectro biológico de las plantas, que en este

caso son afines al ambiente acuático y en consecuencia presentan una serie de

adaptaciones para vivir en dicho hábitat (Lot et al., 2004). Se agrupan a partir de sus

formas de crecimiento y se describen de la siguiente manera.

Hidrófita Enraizada: Arraigada al sustrato

Emergente: Mantiene sus estructuras reproductivas y vegetativas por encima

del agua

Sumergida: usualmente crecen enraizadas al fondo con su tallo y hojas por

debajo del agua y las reproductivas pueden encontrarse

sumergidas a excepción de algunas plantas que pueden desarrollar

algunas hojas flotantes o aéreas o por encimas de la superficie del

agua o emergiendo.

de hojas Flotantes: Con sus hojas y flores postradas sobre la superficie del

agua, aunque en ocasiones se levantan.

Page 23: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

22

Hidrófita Libre: No se encuentran enraizadas a ningún sustrato sino que flotan

libremente en el agua a merced de las corrientes y viento por los

que suelen concentrarse en ciertas partes de los cuerpos de agua

casi siempre cerca de la orilla (Donald, R., 1993).

Flotadora: Las estructuras vegetativas y reproductivas libremente sobre la

superficie del agua, sólo las raíces se mantienen sumergidas.

Sumergida: Generalmente todas las estructuras vegetativas están sumergidas y

las reproductoras emergiendo ligeramente de la superficie del

agua.

II.1.4 Importancia de las Plantas acuáticas

Las plantas acuáticas juegan un papel esencial en el mantenimiento de la salud de

los ecosistemas acuáticos (White et al., 1997). Durante el proceso de fotosíntesis la luz

solar, dióxido de carbono y agua dan lugar a nuevo tejido vegetal que en los cuerpos de

agua como lagos, arroyos y aguadas toman la forma de algas microscópicas

(fitoplancton) o plantas más grandes llamadas en conjunto macrófitas (algas de gran

tamaño y plantas con flor) (Lembi, 1997).

Cada grupo de plantas se beneficia de diferente forma a los cuerpos de agua,

trabajando en conjunto para mantener la salud de los ecosistemas acuáticos. La

productividad de los lagos depende de la tasa en la que el fitoplancton y macrófitas

producen oxigeno y realizan una serie de funciones esenciales.

Las algas en su mayoría microscópicas, sirven como productores primarios de

alimento y oxigeno constituyendo la base de la cadena alimenticia; producen oxigeno en

zonas abiertas donde plantas que requieren enterrar sus raíces no pueden crecer; proveen

de una fuente de alimento al zooplancton (animales microscópicos) y a

macroinvertebrados como insectos acuáticos, aves acuáticas, serpientes, sanguijuelas y

crustáceos (White et al., 1997).

Page 24: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

23

Por otra parte, las macrófitas proveen hábitat y protección a una gran cantidad de

animales silvestres como insectos, peces, crustáceos, aves acuáticas y mamíferos que

frecuentan las orillas (Savino y Stein 1982; Heitmeyer and Vohs 1984, Dibble et al.

1996). Cumplen un papel particularmente importante en la reproducción de varias de

estas especies al proporcionar protección y materiales de construcción de nidos para

peces en desovo, aves en nidificación e incluso para las crías de mamíferos menores.

Son númerosas las funciones de las plantas acuáticas, dentro de las principales

funciones que cumplen las plantas acuáticas de manera preponderante se encuentran

(Smart, 1995; White et al., 1997):

a. Ser productores primarios,

b. Intervenir en la captura,

c. Estabilización y formación de sedimentos,

d. Proveer refugio y materia para anidación a un gran número de organismos,

e. Ser oxigenadoras del agua,

f. Proveer substrato a especies epibiontes, y

g. Participar en los procesos de autodepuración de las aguas estancadas o en

movimiento.

h. Controlan la erosión estabilizando las orillas y los sedimentos del fondo,

i. Disipan la energía del oleaje,

j. Son fuente de alimento para peces, aves acuáticas y otros herbívoros quienes a

su vez son fuente de alimento para animales de mayor tamaño,

k. Proporcionan belleza estética e interés visual a los cuerpos de agua siendo parte

esencial del atractivo turísticos de estos ecosistemas

Page 25: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

24

Las plantas acuáticas pueden causar de igual forma efectos negativos que pueden ser

directos e indirecto, dentro de los efectos directos se encuentran:

a. Disminuyen la producción de alimento humano en los hábitats acuáticos y

aledaños, tales como sitios de pesca y áreas cultivadas,

b. Obstaculización a la navegación,

c. Incrementan la sedimentación provocando el ascenso del lecho del cuerpo del

agua, y

d. Afectan actividades recreativas, como son los deportes acuáticos y la pesca.

Dentro de los efectos indirectos que pueden causar las plantas acuáticas se pueden

mencionar los siguientes (Acosta – Arce, 2006):

a. Aumentan las pérdidas de agua por evapotranspiración,

b. Facilitan la salinización, y

c. Incrementan la incidencia de ciertas enfermedades, tales como la malaria y

esquistosomiasis, por la formación de micro-hábitats favorable para el desarrollo

de los vectores de éstas

Las macrófitas pueden mejorar la calidad del agua absorbiendo elementos como el

fósforo, nitrógeno y otros nutrientes evitando el crecimiento excesivo de algas, la

mayoría de los nutrientes los obtienen directamente a través de toda la superficie de

hojas y tallos.

Algunas especies incluso pueden filtrar, absorber e incluso desintoxicar el agua de

algunos contaminantes (White et al., 1997; Green & Davies, 2008). Así mismo, el

mantenimiento de las especies acuáticas nativas puede ayudar a prevenir la propagación

de plantas exóticas nocivas a través de exclusión competitiva (Davies, 2008).

Page 26: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

25

Las plantas acuáticas son muy tolerantes a amplios rangos de condiciones

ambientales, tales como temperatura, concentraciones de nutrientes disueltos,

disponibilidad de carbono inorgánico, pH, conductividad, composición del sustrato,

corriente y fluctuaciones en el nivel del agua, entre otros (Acosta – Arce, 2006; Peralta

y Morero - Casasola, 2007).

Dentro de los usos de las plantas acuáticas se puede mencionar que la lenteja

acuática, la lechuga de agua y los Jacintos crecen muy bien en aguas contaminadas y

después de ser cultivadas pueden utilizarse como suplemento alimenticio de animales

herbívoros o en la producción de fertilizantes orgánicos.

II.1.5 Plantas acuáticas como indicadores

Las plantas acuáticas sirven como elementos indicadores de la calidad del agua y de

las condiciones de salud, de un ambiente acuático. Por medio de la vegetación acuática

es posible determinar la presencia de sustancias toxicas tales como plaguicidas, metales

pesados, concentraciones excesivas de ciertas sustancias químicas y radioactivas, e

inclusive detectar la contaminación termal que resulta de procesos naturales, a través de

cambios en la composición de las especies de las comunidades de plantas acuáticas, de

mortalidad repentina o desaparición paulatina de ciertas especies, o bien, por el análisis

directo de tejidos de las plantas (Anon, 1972).

Los individuos de la familia Podostemaceae son los mejores bioindicadores de la

calidad del agua, por crecer exclusivamente en ríos de fuerte corriente, cascadas, saltos

y rápidos de aguas limpias (Ramos et al., 2004).

Las plantas acuáticas que son muy buenos indicadores para el monitoreo de la

contaminación con metales, son las especies Pistia stratiotes y Eichornia crassipes, esto

debido a su alto consumo de nutrientes. Estas plantas han sido consideradas por varios

autores como una plaga debido a su rápido crecimiento, ya que en ocasiones llegan a

invadir lagunas y generan varios problemas.

Page 27: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

26

Sin embargo, si las plantas acuáticas se manejan adecuadamente pueden ser

empleadas en tratamientos de aguas residuales o efluentes industriales a nivel mundial

debido a su poder de proliferación, su capacidad de absorción de nutrientes y

bioacumulación de otros compuestos del agua (Meerhoof, 2004).

El exceso de nutrientes se debe usualmente a actividades que se llevan a cabo en las

orillas, actividades como la crianza de ganado, fertilización del suelo, uso de sistemas

sépticos y remoción de la vegetación de las orillas pueden incrementar la cantidad de

nutrientes presentes en los lagos, sin embargo, a pesar de que el nitrógeno estimula el

crecimiento tanto de las plantas acuáticas como las terrestres el exceso produce un

incremento intensivo de plantas acuáticas, lo cual incrementan la eutrofización de los

cuerpos de agua y por pueden dañar la salud de estos ecosistemas.

Las plantas acuáticas comprenden un grupo variado que se han adaptado parcial o

totalmente a la vida en agua dulce, sin embargo cuando crecen en forma excesiva, son

consideradas por varios autores como una plaga debido a su rápido crecimiento,

llegando a perjudicar las actividades del hombre, es por eso que son conceptuadas como

malezas, y suelen reportarse en cuerpos de agua eutroficados (Acosta – Arce, 2006). Sin

embargo, si las plantas acuáticas se manejan adecuadamente pueden ser empleadas en

tratamientos de aguas residuales o efluentes industriales a nivel mundial debido a su

poder de proliferación, su capacidad de absorción de nutrientes y bioacumulación de

otros compuestos del agua (Meerhoof, 2004).

II.1.6 Factores que determinan el crecimiento de las plantas acuáticas

La abundancia y distribución de algas y macrófitas en los ecosistemas acuáticos

depende de la disponibilidad de luz, claridad del agua, profundidad del agua,

disponibilidad de nutrientes, tipos de sustrato (material del fondo) y grado de

perturbación. Las actividades humanas dentro y en los alrededores de los cuerpos de

agua y así como las características físicas del cuerpo de agua como forma y tamaño

también tienen influencia en estos factores. Esta sensibilidad a parámetros como

claridad del agua y nivel de nutrientes permite a las plantas acuáticas servir como

indicadoras de calidad del agua (Dennison et al., 1993).

Page 28: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

27

La luz solar es el factor más importante que regula el crecimiento de las plantas. La

mayor parte de las plantas que crecen dentro del agua no pueden sobrevivir con menos

del 1% de la luz solar que llega a la superficie del agua. Los patrones temporales de luz

y temperatura provocan el crecimiento de diferentes especies de plantas en diferente

momento del año.

La claridad del agua o grado de turbiedad determina la cantidad de luz solar que

puede penetrar en el agua. Sustancias disueltas y materiales suspendidos en la columna

de agua afectan la claridad del agua. Por ejemplo, un incremento en la cantidad de

fitoplancton o de partículas de suelo desprendidas por erosión puede bloquear la luz

solar reduciendo su disponibilidad para plantas sumergidas. Algunas especies de peces

remueven los sedimentos del fondo cuando se alimentan; por lo que una explosión de

carpas puede afectar el crecimiento de las plantas (Rial, 2001).

La profundidad del agua afecta las características químicas y biológicas de los

cuerpos de agua al determinar el tamaño de la zona litoral (zona de baja profundidad).

En general, los cuerpos de agua de baja profundidad son más productivos con respecto

al crecimiento de algas y macrófitas; por el contrario, lagos profundos con laderas

empinadas tienden a tener pocas plantas acuáticas.

Además, la variación temporal del nivel del agua a través del tiempo es un factor

determinante de la riqueza y abundancia de las comunidades vegetales acuáticas en

sitios inundables afectando el tamaño y profundidad de lagos, lagunas y aguadas

principalmente en aguadas presentes en planicies (Rial, 2001; Fortney et al., 2003).

Las corrientes o movimientos del agua también pueden influenciar el crecimiento y

distribución de las plantas acuáticas. Las macrófitas necesitan estar enraizadas al suelo

para obtener nutrientes y para mantener su posición en relación a la cantidad de luz

solar y profundidad; pero las olas y fuertes corrientes pueden arrancarlas del fondo.

La perdida de estas plantas y la mezcla del material del fondo puede provocar el

crecimiento excesivo del fitoplancton al inhabilitar la suspensión de las algas flotantes y

obstruir el aprovechamiento de la luz y nutrientes disponibles. Cada especie de planta

esta adaptada para crecer en porciones particulares de los lagos, orillas de lagos, u otros

cuerpos de agua dependiendo de sus características físicas (Fortney et al., 2003).

Page 29: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

28

II.1.7 Diversidad Florística de los Cuerpos de Agua

Los cuerpos de agua presentan generalmente dos tipos de vegetación acuática, que

se enumeran a continuación:

(1) Vegetación acuática estricta y

(2) vegetación asociada a la orilla del cuerpo de agua.

Dentro de la vegetación acuática estricta se encuentran las plantas flotantes

denominadas lechugales (Pistia stratiotes), en otros lugares se denota la existencia de

(Lemna sp y Wolffia sp) formando una capa superficial de forma continua. Asi mismo

se pueden mencionar otras especies como Chara sp., Eichhornia crassipes, Halodule

beaudettei, Lemna minima, Najas guadalupensis var. Guadalupensis, Naja wrightiana,

Najas marina, Nymphaea ampla, Nymphoides humboldtiana, Pontederia cordata,

Potamogeton illinoensis, Potamogeton pectinatus, Salvinia minima, Typha domingensis,

Utricularia foliosa, Utricularia gibba, Vallisneria americana, Wolffia sp.,Wolffiella

welwitschii.

En los cuerpos de agua pocas o ninguna planta sumergida puede existir a

profundidades mayores de 5 metros. En las orillas pueden desarrollarse alta diversidad

de gramíneas (Eleocharis cellulosa, Eleocharis geniculata, Eleocharis interstincta,

Fuirena simplex, Fuirena umbellata y Cyperus), entre otras.

