12
KAT / Distillation 1 Two-component distillation Multi-component distillation Short-cut methods Rigorous methods – Efficiency – Column design – Batch distillation – Packed column for distillation DISTILLATION KAT / Distillation 2 Two-component distillation KAT / Distillation 3 Two-component distillation Short-cut methods based on: Constant relative volatilities Equal molar heat of vaporisation Negligible heat of mixture • Methods: Graphical (McCabe-Thiele and H-x diagram) Numerical (Lewis-Sorel Method) Key parameters: Number of theoretical plates at total reflux Minimum number of plates Minimum reflux ratio, R m KAT / Distillation 4 Multicomponent distillation

Distillation 08

  • Upload
    ishhh12

  • View
    1.655

  • Download
    8

Embed Size (px)

Citation preview

Page 1: Distillation 08

KAT / Distillation 1

• Two-component distillation

• Multi-component distillation• Short-cut methods

• Rigorous methods– Efficiency– Column design– Batch distillation– Packed column for distillation

DISTILLATION

KAT / Distillation 2

Two-component distillation

KAT / Distillation 3

Two-component distillation

• Short-cut methods based on:– Constant relative volatilities– Equal molar heat of vaporisation– Negligible heat of mixture

• Methods:– Graphical (McCabe-Thiele and H-x diagram)– Numerical (Lewis-Sorel Method)

• Key parameters:– Number of theoretical plates at total reflux

• Minimum number of plates– Minimum reflux ratio, Rm

KAT / Distillation 4

Multicomponent distillation

Page 2: Distillation 08

KAT / Distillation 5

Multi-component distillation

• Several columns or one column with side-streams• Complex calculations• Operation in a column influence the operation in

other columns• Feedback

KAT / Distillation 6

Specify Operation. Degree of FreedomDegrees of freedom = number of variables - number

of design relationships

Column

• C+2 are always specified– Feed composition C– Feed rate 1– Feed enthalpy 1 – Feed Temperature 1 – Pressure 1

⎥⎦⎤

⎢⎣⎡

+=⎥⎦⎤

⎢⎣⎡

6 )C( feed incomponents of Number

freedomof Degrees

KAT / Distillation 7

Specify Operation. Grades of Freedom

• Specify required separation, e.g. – purity of one or more products – recovery of one or more components

• Four variables remain to specify, e.g.,– Flow rate for Distillate / Bottom product – Reflux ratio– Number of plates– Concentrations (two)

• Do not over-specify

KAT / Distillation 8

Multi-component methods Rating methods

Existing column determine the separation• Input Data:

– Number of plates– Feed location– Reflux ratio– Distillate rate / feed rate

• Output Data:– Distillate composition– Bottom products composition– (Concentration and temperature profiles)

Page 3: Distillation 08

KAT / Distillation 9

Multi-component methodsDesign methods

Given separation dimensioning the column• Input Data:

– Distillate composition– Optimum feed stage– Bottom products composition– Design: use the minimum reflux ratio (Rm)

• Output Data:– Number of plates – Feed location– Reflux ratio,– Distillate flowrate

KAT / Distillation 10

Short-cut methods/ Multi-component• Empirical relationships, assumptions:

– (Saturated reflux, constant relative volatility, non-azeotropic mixture). Simple calculations

• Rating method:• S-B (Smith-Brinkley). Analytical solution for

separation (Perry)

• Design method:• FUEM (Fenske-Underwood-Erbar-Maddox) • FUG (Fenske-Underwood-Gilliland)

KAT / Distillation 11

FUEM/FUG method

• Step 1 Define key components:– Light key component = lightest component in the

bottom product– Heavy key components = heaviest component in

the distillate

HKLK

KAT / Distillation 12

FUEM/FUG method• Step 2 Specify

– Separation of the light and heavy key component– Reflux Ratio (actual Reflux) /(minimum Reflux)– Feed location

• Step 3 Estimate the minimum number of ideal plates, n - Total Reflux

Fenske’s equ. [ ]AvHK,LK

BLK

HK

DHK

LK

log

xx

xxlog

1nα

⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

=+

Page 4: Distillation 08

KAT / Distillation 13

• Step 4 Estimate minimum reflux ratio, Rm

Underwood’s method

– θ are the root of equ. CR2-11.114

q = Fraction of liquid at boiling point in the feedαHK< θ< αLK

FUEM/FUG method

∑ θ−α⋅α

=+j HK,j

jdHK,j

mx

1R

∑ θ−α⋅α

=−j HK,j

jfHK,j x

q1

KAT / Distillation 14

• Step 5 Estimate number of required ideal plates, n:

– Erbar-Maddox diagram

– Gillilands diagram (CR2 Fig 11.42)

Relationship between number of ideal stages, N and reflux ratio, R where Nm and Rm are parameters

FUEM/FUG method

KAT / Distillation 15

Erbar-Maddox diagram

KAT / Distillation 16

Gillilands diagramRm = Minimum reflux ratioNm = Minimum number of ideal stage, (n+1)

Line-line scale Log-log scale

Page 5: Distillation 08

KAT / Distillation 17

Rigorous methods

• For each plate:– Mass balance for each components– Energy balance– Vapour-Liquid Equilibrium– Other (e.g., mixtures properties)

• Nonlinear equation system

KAT / Distillation 18

Rigorous methods

• Different methods solve equations system in different ways.

