33
Distributed Series Reactor An overview of the conductorimpacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at NEETRAC

Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Distributed Series ReactorAn overview of the conductor‐impacts of the DSR

1

Joseph Goldenburg, P.E.Mechanical Section Lead and Hardware Manager at NEETRAC

Page 2: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Table of Contents• DSR Technology Overview History

• NEETRAC Testing• Review of NEETRAC Testing Results

2

Page 3: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

DSR Technology Overview

3

• A multi‐dimensional solution to control power flow through existing transmission lines developed by Smart Wire Grid

• Increases line impedance by injecting a pre‐tuned value of magnetizing inductance of the Single‐Turn Transformer

• Two modes of operation:1. Autonomously, based on locally programmable set points2. Two way communication, enabling more sophisticated operation and 

line monitoring

Page 4: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

DSR Technology History4

2009 2010 2011 2012 2013 20142001‐2008

DSR Prototype

Initial Patent Filing

Formation of the Smart Wire Focus Initiative (SWFI)

Formation of theSmart Wire Grid, Inc. 

(SWG)

NEETRAC Gen 1 Testing

NEETRAC Gen 2 Testing 

99 units installed at 

TVA

33 units installed at Southern Company

Page 5: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Testing

• NEETRAC worked with SWFI to develop tests for the DSR, including:

Clamp slipVibrationImpulseFault CurrentCorona

• With the exception of the vibration testing, tests shown are for Gen 2 units.

5

Page 6: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Testing

NEETRAC worked with SWFI to develop tests for the DSR, including:

Clamp slipVibrationImpulseFault CurrentCorona

6

Page 7: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Clamp Slip TestingMethod

7

Page 8: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Clamp Slip TestingResults

8

Page 9: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Clamp Slip TestingResults

9

DSR Type Sample ID Sample Test Run Initial Slip Load (lb)

1000

32013‐002‐10 11 4452 4953 518

32313‐002‐10 21 5252 5203 540

3213‐003‐10 31 4552 5303 500

1500

3213‐002‐15 41 6202 5553 700

32013‐002‐15 51 6272 6483 678

32313‐001‐15 61 5702 6803 525

Page 10: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Clamp Slip TestingTakeaways

– Post‐test inspection of the clamps showed no deformation of the conductor or rods.

10

Page 11: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Testing

• NEETRAC worked with SWFI to develop tests for the DSR, including:

Clamp slipVibrationImpulseFault CurrentCorona

11

Page 12: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Vibration TestingMethods

– Tested in advance of each DSR installation using installation‐specific line specifications

– So far only tested on Gen 1 DSRs– Tests were based on:

• IEEE Std 664‐1993: IEEE Guide for Laboratory Measurement of the Power Dissipation Characteristics of Aeolian Vibration Dampers for Single Conductors,

• IEEE Std 1368‐2006: IEEE Guide for Aeolian Vibration Field Measurements of Conductors, and 

• IEEE Std 563‐1978: IEEE Guide on Conductor Self‐Damping Measurements. 

12

Page 13: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Vibration Testing• The purpose of these tests was to understand what happens to the line dynamics when one places an approximately 100 kg mass on the line.

• If line dynamicsare unacceptable,develop appropriatemitigation strategy.

13

Page 14: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Vibration Testing14

4200 lb tension, Unit Placed 6 ft 10 in From Termination

4240383634323028262422201816141210864

0.026

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Frequency (Hz)

Re

lati

ve D

isp

lace

me

nt

(in

)

123

Meter

4240383634323028262422201816141210864

0.026

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Frequency (Hz)

Re

lati

ve D

isp

lace

me

nt

(in

)

123

Meter

4240383634323028262422201816141210864

0.026

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Frequency (Hz)

Re

lati

ve D

isp

lace

me

nt

(in

)

123

Meter

4240383634323028262422201816141210864

0.026

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Frequency (Hz)

Re

lati

ve D

isp

lace

me

nt

(in

)

123

Meter

No Damper (Config. 13)

Damper at 9 ft (Config. 15)

Damper at 8 ft 6 in (Config. 14)

Damper at 9 ft 6 in (Config. 16)

Results

Page 15: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Vibration Testing15

Results

Page 16: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Vibration TestingTakeaways

– For TVA line, NEETRAC recommended that: • DSR unit should be installed 6 ft. – 4 in. ± 6 in. from the suspension clamp.

• An AFL 1706 damper should be placed 9 ft. ± 6 in. from the DSR face.

– Results are relatively consistent across a range of DSR and damper placements so slight deviation from the recommended installation location of the DSR and/or the damper should not affect the damper’s performance.

