86

Distributed Cooperative Control of AC Micro-grids

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Distributed Cooperative Control of AC Micro-grids
Page 2: Distributed Cooperative Control of AC Micro-grids

4

Page 3: Distributed Cooperative Control of AC Micro-grids

Distributed Cooperative Control of AC Micro-grids

Page 4: Distributed Cooperative Control of AC Micro-grids

6

Page 5: Distributed Cooperative Control of AC Micro-grids

Moncrief-O’Donnell Chair, UTA Research Institute (UTARI)The University of Texas at Arlington, USA

and

F.L. Lewis, NAI

Talk available online at http://www.UTA.edu/UTARI/acs

Supported by :ONRUS NSFChina Qian Ren Program, NEUChina NSFC

Guest ProfessorShanghai Jiao Tong University, China

Distributed Synchronization Control of AC Micro-gridsWork of Ali Bidram with Dr. A. Davoudi

Page 6: Distributed Cooperative Control of AC Micro-grids

11

Work with Ali Davoudi

Page 7: Distributed Cooperative Control of AC Micro-grids

12

Page 8: Distributed Cooperative Control of AC Micro-grids

20

Invited by Ning Li

Page 9: Distributed Cooperative Control of AC Micro-grids

F.L. Lewis, H. Zhang, A. Das, K. Hengster-Movric, Cooperative Control of Multi-Agent Systems: Optimal Design and Adaptive Control, Springer-Verlag, 2013

Key Point

Lyapunov Functions and Performance IndicesMust depend on graph topology

Hongwei Zhang, F.L. Lewis, and Abhijit Das“Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback,”IEEE Trans. Automatic Control, vol. 56, no. 8, pp. 1948-1952, August 2011.

H. Zhang, F.L. Lewis, and Z. Qu, "Lyapunov, Adaptive, and Optimal Design Techniques for Cooperative Systems on Directed Communication Graphs," IEEE Trans. Industrial Electronics, vol. 59, no. 7, pp. 3026‐3041, July 2012.

Page 10: Distributed Cooperative Control of AC Micro-grids

25

Page 11: Distributed Cooperative Control of AC Micro-grids

26

A. Bidram, F.L. Lewis, and A. Davoudi, “Distributed Control Systems for Small‐scale Power Networks Using Multi‐agent Cooperative Control Theory,” IEEE Control Systems Magazine, pp. 56‐77, December 2014 (Featured cover article).

Page 12: Distributed Cooperative Control of AC Micro-grids

28

OutlineCooperative ControlElectric Power MicrogridsCooperative Control for Synchronization in Microgrids

Page 13: Distributed Cooperative Control of AC Micro-grids

Synchronized Motion of biological groups

Fishschool

Birdsflock

Locustsswarm

Firefliessynchronize

Page 14: Distributed Cooperative Control of AC Micro-grids

The Power of Synchronization Coupled OscillatorsDiurnal Rhythm

Page 15: Distributed Cooperative Control of AC Micro-grids

1

2

3

4

56

Diameter= length of longest path between two nodes

Volume = sum of in-degrees1

N

ii

Vol d

Spanning treeRoot node

Strongly connected if for all nodes i and j there is a path from i to j.

Tree- every node has in-degree=1Leader or root node

Followers

Communication Graph

Page 16: Distributed Cooperative Control of AC Micro-grids

Communication Graph1

2

3

4

56

N nodes

[ ]ijA a

0 ( , )ij j i

i

a if v v E

if j N

oN1

Noi ji

jd a

Out-neighbors of node iCol sum= out-degree

42a

Adjacency matrix

0 0 1 0 0 01 0 0 0 0 11 1 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 1 0

A

iN1

N

i ijj

d a

In-neighbors of node iRow sum= in-degreei

(V,E)

i

Algebraic Graph Theory

Page 17: Distributed Cooperative Control of AC Micro-grids

Dynamic Graph- the Distributed Structure of ControlEach node has an associated state i ix u

Standard local voting protocol ( )i

i ij j ij N

u a x x

1

1i i

i i ij ij j i i i iNj N j N

N

xu x a a x d x a a

x

( )u Dx Ax D A x Lx L=D-A = graph Laplacian matrix

x Lx

If x is an n-vector then ( )nx L I x

x

1

N

uu

u

1

N

dD

d

Closed-loop dynamics

i

j

[ ]ijA a

Page 18: Distributed Cooperative Control of AC Micro-grids

Communication Graph

N nodes

G=(V,E)

State at node i is ( )ix t

Synchronization problem

( ) ( ) 0i jx t x t

Page 19: Distributed Cooperative Control of AC Micro-grids

1

2

3

4

56

Theorem. Graph contains a spanning tree iff e-val of L at is simple.

