81
Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND SAMI RAATIKAINEN TWIST AND OXIDATIVE STRESS RELATED BIOMARKERS IN OUTCOME PREDICTION OF PROSTATE CANCER PATIENTS TREATED WITH RADICAL PROSTATECTOMY

Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

DIS

SE

RT

AT

ION

S | S

AM

I RA

AT

IKA

INE

N | T

WIS

T A

ND

OX

IDA

TIV

E S

TR

ES

S R

EL

AT

ED

BIO

MA

RK

ER

S... | N

o 340

uef.fi

PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND

Dissertations in Health Sciences

ISBN 978-952-61-2069-0ISSN 1798-5706

Dissertations in Health Sciences

PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND

SAMI RAATIKAINEN

TWIST AND OXIDATIVE STRESS RELATED BIOMARKERS IN OUTCOME PREDICTION OF PROSTATE CANCER

PATIENTS TREATED WITH RADICAL PROSTATECTOMY

This retrospective study examined the predictive value of the EMT marker TWIST and oxidative stress related biomolecules in prostate cancer patients after radical prostatectomy. Increased expression of TWIST, Nrf-2 and Prx6 was associated

with biochemical recurrence and augmented Nrf-2 expression predicted worse survival

of the patients. These biomarkers could help in developing a more accurate cancer risk

evaluation for prostate cancer patients after radical prostate surgery.

SAMI RAATIKAINEN

Page 2: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF
Page 3: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

   

   

SAMI RAATIKAINEN

TWIST  and  Oxidative  Stress  Related  Biomarkers  in  Outcome  Prediction  of  Prostate  Cancer  Patients  Treated  with  

Radical  Prostatectomy    

 

     

       

   

To  be  presented  by  permission  of  the  Faculty  of  Health  Sciences,  University  of  Eastern  Finland  for  public  examination  in  Auditorium  2,  Kuopio  University  Hospital,  Kuopio,  on    Friday,  May  13th    

2016,  at  12  noon      

Publications  of  the  University  of  Eastern  Finland    Dissertations  in  Health  Sciences    

Number  340      

Departments  of  Surgery  and  Pathology  and  Forensic  Medicine,  Institute  of  Clinical  Medicine,    School  of  Medicine,  University  of  Eastern  Finland  

 Departments  of  Surgery  and  Clinical  Pathology,  Kuopio  University  Hospital  Kuopio  

2016  

Page 4: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

 

                               

Grano  Oy  Kuopio,  2016  

 Series  Editors:    

Professor  Veli-­‐‑Matti  Kosma,  M.D.,  Ph.D.  Institute  of  Clinical  Medicine,  Pathology  

Faculty  of  Health  Sciences    

Professor  Hannele  Turunen,  Ph.D.  Department  of  Nursing  Science  

Faculty  of  Health  Sciences    

Professor  Olli  Gröhn,  Ph.D.  A.I.  Virtanen  Institute  for  Molecular  Sciences  

Faculty  of  Health  Sciences    

Professor  Kai  Kaarniranta,  M.D.,  Ph.D.  Institute  of  Clinical  Medicine,  Ophthalmology  

Faculty  of  Health  Sciences      

Lecturer  Veli-­‐‑Pekka  Ranta,  Ph.D.  (pharmacy)  School  of  Pharmacy  

Faculty  of  Health  Sciences    

Distributor:    University  of  Eastern  Finland  

Kuopio  Campus  Library  P.O.Box  1627  

FI-­‐‑70211  Kuopio,  Finland  http://www.uef.fi/kirjasto  

 ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2069-­‐‑0  ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2070-­‐‑6  

ISSN  (print):  1798-­‐‑5706  ISSN  (pdf):  1798-­‐‑5714  

ISSN-­‐‑L:  1798-­‐‑5706

III    

 

Author’s  address:   Department  of  Surgery  Kuopio  University  Hospital  KUOPIO  FINLAND  

 Supervisors:   Professor  Ylermi  Soini,  M.D.,  Ph.D.  

Institute  of  Clinical  Medicine,  Pathology  and  Forensic  Medicine  University  of  Eastern  Finland  KUOPIO  FINLAND    Docent  Sirpa  Aaltomaa,  M.D.,  Ph.D.  Department  of  Surgery  Kuopio  University  Hospital  KUOPIO  FINLAND    Docent  Vesa  Kärjä,  M.D.,  Ph.D.  Department  of  Clinical  Pathology  Kuopio  University  Hospital  KUOPIO  FINLAND  

 Reviewers:   Docent  Juha  Koskimäki,  MD.,  Ph.D.  

Department  of  Urology  Tampere  University  Hospital  TAMPERE  FINLAND  

 Docent  Tuomas  Mirtti,  MD.,  Ph.D.  Department  of  Pathology,  Haartman  Institute  University  of  Helsinki  HELSINKI  FINLAND  

 Opponent:   Docent  Mika  Matikainen,  M.D.,  Ph.D.  

Department  of  Urology  Helsinki  University  Central  Hospital  HELSINKI  FINLAND  

   

Page 5: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

 

                               

Grano  Oy  Kuopio,  2016  

 Series  Editors:    

Professor  Veli-­‐‑Matti  Kosma,  M.D.,  Ph.D.  Institute  of  Clinical  Medicine,  Pathology  

Faculty  of  Health  Sciences    

Professor  Hannele  Turunen,  Ph.D.  Department  of  Nursing  Science  

Faculty  of  Health  Sciences    

Professor  Olli  Gröhn,  Ph.D.  A.I.  Virtanen  Institute  for  Molecular  Sciences  

Faculty  of  Health  Sciences    

Professor  Kai  Kaarniranta,  M.D.,  Ph.D.  Institute  of  Clinical  Medicine,  Ophthalmology  

Faculty  of  Health  Sciences      

Lecturer  Veli-­‐‑Pekka  Ranta,  Ph.D.  (pharmacy)  School  of  Pharmacy  

Faculty  of  Health  Sciences    

Distributor:    University  of  Eastern  Finland  

Kuopio  Campus  Library  P.O.Box  1627  

FI-­‐‑70211  Kuopio,  Finland  http://www.uef.fi/kirjasto  

 ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2069-­‐‑0  ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2070-­‐‑6  

ISSN  (print):  1798-­‐‑5706  ISSN  (pdf):  1798-­‐‑5714  

ISSN-­‐‑L:  1798-­‐‑5706

III    

 

Author’s  address:   Department  of  Surgery  Kuopio  University  Hospital  KUOPIO  FINLAND  

 Supervisors:   Professor  Ylermi  Soini,  M.D.,  Ph.D.  

Institute  of  Clinical  Medicine,  Pathology  and  Forensic  Medicine  University  of  Eastern  Finland  KUOPIO  FINLAND    Docent  Sirpa  Aaltomaa,  M.D.,  Ph.D.  Department  of  Surgery  Kuopio  University  Hospital  KUOPIO  FINLAND    Docent  Vesa  Kärjä,  M.D.,  Ph.D.  Department  of  Clinical  Pathology  Kuopio  University  Hospital  KUOPIO  FINLAND  

 Reviewers:   Docent  Juha  Koskimäki,  MD.,  Ph.D.  