16

Page 17: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Testing

• NEETRAC worked with SWFI to develop tests for the DSR, including:

Clamp slipVibrationImpulseFault CurrentCorona 

17

Page 18: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Impulse Testing18

Method– Tested in accordance with IEEE Standard Techniques for High‐Voltage Testing – 1995

– 1050 kV BIL selected  – Units tested to ensure functionality after impulse testing

Page 19: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Impulse Testing19

Results

Takeaways– Units were functional after impulse testing at 1050 kV

– Additional tests scheduled for 1550 kV BIL

Page 20: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Testing

• NEETRAC worked with SWFI to develop tests for the DSR, including:

Clamp slipVibrationSalt FogImpulseFault CurrentCorona

20

Page 21: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Fault Current Testing21

• Method– Tested in accordance with  IEEE C37.100.1™‐2007, IEEE Standard of Common Requirements for High Voltage Power Switchgear Rated Above 1000 V

– 63 kA RMS 30 cycle rating selected per Table 3 of IEEE C37.32 – 2002, High Voltage Switches, Bus Supports, and Accessories Schedules of Preferred Ratings, Construction Guidelines, and Specifications

Page 22: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Fault Current Testing22

Test Sequence

Page 23: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Fault Current TestingResults

23

Date DSR Type DSR SN kA (rms) Results

11/20/2013 1000 32013-001-10-02A-0 68.9 Passed11/20/2013 1000 32013-003-10-02A-0 69 Passed11/21/2013 1000 32013-002-10-02A-0 68.4 Passed11/21/2013 1500 32013-001-15-02A-0 68.8 Passed11/21/2013 1500 32013-003-15-02A-0 68.6 Passed11/21/2013 1500 32013-002-15-02A-0 68.8 Passed

Page 24: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Fault Current Testing24

Sample_Volt1 27.74 V2 -34.17 V

91.1 V

-102.0 V

Sample_Curr_Z1 -157.7 kAmp2 -13.58 kAmp

215.0 kAmps

-186.7 kAmps2.000s/div02:12.9 02:24.1

02:14.3790372External Trigger

102:14.3874998 202:14.9541482-2 1 =

566.6483 m

Voltage across DSR

Fault Current

Page 25: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Sample_Volt1 27.74 V2 -34.17 V

83.39 V

-102.0 V

Sample_Curr_1 -157.7 kAmp2 -13.58 kAmp

215.0 kAmps

-172.2 kAmps10.00 ms/div02:14.3650 02:14.4190

02:14.3790372External Trigger

102:14.3874998

Fault Current Testing25

Voltage across DSR

Fault Current

Page 26: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Fault Current Testing26

Takeaways– Conductor was inspected following completion of testing. There was no visible evidence of test conductor damage.

Page 27: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Testing

NEETRAC worked with SWFI to develop tests for the DSR, including:

Clamp slipVibrationImpulseFault CurrentCorona 

27

Page 28: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Corona/RIV Testing28

• Method– Tested in accordance with  IEEE C37.34™‐1994, IEEE Standard Test Code for High‐Voltage Air Switches

– Tested with and without protector rod.

Page 29: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Corona/RIV Testing w/ Protector Rod

29

180 kV Line to Gnd ~ 310 kV Line to Line

Page 30: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Corona Testing w/ Protector Rod

30

The RIV requirement for units installed on 230 kV lines with a 1050 kV BIL rating are less than 500 µV RIV at 156 kV.

Page 31: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Corona/RIV Testing w/o Protector Rod

31

Inception at 296 kV and extinction at 290 kV which are ~ 500 kV Line to Line

Page 32: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Corona Testing32

• Takeaways– Model 1000 DSRs w/ protector rod passed RIV requirements for 230 kV line, case inception >296 kV line‐ground with 11 ft. ground plane.  

– Model 1000 DSRs w/o protector rod passed RIV requirements for 345 kV line with 11 ft. ground plane (standard allows more distance to ground plane at 345 kV).

– Re‐design of protector rod may enable corona‐free operation above 230 kV when using protector rod.

Page 33: Distributed Series Reactor...Distributed Series Reactor An overview of the conductor‐impacts of the DSR 1 Joseph Goldenburg, P.E. Mechanical Section Lead and Hardware Manager at

Conclusion

Clamp SlipImpulseFault CurrentCorona 

33

• The following tests indicate that DSR type device should have no impact on the conductor or support structures:

Vibration (Note: At TVA and Southern Company, successfulmitigation strategies were developed.)

• The following tests indicate that DSR type device, without mitigation, would have a significant impact on: