59
Distributed Optimization Lecture 4: Exchange/consensus ADMM Jalal Kazempour June 21, 2019

Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

Distributed Optimization

Lecture 4: Exchange/consensus ADMM

Jalal Kazempour

26 June 2015June 21, 2019

Page 2: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Learning objectives

2 Jalal Kazempour 1/16

After Lecture 4, you are expected to:

• Have a clearer idea on the applications of (augmented)Lagrangian relaxation and ADMM to energy systems.

• Explain the functioning of Exchange and Consensus ADMM.

• Implement them to illustrative examples.

Page 3: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

3 Jalal Kazempour 2/12

Subject to

Consider a power system with 3 generators with quadratic cost functions and one inelastic demand:

Page 4: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

4 Jalal Kazempour 2/12

Subject to

Consider a power system with 3 generators with quadratic cost functions and one inelastic demand: Cost coefficients 

(constants)

Production level of 

generator g Capacity of generator g

Load level (constant)

Dual variable

Page 5: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

5 Jalal Kazempour 2/12

Subject to

Consider a power system with 3 generators with quadratic cost functions and one inelastic demand:

Reminder from the last lecture: This problem can be decomposed by relaxing powerbalance equality (complicating constraint). We can implement Lagrangian relaxation(LR), since the objective function is quadratic (first derivative continuous).

Page 6: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

6 Jalal Kazempour 3/12

Subject to

The exact equivalent problem (but still not decomposed) is a max‐min problem:

Page 7: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

7 Jalal Kazempour 3/12

Subject to

The exact equivalent problem (but still not decomposed) is a max‐min problem:

Then, pursuing decomposability, we fix dual variable to a given value This yields:

Subject to

This problem is now decomposed to three subproblems, one per generator!

Page 8: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

8 Jalal Kazempour 4/12

Subject to

Three subproblems, one per generator:

Page 9: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

9 Jalal Kazempour 4/12

Subject to

Three subproblems, one per generator:

Then, the value of should be updated for the next iteration (e.g., usingsubgradient method) [1]: Solve subproblems 1, 2 and 3 in iteration to obtainthe values :

where and are positive constants, e.g., and .

[1] A. J. Conejo, E. Castillo, R. Minguez, and R. Garcia‐Bertrand, Decomposition Techniques in MathematicalProgramming: Engineering and Science Applications. Berlin, Germany: Springer, 2006.

Page 10: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

10 Jalal Kazempour 5/12

Subject to

The illustration of LR operation:

Subproblem 1 for generator 1:

Subject to

Subproblem 2 for generator 2:

Subject to

Subproblem 3 for generator 3:

Page 11: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

11 Jalal Kazempour 5/12

Subject to

The illustration of LR operation:

Subproblem 1 for generator 1:

Subject to

Subproblem 2 for generator 2:

Subject to

Subproblem 3 for generator 3:

Coordinator ( ‐update)

Page 12: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

12 Jalal Kazempour 5/12

Subject to

The illustration of LR operation:

Subproblem 1 for generator 1:

Subject to

Subproblem 2 for generator 2:

Subject to

Subproblem 3 for generator 3:

Coordinator ( ‐update)

Page 13: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

13 Jalal Kazempour 5/12

Subject to

The illustration of LR operation:

Subproblem 1 for generator 1:

Subject to

Subproblem 2 for generator 2:

Subject to

Subproblem 3 for generator 3:

Coordinator ( ‐update)

Page 14: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

14 Jalal Kazempour 5/12

Subject to

The illustration of LR operation:

Subproblem 1 for generator 1:

Subject to

Subproblem 2 for generator 2:

Subject to

Subproblem 3 for generator 3:

Coordinator ( ‐update)

In the market context, this is a Walrasian auction (with 

quadratic offers of generators)!

Page 15: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 1: Optimal power flow

15 Jalal Kazempour 6/12

Discussion:

How to generalize Example 1 including elastic demands and powertransmission system?

Page 16: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

16 Jalal Kazempour 7/12

Subject to

Consider an electricity market with 3 generators (with linear offers) and one inelastic demand:

Page 17: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

17 Jalal Kazempour 7/12

Subject to

Consider an electricity market with 3 generators (with linear offers) and one inelastic demand:

Offer price of generator g (parameter)

Page 18: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

18 Jalal Kazempour 7/12

Subject to

Consider an electricity market with 3 generators (with linear offers) and one inelastic demand:

Offer price of generator g (parameter)

Reminder from the last lecture: We cannot implement Lagrangian relaxation (LR),since the objective function is linear (first derivative is a constant). The alternative isto implement augmented Lagrangian relaxation (ALR).

Page 19: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

19 Jalal Kazempour 8/12

Subject to

The exact equivalent problem (but still not decomposed) is the following max‐min problem. Wehave added a weighted quadratic penalty term (whose value is equal to zero in the optimal point)to make the first derivative of objective function continuous:

Page 20: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

20 Jalal Kazempour 8/12

Subject to

The exact equivalent problem (but still not decomposed) is the following max‐min problem. Wehave added a weighted quadratic penalty term (whose value is equal to zero in the optimal point)to make the first derivative of objective function continuous:

Then, pursuing decomposability, we fix dual variable to a given value This yields:

Subject to

Page 21: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

21 Jalal Kazempour 8/12

Subject to

The exact equivalent problem (but still not decomposed) is the following max‐min problem. Wehave added a weighted quadratic penalty term (whose value is equal to zero in the optimal point)to make the first derivative of objective function continuous:

Then, pursuing decomposability, we fix dual variable to a given value This yields:

Subject toStill not decomposed! Why?

Page 22: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

22 Jalal Kazempour 9/12

We use “alternating direction method of multipliers (ADMM)” to solve ALR in a decomposedmanner. Three subproblems, one per generator:

Subject to

Page 23: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

23 Jalal Kazempour 9/12

We use “alternating direction method of multipliers (ADMM)” to solve ALR in a decomposedmanner. Three subproblems, one per generator:

Subject to

Then, the value of should be updated for the next iteration [1]: Solvesubproblems 1, 2 and 3 in iteration to obtain the values :

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via thealternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp.1‐122, Jan. 2011.

Page 24: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

24 Jalal Kazempour 10/12

Subject to

The illustration of ADMM operation:

Subproblem 1 for generator 1:

Subproblem 2 for generator 2:

Subproblem 3 for generator 3:

Subject to

Subject to

Page 25: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

25 Jalal Kazempour 10/12

Subject to

The illustration of ADMM operation:

Subproblem 1 for generator 1:

Subproblem 2 for generator 2:

Subproblem 3 for generator 3:

Subject to

Subject to Coordinator (

‐upd

ate)

Page 26: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

26 Jalal Kazempour 10/12

Subject to

The illustration of ADMM operation:

Subproblem 1 for generator 1:

Subproblem 2 for generator 2:

Subproblem 3 for generator 3:

Subject to

Subject to Coordinator (

‐upd

ate)

Page 27: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

27 Jalal Kazempour 10/12

Subject to

The illustration of ADMM operation:

Subproblem 1 for generator 1:

Subproblem 2 for generator 2:

Subproblem 3 for generator 3:

Subject to

Subject to Coordinator (

‐upd

ate)

In each iteration, each generator needs to know the dispatch of other generators in the previous iteration to be able to solve its own subproblem. From market perspective, does this make sense? Is this a Walrasian auction? 

Page 28: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Example 2: Market clearing

28 Jalal Kazempour 10/12

Subject to

The illustration of ADMM operation:

Subproblem 1 for generator 1:

Subproblem 2 for generator 2:

Subproblem 3 for generator 3:

Subject to

Subject to Coordinator (

‐upd

ate)

In each iteration, each generator needs to know the dispatch of other generators in the previous iteration to be able to solve its own subproblem. From market perspective, does this make sense? Is this a Walrasian auction? 

• we will talk about “Exchange ADMM”, whichresolves this issue, i.e., each generator does notneed any information of other generators.

• We will also talk about “Consensus ADMM”!

Page 29: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Main Reference

29 Jalal Kazempour 2/16

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,“Distributed optimization and statistical learning via thealternating direction method of multipliers,” Foundationsand Trends in Machine Learning, vol. 3, no. 1, pp. 1‐122,Jan. 2011.

Page 30: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

30 Jalal Kazempour 8/16

Page 31: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

31 Jalal Kazempour 8/16

Consider the following compact form of market‐clearing (optimal exchange) problem with inelastic demands:

Subject to

Page 32: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

32 Jalal Kazempour 8/16

Consider the following compact form of market‐clearing (optimal exchange) problem with inelastic demands:

Subject to

It is straightforward to write a similar problem with elastic demands. In that case, the right‐hand side of complicating constraint will be zero.

Page 33: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

33 Jalal Kazempour 9/16

ADMM‐based solution:

Subject to

Page 34: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

34 Jalal Kazempour 9/16

ADMM‐based solution:

Subject to

Each subproblem:

Subject to

and  

Page 35: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

35 Jalal Kazempour 9/16

Each subproblem:

Subject to

and  where  is the averageproduction in iteration  ! 

ADMM‐based solution:

Subject to

Page 36: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

36 Jalal Kazempour 9/16

Each subproblem:

Subject to

and  where  is the averageproduction in iteration  ! 

ADMM‐based solution:

Subject to

Page 37: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exchange ADMM

37 Jalal Kazempour 9/16

Each subproblem:

Subject to

and  where  is the averageproduction in iteration  ! 

Important observation: Each agent does not need to know the dispatchinformation of other agents in details. The “average” dispatch is sufficient!

Page 38: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

An example of a market with 3 generators

38 Jalal Kazempour 10/16

Page 39: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

An example of a market with 3 generators

39 Jalal Kazempour 10/16

The illustration of “Exchange ADMM” operation:Note:  is the average production dispatch of three generators in iteration  .

Subproblem 1 for generator 1:

Subproblem 2 for generator 2:

Subproblem 3 for generator 3:

Coordinator (

‐upd

ate)

,

,

,

Page 40: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

An example of a market with 3 generators

40 Jalal Kazempour 10/16

Subject to

The illustration of “Exchange ADMM” operation:Note:  is the average production dispatch of three generators in iteration  .

Subproblem 1 for generator 1:

Subproblem 2 for generator 2:

Subproblem 3 for generator 3:

Subject to

Subject to Coordinator (

‐upd

ate)

,

,

,

Page 41: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

41 Jalal Kazempour 12/16

Page 42: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

42 Jalal Kazempour 12/16

Consider the following problem, including agents , but a singleglobal variable . This problem is called the “global consensus problem”,since all agents should agree on .

Subject to

Page 43: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

43 Jalal Kazempour 12/16

Consider the following problem, including agents , but a singleglobal variable . This problem is called the “global consensus problem”,since all agents should agree on .

Subject to

This problem can be rewritten as follows using auxiliary variable :

Subject to

Page 44: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

44 Jalal Kazempour 13/16

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

Page 45: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

45 Jalal Kazempour 13/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

Page 46: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

46 Jalal Kazempour 13/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

Page 47: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

47 Jalal Kazempour 13/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

Page 48: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

48 Jalal Kazempour 14/16

Let’s first focus on this single subproblem!

‐update subproblem (based on given values for  )

Page 49: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

49 Jalal Kazempour 14/16

‐update subproblem (based on given values for  )

This constraint‐free optimization problem can be easily solved. This yields:

Page 50: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM

50 Jalal Kazempour 14/16

‐update subproblem (based on given values for  )

This constraint‐free optimization problem can be easily solved. This yields:

The  ‐update subproblem is not an optimization anymore! This is called as “central collector” or “fusion center”.

Page 51: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM: updated formulation

51 Jalal Kazempour 15/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

Page 52: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM: updated formulation

52 Jalal Kazempour 15/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

This algorithm can be evenfurther simplified!

Page 53: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM: updated formulation

53 Jalal Kazempour 15/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

Written in an average form over  =1,…,N 

Page 54: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM: updated formulation

54 Jalal Kazempour 15/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

‐update for each agent 

Written in an average form over  =1,…,N 

Written in an average form over  =1,…,N 

Page 55: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM: updated formulation

55 Jalal Kazempour 15/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

Page 56: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM: updated formulation

56 Jalal Kazempour 15/16

Subject to

‐update subproblem for each agent 

‐update subproblem (based on given values for  )

Page 57: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Consensus ADMM: final form

57 Jalal Kazempour 15/16

Subject to

‐update subproblem for each agent 

‐update for each agent 

In each iteration  , each agent  independently solves its own subproblem to determine the value of global variable  , while panelized based on its distance to the average value of global variable among all agents obtained in 

the previous iteration!

Page 58: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark

Exercise 3

58 Jalal Kazempour 16/16

Consider a two‐stage stochastic programming problem, e.g., a two‐settlementmarket‐clearing problem with day ahead (DA) and real time (RT) stages:

Can this problem be solved by “consensus ADMM”? If so, how?

Guide: Think of relaxing the non‐anticipativity conditions, and to have one subproblem per scenario.

Page 59: Distributed Optimization - DTU CEE Summer School 2020DTU Electrical Engineering, Technical University of Denmark 26 June 2015 Learning objectives 2 Jalal Kazempour 1/16 After Lecture

26 June 2015DTU Electrical Engineering, Technical University of Denmark59

Thanks for your attention!

Email: [email protected]