Graph strongly connected implies exists a spanning tree

Then 2 0

Then -L has one e-val at zero and all the rest stable

1 0

Then, all nodes synchronize

x Lx Closed-loop dynamics

Page 20: Distributed Cooperative Control of AC Micro-grids

1

2 3

4 5 6

12

3

4 5

6

Graph Eigenvalues for Different Communication Topologies

Directed Tree-Chain of command

Directed Ring-Gossip networkOSCILLATIONS

Page 21: Distributed Cooperative Control of AC Micro-grids

Graph Eigenvalues for Different Communication Topologies

Directed graph-Better conditioned

Undirected graph-More ill-conditioned

65

34

2

1

4

5

6

2

3

1

Page 22: Distributed Cooperative Control of AC Micro-grids

Synchronization on Good Graphs

Chris Elliott fast video

65

34

2

1

1

2 3

4 5 6

Regular mesh

Page 23: Distributed Cooperative Control of AC Micro-grids

Synchronization on Gossip Rings

Chris Elliott weird video

12

3

4 5

6

Page 24: Distributed Cooperative Control of AC Micro-grids

Controlled Consensus: Cooperative Tracker

Node state i ix uDistributed Local voting protocol with control node v

( ) ( )i

i ij j i i ij N

u a x x g v x

( ) 1x L G x G v i i

i ij i ij j ij N j N

u a x a x g v

0ig If control v is in the neighborhood of node i

{g }iG diag

Theorem. Let graph have a spanning tree and for at least one root node. Then L+G is nonsingular with all e-vals positiveand -(L+G) is asymptotically stable

0ig

control node v

Ron Chen – pinning control

Local Neighborhood Tracking Error

Page 25: Distributed Cooperative Control of AC Micro-grids

43

Page 26: Distributed Cooperative Control of AC Micro-grids

44

Page 27: Distributed Cooperative Control of AC Micro-grids

Kung Tz 500 BCConfucius

ArcheryChariot driving

MusicRites and Rituals

PoetryMathematics

孔子Man’s relations to

FamilyFriendsSocietyNationEmperorAncestors

Tian xia da tongHarmony under heaven

124 BC - Han Imperial University in Chang-an

Page 28: Distributed Cooperative Control of AC Micro-grids

What is a micro‐grid?• Micro-grid is a small-scale power system that provides the power for

a group of consumers.• Micro-grid enables

local power support for local and critical loads.

• Micro-grid has the ability to work in both grid-connected and islanded modes.

• Micro-grid facilitates the integration of Distributed EnergyResources (DER).

Photo from: http://www.horizonenergygroup.com

Page 29: Distributed Cooperative Control of AC Micro-grids

• The main building block of smart-grids

• Rural plants

• Business buildings, hospitals,and factories

Smart‐grid photo from: http://www.sustainable‐sphere.com

An introduction to micro‐grids: Micro‐grid applications

Page 30: Distributed Cooperative Control of AC Micro-grids

Distributed Generators (DG)Distributed Energy Resources (DER)

• Non-renewables Internal combustion engine Micro-turbines Fuel cells

• Renewables Photovoltaic Wind Hydroelectric Biomass

49

Page 31: Distributed Cooperative Control of AC Micro-grids

Micro‐grid Advantages

• Micro-grid provides high quality and reliable power to the criticalconsumers

• During main grid disturbances, micro-grid can quickly disconnectform the main grid and provide reliable power for its local loads

• DGs can be simply installed close to the loads which significantlyreduces the power transmission line losses

• By using renewable energy resources, a micro-grid reduces CO2emissions

50

Page 32: Distributed Cooperative Control of AC Micro-grids

• Voltage and frequency synchronization for both grid-connected and islanded operating modes

• Proper load sharing and DG coordination• Power flow control between the microgrid and the main grid• Optimizing the microgrid operating cost

Hierarchical control structure51

An introduction to micro‐grids: Micro‐grid Objectives

Page 33: Distributed Cooperative Control of AC Micro-grids

Micro‐grid Control Challenges

• In Grid-connected mode, the main grid has rotating synchronousgenerators that provide a frequency reference

• In Grid-connected mode, the main grid provides voltage support andpower quality

• During grid disturbances, micro-grid goes to islanded mode toprovide the power for its local loads

• In islanded mode, there is no frequency reference• In islanded mode, microgrid controller must provide voltage support

and power quality

52

Page 34: Distributed Cooperative Control of AC Micro-grids

Micro‐grid Hierarchical Control Structure

Tertiary ControlmodesOptimal operation in both operating

modes

Secondary Control

Primary Control

MicrogridTie

Power flow control in grid-tied mode

Voltage deviation mitigationFrequency deviation alleviation

Voltage stability provision

preservingFrequency stability

preservingPlug and play capability for DGs

Main grid

Do coop. ctrl. here toSynchronize frequencyand voltage 

Bidram, A., & Davoudi, A. (2012). Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid, vol. 3, pp. 1963‐1976, Dec 2012.