Dentro de los géneros vegetales asociados a la orilla del agua o de plantas hidrófilas

se encuentran hierbas, lianas y árboles como Haematoxylum campechianun (Tintal),

Ficus radula (Copo) y Bucida buceras (Pucté) que pueden ser dominantes y Pachira

aquatica (Zapote bobo) que también se encuentra en los márgenes pero no de forma

dominante. (Lundell 1937). Otras que se encuentran asociadas a la orilla son Pluchea

purpurascens, Phragmites australis, Phyla stoechadifolia, Pachira aquatica,

Alternanthera flavescens, A. ramosissima, Andropogon glomeratus, Bletia purpurea,

Cassia grandis y Cucurbita lundelliana.

Page 30: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

29

II.1.8 Los cuerpos de agua y su importancia social y biológica

El hombre ejerce una influencia intensa sobre gran parte de los medios acuáticos y

su biota, entre ellos, el uso de grandes volúmenes de agua para riego y consumo

humano y alteración sobre la calidad del agua.

Estas actividades alteran o reducen los habitas acuáticos naturales y reducen el nivel

del agua, por lo que paralelamente afectan la vegetación circundante a estos sitios,

provocando que se extinga por completo en muchos lugares, lo cual tendrá un efecto

negativo en muchas poblaciones humanas que hacen uso de este recurso.

Todas o la mayoría de las actividades que se describen a continuación, se

desarrollan cerca de las fuentes de agua, que en el Petén son las aguadas, ríos y lagunas.

De esta fuente de agua, que atrae también a la diversidad biológica local, se obtienen

muchas veces proteína animal para balancear la dieta de los trabajadores del bosque.

Con lo anterior, las fuentes de agua estancada (aguadas) son la base de la actividad

social y biológica especialmente durante la época seca.

Dentro de las actividades económicas realizados por los pobladores de Petén están:

1) La actividad chiclera, sobre la cual existen referencias más cercanas, es

una de las actividades productivas más importantes que se realizó desde

principios de siglo, con bajo impacto negativo sobre la estructura y

conformación del bosque, pero que en la actualidad se ha reducido

significativamente, ante todo por la dificultad de colocar el producto en los

mercados internacionales;

2) La extracción de xate, también ha sido importante, principalmente durante

las últimas décadas, sin una estimación del volumen extraído, pero al igual

que el chicle, es una actividad de bajo impacto sobre el bosque;

Page 31: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

30

3) La explotación maderera, en el área central de El Petén se fomenta a partir

de la creación del FYDEP, aprovechándose principalmente de cedro y

caoba. En 1989, se realiza un nuevo aprovechamiento forestal, que incluyó

algunas especies secundarias, y

4) La actividad agropecuaria y ganadera, en menos porcentaje (Contreras et

al, 1999).

Entre las hidrófilas existen casos de endemismo, o sea de plantas de distribución

restringida. La mayoría de especies endémicas desafortunadamente se encuentrasn en

peligro de extinción o en algún grado de vulnerabiliad a corto y mediano plazo, lo cual

es doblemente drámatico, ya que sus poblaciones al desaparecer de su hábitat natural,

no solo se pierden en la reión sino en todo el mundo y para siempre.

II.1.9 Características del sitio de Estudio

Esta región pertenece a la provincia fisiográfica Plataforma de Yucatán, con una

elevación máxima de 400 msnm. La mayor parte de El Petén lo constituyen tierras bajas

tipo karst desarrolladas sobre calizas terciarias y al sur algunas calizas cretáceas

(Lundell, 1937; Plan maestro Parque Nacional Tikal) con bajos inundables y lomas de

pendientes suaves (Pérez, 1997). Estas depresiones o bajos se encuentran en las partes

más bajas de las tierras planas inundables y funcionan como barrera natural para

algunas especies (Castillo, 2001).

En las partes altas y bajas de la región existen numerosas aguadas, formadas

aparentemente de erosiones subterráneas, siendo en algunos casos pequeños pozos de

agua que se forman por la lluvia. Éstas en algunos casos efímeros por efecto de la

evaporación y por el sustrato poroso de piedra caliza (Lundell, 1937; Plan maestro

Parque Nacional Tikal). No hay manantiales o nacimientos de agua ya que la capa

freática está aparentemente muy debajo de la superficie.

Page 32: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

31

El área de Tikal - Yaxhá existen numerosas depresiones con sedimentos arcillosos

impermeables que conservan el agua durante la estación lluviosa. Algunas de las

depresiones más pequeñas fueron construidas o profundizadas por los antiguos Mayas

para usarlas como depósitos de agua.

Algunos depósitos o aguadas, persisten a través de la estación seca. Proporcionando

así, el agua necesaria para la subsistencia de la vida selvática. Las aguadas se

encuentran en un tipo de suelo no drenado, que tiene características de suelos ácidos con

las capas superficiales y neutras en las profundas,

Grandes depresiones que cubren muchos kilómetros cuadrados, llamadas bajos se

inundan hasta un metro, o más, durante la estación lluviosa, pero rápidamente se secan

durante la estación seca con excepción de las aguadas remanentes en las partes más

profundas (Plan maestro Parque Nacional Tikal, 2000 - 2004).

Las áreas de estudio según Holdridge, se encuentran dentro de la zona denominada

“Bosque húmedo subtropical (cálido)”. Dentro de ésta zona de vida se observan muy a

menudo, debido a su topografía y geología, áreas inundables o pantanos. Estas

formaciones de la tierra traen consigo la formación de asociaciones vegetales adaptadas

a este tipo de clima y suelo (De la Cruz, 1982).

Los suelos en la mayor parte de El Petén son muy delgados. Los afloramientos de

lechos de roca son comunes en las colinas. Se caracterizan por su textura arcillosa y

desarrollados sobre material parental calcáreo, con relieve suave ondulante (Pérez,

1997). En adición a su alto contenido de arcilla y caliza, existes otras direfencias

significantes en la ragión, tales como la profundidad, grado de erosión, pH, contenido

mineral, material orgánico y la gran cantidad de fragmentos de rocas presentes.

La fertilidad es variable, el drenaje lento y rocas con alta adhesividad. En términos

generales, estos suelos poseen un bajo potencial para uso agrícola, siendo su capacidad

de uso exclusivamente forestal (Castillo, 2001; Pérez, 1997).

El clima de la zona, producto de la ubicación geográfica, es cálido húmedo en época

lluviosa (julio – noviembre, diciembre) y cálido seco durante la época seca (enero -

junio). Los rangos de temperatura oscilan entre 21 y 28 grados centígrados.

Page 33: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

32

La precipitación total anual es de 1736.8 mm en la estación San Pedro Nactún

(Pérez, 1997), con una evapotranspiración promedio de 136.19 (Castillo, 2001),

La cobertura y uso actual del bosque muestra señales de haber sido utilizado con

fines agrícolas, aprovechado forestalmente y dañado por incendios forestales. Bosques

que han sido aprovechados para diferentes fines, desde la época de los mayas. También

se supone que el bosque proveyó bienes y servicios, lo cual se confirma por el profundo

conocimiento que tanto hombres como mujeres tienen aún sobre las plantas, animales y

en general de la actividad existente (Contreras et al, 1999).

II.1.10 Estudios anteriores

En 1937 Lundell clasifica la vegetación de Petén en asociaciones que se

reconocieron principalmente por la posición fisiográfica, fisonómica y composición

florística. Parte de este estudio evalúa la vegetación de aguadas y de algunos ríos y

lagos. En este estudio Lundell clasificó la vegetación del norte de Petén en tres tipos

de zonas: 1. zona se Bosque bajo, 2. Zona de Bosque Alto, y 3. zona de las orillas de las

aguadas.

Lot y Novelo (1988) en su ponencia “El Pantano de Tabasco y Campeche: la reserva

más importante de plantas acuáticas en Mesoamérica”, presentaron una síntesis de sus

trabajos en Campeche y Tabasco y describen las diferentes asociaciones leñosas y

herbáceas que encuentran en estos pantanos, las especies más importantes, las raras y

las que están en riesgo de extinción.

Schulze and Whitacre (1999), estudiaron en el Parque Nacional Tikal, la distribución

de árboles y arbustos con base en la edafología y topografía. En este estudio se concluyó

que en el parque Tikal estos factores son determinantes para la distribución de las

plantas.

León y Morales (2000) describieron la composición florística de diferentes tipos de

habitas acuáticos en el parque Nacional Laguna del Tigre, se colectaron 130 especies.

También Morales (2001) reportó 236 especies en su trabajo “Flora acuática del Parque

Nacional Laguna del Tigre”. Morales y Flores (2001) realizaron el estudio “Vegetación

Page 34: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

33

acuática de los cenotes del área de Macabilero, Parque Nacional Sierra de Lacandón”.

Entre las familias más diversas se enconraban Cyperaceae y Fabaceaes, de las cuales

ambas contienen especies terrestres y acuáticas, siendo las cyperaceaes las más

dominantes de los paisajes evaluados.

Reyes (2004-2005) estudia la vegetación asociada a las aguadas del PNT con la

finalidad de complementar el programa de rescate, manejo y monitoreo de sistemas de

aguadas del Parque. En este estudio se hizo un registro de 100 especies vegetales

pertenecientes a 43 familias. Siendo las familias con mayor riqueza de especies

Cyperaceae y Meliaceae, del total se encontraron 51 especies en el estrato árboreo, 11

arbustivo, 19 especies acuáticas estrictas, de estas 4 fueron especies flotantes y 2

especies sumergidas.

Page 35: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

34

PARTE III III.1 RESULTADOS:

III.1.1 Caracterización de la Vegetación de los Cuerpos de Agua la Región Maya Tikal –Yaxhá

Se colectaron un total de 429 muestras de plantas acuáticas asociadas a cuerpos de agua de la Región Maya Tikal –Yaxhá, las cuales comprenden un total de 269 especies distribuidas en 83 familias (Anexo 1), estás fueron colectadas entre Agosto/2008 a Abril/2009. Las Familias con mayor riqueza taxonómica fueron Fabaceae 19, Cyperaceae 19, Asteraceae 16, Poaceae 13 y Euphorbiaceae 10. El resto de las familias tienen entre 1 y 8 especies (Gráfica 1). Gráfica 1. Riqueza de las familias asociadas a los cuerpos de agua de la Región Maya Tikal –Yaxhá colectadas en los meses de Agosto del 2008 a Abril del 2009

Fuente: FODECYT 25-2008

Las especies más abundantes que se registraron durante el levantamiento de datos y que se encuentran presentes en la mayoría de sitios son:

A. Vegetación acuática Cladium jamaicensis, Typha dominguensis, Mimosa pigra, Eleocharis interstincta, Cyperus lundelli y Najas guadalupensis var. guadalupensis. En esta categoría se registraron 40 especies (Anexo 2). Najas fue el género acuático mejor representado, de las cuatro especies presentes en Mesoamerica (Lowden 1986) tres se reportaron en la zona de estudio. Solamente no se encontró Najas arguta que no ha sido reportado para Guatemala.

B. Vegetación ribereña, las mas abundantes fueron: Bucida buceras, Dalbergia

glabra, Piscidia piscipula, Metopium brownei, Haematoxylum campechianum, Lysiloma acapulcense, Pachira acuatica, Cecropia peltata y Bursera simaruba. En esta categoría se registraron 21 especies (Anexo 2).

6

7

8

8

10

13

16

19

19

0 4 8 12 16 20

Bromeliaceae

Piperaceae

Orchidaceae

Sapindaceae

Euphorbiaceae

Poaceae

Asteraceae

Cyperaceae

Fabaceae

FAMILIA

Número de Especies

Page 36: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

35

28

8

3 3 4

13

0

10

20

30

Emergentes Sumergidas HojasFlotantes

LibresFlotadoras

LibresSumergidas

Asociadas

Forma de Vida

Núm

ero

de E

spec

ies

III.1.2 Estructura de la vegetación Acuática por su forma de Vida

Un total de 61 especies acuáticas se clasificaron de acuerdo a su forma de vida (Anexo 2). El estrato más representativo fue de hidrófitas emergentes que incluyen a todas las gramíneas (Cladium, Cyperus, Eleocharis, Fuirena, Laersia, Oxycarium, Paspalidium, Phragmites, Pluchea, Rhynchospora y Typha) y lirios de agua (Pontederia y Sagittaria), entre otros. El estrato de hidrófitas sumergidas es el segundo más abundante que incluye a los géneros de Cabomba, Halodule, Najas, Potamogeton y Vallisneria.

Los géneros Eichornia, Lemna, Nymphoides, Pistia, Salvinia, Wolffia y Wolffiella

se encuentran agrupadas en la forma de vida libres flotadoras. Las especies del género Utricularia pertenecen a la forma de vida libres sumergidas y el género Nymphaea se ubica entre las enraizada con hojas flotantes.

La denominación “asociadas” se refiere a especies que no son estrictamente

acuáticas sino que son muy afines a cuerpos de agua, humedales o áreas inundadas; además se pueden encontrar a orillas de caminos o claro de bosques o en brechas. Bajo esta denominación se registraron 13 especies, dentro de ellas las más abundantes fueron Bucida buceras, Bletia purpurea, Dalbergia glabra, Habenaria repens, Haematoxylum campechianum, Lysiloma acapulcensis, Metopium brownei, Pachira aquatica y Vitis bourgaeana.

Gráfica 2. Frecuencia de especies por forma de vida.

Fuente: FODECYT 25-2008

Page 37: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

36

III.1.3 Riqueza y Diversidad

III.1.3.1 Riqueza y Diversidad α por Sitios de muestreo La riqueza de especies por sitio de muestreo es variable, el Lago Petén Itzá presentó la mayor riqueza de plantas acuáticas con un total de 28 especies, seguido de la Laguna Salpetén con 24 especies y la que presentó menor riqueza fue la Laguna Yaxhá con 5 especies. Dentro de las aguadas el sitio que presentó mayor riqueza fue Aguada El Palmar con un total de 14 especies seguida de la Aguada Tikal con 8 especies (Tabla 3). El Cerro Cahuí no presentó plantas en el espejo de agua debido al tamaño, la variación del nivel de agua es muy grande por lo que el establecimiento de plantas acuáticas es muy bajo. Tabla 3. Valores de Riqueza de plantas acuáticas para cada cuerpo de agua.

Localidad Riqueza Localidad Riqueza

Laguna Yaxhá 5 Aguada Cahuí 0 Laguna Quexil 8 Aguada Tikal 8 Laguna Sacpuy 19 Aguada Dimick 5

Laguna Macanché 15 Aguada Zotz 1 Laguna Sacnab 9 Aguada El Palmar 14

Laguna Petenchel 19 Laguna Salpetén 24 Lago Peten Itzá 28

Fuente: FODECYT 25-2008

III.1.3.2 Curvas de acumulación de especies Para estimar cuanta riqueza de plantas acuáticas hay en cuerpos de agua como

lagunas y aguadas (por separado) se utilizaron curvas de acumulación de especies y estimadores de riqueza no paramétricos (Chao, 2005; Coldwell et al. 2005; Coldwell y Coddington, 1994). Los resultado se comportaron de manera asintótica, evidenciando un buen nivel de muestreo en el estudio y en que lugares captar especies muy raras requeriría un mayor esfuerzo (inversión de tiempo y económico) para completar totalmente el inventario (Coldwell y Coddington, 1994).

Por ultimó se comparo entre los valores máximos de riqueza observada y estimada

para representar el nivel de inventario (Escalante, 2003; Coldwell, 2005; Urbina-Cardona y Reynoso, 2005). Los estimadores para diversidad gamma (de la vegetación de los cuerpos de agua de la región Tikal-Yaxhá) fueron basados en la incidencia de especies (Presencia/Ausencia).

Page 38: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

37

En la gráfica 3 la curva de acumulación de especies acuáticas en el lago y en las lagunas refleja que el muestreo está llegando a una asintota y se determinó que este estudio obtuvo un 76% de la representatividad de la región, con un total de 62 especies.

Gráfica 3. Curva de acumulación de plantas acuáticas de lagos y lagunas de la región Tikal-Yaxhá en el departamento de Petén.

Fuente: FODECYT 25-2008

En la curva de acumulación de especies acuáticas en aguadas la gráfica 4 refleja que

el muestreo está llegando a una asintota. Se obtuvo un 85% de la representatividad de la región, con un total de 24 especies.

Gráfica 4. Curva de acumulación de plantas acuáticas de aguadas de la región Tikal-Yaxhá en el departamento de Petén.

Fuente: FODECYT 25-2008

La gráfica 4 indica que encontrar nuevas especies en estos cuerpos de agua requerirá

un mayor esfuerzo y serán muy pocas, ya que la estimación y los datos observados casi convergen en la asintota.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Muestras

Riq

ueza

de

espe

cies

Sobs (Mao Tau) Unicos Duplicados ICE Chao 2

0

10

20

30

40

50

60

70

80

90

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120Muestras

Riq

ueza

de

plan

tas

Acu

átic

as

Sobs (Mao Tau) ICE Chao 2 Unicos Duplicados

Page 39: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

38

Así mismo se realizó una curva de acumulación de especies ribereñas y se obtuvo un 72 % de la representatividad de la región, con un total de 20 especies. Gráfica 5. Curva de acumulación de plantas ribereñas de la región Tikal-Yaxhá en el departamento de Petén.

Fuente: FODECYT 25-2008

III.1.3.3 Riqueza y Diversidad por Tratamiento III.1.3.3.1 Diversidad alfa (α) La riqueza por tratamiento fue muy variable, siendo el tratamiento de potreros los que presentaron mayor riqueza de plantas acuáticas en comparación con los tratamientos de bosques y poblados. En la gráfica 6 se observan en número total de especies encontradas por tratamiento por sitio de muestreo, sin tomar en cuenta los diferentes esfuerzos de muestreo. Gráfica 6. Riqueza Total Encontrada de Especies por sitios.

Fuente: FODECYT 25-2008

0

5

10

15

20

Petén Itzá Sacpuy Macanché Salpetén Yaxhá Sacnab Petenchel Quexil

Riq

ueza

de

Esp

ecie

s

Bosque Potreros Poblados

0

10

20

30

40

50

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

Número de muestras

Riq

ueza

de

espe

cies

Sobs (Mao Tau) Unicos Duplicados ICE Chao 2

Page 40: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

39

0Petén Itzá Sacpuy Macanché Salpetén Yaxhá Sacnab Petenchel Quexil

Bosque Potreros Poblados

0

2

4

6

8

10

Riq

ueza

de

Esp

ecie

s En los sitios de muestreo de Tikal, Zotz y Cahuí no se realizó un análisis por tratamiento debido a que las aguadas solo presentaron el tratamiento de bosque, además cabe mencionar que se encontró un número bajo de especies (20 especies en total). Y en la gráfica 7 se observa la riqueza alfa promedio por cuerpo de agua correspondiente a los distintos tratamiento, al promediar los valores se obtiene la tendencia que tiene la comunidad por sitio, esto ayuda a no sobreestimar los valores de riqueza producto de un mayor esfuerzo de muestreo (Halffter y Moreno, 2005). Gráfica 7. Riqueza alfa promedio de Especies y Desviación estándar por Tratamiento.

Fuente: FODECYT 25-2008

Basado en la gráfica 7 podemos observar que la riqueza promedio del lago Petén Itzá es mayor que las otras lagunas, este es un fenómeno que está relacionado con el tamaño del lago, apoyado en parte por la teoría de islas de McArthur y Wilson (primer supuesto relación área-especies), donde a mayor área mayor riqueza de especies por poseer mayor heterogeneidad espacial y por ende un mayor número de nichos a ocupar (Brown y Lomolino, 2006). Este patrón podría fundamentarse más la desviación estándar fuera reducida con más muestras, la tendencia parece ser que por ser más heterogéneo necesita más muestras, esto es apoyada también por el bajo número de especies en aguadas donde las características son más homogéneas. El patrón más interesante encontrado es que la riqueza promedio fue más alta para las áreas perturbadas, potreros y/o comunidad).

Page 41: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

40

III.1.3.3.3 Diversidad beta (ß) La similitud de especies de plantas acuáticas entre y dentro los cuerpos de muestreo fue evaluada con un índice de similitud basado en la presencia/ausencia, esto para ver el porcentaje de especies compartidas o si existe complementariedad entre ellas. Los valores obtenidos son resumidos en la tabla 4. Tabla 4. Valores de la Complementariedad o Similitud (Riqueza ß) en cada tipo de tratamiento utilizando el Índice Estimado de Chao - Sorensen (Escala 0 a 1). (Pi - Lago Petén Itzá), (Ma - Macanché), (Sl - Salpetén), (Sc - Sacnab), (Yx - Yaxhá), (Pt - Petenchel), (Qx - Quexil), (Sy - Sacpuy), (Tk - Tikal) y (Zp - El Zotz). PiB PiP PiC MaB MaP MaC SlB SlP ScB YxB PeB QxB SyP SyC TkB ZpBPiB 1 0.93 0.97 0.20 0.45 0.17 0.50 0.44 0.32 0.36 0.21 0.42 0.36 0.30 0.23 0.31

PiP - 1 0.90 0.19 0.70 0.18 0.53 0.66 0.34 0.22 0.49 0.59 0.53 0.27 0.52 0.39PiC - - 1 0.10 0.40 0.13 0.24 0.30 0.37 0.05 0.23 0.26 0.25 0.11 0.16 0.34

MaB - - - 1 0.44 0.76 0.35 0.39 0.39 0.58 0.32 0.30 0.40 0.32 0.11 0.14

MaP - - - - 1 1.00 0.42 0.82 0.37 0.33 0.61 0.57 0.63 0.43 0.60 0.30MaC - - - - - 1 0.10 0.55 0.42 0.53 0.37 0.54 0.72 0.68 0.75 0.08

SlB - - - - - - 1 0.72 0.30 0.38 0.68 0.25 0.30 0.12 0.08 0.21

SlP - - - - - - - 1 0.30 0.14 0.28 0.42 0.25 0.25 0.27 0.19ScB - - - - - - - - 1 0.56 0.56 0.60 0.53 0.56 0.25 0.12

YxB - - - - - - - - - 1 0.32 0.41 0.73 0.56 0.23 0.13

PeB - - - - - - - - - - 1 0.31 0.79 0.43 0.33 0.31QxB - - - - - - - - - - - 1 0.50 0.77 0.35 0.24

SyP - - - - - - - - - - - - 1 0.79 0.37 0.37

SyC - - - - - - - - - - - - - 1 0.28 0.09TkB - - - - - - - - - - - - - - 1 0.00

ZpB - - - - - - - - - - - - - - - 1

Fuente: FODECYT 25-2008

La mayor similitud de estructura de especies se comparte en primer lugar dentro de los cuerpos de agua como un sistema cerrado en donde hay una interacción entre los diferentes usos de la tierra. Al comparar la similitud entre diferentes usos de la tierra, específicamente los perturbados (potrero y/o comunidades) se encontró que hay mayor similitud entre estos tratamientos, que entre los bosques de los diferentes sitios, la homogenización parece estar presente en los lugares perturbados.

Page 42: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

41

III.1.4 Análisis Multivariado Las variables que agrupan mejor a los diferentes cuerpos de agua fueron la conductividad y el uso de la tierra para los tratamientos planteados. Los valores de variación explicada acumulada por los tres primero ejes fue de 14% y los valores de correlación de cada variable por eje se presentan en el anexo 4. Entre los patrones de un modo descriptivos se muestran en las siguientes gráficas: Gráfica 8. Ordenación de los sitios muestreados con relación a sus plantas acuáticas y variables ambientales de la región Tikal-Yaxhá por medio de CCA. (Pi - Lago Petén Itzá),

(Ma - Macanché), (Sl - Salpetén), (Sc - Sacnab), (Yx - Yaxhá), (Pt - Petenchel), (Qx - Quexil) y (Sy - Sacpuy). b (Bosque), p (Potrero) y c (Comunidades o Poblados)

Fuente: FODECYT 25-2008

Page 43: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

42

En la gráfica 8 podemos ver el gradiente que agrupa en el EJE 2 a la laguna

Salpetén es la variable de conductividad (covariable de salinidad). Las especies que se encuentran dentro del círculo pueden estar asociadas a estar presente donde hay mayor conductividad, es decir, mayor concentración de sales minerales (Anexo 5 y 6).

En la gráfica siguiente se puede observar que el coeficiente de correlación (Tau)

para la variable de conductividad está correlacionado con el eje 2. Gráfica 9. Efecto de la variable conductividad sobre los cuerpos de agua muestreadas y sus plantas acuáticas asociadas. Los círculos más grandes presentan mayor conductividad.

Fuente: FODECYT 25-2008 Otra variable que presentó una correlación (Tau) >0.5 en el - CCA - fue el uso de la tierra (Anexo 5) formando un gradiente en el eje 3. Este gradiente es de interés ya que agrupa en la parte superior de los cuadrantes de los eigenvectores a todos los sitios que se encuentran asociados al tratamiento bosque y en la parte inferior al tratamiento que está asociado a potreros y comunidades.

Page 44: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

43

También se puede asociar algunas especies que están relacionadas a ambientes boscosos las cuales están también ordenadas en la parte superior del eje 3 y hay otras asociadas a lugares intervenidos como Najas guadalupensis, Eleocharis intersticta, Fuirena simplex, Ludwigia octovalvis y Chara sp. Gráfica 10. Ordenación de los sitios muestreados con relación a sus plantas acuáticas y variables ambientales de la región Tikal-Yaxhá por medio de CCA.

Fuente: FODECYT 25-2008

Page 45: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

44

En la gráfica 10 se observa la correlación que existe entre el eje 3 y el uso de la tierra. Se puede observar que existe un gradiente ambiental entre lo perturbado (potreros y poblado) y lo no perturbado (bosque), ya que agrupa en la parte inferior del eje 3 de la gráfica los potreros y poblados. Gráfica 11. Efecto de la variable usos de la tierra sobre el eje 3 en la ordenación los cuerpos de agua muestreadas.

Fuente: FODECYT 25-2008

Page 46: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

45

III.1.5 Comparación entre Tratamientos El análisis de varianza (ANDEVA) realizado para evaluar si existía diferencia significativa entre los tratamientos establecidos fue de (p = 0.036). Para evaluar que tratamiento es significativamente diferente se realizo una prueba de comparación múltiple de Tukey y Kramer. Tabla 5. Análisis de Varianza entre los tratamientos.

Comparación Valores de Diferencia media q Valor de P

B vrs P - 1.0090 3.8510 1 P < 0.05

B vrs C - 0.2391 0.8046 ns P > 0.05

P vrs C 0.7700 2.4590 ns P > 0.05

(ns) No significativo (1) Significativo

Fuente: FODECYT 25-2008 En la tabla 5 se observa que existe una diferencia significativa entre los potreros y bosque, sin embargo entre poblados (comunidad) y bosque o poblados y potreros no existe una diferencia significativa ya que los valores de p son mayores de 0.05. Los resultados obtenidos confirman parcialmente la hipótesis planteada.

Page 47: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

46

III.2 DISCUSIÓN DE RESULTADOS

III.2.1 Caracterización de la Vegetación Acuática de los Cuerpos de Agua la Región Maya Tikal –Yaxhá

Podemos decir que la diversidad de la flora acuática estricta del área de estudio es alta, ya que se compone de 40 especies. En esta zona de estudio se encuentra el lago Petén Itza, que es grande y posee distintos tipos de habitas con poco movimiento de agua, lo que favorece el establecimiento de las macrófitos.

Morales (2001), reporta para el Parque Nacional Laguna del Tigre, humedales mas grandes de nuestro país, 40 especies. Este autor, hace una comparación con otros estudios de distintas regiones del país y el Parque Laguna del Tigre resulta como el más diverso en cuanto a flora acuática. El presente estudio alcanza al menos el mismo número de especies. Es importante hacer notar las adiciones a los registros de plantas acuáticas estrictas, ya que Lundell (1937) reportó 28 acuáticas estrictas para la misma región de estudio. Lot y novelo (1988), categorizan los humedales de Tabasco y Campeche, como la reserva más importante de plantas acuáticas de Mesoamerica y reportan un total de 45 acuáticas estrictas para estos estados. Tomando en cuenta la mayor extensión territorial de aquella área, podemos decir que la diversidad de la zona central de Petén, es alta.

Algunas especies son altamente vulnerables a la contaminación y a cambios

drásticos en la hidrología de los humedales donde se desarrollan, es por esto que se les considera como elementos indicadores de la calidad de agua y de las condiciones de los ambientes acuáticos. Géneros como Eichornia, Potamogeton, Vallisneria y Pistia, son indicadoras perturbaciones de calidad de agua, ya que su crecimiento se ve favorecido por la presencia de altas concentraciones de nutrientes, por consiguiente indican alto grado de eutrofización (Palma, 1986). En el análisis multivariado se puede observar que estas especies aparecieron en el eje relacionado a perturbación (Gráfica 10 y 11).

La vegetación acuática y subacuática de la región Maya Tikal – Yaxhá, presentó una

relativa heterogeneidad tanto en su composición como en su distribución. Sin embargo, la influencia humana parece provocar cambios en algunas lagunas en cuanto a la vegetación acuática, Lagunas como Yaxhá, Sacnab y Petenchel con poca influencia humana, es decir sin poblados, no presentaron especies introducidas, como: Eichornia crassipes, Pistia stratiotes y Nymphoides humboldtiana, es por eso que en algunas lagunas se registraron un mayor número de especies características de humedales y en otras mayor número de especies consideradas malezas.

Page 48: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

47

Eichornia crassipes es considerada una de las peores malezas acuáticas del mundo,

así como Pistia stratiotes, Potamogeton ilinoensis y Salvinia minima, por su importancia económica ya que se gastan millones de quetzales para el control de estas especies (Acosta – Arce, 2006; Ramos et al., 2004; Peralta, 1986; Martin, et al., 2003). Cabe mencionar que estas especies por su carácter de introducidas y/o malezas acuáticas pueden desplazar a otras hidrófitas nativas y por consiguiente cambiar y alterar la estructura y las condiciones naturales de los ambientes acuáticos representando perdidas de diversidad biológica. Fueron pocos los sitios en donde se registraron estas especies, se registraron sobre todo en lugares donde hay presencia de poblaciones humanas, lo que indica que el estado de conservación de algunos de los cuerpos de agua de la región Maya Tikal – Yaxhá se podrían considerar en buen estado de conservación.

Uno de los principales factores que determinó la distribución de las especies

acuáticas fue el uso de la tierra. Por ejemplo Eichornia, Potamogeton y Vallisneria fueron muy abundantes; las dos últimas fueron de gran tamaño (el follaje > 1 metro de largo) y cubriendo grandes parches en el fondo del agua, en los sitios donde hay actividades ganaderas y humanas, principalmente en los puntos de muestreos ubicados en los tratamientos de poblado, especialmente en el Lago Petén Itzá (San Benito y San Pedro), esto debido al aporte directo de aguas residuales domésticas y por la descomposición de la materia orgánica acumulada por la vegetación existente, lo que incrementa el contenido de nutrientes y esto a largo plazo pueden influir en los procesos de eutrofización de los cuerpos de agua (Acosta – Arce, 2006; Peralta et al., 2007). Algunos puntos de muestro dentro del Lago Petén, en donde había cobertura boscosa se registraron Potamogeton y Vallisneria pero no en las mismas proporciones, el área de extensión era menor y el tamaño del follaje de las plantas no pasaba más allá de los 30 cms. de largo.

Los bosques en cambio, han quedado restringidos a lugares con sustrato rocoso y allí

las macrófitas acuáticas, no se establecen. Esto se ha visto en estudios realizados en la laguna Lachuá (Morales 1999) y en las orillas del Biotopo Cerro Cahui en el lago Petén Itzá (morales 2001). De igual forma los poblados se han ubicado más en el sustrato no rocoso, lo que hace que se agrupen junto con los potreros, que se ubican también en sustratos no rocosos. Especies emergentes como Cladium jamaicense y Typha domingensis parecen favorecerse en humedales impactados por la carga de nutrientes de los asentamientos humanos y la erosión del suelo en tierras altas (Morales 2001), tal carga se ha notado sitios de muestreo de este estudio.

Page 49: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

48

Las especies de Eleocharis dominan sustratos altos en contenido de sílice y calcio, ya que otras plantas no pueden sobrevivir allí (Rajamankova et al 1995, citada por Morales 2001). Después de estas especies, al bajar el contenido de sílice, se pueden establecer Cladium y Typha. La dominancia de estas puede estar determinada mayormente por el estado de los nutrientes, hidroperíodo y quizás frecuencia de fuegos (Morales 2001). En los lugares donde el sustrato no es rocoso, las etapas tempranas de la sucesión vegetal están formadas por acuáticas emergentes. Mas tarde al desarrollarse la sucesión, los bosques sustituyen a las acuáticas emergentes y estas se retiran o quedan solo en forma residual, por lo que naturalmente estas formaciones son distintas y así lo muestra el análisis. Los árboles llegan después de que las acuáticas han formado suelo y se ha disminuido la profundidad del agua (Morales 2001). Por el contrario los sitios más alejados y mejor conservados, tales como Yaxhá, Sacnab, Quexil, Petenchel, no reportan la presencia de estas especies, es importante mencionar que en Yaxhá y Sacnab el agua era ligeramente turbia y con profundidades grandes, por lo que el establecimiento de plantas en el fondo se ve limitado por la ausencia de luz (Barko et al., 1986). Otro factor que determinó la distribución de la vegetación acuática, fue el tipo de sustrato. En sitios como Yaxhá, Quexil y en algunos puntos de muestreo del Lago Petén Itzá donde el sustrato era arenoso o rocoso, la vegetación estaba ausente o era menos abundante que en otros sitios, en sitios arenosos es por la acción del viento y oleaje, que desprende con facilidad las plantas; y en sitios rocoso es por que las rocas no favorecen el enraizamiento de las plantas por la limitada fertilidad del sedimento (Acosta – Arce, 2006), al contrario de sitios como Macanché, Salpetén, Petenchel, Lago Petén Itza, Sacnab, Sacpuy, Tikal y Zotz en donde la vegetación era más abundante; esto debido a que el sustrato era de limo, con poca arena y rocas y con abundante materia orgánica, este tipo de sustrato es el mejor medio para el enraizamiento de las plantas (Palma, 1986; Peralta et al., 2007).

La conductividad fue otro de los factores que determinó un gradiente de distribución

de los sitios de muestreo (gráfica 8 y 9), separando a la laguna de Salpetén del resto, esta laguna tiene un alto contenido de sales minerales, casi diez veces más alto que otras lagunas, esto puede estar asociado con la características geoquímicas de la cuenca o que es una cuenca cerrada (endorreica) que tiene un origen de agua diferente al resto de las lagunas en el área (Brezonik y Fox, 1974; Peralta y Morero - Casasola, 2007).

Page 50: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

49

Sustancias o partículas disueltas, tales como sales y minerales, suspendidas en la columna de agua afectan la claridad del agua por lo que determinan la cantidad de luz solar que puede penetrar en el agua y por consiguiente el establecimiento de plantas acuáticas sumergidas (Rial, 2001; Robertson, 1920), es probable que este factor pudiera determinar que especies estén presentes en la laguna de Salpetén.

La presencia de Najas, Hydrocotyle, Lemna y Chara en las lagunas y aguadas

(Tabla 8) indican un incremento en las concentraciones de nutrientes debido a su alta capacidad adaptación y de resistencia a la contaminación y a hábitats extremos (Palma, 1986; Ramos et al., 2004) y alteraciones en la hidrología del cuerpo, caso contrario con Utricularia que se encuentra relacionada a lugares con bajas concentraciones de nutrientes en la columna de agua, ya que las poblaciones de esta especie son muy sensibles a alteraciones por nutrientes (Eichler, 1995; Peralta y Morero - Casasola, 2007). Sin embargo en algunas lagunas se encuentran coexistiendo poblaciones de las tres especies, lo que puede estar indicando un cambio en la composición de las comunidad vegetal acuática sumergida.

La presencia de malezas acuáticas no implican necesariamente una eutrofización de

las lagunas dado que la cobertura dentro de cada laguna exceptuando el Lago Petén Itzá, fue baja, sin embargo, pueden estar evidenciando una alteración del ambiente (Peralta y Morero - Casasola, 2007). El extremo crecimiento de especies acuáticas puede causar impactos negativos en el ambiente acuático, ya que la descomposición del material “extra” puede causar alteraciones extremas en los niveles de oxígeno y otras variables, ocasionando la muerte de peces.

La riqueza es muy heterogénea en los sitios de muestreo, ya que fluctúa entre 5 y 28

especies, esto significa que a pesar de que los cuerpos de agua son de dimensiones pequeñas y que el esfuerzo de muestreo estuvo entre el 76 y 85 % de representatividad de la región, conjuntan un alto número de familias y especies.

El análisis de ANDEVA (Tabla 5) indicó que existe una diferencia significativa

entre los sitios perturbados y los sitios que tienen cobertura boscosa. Los sitios que tienen un cierto grado de conservación (presencia de cobertura boscosa) se registraron especies de plantas que son características de ambientes poco o no alterados, caso contrario en algunas lagunas donde se encontraban algunos potreros o poblados. En los potreros y poblados se encontraron varias especies de pastos que son considerados especies secundarias que son característicos de sitios perturbados (Peralta y Morero - Casasola, 2007), sin embargo, aparecen en combinación con especies de humedales,

Page 51: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

50

aunque estás últimas en proporciones menores. Los sitios en donde se encontraron potreros y poblados tales como Lago Petén Itzá, Salpetén, Macanché y Sacpuy presentaron los valores de riqueza y diversidad más altos (Gráfica 6 y 7), debido a que la influencia humana y el manejo ganadero favorece la incorporación, invasión y competencia de nuevas especies que tienen alta capacidad e colonización, reduciendo así la presencia de especies características de humedales (Martin, 2003).

Nuestra hipótesis planteada propone que las diferencias en el estado de conservación de los cuerpos de agua provocan cambios en los patrones de distribución y diversidad de la vegetación acuática. Nuestra hipótesis fue apoyada por los resultados obtenidos en el análisis de CCA y Anova. Ya que la perturbación incrementa diversidad de especies en aquellos cuerpos de agua en cuyos alrededores se realizan actividades ganaderas o humanas.

III.2.1 Importancia de la vegetación acuática En cuanto a los usos que se les dan a las plantas acuáticas, no se reportaron para la

región, sin embargo en otras regiones se utilizan plantas de los géneros de Eichhornia, Polygonum y lemna para forrajeo de animales, Typha para uso artesanal, Eichhornia y Pistia como abono, y finalmente Berula erecta, Nymphaea gracilis y Sagittaria longiloba como alimento, sin embargo la distribución de estas especies no está reportada para la región Maya de Guatemala (Garret y Barre, 2000; Ramos y Novelo, 1993; Standley y Williams, 1966; Tropicos.org).

Las aguadas o cuerpos de aguas grandes tiene una importancia ecológica pues son

importantes reservorios de agua que la fauna visita sobre todo durante la época seca, cuando este recurso es escaso, brindando refugio a peces, invertebrados y plantas que son alimento de especies importantes del paisaje como el jabalí (Tayassu pecari), dantos (Tapirus bairdii) entre muchos otros (García y Radachowsky, 2004; Moreira, 2009).

No solo los animales silvestres se ven beneficiados con el uso del agua de las

aguadas o lagunas. Los campamentos o estaciones que están dentro de la Biosfera Maya también obtienen de las aguadas o de las lagunas agua para su consumo, de igual forma, hace algunos años en muchos campamentos chicleros utilizaban el agua que quedaba remanente en bajos inundables o en aguadas naturales o artificiales que eran construidas por el humano para el consumo, sin embargo esta actividad se ha reducido significativamente, abriendo puertas otras actividades tales como la extracción de xate y la explotación maderera (Com. Personal).

Page 52: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

51

Actividades extractivas como el chicle, el xate y la pimienta, no hubieran sido

posibles sin las aguadas, estas actividades fueron muy importantes para el país durante muchos años, el chicle llegó a ser conocido como el oro blanco y su historia fue de casi un siglo (Swartz, 1990). Para la producción del chicle la ecología es un elemento indispensable (Swartz, 1990). Estas actividades ayudaban a mantener los bosques, ya que la producción depende de ellos, por lo que el gobierno debería incentivarlas. Las aguadas y los bosques ribereños también pueden actuar como reservorios de la diversidad biológica, en un incendio de baja magnitud, ya que al guardar humedad protegen las plantas, que después facilitaran nuevamente la colonización de las áreas quemadas (Morales 2001)

Page 53: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

52

PARTE IV IV.1 CONCLUSIONES:

1. Se caracterizaron y se registraron un total 269 plantas acuáticas asociadas a cuerpos

de agua de la Región Maya Tikal –Yaxhá, distribuidas en 83 familias. Siendo

Fabaceae (19), Cyperaceae (19), Asteraceae (16), Poaceae (13) y Euphorbiaceae

(10) las familias que presentaron la mayor ríqueza taxonomica.

2. Los patrones de distribución de las plantas acuáticas se encuentran relacionados con

el estado de conservación de los cuerpos de agua, asi como los cambios de

profundidad, corriente y contaminación, tienen una influencia sobre la es por esto

que son buenas indicadoras en ambientes acuáticos. Especies como Eleocharis

intersticta, Najas guadalupensis, Vallisneria americana, Potamogeton illinoensis,

Eichhornia crassipes, entre otras, son especies de amplia distribución y tolerantes a

condiciones extremas por lo que son consideradas malezas acuáticas, pues se

desarrollan bajo condiciones de alta perturbación. Estás especies se presentaron en

el Lago Petén Itzá, Macanché, Salpetén y Sacpuy, sitios poco conservados y con alta

influencia humana y ganadera. Es posible que algunos cuerpos de agua se

deterioren de manera irreversible si continúan estás tendencias, y sobre todo que se

pierdan recursos bióticos que son de gran importancia para el humano.

3. Se estableció que especies como Typha dominguensis, Cladium jamaicensis,

Eichornia crassipes, Pistia stratiotes y algunas especies forestales, pueden proveer

habitat y refugio a animales silvestres y a su vez pueden reducir y estabilizar las

descargas directas de aguas negras a los cuerpos de agua, evitando el deterioro de

los cuerpos de agua dulce. Es por esto la importancia de la vegetación acuática en la

conservación y mantenimiento de la biodiversidad en los cuerpos de agua y la

cultura forestal de la Región Maya Tikal – Yaxhá, Petén, pues actuan como

reservorios de la diversidad biológica y mantienen la salud de los ecosistemas

acuáticos.

Page 54: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

53

4. En general los cuerpos de agua de la Región Maya Tikal - Yaxhá, parecen sufrir un

leve proceso de eutrofización, debido al aporte de sedimentos, nutrientes y

contaminantes proveniente de los diversos afluentes tanto naturales como artificiales

que llegan a las cuencas. En los sitios menos perturbados como Yaxhá, Sacnab,

Quexil, Petenchel, Zotz y Tikal los valores fisicoquímicos registrados se encuentran

entre lo permisible para la vida acuática, caso contrario ocurre en el Lago Petén Itzá,

Macanché, Salpetén y Sacpuy que son sitios altamente pertubados. Se registraron

algunos valores altos y bajos dentro de un mismo cuerpo de agua, esto por

actividades naturales producto de la descomposición de la materia orgánica y

actividad fotosintética.

5. En relación a la hipótesis se acepta que las diferencias en el estado de conservación

de los cuerpos de agua de la Región Maya Tikal – Yaxhá, provocan cambios en los

patrones de distribución y diversidad de la vegetación acuatica

Page 55: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

54

IV.2 RECOMENDACIONES 1. Se recomienda ampliar la caracterización de la vegetación acuática en otros cuerpos

de agua que se encuentren en la Región Maya Tikal – Yaxhá, que no se tomaron en cuenta en este estudio con la finalidad de complementar listados de especies.

2. Se recomienda que se consideren otras variables ambientales, aparte del estado de conservación de los cuerpos de agua, para determinar que otros factores tienen incidencia en los patrones de distribución de la vegetación asociada en la región Maya Tikal – Yaxhá .

3. Se recomienda que se consideren en los planes de manejo y conservación de los cuerpos de agua de la Región Maya Tikal – Yaxhá, la importancia de las plantas acuáticas como indicadoras de calidad de agua, así como el rol que juegan en la conservación y mantenimiento de la biodiversidad y la cultura forestal sostenible de Petén.

4. En lugares como el Lago Petén Itzá, Macanché, Salpetén y Sacpuy se recomienda implementar un manejo integral, interdisciplinario y sostenible para el manejo de malezas acuáticas para que no alteren el ecosistema acuático y perjudiquen al humano. Asi mismo en las lagunas que presentaron una baja perturbación como Quexil, Petenchel, Yaxhá, Sacnab, Tikal y Zotz, se recomienda que se mantengan las condiciones ambientales de la mejor forma para no tener problemas con malezas y evitar el deterioro del ecosistema acuático.

5. El manejo y control de malezas acuáticas es fundamental, por lo que se recomienda que la selección de la estrategia sea la más apropiada de manejo, debe ser una que sea compatible con la calidad ambiental y la mejor en relación beneficio / costo.

6. Se recomienda conducir estudios que determinen el grado de eutrofización de los cuerpos de agua y la tasa a la que esta se esta dando. Esto podría ser el primer llamado, para evitar catástrofes como las que sufren actualmente otros cuerpos de agua del país.

7. Se deben desarrollas planes de manejo junto con las autoridades competentes administrativas y dueños de terrenos privados que permitan y garanticen la integridad de la composición y estructura de las hidrófitas características de esta región.

Page 56: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

55

IV.3 REFERENCIAS BIBLIOGRAFICAS 1. Acosta - Arce, L. y Agüero - Alvarado, R., 2006. Malezas Acuáticas como

componentes del Ecosistema. Agronomía Mesoamericana, 17(2): 213 – 219. 2. Anon. 1972. Periphyton as water pollution indicador. NTIS report PB-213 501/1 3. Barba L. 2002. Fitoremediación en el tratamiento de aguas residuales con

metales pesados. Facultad de Ingenierías, Universidad del Valle, Santiago de Cali.

4. Brezonik, P. y Fox, J. 1974. The limnology of Selected Guatemalan Lakes.

Hidrobiología Vol. 45, 4. Pags. 467 – 487. 5. Castillo, M. 2001 Caracterización de Avifauna asociada a los sistemas acuáticos

del Parque Nacional Laguna de Tigre, Petén, Guatemala. Escuela de Biología, Facultad de Farmacia, Universidad de San Carlos de Guatemala, Tesis de Licenciatura.

6. Chao, A., Balakrishnan, N. C., Read, B. and Vidakovic, B. 2005. Species richness

estimation. Encyclopedia of Statistical Sciences. New York, Wiley. Pages 7909-7916

7. Chao, A., Chazdon, R., Colwell, R y Shen, T. 2005. A new statistical approach

for assessing similarity of species composition with incidence and abundance data. Ecology Letters. Vol. 8: 148–159

8. Colwell, R. K. 2005. EstimateS: Statistical estimation of species richness and

shared species from samples. Version 7.5. User's Guide and application published at: http://purl.oclc.org/estimates.

9. Colwell, R. K., & J. A. Coddington. 1994. Estimating terrestrial biodiversity

through extrapolation. Philosophical Transactions of the Royal Society (Series B) 345, 101-118.

10. Colwell, R. K., C. X. Mao, & J. Chang. 2004. Interpolating, extrapolating, and

comparing incidence-based species accumulation curves. Ecology 85, 2717-2727

11. Crow, G. 2002. Plantas acuáticas del Parque Verde y el valle del río Tempisque,

Costa Rica. Instituto Nacional de Biodiversidad (INBio). Costa Rica. 300 pp.

Page 57: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

56

12. De la Cruz, J. R. 1982. Clasificación de Zonas de Vida de Guatemala a Nivel de

Reconocimiento. Guatemala: MAGA, 42 pp. 13. Dennison, W., R. Orth, K. Moore, J. Stevenson, V. Carter, S.Kollar, P.

Bergstrom, and R. Batuik. 1993. Assessing water quality with submersed vegetation. BioScience 43(2):86-94.

14. Dibble, E. D., Killgore, J., and Harrel., S. L. 1996. Assessment of fish-plant

interactions. In L. E. Miranda and D. R. DeVries (eds.) Multidimensional Approaches to Reservoir Fisheries Management. Amer. Fish. Soc. Symp.16: 347-356.

15. Donald, R. 1993. Introduction to Freshwater Vegetation. Publishing Krieger

Company, Melbourne, Florida. USA. 16. Eichler, L., Bombard, R., Sutherland, J. y Boylen, C. 1995. Recolonization of the

Littoral Zone by Macrophytes following the Removal of Benthic Barrier Material. J. Aquat. Plant Manage. 33. Pag. 51 - 55

17. Environmental Protection Agency - EPA-. 1986. Gold Book of Quality Criteria

for Water. EPA 440/5-86-001. USA. Pág. 477. 18. Fassett, N. 1957. A Manual of Aquatic Plants. Second Edition. University of

Wisconsin, USA. Pp. 405. 19. Fortney, R., Benedict, M., Gottgens, J., Walters, T., Leady, B. - S. & Rentch, J.

2003. Aquatic plant community composition and distribution along an inundation gradient at two ecologically-distinct sites in the Pantanal region of Brazil. Wetlands Ecology and Management 12: 575–585, 2004. # 2004 Kluwer Academic Publishers. Printed in the Netherlands.

20. García, R. y Radachowsky, J. 2004. Evaluación ecológica rápida del Parque

Nacional Mirador Río Azul, Petén, Guatemala. Informe interno, Wildlife Conservation Society, Programa para Guatemala. 95 pp.

21. Garrett, C. y Barre, C. 2000. Aquatic and Wetland Plants of Northeastern North

America. Vol. 2. Angiosperms: Monocotyledons. The University of Wisconsin Press. USA. Pp. 456

Page 58: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

57

22. Green, B. & Davies, C. 2008. Aquatic Plant Management Plan Lake Nancy Washburn County. Wisconsin, USA.

23. Heitmeyer, M. E. and P. A. Vohs, Jr. 1984. Distribution and habitat use of

waterfowl wintering in Oklahoma. J. Wildl. Manage. 48: 51-62. 24. James, F. y McCulloch, C. 1990. Multivariate Analysis in Ecology and

Systematics: Panacea or Pandora’s Box. Annu. Rev. Ecol. Syst. Vol 21, USA. Pp. 129 -166

25. Lembi, C. A. 1997. Aquatic plant management. Department of Botany and Plant

Pathology, Purdue University, USA. 26. León, B. and Morales, J. 2,000. The aquatic macrophyte communities of Laguna

del Tigre National Park, Petén, Guatemala. In: A Biological Assessment of Laguna del Tigre National Park, Petén Guatemala. Bestelmeyer, B. and L. Alonso (Eds.), 221pp.

27. Lot, A. y Novelo, A. 1988. El Pantano de Tabasco y Campeche la reserva más

importante de plantas acuáticas de Mesoamérica. En: Ecología de los Ríos Usumacinta y Grijalva. Instituto Nacional de Investigación sobre Recursos Bióticos – División Regional Tabasco, 720 pp.

28. Lot, A. y Novelo, A. 2004. Iconografía y estudio de plantas acuáticas de la

ciudad de México y sus alrededores. Universidad Nacional Autónoma de México. México. 206 Pags.

29. Lundell, C. L. 1937. The Vegetation of Petén. Studies of Mexican and Central

American Plants I. Carnegie Institution of Washigton. 245 pp. 30. Magurran, A. 2004. Measuring Biological Diversity. Blackwell Publishing.

Printes United Kingdom. 256 p. 31. Margalef, R. 1983 Limnología. Ediciones Omega. Barcelona. 32. Martin, M. 2003. The Aquatic Plants of the Chateaugay Lakes: Inventory &

Management. Cedar Eden Environmental, LLC. USA. Pp. 17. 33. McGarigal, K., Cushman, S. y Stafford, S. 2000. Multivariate Statistics for

wildlife and Ecology Research. Ed. Springer. Págs. 281

Page 59: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

58

34. Meerhoff, M. y Mazzeo, N. 2004. Importancia de las plantas flotantes libres de gran porte en la conservación y rehabilitación de lagos someros de Sudamérica. Ecosistemas 13 (2): 13-22.

35. Morales, J. 2001. Vegetación Acuática del Parque Nacional Laguna del Tigre.

Escuela de Biología, Facultad de Farmacia, Universidad de San Carlos de Guatemala, Tesis de Licenciatura.

36. Morales, J. y Flores, M. 2001. Vegetación de los Cenotes del Área Macabilero,

Parque Nacional Sierra de Lacandón, Peten, Guatemala. Fundación Defensores de la Naturaleza. Informe técnico.

37. Moreira, J. 2009. Patrones diarios de actividad, composición, tamaño y

abundancia relativa de manadas de jabalí Tayassu pecari (Link, 1795), en el Parque Nacional Mirador – Río Azul, Petén, Guatemala. Tesis de Licenciatura. Universidad de San Carlos de Guatemala, Escuela de Biología. 70 pp.

38. Palma, C., San Martín, C., Rosales, M., Ramírez, C. y Zúñiga, L. 1986.

Distribución espacial de la flora y vegetación acuática y palustre del Estero Marga-Marga en Chile Central. Chile. Anales del Instituto de Ciencias del Mar y Limnología.