• High accuracy • Other methods (Perry, 7th Ed, 13-39)

– Matrix method: Naphtali and Sandholm

KAT / Distillation 19

Efficiency

• Usually less than 1.0• Vapour-liquid equilibrium is not reach in

each plate. Poor contact between the phases:• Too large vapor flow rate• Big bubbles• Low liquid depth on the plate• Poor flow distribution on the plate. Stagnant

liquid

KAT / Distillation 20

Efficiency• Efficiency

– Overall column efficiency– Murphree plate or Local efficiency

not applicable for multi-component distillation

• Overall column efficiency

traysactual ofNumber plates ideal ofNumber

efficiencycolumn Overall =

⎥⎥⎦

⎢⎢⎣

Page 6: Distillation 08

KAT / Distillation 21

Overall column efficiency• Overall column efficiency:

– Decreases with viscosity and relative volatility(surface tension)

– May decrease slightly with vapor flow and increases with liquid flow

– Dependent on geometry of the tray – Increases with pressure

• Empirical relationships.– Efficiency vs. (viscosity) • (relative volatility)

(O´Connell based on hydrocarbon – systems)– Efficiency vs. vapour flow rate (F-factor)

KAT / Distillation 22

Overall column efficiency

Make sure that the plate operate properlywithout weeping or flooding

Misoperation such as excessive foaming, entrainment, weeping etc. lowers the plate efficiency

KAT / Distillation 23

Quick estimation of overall effciency

KAT / Distillation 24

Typical data for efficiency

Page 7: Distillation 08

KAT / Distillation 25

Azeotropic / extractive distillation

• Cases– Separation of components is difficult– Azeotropic mixture

• Azeotropic distillation– Add en new component (entrainer) to form an

azeotrop• Extractive distillation

– Add en new component (extractive agent) that modify the relative volatility

KAT / Distillation 26

Azeotropic Distillation

KAT / Distillation 27

Extractive Distillation

KAT / Distillation 28

Batch distillation

– Unequal feed– Small amount– Several fractions,

high purity– The process can

be tracked

Page 8: Distillation 08

KAT / Distillation 29

Batch distillation• Methods of operation

– Constant reflux ratio• Distillate purity decreases with time

– Constant distillate composition• Reflux ratio must increase continuously

• Calculations (Operation varies with time)– Short-cut methods:

• Based i Fenske-Underwood-Gilliland (FUG)– Rigorous methods:

• Transient differential equation for each plate

KAT / Distillation 30

Constant Reflux Ratio

KAT / Distillation 31

Constant distillate composition

KAT / Distillation 32

Criteria to choose types of trays

• General aspects– Vapor flow capacity– Liquid flow capacity– Flexibility– Pressure drop– Cost

• Operating range (CR2 Fig.11.54) for stableoperation – Operating limits

Page 9: Distillation 08

KAT / Distillation 33

Operating range - Performance diagram

Limitedrange of vapor and liquidflow rates

KAT / Distillation 34

Types of trays

KAT / Distillation 35

Bottnar

• Bubble Cap Trays– Expensive – high pressure drop – can handle

very low liquid flow – can handle very lowvapor flow – large operating range

• Sieve trays– Simple construction – cheap – low pressure

drop – smaller operating range• Valve Trays

– Rather cheap – low pressure drop – largeoperating range and flexible

KAT / Distillation 36

Design of colomn for distillation

• Diameter determined from:– Upper limit of vapor velocity

• Liquid entrainment• Pressure drop – flooding

• Number of actual plates determined by:– Separation – Efficiency

• Plate spacing determined from criterion:– Extent of entrainment (Medstänkning) – Pressure drop

Page 10: Distillation 08

KAT / Distillation 37

Distillation in Packed Columns

• when the separation is easy• unsuitable for low liquid reflux

Packed bed height based on• HETP (Height Equivalent of a Theoretical Plate)

stages ideal ofNumber packing ofHeight

HETP⎥⎥⎦

⎢⎢⎣

⎡⎥⎥⎦

⎢⎢⎣

=

KAT / Distillation 38

HETP

packingsfor ConstantsC and C,Cheight PackedZ

diameterColumn d vapour theof velocity Mass'G

ραμZcd'GCHETP

321

C

L

L1/33C2C

1

====

⋅⋅⋅=

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

⇒⇒drop Pressure

HigherHETPLower

PackningSmaller

KAT / Distillation 39

HETP for Full-scale Plant

Type of packing, application HETP, (m)

25 mm diam. packing 0.46

38 mm diam. packing 0.66

50 mm diam. packing 0.90

Absorption duty 1.5 - 1.8

Small columns (d< 0.6 m) Column diameter

Vacuum columns Values above + 0.1m

KAT / Distillation 40

HTU (Height transfer unit)

• Number of transfer units

ZH1Z

'Ga'k

yydyN

G

Gy

y iG

t

b

==−

= ∫

ZH1Z

'La'k

xxdxN

L

Lx

x iL

t

b

==−

= ∫

Page 11: Distillation 08

KAT / Distillation 41

HTU (Height of a Transfer Unit)

• Height, Z

– A low value of HG or HL corresponds to an efficient column

• Height of an overall transfer unit

LLGG NHZNHZ ⋅=⋅=

aKLH

aKGH '

l

'

OL'g

'

OG ⋅=

⋅=

KAT / Distillation 42

KAT / Distillation 43 KAT / Distillation 44

Page 12: Distillation 08

KAT / Distillation 45 KAT / Distillation 46

KAT / Distillation 47 KAT / Distillation 48