Maintains Stability

Page 35: Distributed Cooperative Control of AC Micro-grids

Micro‐grid Primary Control

Primary control: The primary control maintains voltage andfrequency stability

Conventional primary control: Droop techniques

n P

mag n Q

m PE v V n Q

Power calculator

vo

io

Q

P

ω

E E

ω

*Reference

voltage

Esin(ωt)

vo

P

Q

2

1 max1 maxP PN Nm P m P

1 max1 maxQ QN Nn Q n Q

Microgrid load conditions Resulting 

Power

Droop Control

Required voltage and frequencyTo maintain stability

Page 36: Distributed Cooperative Control of AC Micro-grids

55

P

n

DG1 DG2min

max1P max 2P

2mP1mP

min max11 ( ) / PnmP min max 22 ( ) / PnmP

Design of Droop Control Parameters

Pick slopes so that

Then

1 max1 maxP PN Nm P m P

Balanced Load sharing

n Pm P

Page 37: Distributed Cooperative Control of AC Micro-grids

• Primary control (frequency droop)• Before islanding occurs

56

DG1 nominal power, Pmax1= 4 kW

DG2 nominal power, Pmax2= 6 kW

DG1

DG2

1ov

2ov

1bv

2bv

1cR 1cL

2cL2cR

3.5kW 1lineR

1lineL

Maingrid

3.5kW

1kW2.5kW

3.5kW

1 max1 2 max2P Pm P m P

P

ref

n

2.5kW 3.5kW

DG1 DG2min

Micro‐grid primary control1. Connected to Main Power Grid

Load is 7kWGrid supplies 1kW 

Page 38: Distributed Cooperative Control of AC Micro-grids

n Pm P

57

( k W )P

re f

n

DG1DG2

m in

n e w

2 n ewP1n e wP1o ldP 2 o ldP2.5 2.8 3.5 4.2

Micro‐grid Primary Control2.   After Islanding

DGs must make up an extra 1kW Pload= 7kWNew P1 + P2= 2.8kW + 4.2kW 

Makes frequency decrease

Increase        to restore frequency to ref valuen

Page 39: Distributed Cooperative Control of AC Micro-grids

i

iP

ni

maxP i

Pim

New Secondary Control Input for Frequency Synchronization

i ni Pi im P

Change 

To synchronize 

ni

i

Secondary Control input

Secondary Frequency Control

Existing power conditions in the microgrid

Prescribed frequencye.g. 60 Hz

Page 40: Distributed Cooperative Control of AC Micro-grids

Primary Control : Droop Control

n P

n Q

m PV V n Qw wìïïíïïî

= -= -

Sync. Equal Load Sharing

P1P

n

Seco

ndar

y re

spon

se

2P

12

V

Q1Q

nV

Seco

ndar

y re

spon

se

2Q

1V2V

Frequency-Active PowerDroop Characteristic

Voltage-Reactive PowerDroop Characteristic

Page 41: Distributed Cooperative Control of AC Micro-grids

Secondary control: The secondary control restores the voltage andfrequency of the micro-grid to their nominal value.

Conventional Secondary control implementation: Centralized structure

Low reliability Requires a Central control authority Requires too many communication links

We want to develop a new Distributed Control structure Highly reliable Uses sparse communication network

60

( ) ( )

( ) ( )

n PE ref mag IE ref mag

n P ref I ref

V K v v K v v dt

K K dt

Micro‐grid secondary control

Page 42: Distributed Cooperative Control of AC Micro-grids

61

Page 43: Distributed Cooperative Control of AC Micro-grids

62

Page 44: Distributed Cooperative Control of AC Micro-grids

65

Microgrid

DG 1DG 2 DG 3

DG 4

DG 5

DG 6DG 7

DG 8

DG 1DG 2 DG 3

DG 4

DG 5

DG 6

DG 8

DG 7

Communication link

Cybercommunication

framework

Micro‐grid secondary control:New Distributed CPS structure

Physical LayerThe interconnect structure of the power grid

Cyber layerA sparse, efficient communication network to allow

cooperative control for synchronization ofvoltage and frequency

Work of Ali BidramWith Dr. A. Davoudi

Cyber Physical System (CPS)