39. Peralta - Peláez, L. y Moreno - Casasola, P. 2007. Influencia de la actividad

ganadera en la estructura y diversidad de la vegetación de lagos interdunarios en la zona central de Veracruz en el golfo de México. Tesis de Doctorado. Instituto de Ecología. México. Pag. 63 - 93.

40. Peralta - Peláez, L., Moreno - Casasola P. y Warner, B. 2007. Caracterización

fisicoquímica e impacto agropecuario en los lago interdunarios de la Costa Central de Veracruz, México. Tesis de Doctorado. Instituto de Ecología. México. Pags. 36 - 63.

41. Pérez, E. 1997. Estrategia de Conservación de la Guacamaya roja (Ara macao),

en Guatemala. Informe final de Ejercicio Profesional Supervisado-EPS-Estación biológica “Las Guacamayas”. Programa de Experiencias Docentes con la Comunidad, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala. 95pp

42. Ramos, L. y Novelo, A. 1993. Vegetación y Flora Acuática de la Laguna de

Yuriria, Guanajuato, México. Acta Botánica Mexicana. México. Pag. 61 – 79.

Page 60: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

59

43. Ramos, F., Quiroz, A., Ramírez, J y Lot, A. 2004 Manual de hidrobotánica.

Muestreo y análisis de la vegetación acuática. Editorial AGT S. A. México. 158 pp.

44. Reyes, E. 2004.Vegetación Asociada a las Aguadas del Parque Nacional Tikal,

Petén Guatemala. Programa de Experiencias Docentes con la Comunidad-EDC-. Facultad de Ciencia Químicas y Farmacia. USAC..

45. Rial, B. A. 2001. Plantas acuáticas de los Llanos inundables del Orinoco. Estado

Apure, Venezuela: contribución taxonómica y ecológica. Tesis de doctorado, Universidad de Sevilla, Sevilla, España. 552 p.

46. Robertson, A. 1920. Water Plants; A Study of Aquatic Angiosperms. Cambridge.

University of London. Inglaterra. Pp. 436. 47. Roldan, G. 1992 Fundamentos de Limnología Neotropical. Editorial Universidad

de Antioquia, Colombia. 48. Savino, J. F. and R. A. Stein. 1982. Predator-prey interactions between

largemouth bass and bluegills as influenced by simulated, submerged vegetation. Trans. Amer. Fish. Soc. 111: 225-266.

49. Schulze, M. and D. Whitacre. 1999. A Classification and Ordination of the Tree

Community of Tikal National Park, Petén, Guatemala. Bulletin of the Florida Museum of Natural History. Vol. 41(3) pp. 169-297. University of Florida, Gainsville.

50. Smart, M. and Doyle, R. 1995. Ecological theory and the management of

submersed aquatic plant communities. Aquatic Plant Control Research Program Bulletin A-95-3, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. 8 pp.

51. Standley, P. y Williams, L. Flora de Guatemala. Fieldiana: Botany. Volume 24,

Parte I, IV y VIII, Numbers 1 and 2. Chicago Natural History Museum. 52. Missouri Botanical Garden. Tropicos. 17 Nov 2009 <http://www.tropicos.org> 53. White, G., Gerlach S. & Lembi, C. 1997. Managing aquatic plants in Indiana

lakes. Department of Botany & Plant Pathology, Purdue University USA.

Page 61: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

60

IV.4 ANEXOS

Page 62: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

61

Anexo 1. Listado taxonómico de plantas acuáticas asociadas a cuerpos de agua de la Región Maya Tikal –Yaxhá. Colectadas en Lago Petén Itzá, Laguna Sacpuy, Laguna Quexil, Laguna Petenchel, Laguna Salpetén, Laguna Macanché, Laguna Sacnab, Laguna Yaxhá, Biotopo Cerro Cahuí, Biotopo San Miguel La Palotada - El Zotz y Parque Nacional Tikal en los meses de Agosto del 2008 a Abril del 2009. P (Parcela), R (Riparia) y C (Colectada)

Registro Familia Especie

P R C

ACANTHACEAE Dicliptera sexangularis L. Juss. x Justicia campechiana Standl. ex Lundell x Pseuderanthemum alatum (Nees) Radlk. x Ruellia pereducta Standl. ex Lundell x ALISMATACEAE Sagittaria lancifolia L. x x AMARANTHACEAE Alternanthera flavescens Kunth x x Alternanthera ramosissima (Mart.) Chodat x x x Amaranthus viridis L. x x x Hymenocallis littoralis (Jacq.) Salisb. x x ANACARDIACEAE Metopium brownei (Jacq.) Urb. x x Spondias mombin L. x x APIACEAE Centella asiatica (L.) Urb. x Hydrocotyle bonariensis Lam. x x Hydrocotyle umbellata L. x x APOCYNACEAE Stemmadenia galeottiana (A. Rich.) Miers x Urechites sp. x x ARACEAE Philodendron radiatum Schott x Pistia stratiotes L. x x x Syngonium angustatum Schott x ARALIACEAE Dendropanax sp. x Oreopanax capitatus (Jacq.) Decne. & Planch. x ARECACEAE Cocos nucifera L. x Washingtonia filifera (Linden ex André) H. Wendl. ex de Bary x ASCLEPIADACEAE Asclepias curassavica L. x x x Funastrum clausum (Jacq.) Schltdl. x x x Matelea campechiana (Standl.) Woodson x Sarcostemma bilobum (Hook.) Arn. x x Sarcostemma clausum (Jacq.) Schult. x x x

Page 63: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

62

Registro Familia Especie

P R C

ASTERACEAE Acmela oppositifolia var oppositifolia (Lam.) R. K. Jansen x x Acmella pilosa R. K. Jansen x Bidens squarrosa Kunth x Chromolaena odorata L. , R.M.King & H. Rob x x x Critonia morifolia (Mill.) R.M. King & H. Rob. x x Eupatorium hebebotryum (DC.) Hemsl. x Melanthera nivea (L.) Small x x Mikania micrantha Kunth x x x Neurolaena lobata (L.) Cass. x x Otopappus scaber S.F. Blake x Pluchea carolinensis (Jacq.) G. Don x x Pluchea purpurascens (Sw.) DC. x x Sphagneticola trilobata (L.) Pruski x Wedelia hispida Kunth x x Wedelia hispida var. ramosissima (Greenm.) K.M. Becker x Wedelia trilobata (L.) Hitchc. x x x BIGNONIACEAE Arrabidaea patellifera Schltdl. , Sandwith x Crescentia alata Kunth x Crescentia cujete L. x Parmentiera aculeata (Kunth) Seem. x BOMBACACEAE Pachira aquatica Aubl. x x BORAGINACEAE Cordia dentata Poir. x BROMELIACEAE Androlepis skinneri Brongn. ex Houllet x Catopsis morreniana Mez x Tillandsia balbisiana Schult. x Tillandsia bulbosa Hook. x x Tillandsia schiedeana Steud. x Tillandsia usneoides (L.) L. x BURSERACEAE Bursera simaruba (L.) Sarg. x x x Protium copal (Schltdl. & Cham.) Engl. x x Protium multiflorum Engl. x Protium multiramiflorum Lundell x CACTACEAE Selenicereus donkelaarii (Salm-Dyck) Britton & Rose x x CAESALPINIACEAE Caesalpinia mollis (Kunth) Spreng. x x Caesalpinia vesicaria L. x x Cassia grandis L. f. x x Senna alata (L.) Roxb. x Senna pallida (Vahl) H. S. Irwin & Barneby x x CARICACEAE Jacaratia mexicana A. DC. x CECROPIACEAE Cecropia peltata L. x x Coussapoa oligocephala Donn. Sm. x x CHARACEAE Chara sp. x x x CLUSIACEAE Clusia rosea Jacq. x x

Page 64: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

63

Registro Familia Especie

P R C

COMBRETACEAE Bucida buceras L. x x x COMMELINACEAE Callisia repens (Jacq.) L. x Tripogandra grandiflora (Donn. Sm.) Woodson x CONVOLVULACEAE Ipomoea alba L. x Ipomoea indica (Burm.) Merr. x x x Merremia umbellata (L.) Hallier f. x CUCURBITACEAE Cucurbita lundelliana L. H. Bailey x x Melothria pendula L. x Sicydium tamnifolium Kunth , Cogn. x x CYCADACEAE Zamia loddigesii Miq. x CYPERACEAE Cladium jamaicense Crantz x x x Cyperus articulatus var. articulatus x Cyperus eggersii Boeck. x x Cyperus lundellii O'Neill x x Cyperus luzulae (L.) Rottb. ex Retz. x Cyperus macrocephalus var. macrocephalus Liebm. x Cyperus odoratus L x x Eleocharis cellulosa Torr. x x Eleocharis geniculata (L.) Roem. & Schult. x x Eleocharis interstincta (Vahl) Roem. & Schult. x x x Eleocharis sp. x Fuirena camptotricha C. Wright x Fuirena simplex Vahl x x x Fuirena umbellata Rottb. x x Oxycaryum cubense (Poepp. & Kunth) Palla x x x Rhynchospora colorata (L.) H. Pfeiff. x x Rhynchospora holoschoenoides (Rich.) Herter x x x Scleria lithosperma (L.) Sw. x Scleria melaleuca Rchb. ex Schltdl. & Cham. x DIOSCOREACEAE Dioscorea sp. x DRYOPTERIDACEAE Tectaria heracleifolia var. heracleifolia (Willd.) Underw. x EBENACEAE Diospyros salicifolia Humb. & Bonpl. ex Willd. x x Diospyros yatesiana Standl. x ELAEOCARPACEAE Muntingia calabura L. x EUPHORBIACEAE Astrocasia tremula (Griseb.) G. L. Webster x Cnidoscolus aconitifolius (Mill.) I. M. Johnst. x x Croton glabellus L. x Croton guatemalensis Lotsy. x Euphorbia brasiliensis Lam. x Gymnanthes lucida Sw. x x Jatropa curcas L. x Pedilanthus tithymaloides (L.) Poir. x Sapium lateriflorum Hemsl. x x

Page 65: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

64

Registro Familia Especie

P R C

FABACEAE Canavalia villosa Benth. x Dalbergia glabra (Mill.) Standl. x x x Enterolobium cyclocarpum (Jacq.) Griseb. x Erythrina folkersii Krukoff & Moldenke x Erythrina hondurensis Standl. x Galactia striata (Jacq.) Urb. x x Haematoxylum campechianum L. x x Lonchocarpus guatemalensis Benth. x Lonchocarpus hondurensis Benth. x Lysiloma acapulcense Benth. x x x Lysiloma desmostachyum (Benth.) Benth. x x Lysiloma latisiliquum (L.) Benth. x x Piscidia piscipula (L.) Sarg. x x Pithecellobium lanceolatum (Humb. & Bonpl. , Willd.) Benth. x x Platymiscium yucatanum Standl. x Rhynchosia longeracemosa M. Martens & Galeotti x x Schizolobium parahyba (Vell.) S.F. Blake x Senna occidentalis (L.) Link x Vigna luteola (Jacq.) Benth. x x FLACOURTIACEAE Casearia nitida L. , Jacq. x Zuelania guidonia (Sw.) Britton & Millsp. x HYDROCHARITACEAE Vallisneria americana Michx. x x x LAMIACEAE Ocimum micranthum Willd. x Teucrium vesicarium Mill. x x LAURACEAE Cassytha filiformis L. x x Licaria peckii (I. M. Johnst.) Kosterm. x Ocotea lundellii Standl. x x LEMNACEAE Lemna minima Thuill. ex P. Beauv. x x Lemna Sp. x Spirodela polyrhyza (L.) Schleid. x Wolffia sp. x Wolffiella welwitschii Monod , Hegelm x x LENTIBULARIACEAE Utricularia foliosa L. x x Utricularia gibba L. x x LILIACEAE Yucca guatemalensis Baker. x LOGANIACEAE Cynoctonum petiolatum J.F. Gmel. x x Spigelia anthelmia L. x LORANTHACEAE Psittacanthus rhynchanthus (Benth.) Kuijt x Struthanthus cassythoides Millsp. ex Standl. x Struthanthus orbicularis Kunth , Blume x x MALPIGHIACEAE Stigmaphyllon ellipticum (Kunth) A. Juss. x MALVACEAE Hampea trilobata Standl. x x Malvaviscus arboreus Cav. x x Sida acuta Burm. F. x

Page 66: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

65

Registro Familia Especie

P R C

MELIACEAE Cedrela mexicana M. Roem. x Trichilia havanensis Jacq. x x MENISPERMACEAE Cissampelos pareira L. x x Nymphoides humboldtiana (Kunth) Kuntze x x MIMOSACEAE Acacia cookii Saff. x x Inga vera Willd. x x Mimosa bahamensis Benth. x x Mimosa pigra L. x x x MORACEAE Ficus cotinifolia Kunth x Ficus pertusa L. f. x Ficus sp. x MYRTACEAE Pimenta dioica (L.) Merr. x NAJADACEAE Najas guadalupensis (Spreng.) Magnus x x x Najas wrightiana A. Braun x NEPHROLEPIDACEAE Nephrolepis biserrata (Sw.) Schott x NYCTAGINACEAE Neea belizensis Lundell x NYMPHAEACEAE Cabomba palaeformis Fassett x Cabomba sp. x Nymphaea ampla (Salisb.) DC. x x x OCHNACEAE Ouratea lucens (Kunth) Engl. x x ONAGRACEAE Ludwigia octovalvis (Jacq.) P. H. Raven x x x Ludwigia peploides subsp. peploides x x ORCHIDACEAE Bletia purpurea (Lam.) DC. x x Catasetum integerrimum Hook. x Chysis bractescens Lindl. x x x Habenaria repens Nutt. x x Laelia tibicinis (Bateman) L.O. Williams x Notylia tridachne Lindl. & Paxton x Oeceoclades maculata (Lindl.) Lindl. x x Oncidium adscendens Lindl. x PASSIFLORACEAE Passiflora biflora Lam. x x Passiflora foetida var. hirsutissima Killip x x Passiflora sexflora Juss. x Passiflora sexocellata Schltdl. x x PHYTOLACCACEAE Rivina humilis L. x PIPERACEAE Peperomia angustata Kunth x Piper aduncum L. x x Piper aeruginosibaccum Trel. x Piper amalago L. x x x Piper hispidum Sw. x Piper jacquemontianum Kunth x Piper martensianum C. DC. x