Department  of  Urology  Tampere  University  Hospital  TAMPERE  FINLAND  

 Docent  Tuomas  Mirtti,  MD.,  Ph.D.  Department  of  Pathology,  Haartman  Institute  University  of  Helsinki  HELSINKI  FINLAND  

 Opponent:   Docent  Mika  Matikainen,  M.D.,  Ph.D.  

Department  of  Urology  Helsinki  University  Central  Hospital  HELSINKI  FINLAND  

   

Page 6: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

IV  

 

   

V  

 

Raatikainen,  Sami  TWIST  and  Oxidative  Stress  Related  Biomarkers   in  Outcome  Prediction  of  Prostate  Cancer  Patients  Treated  with  Radical  Prostatectomy  University  of  Eastern  Finland,  Faculty  of  Health  Sciences  Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  Number  340.  2016.  59  p.    ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2069-­‐‑0  ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2070-­‐‑6      ISSN  (print):  1798-­‐‑5706  ISSN  (pdf):  1798-­‐‑5714  ISSN-­‐‑L:  1798-­‐‑5706      ABSTRACT Prostate   cancer   (PC)   is   the  most   frequently   diagnosed   cancer   in   Finnish  men   due   to   the  common  practice  of  testing  for  the  presence  of  prostate  specific  antigen.  Most  of  the  organ  confined  PC  cases  have  an   excellent  prognosis   and  only  a  minority  of   the  patients   suffer  from  a  life-­‐‑threatening  disease.  The  evaluation  of  the  cancer  risk  is  based  on  clinical  factors  and   pathological   analysis   of   a   biopsy   sample.   Additional   data   for   assessment   of   cancer  aggressiveness   are   gathered   from   the   analysis   of   a   prostatectomy   preparate   after   radical  prostatectomy   (RP).   The   accuracy  of   these  parameters   tends   to   be   insufficient   in   cases   of  localised  PC.  There  is  still  a  need  for  new  prognostic  tools  in  the  cancer  risk  assessment  to  assist  in  prediction  of  the  patient’s  outcome  and  to  help  in  choosing  optimal  strategies  for  adjuvant  therapies.     It   is   known   that   the   epithelial-­‐‑mesenchymal   transition   (EMT)   process   and   oxidative  stress   linked   pathways   are   activated   in   many   cancer   types.   Increased   concentrations   of  cellular   signalling   molecules   for   these   pathological   processes   associate   with   aggressive  behaviour   of   tumours.   In   this   study,   the   expressions   of   several   proteins   implicated   in  prostate   cancer   pathology,   i.e.   the   EMT-­‐‑marker   TWIST,   androgen   receptor   and   oxidative  stress   related   proteins   8-­‐‑hydroxydeoxyguanosine   (8-­‐‑OHDG),   nuclear   factor   erythroid   2-­‐‑related  factor  2  (Nrf-­‐‑2),  peroxiredoxins  (Prx)  1,  2,  5  and  6  and  sulfiredoxin  were  analysed  in  samples  obtained  from  240  PC  patients  after  RP.  The  results  were  compared  with  important  clinicopathological   factors,   such   as   pathological   stage,   Gleason   score,   surgical   margin  status,  and  the  patient’s  outcome.       TWIST,  8-­‐‑OHDG  and  Nrf-­‐‑2  concentrations  were  found  to  be  elevated  in  malignant  tissue  in  comparison  to  benign  tissue.  Many  conventional  clinical  prognosticators  were  associated  with   increased   expression   of   TWIST,   Nrf-­‐‑2   and   Prxs.   Elevated   TWIST,   Nrf-­‐‑2   and   Prx6  expression   predicted   shortened   biochemical   recurrence   free   survival.   The   augmented  expression  of  Nrf-­‐‑2  was  also  an  independent  predictor  of  poor  overall  survival.  

The   results   of   the   current   study   indicate   that   TWIST   and   oxidative   stress   related  biomarkers   are   associated  with   aggressive  behaviour   in   localised  PC.   In   the   future,   these  molecules  could  be  developed  into  candidate  indicators  to  aid  in  the  cancer  risk  evaluation  of  PC  patients.    National  Library  of  Medicine  Classification:  WJ  762,  WJ  768,  WB  142,  QZ  180  Medical   Subject   Headings:   Prostatic   Neoplasms;   Prostatectomy;   Prognosis;   Biomarkers,   Tumor;   Epithelial-­‐‑Mesenchymal  Transition;  Receptors,  Androgen;  Oxidative  Stress      

Page 7: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

IV  

 

   

V  

 

Raatikainen,  Sami  TWIST  and  Oxidative  Stress  Related  Biomarkers   in  Outcome  Prediction  of  Prostate  Cancer  Patients  Treated  with  Radical  Prostatectomy  University  of  Eastern  Finland,  Faculty  of  Health  Sciences  Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  Number  340.  2016.  59  p.    ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2069-­‐‑0  ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2070-­‐‑6      ISSN  (print):  1798-­‐‑5706  ISSN  (pdf):  1798-­‐‑5714  ISSN-­‐‑L:  1798-­‐‑5706      ABSTRACT Prostate   cancer   (PC)   is   the  most   frequently   diagnosed   cancer   in   Finnish  men   due   to   the  common  practice  of  testing  for  the  presence  of  prostate  specific  antigen.  Most  of  the  organ  confined  PC  cases  have  an   excellent  prognosis   and  only  a  minority  of   the  patients   suffer  from  a  life-­‐‑threatening  disease.  The  evaluation  of  the  cancer  risk  is  based  on  clinical  factors  and   pathological   analysis   of   a   biopsy   sample.   Additional   data   for   assessment   of   cancer  aggressiveness   are   gathered   from   the   analysis   of   a   prostatectomy   preparate   after   radical  prostatectomy   (RP).   The   accuracy  of   these  parameters   tends   to   be   insufficient   in   cases   of  localised  PC.  There  is  still  a  need  for  new  prognostic  tools  in  the  cancer  risk  assessment  to  assist  in  prediction  of  the  patient’s  outcome  and  to  help  in  choosing  optimal  strategies  for  adjuvant  therapies.     It   is   known   that   the   epithelial-­‐‑mesenchymal   transition   (EMT)   process   and   oxidative  stress   linked   pathways   are   activated   in   many   cancer   types.   Increased   concentrations   of  cellular   signalling   molecules   for   these   pathological   processes   associate   with   aggressive  behaviour   of   tumours.   In   this   study,   the   expressions   of   several   proteins   implicated   in  prostate   cancer   pathology,   i.e.   the   EMT-­‐‑marker   TWIST,   androgen   receptor   and   oxidative  stress   related   proteins   8-­‐‑hydroxydeoxyguanosine   (8-­‐‑OHDG),   nuclear   factor   erythroid   2-­‐‑related  factor  2  (Nrf-­‐‑2),  peroxiredoxins  (Prx)  1,  2,  5  and  6  and  sulfiredoxin  were  analysed  in  samples  obtained  from  240  PC  patients  after  RP.  The  results  were  compared  with  important  clinicopathological   factors,   such   as   pathological   stage,   Gleason   score,   surgical   margin  status,  and  the  patient’s  outcome.       TWIST,  8-­‐‑OHDG  and  Nrf-­‐‑2  concentrations  were  found  to  be  elevated  in  malignant  tissue  in  comparison  to  benign  tissue.  Many  conventional  clinical  prognosticators  were  associated  with   increased   expression   of   TWIST,   Nrf-­‐‑2   and   Prxs.   Elevated   TWIST,   Nrf-­‐‑2   and   Prx6  expression   predicted   shortened   biochemical   recurrence   free   survival.   The   augmented  expression  of  Nrf-­‐‑2  was  also  an  independent  predictor  of  poor  overall  survival.  

The   results   of   the   current   study   indicate   that   TWIST   and   oxidative   stress   related  biomarkers   are   associated  with   aggressive  behaviour   in   localised  PC.   In   the   future,   these  molecules  could  be  developed  into  candidate  indicators  to  aid  in  the  cancer  risk  evaluation  of  PC  patients.    National  Library  of  Medicine  Classification:  WJ  762,  WJ  768,  WB  142,  QZ  180  Medical   Subject   Headings:   Prostatic   Neoplasms;   Prostatectomy;   Prognosis;   Biomarkers,   Tumor;   Epithelial-­‐‑Mesenchymal  Transition;  Receptors,  Androgen;  Oxidative  Stress      

Page 8: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

VI  

 

                                                                                                             

VII  

 

Raatikainen,  Sami  TWIST:n   ja   oksidatiiviseen   stressiin   liittyvien   biomarkkereiden   merkitys   radikaalileikkauksella   hoidettujen  eturauhassyöpäpotilaiden  ennusteen  arvioinnissa.  Itä-­‐‑Suomen  yliopisto,  terveystieteiden  tiedekunta  Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  Numero  340.  2016.  59  s.    ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2069-­‐‑0  ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2070-­‐‑6      ISSN  (print):  1798-­‐‑5706  ISSN  (pdf):  1798-­‐‑5714  ISSN-­‐‑L:  1798-­‐‑5706    TIIVISTELMÄ Eturauhassyöpä   on   miesten   yleisimmin   diagnosoitu   syöpätauti   Suomessa   lisääntyneen  prostataspesifisenantigeenin   testauksen   vuoksi.   Suurimmalla   osalla   potilasta,   joilla   syöpä  on  rajoittunut  eturauhaseen,  ennuste  on  erinomainen  ja  vain  pienellä  osalla  potilasta  tauti  kehittyy   henkeä   uhkaavaksi.   Syövän   riskin   arviointi   perustuu   kliinisiin   tekijöihin   ja  eturauhasnäytteen  patologisiin  tietoihin.  Radikaalin  eturauhasen  poistoleikkauksen  jälkeen  lisätietoa   syövän   aggressiivisuudesta   saadaan   prostatapreparaatin   analyysistä.   Näiden  ennustetekijöiden   tarkkuus   on   rajallinen   paikallisen   eturauhassyövän   riskiarviossa.   On  edelleen   tarvetta   uusille   menetelmille   punnitessa   syövän   aggressiivisuutta   ja   tarvetta  lisähoidoille.     Aiemman   tutkimustiedon   perusteella,   epiteliaaliseen-­‐‑mesenkymaaliseen   transitioon  (EMT)   ja   oksidatiiviseen   stressiin   liittyvät   säätelyjärjestelmät   ovat   aktivoituneet   monissa  syöpätyypeissä.  Suurentuneita  pitoisuuksia  näihin  prosesseihin  liittyviä  soluvälittäjäaineita  on  havaittu  aggressiivisesti  käyttäytyvissä  syövissä.  Tässä  tutkimuksessa  analysoitiin  EMT-­‐‑välittäjä  TWIST:n,  androgeenireseptorin,  8-­‐‑hydroksideguanosiinin  (8-­‐‑OHDG),  erythroid  2-­‐‑related   factor   2:n   (Nrf-­‐‑2),   peroksiredoksiinien   (Prx)   1,   2,   5   ja   6   ja   sulfiredoksiinin  ilmentymistä   240:n   radikaalileikkauksella   hoidetun   eturauhassyöpäpotilaan  kudosnäytteissä.   Tuloksia   verrattiin   kliinispatologisiin   tekijöihin,   kuten   patologiseen  levinneisyysluokkaan,   Gleason-­‐‑pisteisiin,   leikkausmarginaalin   puhtauteen   ja   potilaiden  tautivapaaseen  aikaan.     TWIST:n,   8-­‐‑OHDG:n   ja   Nrf-­‐‑2:n   ilmentyminen   oli   lisääntynyt   syöpäkudoksessa  verrattuna   hyvänlaatuiseen   kudokseen.   Monet   kliinispatologiset   tekijät   olivat   yhteydessä  TWIST:n,   Nrf-­‐‑2:n   ja   Prx:n   ilmentymiseen.   Lisääntynyt   TWIST-­‐‑,   Nrf-­‐‑2-­‐‑   ja   Prx6-­‐‑aktiivisuus  ennustivat   PSA:lla   mitattua   uusiutumaa.   Korkea   Nrf-­‐‑2-­‐‑ilmentyminen   myös   ennusti  itsenäisesti  yleistä  kuolleisuutta.     Tutkimuksen   tulokset   osoittavat,   että   TWIST   ja   oksidatiiviseen   stressiin   liittyvät  markkerit   ovat   yhteydessä   paikallisen   eturauhassyövän   aggressiiviseen   käyttäytymiseen.  Tulevaisuudessa  nämä  molekyylit  voisivat  soveltua  eturauhassyöpäpotilaiden  riskiarvioon.   Luokitus:  WJ  762,  WJ  768,  WB  142,  QZ  180  Yleinen  Suomalainen  asiasanasto:  Eturauhassyöpä;  Leikkaushoito;  Markkerit;  Oksidatiivinen  stressi    

Page 9: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

VI  

 

                                                                                                             

VII  

 

Raatikainen,  Sami  TWIST:n   ja   oksidatiiviseen   stressiin   liittyvien   biomarkkereiden   merkitys   radikaalileikkauksella   hoidettujen  eturauhassyöpäpotilaiden  ennusteen  arvioinnissa.  Itä-­‐‑Suomen  yliopisto,  terveystieteiden  tiedekunta  Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  Numero  340.  2016.  59  s.    ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2069-­‐‑0  ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2070-­‐‑6      ISSN  (print):  1798-­‐‑5706  ISSN  (pdf):  1798-­‐‑5714  ISSN-­‐‑L:  1798-­‐‑5706    TIIVISTELMÄ Eturauhassyöpä   on   miesten   yleisimmin   diagnosoitu   syöpätauti   Suomessa   lisääntyneen  prostataspesifisenantigeenin   testauksen   vuoksi.   Suurimmalla   osalla   potilasta,   joilla   syöpä  on  rajoittunut  eturauhaseen,  ennuste  on  erinomainen  ja  vain  pienellä  osalla  potilasta  tauti  kehittyy   henkeä   uhkaavaksi.   Syövän   riskin   arviointi   perustuu   kliinisiin   tekijöihin   ja  eturauhasnäytteen  patologisiin  tietoihin.  Radikaalin  eturauhasen  poistoleikkauksen  jälkeen  lisätietoa   syövän   aggressiivisuudesta   saadaan   prostatapreparaatin   analyysistä.   Näiden  ennustetekijöiden   tarkkuus   on   rajallinen   paikallisen   eturauhassyövän   riskiarviossa.   On  edelleen   tarvetta   uusille   menetelmille   punnitessa   syövän   aggressiivisuutta   ja   tarvetta  lisähoidoille.     Aiemman   tutkimustiedon   perusteella,   epiteliaaliseen-­‐‑mesenkymaaliseen   transitioon  (EMT)   ja   oksidatiiviseen   stressiin   liittyvät   säätelyjärjestelmät   ovat   aktivoituneet   monissa  syöpätyypeissä.  Suurentuneita  pitoisuuksia  näihin  prosesseihin  liittyviä  soluvälittäjäaineita  on  havaittu  aggressiivisesti  käyttäytyvissä  syövissä.  Tässä  tutkimuksessa  analysoitiin  EMT-­‐‑välittäjä  TWIST:n,  androgeenireseptorin,  8-­‐‑hydroksideguanosiinin  (8-­‐‑OHDG),  erythroid  2-­‐‑related   factor   2:n   (Nrf-­‐‑2),   peroksiredoksiinien   (Prx)   1,   2,   5   ja   6   ja   sulfiredoksiinin  ilmentymistä   240:n   radikaalileikkauksella   hoidetun   eturauhassyöpäpotilaan  kudosnäytteissä.   Tuloksia   verrattiin   kliinispatologisiin   tekijöihin,   kuten   patologiseen  levinneisyysluokkaan,   Gleason-­‐‑pisteisiin,   leikkausmarginaalin   puhtauteen   ja   potilaiden  tautivapaaseen  aikaan.     TWIST:n,   8-­‐‑OHDG:n   ja   Nrf-­‐‑2:n   ilmentyminen   oli   lisääntynyt   syöpäkudoksessa  verrattuna   hyvänlaatuiseen   kudokseen.   Monet   kliinispatologiset   tekijät   olivat   yhteydessä  TWIST:n,   Nrf-­‐‑2:n   ja   Prx:n   ilmentymiseen.   Lisääntynyt   TWIST-­‐‑,   Nrf-­‐‑2-­‐‑   ja   Prx6-­‐‑aktiivisuus  ennustivat   PSA:lla   mitattua   uusiutumaa.   Korkea   Nrf-­‐‑2-­‐‑ilmentyminen   myös   ennusti  itsenäisesti  yleistä  kuolleisuutta.     Tutkimuksen   tulokset   osoittavat,   että   TWIST   ja   oksidatiiviseen   stressiin   liittyvät  markkerit   ovat   yhteydessä   paikallisen   eturauhassyövän   aggressiiviseen   käyttäytymiseen.  Tulevaisuudessa  nämä  molekyylit  voisivat  soveltua  eturauhassyöpäpotilaiden  riskiarvioon.   Luokitus:  WJ  762,  WJ  768,  WB  142,  QZ  180  Yleinen  Suomalainen  asiasanasto:  Eturauhassyöpä;  Leikkaushoito;  Markkerit;  Oksidatiivinen  stressi    

Page 10: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

VIII  

 

       

IX    

 

 

 

 

 

 

 

 

 

          to  Kerttu  

 

 

 

 

Page 11: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

VIII  

 

       

IX    

 

 

 

 

 

 

 

 

 

          to  Kerttu  

 

 

 

 

Page 12: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

X  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XI    

 

Acknowledgements  

This  research  was  carried  out  in  the  Departments  of  Urology  and  Clinical  Pathology  in  Kuopio  University  Hospital  and  Department  of  Pathology  and  Forensic  Medicine  in  University  of  Eastern  Finland.    I  want  to  express  my  gratitude  and  respect  to  my  principal  supervisor,  Professor  Ylermi  Soini,  for  the  opportunity  to  join  this  research  team.  You  provided  the  best  scientific  knowledge  of  cancer  research  and  supported  me  during  this  study.    I  owe  my  deepest  thanks  to  my  supervisor  and  Chief  of  the  Urology  Department,  Docent  Sirpa  Aaltomaa,  for  sharing  her  experience  and  guidance.  You  taught  me  how  to  undertake  research  and  developed  my  scientific  writing  skills,  provided  advice  and  encouragement,  even  in  my  darkest  hours  of  despair.  

I  am  grateful  to  my  supervisor  Docent  Vesa  Kärjä  for  his  provision  of  such  excellent  expertise  in  pathology.  Your  guidance  and  support  have  been  indispensable  during  these  years.    I  would  like  to  thank  my  official  reviewers  Docent  Juha  Koskimäki  and  Docent  Tuomas  Mirtti  for  their  valuable  criticism  and  encouraging  comments.    I  wish  to  thank  Professor  Heikki  Kröger  for  his  support  and  making  it  possible  that  much  of  my  research  could  be  scheduled  during  the  working  hours  of  my  main  position  at  the  University.    I  thank  Mrs  Aija  Parkkinen  for  technical  assistance  in  the  laboratory,  Professor  Jorma  J.  Palvimo  for  providing  androgen  receptor  antibody  and  Ewen  MacDonald,  Ph.D.  for  revising  the  English  of  this  thesis.      I  wish  to  express  my  warmest  gratitude  to  my  friends  and  neighbours  and  colleagues  in  the  Department  of  Urology  for  their  encouragement  during  this  study.  I  also  want  to  thank  my  mother  Elina,  my  brother  Tommi  and  his  family  and  my  parents-­‐‑in-­‐‑law  Maija-­‐‑Leena  and  Ilkka  for  their  love  and  support.    Finally  I  owe  my  deepest  love  and  thankfulness  to  my  family.  My  lovely  and  precious  daughter  Kerttu,  you  have  brought  such  joy  into  my  life.  My  wife  Kaisa,  the  love  of  my  life,  there  are  no  words  to  express  my  gratitude  for  all  the  encouragement  and  patience  during  these  years.      Kuopio,  February  2016        Sami  Raatikainen  

Page 13: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

X  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XI    

 

Acknowledgements  

This  research  was  carried  out  in  the  Departments  of  Urology  and  Clinical  Pathology  in  Kuopio  University  Hospital  and  Department  of  Pathology  and  Forensic  Medicine  in  University  of  Eastern  Finland.    I  want  to  express  my  gratitude  and  respect  to  my  principal  supervisor,  Professor  Ylermi  Soini,  for  the  opportunity  to  join  this  research  team.  You  provided  the  best  scientific  knowledge  of  cancer  research  and  supported  me  during  this  study.    I  owe  my  deepest  thanks  to  my  supervisor  and  Chief  of  the  Urology  Department,  Docent  Sirpa  Aaltomaa,  for  sharing  her  experience  and  guidance.  You  taught  me  how  to  undertake  research  and  developed  my  scientific  writing  skills,  provided  advice  and  encouragement,  even  in  my  darkest  hours  of  despair.  

I  am  grateful  to  my  supervisor  Docent  Vesa  Kärjä  for  his  provision  of  such  excellent  expertise  in  pathology.  Your  guidance  and  support  have  been  indispensable  during  these  years.    I  would  like  to  thank  my  official  reviewers  Docent  Juha  Koskimäki  and  Docent  Tuomas  Mirtti  for  their  valuable  criticism  and  encouraging  comments.    I  wish  to  thank  Professor  Heikki  Kröger  for  his  support  and  making  it  possible  that  much  of  my  research  could  be  scheduled  during  the  working  hours  of  my  main  position  at  the  University.    I  thank  Mrs  Aija  Parkkinen  for  technical  assistance  in  the  laboratory,  Professor  Jorma  J.  Palvimo  for  providing  androgen  receptor  antibody  and  Ewen  MacDonald,  Ph.D.  for  revising  the  English  of  this  thesis.      I  wish  to  express  my  warmest  gratitude  to  my  friends  and  neighbours  and  colleagues  in  the  Department  of  Urology  for  their  encouragement  during  this  study.  I  also  want  to  thank  my  mother  Elina,  my  brother  Tommi  and  his  family  and  my  parents-­‐‑in-­‐‑law  Maija-­‐‑Leena  and  Ilkka  for  their  love  and  support.    Finally  I  owe  my  deepest  love  and  thankfulness  to  my  family.  My  lovely  and  precious  daughter  Kerttu,  you  have  brought  such  joy  into  my  life.  My  wife  Kaisa,  the  love  of  my  life,  there  are  no  words  to  express  my  gratitude  for  all  the  encouragement  and  patience  during  these  years.      Kuopio,  February  2016        Sami  Raatikainen  

Page 14: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XII  

 

This  study  was  supported  financially  by  the  Finnish  Urological  Association,  the  Finnish  Anti-­‐‑tuberculosis  Association  and  the  Finnish  Cancer  Society.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XIII  

 

List  of  the  original  publications  

 This  dissertation  is  based  on  the  following  original  publications:    

   

I Raatikainen  S,  Aaltomaa  S,  Palvimo  JJ,  Kärjä  V,  Soini  Y.  TWIST  overexpression  predicts  biochemical  recurrence-­‐‑free  survival  in  prostate  cancer  patients  treated  with  radical  prostatectomy.  Scand  J  Urol  49(1):  51-­‐‑7,  2015.    

II Raatikainen  S,  Aaltomaa  S,  Kärjä  V,  Soini  Y.  Increased  nuclear  factor  erythroid  2-­‐‑related  factor  2  expression  predicts  worse  prognosis  of  prostate  cancer  patients  treated  with  radical  prostatectomy.  Hum  Pathol.  45(11):  2211-­‐‑7,  2014.    

III Raatikainen  S,  Aaltomaa  S,  Kärjä  V,  Soini  Y.    Increased  peroxiredoxin  6  expression  predicts  biochemical  recurrence  in  prostate  cancer  patients  after  radical  prostatectomy.  Anticancer  Res.  35(12):6465-­‐‑70,  2015.    

   The  publications  were  adapted  with  the  permission  of  the  copyright  owners.  

     

Page 15: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XII  

 

This  study  was  supported  financially  by  the  Finnish  Urological  Association,  the  Finnish  Anti-­‐‑tuberculosis  Association  and  the  Finnish  Cancer  Society.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XIII  

 

List  of  the  original  publications  

 This  dissertation  is  based  on  the  following  original  publications:    

   

I Raatikainen  S,  Aaltomaa  S,  Palvimo  JJ,  Kärjä  V,  Soini  Y.  TWIST  overexpression  predicts  biochemical  recurrence-­‐‑free  survival  in  prostate  cancer  patients  treated  with  radical  prostatectomy.  Scand  J  Urol  49(1):  51-­‐‑7,  2015.    

II Raatikainen  S,  Aaltomaa  S,  Kärjä  V,  Soini  Y.  Increased  nuclear  factor  erythroid  2-­‐‑related  factor  2  expression  predicts  worse  prognosis  of  prostate  cancer  patients  treated  with  radical  prostatectomy.  Hum  Pathol.  45(11):  2211-­‐‑7,  2014.    

III Raatikainen  S,  Aaltomaa  S,  Kärjä  V,  Soini  Y.    Increased  peroxiredoxin  6  expression  predicts  biochemical  recurrence  in  prostate  cancer  patients  after  radical  prostatectomy.  Anticancer  Res.  35(12):6465-­‐‑70,  2015.    

   The  publications  were  adapted  with  the  permission  of  the  copyright  owners.  

     

Page 16: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XIV  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XV  

 

Contents  

1  INTRODUCTION  ...............................................................................     1    2  REVIEW  OF  THE  LITERATURE  .....................................................     3  

2.1  Epidemiology  ..................................................................................     3  2.2  Risk  factors  ......................................................................................     3  2.3  Prevention  .......................................................................................     4  2.4  Diagnosis  .........................................................................................     4  

2.4.1  Clinical  diagnosis  ...................................................................     4  2.4.2  Tumor  node  metastasis  (TNM)  classification  ....................     4  2.4.3  Prostate  biopsy  .......................................................................     5  2.4.4  Prostate  specific  antigen  (PSA)  ............................................     5  2.4.5  Histology  and  Gleason  score  ...............................................     6  2.4.6  Risk  groups  .............................................................................     6  

2.5  Treatments  for  localised  prostate  cancer  (PC)  ............................     7  2.5.1  Active  surveillance  (AS)  .......................................................     7  2.5.2  Definitive  radiotherapy  (RT)    ...............................................     7  2.5.3  Radical  prostatectomy  (RP)    .................................................     7            2.5.3.1  Clinicopathological  prognosis  factors  ........................     7  

                               2.5.3.1.1  Capsule  invasion  ...................................................     8                                  2.5.3.1.2  Surgical  margin  status  ..........................................     8                                  2.5.3.1.3  Seminal  vesicle  invasion  .......................................     8                        2.5.3.2  Definition  of  biochemical  recurrence  (BCR)  after  RP     8  2.6  Biomolecular  prognostic  markers  ................................................     8  

2.6.1  Apoptosis  ................................................................................     9  2.6.2  Signal  transduction  ................................................................     9  2.6.3  Proliferation  and  cell  cycle  regulation  ................................     9  2.6.4  Angiogenesis  ..........................................................................     10  2.6.5  Androgen  receptor  (AR)  .......................................................     10  2.6.6  Cell  adhesion  ..........................................................................     10  

2.7  Epithelial-­‐‑mesenchymal  transition  (EMT)  ..................................     10  2.7.1  EMT-­‐‑related  transcription  factor  TWIST  and  cancer  .......     11  2.7.2  Role  of  TWIST  in  prostate  cancer  ........................................     12  

2.8  Oxidative  damage  ..........................................................................     13  2.8.1  Oxidative  stress  in  carcinogenesis  .......................................     13            2.8.1.1  8-­‐‑Hydroxydeoxyguanosine  (8-­‐‑OHDG)  ......................     14            2.8.1.2  Nuclear  factor  erythroid  2-­‐‑related  factor  2  (Nrf-­‐‑2)  ...     14            2.8.1.3  Peroxiredoxin  (Prx)  and  sulfiredoxin  (Srx)  ................     16  

 

3  AIMS  OF  THE  STUDY  ......................................................................     18    

 

 

Page 17: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XIV  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XV  

 

Contents  

1  INTRODUCTION  ...............................................................................     1    2  REVIEW  OF  THE  LITERATURE  .....................................................     3  

2.1  Epidemiology  ..................................................................................     3  2.2  Risk  factors  ......................................................................................     3  2.3  Prevention  .......................................................................................     4  2.4  Diagnosis  .........................................................................................     4  

2.4.1  Clinical  diagnosis  ...................................................................     4  2.4.2  Tumor  node  metastasis  (TNM)  classification  ....................     4  2.4.3  Prostate  biopsy  .......................................................................     5  2.4.4  Prostate  specific  antigen  (PSA)  ............................................     5  2.4.5  Histology  and  Gleason  score  ...............................................     6  2.4.6  Risk  groups  .............................................................................     6  

2.5  Treatments  for  localised  prostate  cancer  (PC)  ............................     7  2.5.1  Active  surveillance  (AS)  .......................................................     7  2.5.2  Definitive  radiotherapy  (RT)    ...............................................     7  2.5.3  Radical  prostatectomy  (RP)    .................................................     7            2.5.3.1  Clinicopathological  prognosis  factors  ........................     7  

                               2.5.3.1.1  Capsule  invasion  ...................................................     8                                  2.5.3.1.2  Surgical  margin  status  ..........................................     8                                  2.5.3.1.3  Seminal  vesicle  invasion  .......................................     8                        2.5.3.2  Definition  of  biochemical  recurrence  (BCR)  after  RP     8  2.6  Biomolecular  prognostic  markers  ................................................     8  

2.6.1  Apoptosis  ................................................................................     9  2.6.2  Signal  transduction  ................................................................     9  2.6.3  Proliferation  and  cell  cycle  regulation  ................................     9  2.6.4  Angiogenesis  ..........................................................................     10  2.6.5  Androgen  receptor  (AR)  .......................................................     10  2.6.6  Cell  adhesion  ..........................................................................     10  

2.7  Epithelial-­‐‑mesenchymal  transition  (EMT)  ..................................     10  2.7.1  EMT-­‐‑related  transcription  factor  TWIST  and  cancer  .......     11  2.7.2  Role  of  TWIST  in  prostate  cancer  ........................................     12  

2.8  Oxidative  damage  ..........................................................................     13  2.8.1  Oxidative  stress  in  carcinogenesis  .......................................     13            2.8.1.1  8-­‐‑Hydroxydeoxyguanosine  (8-­‐‑OHDG)  ......................     14            2.8.1.2  Nuclear  factor  erythroid  2-­‐‑related  factor  2  (Nrf-­‐‑2)  ...     14            2.8.1.3  Peroxiredoxin  (Prx)  and  sulfiredoxin  (Srx)  ................     16  

 

3  AIMS  OF  THE  STUDY  ......................................................................     18    

 

 

Page 18: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XVI  

 

4  MATERIALS  AND  METHODS  .......................................................     19  4.1  Study  population  ............................................................................     19  4.2  Histopathological  analyses  ...........................................................     21  4.3  Immunohistochemistry  .................................................................     22  4.4  Evaluation  of  the  expression  ........................................................     23  4.5  Statistical  analyses  ..........................................................................     26  4.6  Ethical  considerations  ....................................................................     26  

 5  RESULTS  ..............................................................................................     27  

5.1  TWIST  and  AR  expression  and  their  association  with                clinicopathological  prognostigators  (I)  .......................................     27  5.2  TWIST  and  AR  expressions  in  the  prediction  of  BFS  (I)  ..........     28  5.3  8-­‐‑OHDG  and  Nrf-­‐‑2  expression  and  their  association  with                clinicopathological  prognostigators  (II)  ......................................     29  5.4  Nrf-­‐‑2  expression  in  survival  analysis  (II)  ...................................     30  5.5  The  association  between  Prxs  and  Srx  and  clinicopathlological                            prognostigators  (III)  .......................................................................     32  5.6  Prx2  and  Prx6  expression  in  survival  analysis  (III)  ...................     32  

 6  DISCUSSION  ......................................................................................     34  

6.1  TWIST  and  AR  in  Prognosis  of  PC  (I)  .........................................     34  6.2  8-­‐‑OHDG  and  Nrf-­‐‑2  in  prognosis  of  PC  (II)  ................................     35  6.3  Prxs  and  Srx  in  prognosis  of  PC  (III)  ...........................................     36  6.4  Clinical  implications  ......................................................................     37  6.5  Limitations  ......................................................................................     38  6.6  Future  perspectives  ........................................................................     38    

7  SUMMARY  AND  CONCLUSIONS  ...............................................     39    8  REFERENCES  ......................................................................................     40    APPENDIX:  ORIGINAL  PUBLICATIONS  I-­‐‑III        

XVII  

 

Abbreviations  

 AKT2   V-­‐‑akt   murine   thymoma   viral  

oncogene  homolog  2    

AR   Androgen  receptor  

ARE   Antioxidant  response  element  

AS   Active  surveillance    

Bax   Bcl-­‐‑2-­‐‑like  protein  4  

Bcl-­‐‑2   B-­‐‑cell  lymphoma  2    

BCR   Biochemical  recurrence  

BFS   Biochemical   recurrence   free  

survival  

Bmi1   B-­‐‑cell-­‐‑specific   murine  

leukemia   virus   integration  

site  1  

CI   Confidence  interval  

c-­‐‑Nrf-­‐‑2   Nrf-­‐‑2  expression  in  cytoplasm  

cT   Clinical  stage  

DNA   Deoxyribonucleic  acid  

DRE   Digital  rectal  examination  

EDTA   Ethylendiaminetetraacetate  

EMT   Epithelial-­‐‑mesenchymal  

transition    

HER-­‐‑2   human   epidermal   growth  

factor  receptor  2        

HR   Hazard  ratio  

ISUP   International   Society   of  

Urological  Pathology    

Keap1   Kelch   ECH   associating  

protein  1    

Maf   Musculoaponeurotic  

fibrosarcoma   oncogene  

homolog  

M-­‐‑TWIST   TWIST   expression   in   the  

margin  area  of  tumour  

n-­‐‑Nrf-­‐‑2   Nrf-­‐‑2  expression  in  nucleus  

Nrf-­‐‑2   Nuclear   factor   erythroid   2-­‐‑

related  factor  2  

8-­‐‑OHDG   8-­‐‑Hydroxydeoxyguanosine  

OS   Overall  survivall  

p53   Tumour   suppressor   gene,  

phosphoprotein  53    

PBS     Phosphate  buffered  saline  

PC     Prostate  cancer  

PCS   Prostate   cancer   specific  

survival    

Prx   Peroxiredoxin      

PSA   Prostate  specific  antigen    

pT   Pathological  stage  

RALP     Robotic   assisted   radical  

prostatectomy  

Ras   Rat   sarcoma   viral   oncogene  

homolog  

ROS   Reactive  oxygen  species    

RP   Radical  prostatectomy    

RT   Radiotherapy    

SD   Standard  deviation  

Srx   Sulfiredoxin    

Page 19: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XVI  

 

4  MATERIALS  AND  METHODS  .......................................................     19  4.1  Study  population  ............................................................................     19  4.2  Histopathological  analyses  ...........................................................     21  4.3  Immunohistochemistry  .................................................................     22  4.4  Evaluation  of  the  expression  ........................................................     23  4.5  Statistical  analyses  ..........................................................................     26  4.6  Ethical  considerations  ....................................................................     26  

 5  RESULTS  ..............................................................................................     27  

5.1  TWIST  and  AR  expression  and  their  association  with                clinicopathological  prognostigators  (I)  .......................................     27  5.2  TWIST  and  AR  expressions  in  the  prediction  of  BFS  (I)  ..........     28  5.3  8-­‐‑OHDG  and  Nrf-­‐‑2  expression  and  their  association  with                clinicopathological  prognostigators  (II)  ......................................     29  5.4  Nrf-­‐‑2  expression  in  survival  analysis  (II)  ...................................     30  5.5  The  association  between  Prxs  and  Srx  and  clinicopathlological                            prognostigators  (III)  .......................................................................     32  5.6  Prx2  and  Prx6  expression  in  survival  analysis  (III)  ...................     32  

 6  DISCUSSION  ......................................................................................     34  

6.1  TWIST  and  AR  in  Prognosis  of  PC  (I)  .........................................     34  6.2  8-­‐‑OHDG  and  Nrf-­‐‑2  in  prognosis  of  PC  (II)  ................................     35  6.3  Prxs  and  Srx  in  prognosis  of  PC  (III)  ...........................................     36  6.4  Clinical  implications  ......................................................................     37  6.5  Limitations  ......................................................................................     38  6.6  Future  perspectives  ........................................................................     38    

7  SUMMARY  AND  CONCLUSIONS  ...............................................     39    8  REFERENCES  ......................................................................................     40    APPENDIX:  ORIGINAL  PUBLICATIONS  I-­‐‑III        

XVII  

 

Abbreviations  

 AKT2   V-­‐‑akt   murine   thymoma   viral  

oncogene  homolog  2    

AR   Androgen  receptor  

ARE   Antioxidant  response  element  

AS   Active  surveillance    

Bax   Bcl-­‐‑2-­‐‑like  protein  4  

Bcl-­‐‑2   B-­‐‑cell  lymphoma  2    

BCR   Biochemical  recurrence  

BFS   Biochemical   recurrence   free  

survival  

Bmi1   B-­‐‑cell-­‐‑specific   murine  

leukemia   virus   integration  

site  1  

CI   Confidence  interval  

c-­‐‑Nrf-­‐‑2   Nrf-­‐‑2  expression  in  cytoplasm  

cT   Clinical  stage  

DNA   Deoxyribonucleic  acid  

DRE   Digital  rectal  examination  

EDTA   Ethylendiaminetetraacetate  

EMT   Epithelial-­‐‑mesenchymal  

transition    

HER-­‐‑2   human   epidermal   growth  

factor  receptor  2        

HR   Hazard  ratio  

ISUP   International   Society   of  

Urological  Pathology    

Keap1   Kelch   ECH   associating  

protein  1    

Maf   Musculoaponeurotic  

fibrosarcoma   oncogene  

homolog  

M-­‐‑TWIST   TWIST   expression   in   the  

margin  area  of  tumour  

n-­‐‑Nrf-­‐‑2   Nrf-­‐‑2  expression  in  nucleus  

Nrf-­‐‑2   Nuclear   factor   erythroid   2-­‐‑

related  factor  2  

8-­‐‑OHDG   8-­‐‑Hydroxydeoxyguanosine  

OS   Overall  survivall  

p53   Tumour   suppressor   gene,  

phosphoprotein  53    

PBS     Phosphate  buffered  saline  

PC     Prostate  cancer  

PCS   Prostate   cancer   specific  

survival    

Prx   Peroxiredoxin      

PSA   Prostate  specific  antigen    

pT   Pathological  stage  

RALP     Robotic   assisted   radical  

prostatectomy  

Ras   Rat   sarcoma   viral   oncogene  

homolog  

ROS   Reactive  oxygen  species    

RP   Radical  prostatectomy    

RT   Radiotherapy    

SD   Standard  deviation  

Srx   Sulfiredoxin    

Page 20: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XVIII  

 

Trx   Thioredoxin  

TNM   Tumour  node  metastasis    

UICC   Union   International  Contre   le  

Cancer  

VEGF   Vascular   endothelial   growth  

factor    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  Introduction    

Prostate   cancer   (PC)   is   the   most   common   neoplasm   among   elderly   men   in   the   western  countries.   Currently,   it   is   diagnosed   more   often   at   an   early   stage   even   without   clinical  symptoms   due   to   the   increase   in   prostate   specific   antigen   (PSA)   testing   and   screening.  Many  of  the  patients  have  low  risk  disease  with  no  impact  on  life  expectancy  (Boyle,  Ferlay  2005,   Siegel   et   al.   2014,   Bosetti   et   al.   2011).   As   a   result   of   the   elevated   incidence   and  continuously  growing  proportion  of  elderly  men  in  the  developing  countries,  the  total  cost  of  PC  is  substantial  and  increasing;  in  2009,  it  was  estimated  to  be  8.43  billion  euros  in  the  European  Union  (Luengo-­‐‑Fernandez  et  al.  2013).    

Radical   prostatectomy   (RP)   is   commonly   offered   as   a   standard   curative   treatment   for  localised  PC.  However,   this  surgical  procedure   is  associated  with  adverse  effects,   such  as  erectile  dysfunction  and  urinary  incontinence  that  may  decrease  quality  of  life  (Sanda  et  al.  2008).  In  order  to  avoid  overtreatment  and  lessen  the  economic  burden,  patients  with  low  risk   PC   can   be   alternatively   recommended   to   be   subjected   to   active   surveillance   (AS)  instead  of  definite  treatment  (Bastian  et  al.  2009).  The  choice  of  either  surveillance  or  radical  treatment,  or  whether  or  not  to  provide  secondary  treatments  after  curative  procedures  can  be   challenging,   if   the   evaluation   is   only   based   on   conventional   clinicopathological  prognostic   factors.   In   order   to   predict   more   accurately   the   behavior   of   PC,   several  biomarkers  have  been  proposed  for  clinical  use.  Despite  some  promising  finding  in  cancer  research,   no   molecular   biomarker   has   been   demonstrated   to   be   suitable   and   sufficiently  reliable  for  use  in  the  clinic  (Heidenreich  et  al.  2011).    