Page 45: Distributed Cooperative Control of AC Micro-grids

Dynamical model of a DG 

70

vo io

VSC

vod*

iLd*

Currentcontroller

Voltagecontroller

LC filteriL

Power controller

vb

, voq*

vod , voq

iod , ioq

, iLq*

ω

ωn Vn

Outputconnector

Rc Lc

abc/dq

iLd , iLq

Rf Lf Cf

VSC‐ Voltage source converter Power electronics

Renewable DERProvides DC voltage

Primary ControlDroop control is here

MicrogirdNetworkLoad disturbances

Given load conditions              ‐ pick                     using Droop to maintain stability0 0,v i * *, ,od oqv v

Primary Control Structure

iv

Page 46: Distributed Cooperative Control of AC Micro-grids

Dynamical model of a DG 

Power controller dynamics:

71

( ) ( ) ( )( )

i i i i i i i i i

i i i i i

uy h d u

x f x k x D g xx

13i x

abc/dqvoi

ioi

vodivoqiiodiioqi

vodi iodi + voqi ioqi

voqi iodi - vodi ioqi

Low-passfilter

ωni - mPi PiPi

Low-passfilter

Vni - nQi Qi

Qi

ωi

vodi*

voqi*0

ωni

Vni

[ ]Ti i i i di qi di qi ldi lqi odi oqi odi oqiP Q i i v v i i x

i i com

( )i ci i ci odi odi oqi oqiP P v i v i

( )i ci i ci oqi odi odi oqiQ Q v i v i

Pogaku, N., Prodanovic, M., & Green, T. C. (2007). Modeling, analysis and testing of autonomous operation of an inverter‐based microgrid. IEEE Transactions on Power Electronics, 22(2), 613–625.

Droop control is here

Heterogeneous agent dynamics

Page 47: Distributed Cooperative Control of AC Micro-grids

Dynamical model of a DG 

Voltage controller dynamics

72

Σ

Σ

vodi*

voqi*

vodi

voqi

KPViKIVi

+ s+

+

_

_

KPViKIVi

+ s

ωbCfi

ωbCfi

Fi

Fi

Σ

Σ

vodi

voqi

+

+

Σ

+

+

iodi

ioqi

+

++

ildi*

ilqi*

* ,di odi odiv v

* ,qi oqi oqiv v

* *( ) ,ldi i odi b fi oqi PVi odi odi IVi dii Fi C v K v v K

* *( ) ,lqi i oqi b fi odi PVi oqi oqi IVi qii Fi C v K v v K

Page 48: Distributed Cooperative Control of AC Micro-grids

Dynamical model of a DG 

Current controller dynamics

73

*di ldi ldii i

*qi lqi lqii i

* *( )idi b fi lqi PCi ldi ldi ICi div L i K i i K

* *( )iqi b fi ldi PCi lqi lqi ICi qiv L i K i i K

Σ

Σ

vidi*

viqi*

KPCiKICi

+ s+

+

_

_

KPCiKICi

+ s

ωbLfi

ωbLfi

Σ

Σ

+

+

_

ilqiildi

+

ildi*

ilqi*

ildi

ilqi

Page 49: Distributed Cooperative Control of AC Micro-grids

Dynamical model of a DG 

Output filter dynamics

74

Output connector dynamics

1 1fildi ldi i lqi idi odi

fi fi fi

Ri i i v v

L L L

1 1filqi lqi i ldi iqi oqi

fi fi fi

Ri i i v v

L L L

1 1odi i oqi ldi odi

fi fiv v i i

C C

1 1oqi i odi lqi oqi

fi fiv v i i

C C

1 1ciodi odi i oqi odi bdi

ci ci ci

Ri i i v vL L L

1 1cioqi oqi i odi oqi bqi

ci ci ci

Ri i i v vL L L

Depends on microgrid conditions and loads

Voltage disturbances

Page 50: Distributed Cooperative Control of AC Micro-grids

75

,1 ,2

,2 ,6 ,8 ,7 ,9 ,2

,3 ,6 ,9 ,7 ,8 ,3

,3 ,6,4 ,4 ,5

,7,5 ,5 ,4

,4 ,8,6 ,7

,7

( )( )

i ni Pi i com

i ci i i i i i

i ci i i i i i

fi ni Qi i ii i com i

fi fi

fi ii i com i

fi fi

i ii com i

fi

i

x m xx x x x x xx x x x x x

r V n x xx x x

L L

r xx x x

L L

x xx x

C

x

,5 ,9,6

,6,8 ,8 ,9

,7,9 ,9 ,8

i icom i

fi

i bdicii i com i

ci ci

i bqicii i com i

ci ci

x xx

C

x vrx x x

L Lx vr

x x xL L

The nonlinear dynamics of the ith DG, while neglecting the fast dynamics of voltage and current controllers