Page 67: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

66

Registro Familia Especie

P R C

POACEAE Andropogon glomeratus (Walter) Stearn , Britton & Poggenb. x x Echinochloa crus-pavonis (Kunth) Schult. x x x Eriochloa polystachya Kunth x x Lasiacis grisebachii (Nash) Hitchc. x Leersia hexandra Sw. x x x Olyra glaberrima Raddi x Oplismenus hirtellus subsp. hirtellus (L.) P. Beauv. x Paspalidium geminatum (Forssk.) Stapf x Paspalum conjugatum P. J. Bergius x Paspalum vaginatum Sw. x x Phragmites australis (Cav.) Trin. ex Steud. x x x Phragmites communis Trin. x Rottboellia cochinchinensis (Lour.) Clayton x POLYGONACEAE Gymnopodium floribundum Rolfe x Polygonum acuminatum Kunth x x Microgramma percussa (Cav.) de la Sota x x Phlebodium decumanum (Willd.) J. Sm. x Polypodium triseriale Sw. x PONTEDERIACEAE Eichhornia crassipes (Mart.) Solms x Pontederia cordata L. x x POTAMOGETONACEAE Halodule beaudettei (Hartog) Hartog x x x Potamogeton illinoensis Morong x x x Potamogeton pectinatus L. x x x PTERIDACEAE Acrostichum danaeifolium Langsd. & Fisch. x x x Adiantum tenerum Sw. x Pteris grandifolia L. x Pteris longifolia L. x RHAMNACEAE Gouania conzattii Greenm. x x Gouania lupuloides (L.) Urb. x RUBIACEAE Borreria laevis (Lam.) Griseb. x x Chiococca alba (L.) Hitchc. x Hamelia patens var. patens x Psychotria nervosa Sw. x RUTACEAE Amyris sylvatica Jacq. x Psychotria pubescens Sw. x x SALICACEAE Salix humboldtiana Willd. x SAPINDACEAE Allophylus cominia (L.) Sw. x x Cardiospermum grandiflorum Sw. x Cupania belizensis Standl. x Matayba oppositifolia (A. Rich.) Britton x Paullinia sp. x Salvinia minima Baker x x x Serjania goniocarpa Radlk. x Thouinia paucidentata Radlk. x

Page 68: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

67

Registro Familia Especie

P R C

SAPOTACEAE Chrysophyllum argenteum Jacq. x Manilkara sapota (L.) Van Royen x Pouteria campechiana (Kunth) Baehni x x Pouteria sapota (Jacq.) H.E. Moore & Stearn x SCHIZAEACEAE Anemia adiantifolia (L.) Sw. x Urvillea ulmacea Kunth x SCROPHULARIACEAE Lygodium venustum Sw. x Russelia campechiana Standl. x Russelia chiapensis Lundell x SIMAROUBACEAE Simarouba glauca DC. x SOLANACEAE Solanum blodgettii Chapm. x STERCULIACEAE Guazuma ulmifolia Lam. x x Melochia pyramidata L. x THELYPTERIDACEAE Thelypteris puberula (Baker) C. V. Morton x Thelypteris tetragona (Sw.) Small x THEOPHRASTACEAE Jacquinia donnell-smithii Mez x TYPHACEAE Typha domingensis Pers. x x x

ULMACEAE Trema micrantha var. floridana (Britton ex Small) Standl. & Steyerm. x x

URTICACEAE Boehmeria cylindrica L. , Sw. x x x VERBENACEAE Lippia nodiflora (L.) Michx. x Lippia stoechadifolia (L.) Kunth x Phyla stoechadifolia (L.) Small x x VITACEAE Vitis bourgaeana Planch. x x x Vitis tiliifolia Humb. & Bonpl. ex Roem. & Schult. x x

Fuente: FODECYT 25-2008

Page 69: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

68

Anexo 2. Plantas acuáticas asociadas a cuerpos de agua de la Región Maya Tikal –Yaxhá, indicando la forma de vida.

Especie Emergentes Sumergidas Hojas Flotantes

Libres Flotadoras

Libres Sumergidas

Hidrófitas/ Ribereñas

Acrostichum danaeifolium 1 Alternanthera flavescens 1 Alternanthera ramosissima 1 Andropogon glomeratus 1 Annona sp. 1 Bletia purpurea 1 Boehmeria cylindrica 1 Borreria laevis 1 Bucida buceras 1 Cabomba palaeformis 1 Cassia grandis 1 Chara sp. Cladium jamaicense 1 Cucurbita lundelliana 1 Cyperus eggersii 1 Cyperus lundelii 1 Cyperus odoratus Echinochloa crus-pavonis 1 Eichhornia crassipes 1 Eleocharis cellulosa 1 Eleocharis geniculata 1 Eleocharis interstincta 1 Fuirena simplex 1 Fuirena umbellata 1 Halodule beaudettei 1 Hydrocotyle bonarensis 1 Hydrocotyle umbellata 1 Hymenocallis littoralis 1 Laersia hexandra 1 Lemna minima 1 Lippia stochaedifolia 1 Ludwigia octovalvis 1 Ludwigia peploides spp. peploides 1 Mikania micrantha 1 Mimosa pigra 1 Najas guadalupensis var. guadalupensis 1 Naja wrightiana 1 Najas marina 1 Nymphaea ampla 1 Nymphoides humboldtiana 1 Oxycaryum cubense 1 Pachira aquatica 1 Paspalidium geminatum 1

Page 70: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

69

Especie Emergentes Sumergidas Hojas Flotantes

Libres Flotadoras

Libres Sumergidas

Hidrófitas/ Ribereñas

Paspalum vaginatum 1 Phragmites australis 1 Phyla stoechadifolia 1 Pistia stratiotes 1 Pluchea purpurascens 1 Polygonum acuminatum 1 Pontederia cordata 1 Potamogeton illinoensis 1 Potamogeton pectinatus 1 Rhynchospora colorata 1 Sagittaria lancifolia 1 Salvinia minima 1 Typha domingensis 1 Utricularia foliosa 1 Utricularia gibba 1 Vallisneria americana 1 Wolffia sp. 1 Wolffiella welwitschii 1

Fuente: FODECYT 25-2008

Page 71: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

70

Anexo 3. Presencia - ausencia de las especies registradas en los sitios de muestreo. (LPI - Lago Petén Itzá), (Mac - Macanché), (Sal - Salpetén), (Sac - Sacnab), (Yax - Yaxhá), (Pet - Petenchel), (Que - Quexil), (Say - Sacpuy), (Cah - Cahuí), (Tik - Tikal) y (Zot - El Zotz).

LAGUNAS AGUADAS ESPECIE

Lpi Mac Sal Sac Yax Pet Que Say Cah Tik Zot Acacia cookii 1 1 1

Acacia sp. 1 1 1 1 1 1 Acmella oppositifolia var. Oppositifolia 1

Acrostichum danaeifolium 1 1 Allophylus cominia 1 1 1

Alternanthera flavescens 1 Alternanthera ramosissima 1 1

Alvaradoa amorphoides 1 Amaranthus viridis 1

Andropogon glomeratus 1 1 1 1 Annona sp. 1 1

Asclepias curassavica 1 1 Aspidosperma megalocarpon 1

Astronium graveolens 1 1 Batairea lundellii 1 Bletia purpurea 1 1

Boehmeria cylindrica 1 1 Bombax ellipticum 1

Borreria laevis 1 Brosimum alicastrum 1 1 1 1

Bucida buceras 1 1 1 1 1 1 Bursera glauca 1

Bursera simarouba 1 1 1 1 1 1 1 1 Cabomba palaeformis 1

Caesalpinia mollis 1 1 1 Caesalpinia vesicaria 1

Cassia grandis 1 1 1 Cassytha filiformis 1 Cecropia peltata 1 1 1 1 1 1 Cedrela odorata 1 1 1 1 Ceiba pentandra 1 1 1 1 Chamaedorea sp. 1 Chamaesyce sp. 1

Chara sp. 1 1 1 1 1 1 1 Chromolaena odorata 1 1

Chrysophyllum argenteum 1 1 1 Chysis bractescens 1 1 1

Cissampelos pareira 1 Cladium jamaicense 1 1 1 1 1 1 1 1 1

Clerodendron ligustrinum 1 Clusia rosea 1

Page 72: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

71

LAGUNAS AGUADAS ESPECIE

Lpi Mac Sal Sac Yax Pet Que Say Cah Tik Zot Cnidoscolus aconitifolius 1

Coccoloba sp. 1 Cocos nucifera 1

Coussapoa oligocephala 1 1 1 Crescentia alata 1 Crescentia cujete 1 1 Critonia morifolia 1

Cucurbita lundelliana 1 1 1 Cynoctonun petiolatum 1

Cyperus eggersii 1 Cyperus lundelii 1 1 1

Cyperus odoratus 1 Dalbergia glabra 1 1 1 Dendropanax sp. 1

Dioscorea sp 1 Diospiros salicifolia 1

Echinochloa crus-pavonis 1 Eichhornia crassipes 1 1 Eleocharis cellulosa 1 1 1

Eleocharis geniculata 1 1 Eleocharis interstincta 1 1 1 1 1 1 1

Enterolobium cyclocarpum 1 Eriochloa polystachya 1

Eugenia ibarrae 1 Ficus cotinifolia 1 1 Ficus obtusifolia 1 1 1 1 1 Fuirena simplex 1 1 1 1

Fuirena umbellata 1 Funastrum clausum 1

Galactia striata 1 Gouania conzattii 1

Guazuma ulmifolia 1 1 1 1 Gymmanthes lucida 1 Habenaria repens 1

Haematoxylum campechianum 1 1 1 Halodule beaudettei 1 1 1 Hampea trilobata 1 1

Hidrocotyle bonarensis 1 Hydrocotyle bonarensis 1 Hydrocotyle umbellata 1 Hymenocallis littoralis 1

Inga vera 1 1 1 1 Ipomoea alba 1

Ipomoea indica 1 1 1 1 1 1 1 1 Jatropa curcas 1 Laelia tibicinis 1

Laersia hexandra 1

Page 73: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

72

LAGUNAS AGUADAS ESPECIE

Lpi Mac Sal Sac Yax Pet Que Say Cah Tik Zot Laersia hexandra 1

Lemna minima 1 1 Lippia stochaedifolia 1 1 1 1 1 1 1

Lonchocarpus guatemalensis 1 1 Lonchocarpus hondurensis 1

Ludwigia octovalvis 1 1 1 1 1 Ludwigia peploides spp. peploides 1

Lysiloma acapulcense 1 1 1 1 1 1 1 1 Lysiloma desmostachyum 1

Lysiloma latisiliquum 1 1 1 Machaerium sp. 1

Malvaviscus arboreus 1 1 Manilkara zapota 1 1 1

Matayba oppositifolia 1 Matelea sp. 1

Melanthera nivea 1 Melethria pendula 1 Metopium brownei 1 1 1 1 1 1 1 1

Micrograma percusa 1 Mikania micrantha 1 1

Mimosa bahamensis 1 1 Mimosa pigra 1 1 1 1 1 1

Muntingia calabura 1 Najas guadalupensis var. guadalupensis 1 1 1 1 1 1 1

Neurolaena lobata 1 1 Nymphaea ampla 1 1 1

Nymphoides humboldtiana 1 Ocotea lundellii 1 1

Oeceoclades maculata 1 Ouratea lucens 1

Oxycaryum cubense 1 1 Pachira aquatica 1 1 1 1 1 1

Panicum sp 1 Parmentiera aculeata 1

Paspalidium geminatum 1 Paspalum vaginatum 1

Passiflora biflora 1 Passiflora foetida var hirsutissima 1

Passiflora sexocellata 1 Phragmites australis 1 1 1 1 1 1 1 Phyla stoechadifolia 1

Pimenta dioica 1 1 1 Piper aduncum 1

Piper aeruginosibaccum 1 Piper amalago 1 1

Piscidia piscipula 1 1 1 1 1 1 Pistia stratiotes 1 1 1

Page 74: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

73

LAGUNAS AGUADAS ESPECIE

Lpi Mac Sal Sac Yax Pet Que Say Cah Tik Zot Pithecellobium lanceolatum 1 1

Platymiscium yucatanum 1 Pluchea carolinensis 1

Pluchea purpurascens 1 Polygonum acuminatum 1

Pontederia cordata 1 Potamogeton illinoensis 1 1 Potamogeton pectinatus 1 Pouteria campechiana 1 1 1

Pouteria sapota 1 Protium copal 1

Psychotria pubescens 1 Rhynchosia longeracemosa 1

Rhynchospora colorata 1 Rhynchospora noloschoenoides 1

Sagittaria lancifolia 1 Salvinia minima 1 1

Sapium lateriflorum 1 Sarcostemma bilobum 1 Sarcostemma clausum 1 Schizolobium parahyba 1 1 Selenicereus donkelaari 1

Senna occidentalis 1 Senna pallida 1

Sicydium tamnifolium 1 Simarouba glauca 1 1 1 Spondias mombin 1 1 1

Struthanthus orbicularis 1 Tetramerium nervosum 1 Teucrium vesicarium 1 Tillandsia bulbosa 1

Tillandsia schiedeana 1 Trema micrantha var. floridana 1

Trichilia havanensis 1 1 1 Typha domingensis 1 1 1 1 1 1 Utricularia foliosa 1 1 Utricularia gibba 1 1 1 1 1

Vallisneria americana 1 Vigna luteola 1

Vitis bourgaeana 1 1 Vitis tiliifolia 1

Wedelia hispida 1 1 Wedelia trilobata 1 1 1 1 1

Wolffiella welwitschii 1 1 1 Zamia loddigesii 1

Zuelania guidonia 1 1 1

Fuente: FODECYT 25-2008

Page 75: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

74

Anexo 4. Resumen del análisis entre los 3 ejes canónicos de Ordenación, especies de vegetación acuática y variables ambientales relacionados en el - CCA - (N= 41).