[ ] .Ti i i i Ldi Lqi odi oqi odi oqix P Q i i v v i i

From adaptive voltage ctrl‐ Trans CST paper

Page 51: Distributed Cooperative Control of AC Micro-grids

( ) ( ) ( )( )

i i i i i i i i i

i i i i i

uy h d u

x f x k x D g xx

13i x

DG Microgrid Model and Synchronization Control Objectives

Heterogeneous Agent Dynamics – different dynamics

Page 52: Distributed Cooperative Control of AC Micro-grids

Synchronization in Microgrid of Interconnected DG

DER 8 DER 6

DER 4

Rline1 Lline1

Pload1+jQload1

Rline2 Lline2Rline3 Lline3

Rc4Lc4

Rc3Lc3

Rc2Lc2

Rc1Lc1

vo4vo3vo2vo1

Pload2+jQload2

DER 3DER 2DER 1

DER 5DER 7

Pload3+jQload3Pload4+jQload4

Rline7 Lline7 Rline6 Lline6 Rline5 Lline5

Rline4

Lline4

vo5vo6vo7vo8

Lc5Lc6Lc7Lc8Rc8 Rc7 Rc6 Rc5

DG 1 DG 2 DG 3 DG 4

DG 8 DG 7 DG 6 DG 5

2 2,o magi odi oqiv v v

Voltage synchronization (per unit)

i i ni Pi iy m P Frequency synchronization

Voltage synchronization

mag n QE v V n Q

Page 53: Distributed Cooperative Control of AC Micro-grids

Secondary Control Synchronization Objectives

vo io

VSC

vod*

iLd*

Currentcontroller

Voltagecontroller

LC filteriL

Power controller

vb

, voq*

vod , voq

iod , ioq

, iLq*

ω

ωn Vn

Outputconnector

Rc Lc

abc/dq

iLd , iLq

Rf Lf Cf

VSC‐ Voltage source converter Power electronics

Renewable DERProvides DC voltage

MicrogirdNetworkLoad disturbances

Voltage synchronization (per unit)

Frequency synchronization

Secondary Control InputsChange Droop control parameters to get synchronization

Page 54: Distributed Cooperative Control of AC Micro-grids

1. For secondary frequency control:

2. For secondary voltage control:

79

( ) ( ) ( )( )

i i i i i i i i i

i i i i i

uy h d u

x f x k x D g xx

13i x

i odiy v

i niu V

i i ni Pi iy m P

i niu

0id

0id

DG Microgrid Model and Synchronization Control Objectives

Heterogeneous Agent Dynamics – different dynamics

mag n QE v V n Q

Page 55: Distributed Cooperative Control of AC Micro-grids

Shi nian shu muBai nian shu ren

十年树木,百年树人

Keshi-Wu nian shu xuesheng可是,五年树学生

Page 56: Distributed Cooperative Control of AC Micro-grids

82

1. Distributed secondary frequency control of micro-grids2. Distributed secondary voltage control of micro-grids

Work of Ali BidramWith Dr. A. Davoudi

Page 57: Distributed Cooperative Control of AC Micro-grids

i

iP

ni

maxP i

Pim

New Secondary Control Input for Frequency Synchronization

i ni Pi im P

Change 

To synchronize 

ni

i

Secondary Control input

1. Secondary Frequency Control

,i ref i

50ref Hz For example

Existing power conditions in the microgrid

Prescribed frequency

Page 58: Distributed Cooperative Control of AC Micro-grids

1. Secondary Frequency Control

87

i ni Pi im P

i ni Pi i im P u

i i iu c e

( ) ( )i

i ij i j i i refj N

e a g

Theorem . Let the digraph of the communication network have a spanning tree and the pinning gain be nonzero for at least one DG placed on a root node.

Let the auxiliary control be chosen as above.

Then, the global neighborhood error is asymptotically stable. Moreover, the DG frequencies synchronize to

iu

ref

Droop control relationship

Using input-output feedback linearization

( ) ( )i

ni Pi i i Pi i i ij i j i i refj N

m P u m P c a g

Then

Page 59: Distributed Cooperative Control of AC Micro-grids

1. Secondary Frequency Control

Lyapunov function: 1 1, where2

T

iV e Pe P diag w

1 2T N

Ne e e e

( ) NL G w 1satisfiesiw

Differentiating V

( )( ) ( )( )T TV e P L G e P L G u

,refe L G u c e

( ( ) ( ) )2

T TcV e P L G L G P e

0V

{ }ic diag c

Theorem of Zhihua Qu

Proof.  Lyapunov Functions for Cooperative Control on GraphsGraph Laplacian Matrix L D

( ) ( ) 0TQ P L G L G P Coop ctrl Lyapunov equation

H. Zhang, F.L. Lewis, and Z. Qu, "Lyapunov, Adaptive, and Optimal Design Techniques for Cooperative Systems on Directed Communication Graphs," IEEE Trans. Industrial Electronics, vol. 59, no. 7, pp. 3026‐3041, July 2012.

Internal Dynamics is stable for AC microgrid DG 

Page 60: Distributed Cooperative Control of AC Micro-grids

1. Secondary Frequency Control

89

ref

ij N

( ) ( )ij i j i i refj

a g ie iu nii

ix

pim

1s

( ) ( )( )

i i i i i ii i i i i

uy h x du

x f x g xic

j

calculating iP

Restores Frequency Synchronization after islanding

i ni Pi i im P u

Feedback Linearization Inner Loop

Distributed Cooperative Tracker

Page 61: Distributed Cooperative Control of AC Micro-grids

1. Secondary frequency control

DER 8 DER 6

DER 4

Rline1 Lline1

Pload1+jQload1

Rline2 Lline2Rline3 Lline3

Rc4Lc4

Rc3Lc3

Rc2Lc2

Rc1Lc1

vo4vo3vo2vo1

Pload2+jQload2

DER 3DER 2DER 1

DER 5DER 7

Pload3+jQload3Pload4+jQload4

Rline7 Lline7 Rline6 Lline6 Rline5 Lline5

Rline4

Lline4

vo5vo6vo7vo8

Lc5Lc6Lc7Lc8Rc8 Rc7 Rc6 Rc5

DER 1DER 2DER 3DER 4 LeaderDER 5DER 6DER 7DER 8

DG 1 DG 2 DG 3 DG 4

DG 8 DG 7 DG 6 DG 5

DG 5DG 6DG 7DG 8 DG 4 DG 3 DG 2 DG 1

Simulation Example

Physical MicrogridNetwork

Cyber communication network‐ sparse

Page 62: Distributed Cooperative Control of AC Micro-grids

1. Secondary frequency control

91

0 0.5 1 1.5 2 2.5 3

49.6

49.8

50

50.2

t (s)

f (H

z)

DER1DER2DER3DER4DER5DER6DER7DER8

DG 1

DG 2

DG 3

DG 4

DG 5

DG 6

DG 7

DG 8

Islanding  Turn onCoop secondary control

Ref.  FrequencyIs 50 Hz

Page 63: Distributed Cooperative Control of AC Micro-grids

92

Page 64: Distributed Cooperative Control of AC Micro-grids

i

iP

ni

maxP i

Pim

New Secondary Control Input for Frequency SynchronizationAND Balanced Power Sharing

i ni Pi im P

Change 

To synchronize 

ni

i

Secondary Control input

1

max1 max

N

N

PPP P

And enforce balanced power sharing

Page 65: Distributed Cooperative Control of AC Micro-grids

Secondary frequency and power control

96

i ni Pi im P Differentiating the frequency droop characteristic yields:

ni i Pi i im P u

For N DGs:

1 1 1 1

2 2 2 2

P

P

N PN N N

m P um P u

m P u

The auxiliary controls are chosen based on each DG’s own information, and the information of its neighbors in the communication digraph

( ( ) ( ) ( ))i i

i ij i j i i ref ij Pi i Pj jj N j N

u c a g a m P m P

Local neighborhood tracking errors

TWO CONTROL OBJECTIVES WITH ONE CONTROL INPUT

DG 1

DG 2

DG 3

ref

1 , P1

2 , P2

3 , P3

Page 66: Distributed Cooperative Control of AC Micro-grids

Secondary frequency and power control

97

Σ DG iωni

Piui

aij ( ωi -ωj )+gi (ωi -ωref)j

Nij∈_

Σωj ωi

s1

ωref

c

aij ( mPiPi -mPjPj )j

Nij∈

ΣPj

_

TWO CONTROL OBJECTIVES WITH ONE CONTROL INPUT

Cooperative tracker

Cooperative regulator

ni i Pi i im P u

Page 67: Distributed Cooperative Control of AC Micro-grids

Secondary frequency and power control

Guarantees that (( )( ) ) 0.ref Pc L G Lm P

( ( ) ( ) ( ))i i

i ij i j i i ref ij Pi i Pj jj N j N

u c a g a m P m P

The local neighborhood tracking error control

There is another relation between power and frequency in the microgrid DGs

sin( ) sin( ),oi bii i i i

ci

v vP h

X Write the output active power as

So that approximately ( ),i i i refP h

( ),refP h In global form

Therefore at steady state all frequencies synchronize to the reference frequency

( ) 0ref PG Lm P So that

This does not guarantee synchronization of freq. and power separately 

Page 68: Distributed Cooperative Control of AC Micro-grids

Simulation results

99

Physical MicrogridNetwork

Cyber communication network‐ sparse

Page 69: Distributed Cooperative Control of AC Micro-grids

Simulation results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6311

312

313

314

315

316

ω

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

10

20

30

40

time (s)

P (k

W)

DG1DG2DG3DG4

(a)

(b)

(rad

/s)

Islanding Turn onCoop secondary control

Ref.  FrequencyIs 50 Hz

Page 70: Distributed Cooperative Control of AC Micro-grids

101

Page 71: Distributed Cooperative Control of AC Micro-grids

105

Page 72: Distributed Cooperative Control of AC Micro-grids

2.  Secondary Voltage ControlMicrogrid of Interconnected DG

DER 8 DER 6

DER 4

Rline1 Lline1

Pload1+jQload1

Rline2 Lline2Rline3 Lline3

Rc4Lc4

Rc3Lc3

Rc2Lc2

Rc1Lc1

vo4vo3vo2vo1

Pload2+jQload2

DER 3DER 2DER 1

DER 5DER 7

Pload3+jQload3Pload4+jQload4

Rline7 Lline7 Rline6 Lline6 Rline5 Lline5

Rline4

Lline4

vo5vo6vo7vo8

Lc5Lc6Lc7Lc8Rc8 Rc7 Rc6 Rc5

DG 1 DG 2 DG 3 DG 4

DG 8 DG 7 DG 6 DG 5

2 2,o magi odi oqiv v v

2. Voltage synchronization (per unit)

i i ni Pi iy m P 1. Frequency synchronization

Work of Ali BidramWith Dr. A. Davoudi

Synchronize per‐unitvoltages

mag n QE v V n Q

Page 73: Distributed Cooperative Control of AC Micro-grids

2. Secondary Voltage controlSecondary Control Synchronization Objectives

vo io

VSC

vod*

iLd*

Currentcontroller

Voltagecontroller

LC filteriL

Power controller

vb

, voq*

vod , voq

iod , ioq

, iLq*

ω

ωn Vn

Outputconnector

Rc Lc

abc/dq

iLd , iLq

Rf Lf Cf

VSC‐ Voltage source converter Power electronics‐ DC to AC

Renewable DERProvides DC voltage

MicrogirdNetworkLoad disturbances

Voltage synchronization (per unit)

Frequency synchronization

Secondary Control InputsChange Droop control parameters to get synchronization

Page 74: Distributed Cooperative Control of AC Micro-grids

2. Secondary Voltage Control

108

Secondary Voltage control objective

The per unit voltage of each DG synchronizes to a command nominal value

2 2,o magi odi oqiv v v Voltage synchronization (per unit)

n P

mag n Q

m PE v V n Q

Droop Control

Use this for frequency synchronization

Use this for voltage synchronization

Page 75: Distributed Cooperative Control of AC Micro-grids

2. Secondary Voltage Control

109

If , there is no direct relationship between the output and

input .

i odiy v

i niu V

Input-output feedback linearization for heterogeneous nonlinear agents

( ) 1i i i

r r ri i i iy L h L L h u F g F

1i i i

r ri i i iv L h L L h u F g F

1 1( ) ( )i i i

r ri i i iu L L h L h v g F F

( ) ,ri iy v i

,1

,1 ,2

, 1

,

i i

i i

i r i

y yy y

i

y v

( ) ( ) ( )( )

i i i i i i i i i

i i i

uy h

x f x k x D g xx

( ) ( ) ( )i i i i i i i F x f x k x D

, ,i i iv i BA

Assume relative degree r is the same for all agentsZero dynamics can be different, but assume they are stable

Must use Lie derivatives

0id

( , ),ii i iW i Internal Dynamics

Page 76: Distributed Cooperative Control of AC Micro-grids

2. Secondary voltage control

110

0 1 0 0 00 0 1 0 00 0 0 1 0

0 0 0 0 10 0 0 0 0 0 r r

A

1[0,0, ,1]TrB

Leader node dynamics

The synchronization problem is to find a distributed such that iv

0 0 0

0 0 0

( )( )y h

x f xx

, ,i i iv i BA ,1 , 1[ ]Ti i i i ry y y

( )0 0 0 ,ry BY AY ( 1)

0 0 0 0[ ]r Ty y y Y

0, .i i Y

Assumption. The vector is bounded so that , with a finite but generally unknown bound.

( ) ( )0 0 ,r r

N y r y 1 ( )0r r

MYy

DG Agent Dynamics

( , ),ii i iW i Internal dynamics

Page 77: Distributed Cooperative Control of AC Micro-grids

Theorem. Let the digraph of the multi-agent system have a spanning tree and the pinning gain be nonzero for at least one root node.

Let all agents have stable zero dynamics

Let the auxiliary control be chosen as

is the first eigenvalue of

2. Secondary voltage control

i iv cK e

where is the coupling gain, and is the feedback control gain.