Varianza Total ("inertia") in the species data: 8.2109 -----------------------------------------------------------

Axis 1 Axis 2 Axis 3 -----------------------------------------------------------

Eigenvalor 0.501 0.414 0.257

Varianza en datos de especie

% de varianza explicada 6.1 5.0 3.1

Cumulative % explained 6.9 11.2 14.3

Pearson Correlation, Spp-Envt1 0.921 0.937 0.853

Kendall (Rank) Corr., Spp-Envt 0.751 0.602 0.600 -----------------------------------------------------------

1 Correlation between sample scores for an axis derived from the species data

and the sample scores that are linear combinations of the environmental

variables. Set to 0.000 if axis is not canonical.

Fuente: FODECYT 25-2008

Anexo 5. Correlaciones de Pearson y Kendall entre los ejes de Ordenación y variables ambientales relacionados en el - CCA - (N= 41). EJES: 1 2 3

r r-sq tau r r-sq tau r r-sq tau

TAgua -.793 .628 -.603 -.018 .000 -.165 .018 .000 -.091 pH -.153 .023 -.140 .041 .002 -.002 -.213 .045 -.200 Condu .340 .116 .360 -.824 .679 -.504 .078 .006 -.265 Salin .246 .060 .196 -.838 .702 -.716 .142 .020 -.139 Turb .389 .152 .337 .114 .013 .186 -.024 .001 .055 Uso -.292 .085 -.190 -.268 .072 -.293 -.672 .451 -.621

Fuente: FODECYT 25-2008

Page 76: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

75

Anexo 6. Correlaciones de Pearson y Kendall entre los ejes de Ordenación y las plantas acuáticas en el análisis - CCA - (N= 41). EJES: 1 2 3

r r-sq tau r r-sq tau r r-sq tau

Acros .137 .019 .186 -.323 .105 -.208 .201 .040 .186 Alfla .060 .004 .069 -.045 .002 -.080 .027 .001 .005 Andro .185 .034 .190 .019 .000 .046 .172 .030 .148 Bleti .372 .138 .343 .333 .111 .299 .088 .008 .054 Boehm -.057 .003 -.112 .098 .010 .101 -.170 .029 -.133 Bucid .073 .005 -.068 .245 .060 .243 -.141 .020 -.118 Burse .086 .007 .053 -.167 .028 -.076 .210 .044 .213 Cabom -.131 .017 -.144 -.028 .001 -.059 .117 .014 .133 Caesa .041 .002 .016 .119 .014 .122 .180 .032 .165 Chara .287 .082 .300 -.102 .010 -.037 -.432 .187 -.314 Chysi .258 .067 .251 -.059 .004 .008 .159 .025 .145 Cladi .592 .350 .358 .064 .004 .184 -.007 .000 .018 Clero -.032 .001 -.101 .047 .002 .048 -.063 .004 -.101 Cucur .008 .000 -.084 .022 .001 -.015 .047 .002 .046 Cyper .054 .003 .137 -.490 .240 -.362 -.190 .036 -.187 Dalbe .135 .018 .176 .165 .027 .154 .091 .008 .069 Echin -.032 .001 -.101 .047 .002 .048 -.063 .004 -.101 Eichh -.463 .214 -.343 -.078 .006 -.122 .001 .000 -.017 Elece -.007 .000 .033 -.194 .038 -.178 -.141 .020 -.148 Elege -.078 .006 -.011 -.358 .128 -.282 -.019 .000 -.039 Elein -.148 .022 -.167 -.168 .028 -.157 -.422 .178 -.358 Elesp .101 .010 .137 -.016 .000 -.030 -.375 .140 -.274 Fuire .199 .040 .216 -.398 .158 -.277 -.389 .152 -.337 Haema .043 .002 .030 .158 .025 .152 -.069 .005 -.053 Halod .181 .033 .232 -.491 .241 -.315 -.243 .059 -.232 Hidro -.358 .128 -.244 -.072 .005 -.099 -.059 .003 -.091 Hymen .047 .002 .027 .213 .045 .186 .169 .029 .154 Laeli .135 .018 .176 .165 .027 .154 .091 .008 .069 Ludwi -.366 .134 -.268 .042 .002 -.031 -.363 .132 -.319 Lysil .064 .004 .080 .251 .063 .218 .099 .010 .112 Macha .240 .058 .197 .234 .055 .208 .037 .001 .027 Melan .095 .009 .122 -.300 .090 -.186 -.053 .003 -.069 Metop .267 .071 .259 -.109 .012 -.038 .147 .022 .122 Mikan .123 .015 .122 .116 .014 .107 -.094 .009 -.069 Mimos -.197 .039 -.337 .339 .115 .296 -.010 .000 -.024 Najas .118 .014 .058 -.093 .009 -.083 -.519 .269 -.413 Neuro .185 .034 .244 -.458 .210 -.290 .276 .076 .259 Nymph -.261 .068 -.213 -.018 .000 -.030 .086 .007 .084 Nymhu -.280 .078 -.229 -.036 .001 -.069 .060 .004 .069 Oxyca -.260 .068 -.176 -.021 .000 -.037 -.032 .001 -.037 Pachi .245 .060 .138 .204 .042 .149 -.025 .001 -.072 Pasge .002 .000 -.059 .068 .005 .069 .075 .006 .059 Pasva .282 .080 .362 -.789 .623 -.501 .179 .032 .139 Phrag .008 .000 -.006 -.100 .010 -.053 .120 .014 .129 Phyla .221 .049 .153 .229 .052 .215 -.076 .006 -.062 Pisti -.377 .142 -.259 -.090 .008 -.137 -.085 .007 -.107 Pluch .124 .015 .165 -.299 .090 -.176 -.063 .004 -.090 Ponte -.075 .006 -.133 .057 .003 .059 -.187 .035 -.144 Potil -.612 .375 -.366 .020 .000 -.065 .124 .015 .083 Potpe -.692 .479 -.433 -.097 .009 -.173 .087 .008 .038 Salvi .021 .000 -.027 .099 .010 .112 -.193 .037 -.154 Selen .269 .072 .267 .285 .081 .259 .092 .008 .069 Typha -.181 .033 -.072 -.454 .206 -.360 -.128 .016 -.128 Utrfo .095 .009 .122 -.300 .090 -.186 -.053 .003 -.069 Utrgi .235 .055 .205 .295 .087 .280 -.038 .001 -.035 Valli -.771 .594 -.516 -.117 .014 -.216 .246 .061 .176 Vitis .195 .038 .259 -.114 .013 -.038 .209 .044 .183 Wedhi .225 .051 .268 -.581 .338 -.408 .232 .054 .203 Wedtr -.002 .000 -.116 .242 .058 .232 .161 .026 .122 Wolff .064 .004 .080 .251 .063 .218 .099 .010 .112

Fuente: FODECYT 25-2008

Page 77: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

76

Anexo 7. Promedios de Características Fisicoquímicas de los cuerpos de agua de la Región Maya Tikal –Yaxhá. Colectadas en los meses de Agosto del 2008 a Abril del 2009. B (Bosque), P (Potrero) y C (Comunidad o Poblado).

Localidad Tratamiento T° Agua

T° Ambiental

Humedad Relativa % pH Conductividad

mS/cm Oxígeno

Disuelto % Sólidos

Disueltos Salinidad Profundidad

B 33.44 35.47 55 8.1 352.22 167.61 0.2

±1.81 ±3.65 ±12 ±0.4 ±36.46 ±16.63

P 32.71 34.61 58 7.5 324.67 156.17 0.2

±2.68 ±3.78 ±9 ±1.4 ±49.09 ±23.92 ±0.1

C 31.77 34.36 58 8.2 337.00 162.38 0.2

Peten Itzá

±2.14 ±3.46 ±9 ±0.4 ±53.94 ±26.51 ±0.1

B 29.04 33.60 52 8.4 314.80 85.30 0.0 1.3

±0.23 ±0.55 ±7 ±0.2 ±49.11 ±2.41 ±0.0 ±0.3

P 29.33 34.00 52 8.3 339.44 82.24 0.0 1.4

±1.04 ±3.71 ±13 ±0.2 ±13.92 ±12.69 ±0.4

C 29.10 31.67 63 8.3 346.67 87.23 0.0 1.0

Sacpuy

±0.30 ±0.58 ±1 ±0.2 ±4.62 ±0.25 ±0.4

B 26.59 8.1 4316.67 82.56 2.2 1.6

±1.12 ±0.1 ±67.27 ±5.64 ±0.1 ±1.0

P 26.34 8.0 4252.22 80.49 2.2 1.2

±1.29 ±0.4 ±102.44 ±18.14 ±0.1 ±0.8

C 26.28 35.33 48 8.5 877.78 82.54 0.2 1.6

Macanché

±3.41 ±4.18 ±13 ±0.2 ±22.74 ±12.20 ±0.1 ±1.2

Fuente: FODECYT 25-2008

Page 78: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

77

Anexo 7. Promedios de Características Fisicoquímicas de los cuerpos de agua de la Región Maya Tikal –Yaxhá. Colectadas en los meses de Agosto del 2008 a Abril del 2009. B (Bosque), P (Potrero) y C (Comunidad o Poblado).

Localidad Tratamiento T° Agua

T° Ambiental

Humedad Relativa % pH Conductividad

mS/cm Oxígeno

Disuelto % Sólidos

Disueltos Salinidad Profundidad mts.

B 25.83 7.9 239.78 80.41 0.0 1.0

±0.37 ±0.2 ±3.67 ±2.91 ±0.2

P 27.41 7.7 342.33 0.0 1.1 Salpetén

±0.84 ±0.2 ±12.60 ±0.2

B 27.38 34.17 53 8.4 865.11 85.30 0.2 1.5 Quexil

±1.26 ±6.74 ±21 ±0.2 ±17.60 ±11.02 ±1.9

B 29.01 34.00 55 8.4 879.22 96.72 0.2 1.7 Petenchel

±0.81 ±2.10 ±6 ±0.2 ±28.00 ±27.95 ±1.6

B 27.71 36.11 51 8.5 325.11 99.53 0.0 0.7 Sacnab

±1.07 ±4.37 ±20 ±0.2 ±7.20 ±4.31 ±0.2

B 29.91 35.22 51 8.2 307.67 95.69 0.0 1.8 Yaxhá

±1.75 ±6.48 ±17 ±0.1 ±12.83 ±12.19 ±1.3

Cahuí B 25.50 31.00 62 7.0 219.00 23.00 1.0 0.2

B 27.59 32.08 65 7.7 458.58 28.51 0.0 0.8 Zotz

±2.24 ±2.35 ±7 ±0.4 ±110.24 ±19.03 ±0.7

B 29.27 36.58 45 8.1 243.58 52.45 0.0 0.7 Tikal

±2.05 ±3.45 ±12 ±0.5 ±95.86 ±23.77 ±0.2

1 Nota: Algunos parámetros no presentan datos debido a que el equipo se descalibraba por las altas temperatura o por falta de disponibilidad de las sondas de medición durante el viaje de campo. Fuente: FODECYT 25-2008

Page 79: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

78

Anexo 8. Fotografías de cada tratamiento evaluado en cada cuerpo de agua de la Región Maya Tikal –Yaxhá.

Bosques

Potreros

Poblados

Fuente: FODECYT 25-2008

Yaxhá Quexil

Salpetén Sacpuy

Sacpuy

Macanché

Page 80: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

79

Anexo 9. Registro fotográfico y digital de vegetación acuática registrada en los Cuerpos de agua de la Región Maya Tikal –Yaxhá.

Fuente: FODECYT 25-2008

Page 81: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

80

Fuente: FODECYT 25-2008

Page 82: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

81

Fuente: FODECYT 25-2008

Page 83: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

82

Fuente: FODECYT 25-2008

Page 84: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

83

Fuente: FODECYT 25-2008

Page 85: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

84

Anexo 10. Afiche divulgativo de “Importancia de la Vegetación Acuática de los Cuerpos de Agua de la Región Región Maya Tikal –Yaxhá.

Page 86: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

85

PARTE V V.1 INFORME FINANCIERO

Page 87: Diversidad de Hepáticas de los Biotopos Cerro Cahuí, El ...glifos.concyt.gob.gt/digital/fodecyt/fodecyt 2008.25.pdf · 5 II.1.7 Diversidad Florística de los Cuerpos de Agua.....28

86