Then, are cooperative UUB with respect to and all nodes synchronize to if is chosen as

c R 1 rK R

1 rK R 1

1,TK R P B 1

1 1 1 1 0.T TP P Q P R P BA BA

andmin

1 ,2

c

min min ( )i iRe i L G

0( ) ( )i

iiN

ii jj ij

a g

e Y

i 0Y

0Y

Zhang, H., Lewis, F. L., & Das, A. (2011).Optimal design for synchronization of cooperativesystems: State feedback, observer, and output feedback. IEEE Transactions on AutomaticControl, 56(8), 1948–1952.

(0, ),i i iW i

Page 78: Distributed Cooperative Control of AC Micro-grids

Secondary voltage control

115

Σ DG i

Mi (xi)

cKVni

xi-vi

_aij ( yi -yj )+gi ( yi -y0)

j

Nij∈

ei_Σ 1

Ni

y0 =vref

0

vodjvodj

yj =

vodivodi

yi =

(2) 2 1i i ii i i iy L h L L h u F g F

2 1i i ii i i iv L h L L h u F g F

1 1 2( ) ( )i i ii i i iu L L h L h v g F F

( ), .i i i

nii

v MV i

N

x

Synchronizes Output voltages after Islanding

iu

Feedback Linearization Inner Loop

Page 79: Distributed Cooperative Control of AC Micro-grids

2. Secondary voltage control

DER 8 DER 6

DER 4

Rline1 Lline1

Pload1+jQload1

Rline2 Lline2Rline3 Lline3

Rc4Lc4

Rc3Lc3

Rc2Lc2

Rc1Lc1

vo4vo3vo2vo1

Pload2+jQload2

DER 3DER 2DER 1

DER 5DER 7

Pload3+jQload3Pload4+jQload4

Rline7 Lline7 Rline6 Lline6 Rline5 Lline5

Rline4

Lline4

vo5vo6vo7vo8

Lc5Lc6Lc7Lc8Rc8 Rc7 Rc6 Rc5

DER 1DER 2DER 3DER 4 LeaderDER 5DER 6DER 7DER 8

DG 1 DG 2 DG 3 DG 4

DG 8 DG 7 DG 6 DG 5

DG 5DG 6DG 7DG 8 DG 4 DG 3 DG 2 DG 1

Simulation Example

Physical MicrogridNetwork

Cyber communication network‐ sparse

Page 80: Distributed Cooperative Control of AC Micro-grids

Simulation results

117

1 1.2 1.4 1.6 1.8 2350

360

370

380

390

t (s)

v o,m

ag (V

)

DER1DER2DER3DER4DER5DER6DER7DER8

DG 1

DG 2

DG 3

DG 4

DG 5

DG 6

DG 7

DG 8

Islanding  Turn onCoop secondary control

Ref.  Per‐unitVoltageIs 380 V

2. Secondary voltage control

Page 81: Distributed Cooperative Control of AC Micro-grids

Adaptive Voltage Control

Σ

Vni

__

ωni

Adaptivesecondary

voltage control

voi ioivoqdi*

Voltage and currentcontroller

Power controller

vb

Rci LciRfi Lfi Cfi

Primarypowersource

iL

ωi

calculatorri _cYi =[vodi vodi]

T

Y-i =[vod(-i) vod(-i)]T

di+bi

1

di+bi

1

ˆ ˆi i i i i iif f f f f fW F r F Wφ κ= −�

ˆi

TfW

ifφ

ˆi

TgW

igφ ˆ ˆi i i i i ig g g i g g gW F r F Wφ κ= −�

Using Neural Network to compensate for unknown nonlinear dynamics

Load changePrimary alone!

Secondary

( ), ( )i i i iM x N x

1 1 2( ) ( )i i ii i i iu L L h L h v g F F

Page 82: Distributed Cooperative Control of AC Micro-grids

Multiobjective Distributed Secondary Control

Frequency Control

Voltage Control

Synchronizes frequencyCooperative tracker

Active load sharingCooperative regulator

Restore voltagesCooperative tracker

Reactive load sharingCooperative regulator

Page 83: Distributed Cooperative Control of AC Micro-grids

Voltage controlled VSI Current controlled VSI

As above

Page 84: Distributed Cooperative Control of AC Micro-grids

123

Voltage Synchronization

VCVSI are second order after FB lin

CCVSI are first order after FB lin

Heterogeneous MAS

Page 85: Distributed Cooperative Control of AC Micro-grids

124

Solution of Output regulator Equations for Chained Form Systems

He CaiJie Huang

He Cai

Page 86: Distributed Cooperative Control of AC Micro-grids

125