Epithelial-­‐‑mesenchymal   transition   (EMT)   is   an   important   cellular   process   in  embryogenesis  causing  epithelial  cells   to   lose   their  cell  contacts  and  exhibit  mesenchymal  characteristics  after  a  remodelling  of  the  cytoskeleton.  In  addition  to  the  physiological  role  of  EMT-­‐‑phenomenon,  this  process   is  activated  in  carcinogenesis,  allowing  tumour  cells   to  become   invasive   and   seed   metastases   (Kang,   Massague   2004,   Thiery   2002).   The  transcription  factor  TWIST  is  an  inducer  of  EMT  and  its  overexpression  facilitates  tumour  progression  in  many  types  of  cancer  including  PC  (Yang  et  al.  2004,  Kwok  et  al.  2005).  The  regulatory   role  of  TWIST  has  not  only  been  confirmed   in   localised  and  advanced  PC  but  also  been  linked  to  androgen  receptor  (AR)  expression  (Shiota  et  al.  2010).  

Mammalian   cells   can   become   exposed   to   reactive   oxygen   species   (ROS);   these   are  generated   either   as   a   result   of   aerobic   respiration   under   physiological   conditions   or  produced  by   exogenous   stressors,   such  as   toxic   chemicals   and   radiation.  ROS  are   able   to  damage  many  cellular  macromolecules  not  only  proteins  but  also  those  in  lipid  layers  and  DNA.  During  conditions  of  oxidative  stress,  numerous  protective  pathways  are  activated,  leading  to  augmented  gene  expression  and  increased  levels  of  neutralizing  enzymes.  If  the  capacity   of  mechanisms   combating   against   ROS   is   overwhelmed,   the   cell   starts   to   suffer  oxidative  stress  with  the  associated  cellular  damage.  Oxidative  injury  has  been  found  to  be  linked   with   many   steps   of   carcinogenesis   including   cancer   initiation,   promotion   and  progression  (Karihtala,  Soini  2007).  

In   this   thesis,   the   expression   levels   of   TWIST,  AR   as  well   as   those   of   oxidative   stress  related   biomolecules   (8-­‐‑hydroxydeoxyguanosine   (8-­‐‑OHDG),   nuclear   factor   erythroid   2-­‐‑

Page 21: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

XVIII  

 

Trx   Thioredoxin  

TNM   Tumour  node  metastasis    

UICC   Union   International  Contre   le  

Cancer  

VEGF   Vascular   endothelial   growth  

factor    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  Introduction    

Prostate   cancer   (PC)   is   the   most   common   neoplasm   among   elderly   men   in   the   western  countries.   Currently,   it   is   diagnosed   more   often   at   an   early   stage   even   without   clinical  symptoms   due   to   the   increase   in   prostate   specific   antigen   (PSA)   testing   and   screening.  Many  of  the  patients  have  low  risk  disease  with  no  impact  on  life  expectancy  (Boyle,  Ferlay  2005,   Siegel   et   al.   2014,   Bosetti   et   al.   2011).   As   a   result   of   the   elevated   incidence   and  continuously  growing  proportion  of  elderly  men  in  the  developing  countries,  the  total  cost  of  PC  is  substantial  and  increasing;  in  2009,  it  was  estimated  to  be  8.43  billion  euros  in  the  European  Union  (Luengo-­‐‑Fernandez  et  al.  2013).    

Radical   prostatectomy   (RP)   is   commonly   offered   as   a   standard   curative   treatment   for  localised  PC.  However,   this  surgical  procedure   is  associated  with  adverse  effects,   such  as  erectile  dysfunction  and  urinary  incontinence  that  may  decrease  quality  of  life  (Sanda  et  al.  2008).  In  order  to  avoid  overtreatment  and  lessen  the  economic  burden,  patients  with  low  risk   PC   can   be   alternatively   recommended   to   be   subjected   to   active   surveillance   (AS)  instead  of  definite  treatment  (Bastian  et  al.  2009).  The  choice  of  either  surveillance  or  radical  treatment,  or  whether  or  not  to  provide  secondary  treatments  after  curative  procedures  can  be   challenging,   if   the   evaluation   is   only   based   on   conventional   clinicopathological  prognostic   factors.   In   order   to   predict   more   accurately   the   behavior   of   PC,   several  biomarkers  have  been  proposed  for  clinical  use.  Despite  some  promising  finding  in  cancer  research,   no   molecular   biomarker   has   been   demonstrated   to   be   suitable   and   sufficiently  reliable  for  use  in  the  clinic  (Heidenreich  et  al.  2011).    

Epithelial-­‐‑mesenchymal   transition   (EMT)   is   an   important   cellular   process   in  embryogenesis  causing  epithelial  cells   to   lose   their  cell  contacts  and  exhibit  mesenchymal  characteristics  after  a  remodelling  of  the  cytoskeleton.  In  addition  to  the  physiological  role  of  EMT-­‐‑phenomenon,  this  process   is  activated  in  carcinogenesis,  allowing  tumour  cells   to  become   invasive   and   seed   metastases   (Kang,   Massague   2004,   Thiery   2002).   The  transcription  factor  TWIST  is  an  inducer  of  EMT  and  its  overexpression  facilitates  tumour  progression  in  many  types  of  cancer  including  PC  (Yang  et  al.  2004,  Kwok  et  al.  2005).  The  regulatory   role  of  TWIST  has  not  only  been  confirmed   in   localised  and  advanced  PC  but  also  been  linked  to  androgen  receptor  (AR)  expression  (Shiota  et  al.  2010).  

Mammalian   cells   can   become   exposed   to   reactive   oxygen   species   (ROS);   these   are  generated   either   as   a   result   of   aerobic   respiration   under   physiological   conditions   or  produced  by   exogenous   stressors,   such  as   toxic   chemicals   and   radiation.  ROS  are   able   to  damage  many  cellular  macromolecules  not  only  proteins  but  also  those  in  lipid  layers  and  DNA.  During  conditions  of  oxidative  stress,  numerous  protective  pathways  are  activated,  leading  to  augmented  gene  expression  and  increased  levels  of  neutralizing  enzymes.  If  the  capacity   of  mechanisms   combating   against   ROS   is   overwhelmed,   the   cell   starts   to   suffer  oxidative  stress  with  the  associated  cellular  damage.  Oxidative  injury  has  been  found  to  be  linked   with   many   steps   of   carcinogenesis   including   cancer   initiation,   promotion   and  progression  (Karihtala,  Soini  2007).  

In   this   thesis,   the   expression   levels   of   TWIST,  AR   as  well   as   those   of   oxidative   stress  related   biomolecules   (8-­‐‑hydroxydeoxyguanosine   (8-­‐‑OHDG),   nuclear   factor   erythroid   2-­‐‑

Page 22: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

2  

 

related   factor   2   (Nrf-­‐‑2),   peroxiredoxins   (Prx)   1,   2,   5   and   6   and   sulfiredoxin   (Srx))   were  analysed  by  immunohistochemistry  in  samples  of  PC  patients  who  had  been  treated  by  RP.  By   comparing   the   results   with   conventional   clinicopathological   factors,   biochemical  recurrence  and  survival,  their  role  as  biomarkers  was  evaluated  in  cancer  prognosis.    

 

 

 

 

 

 

 

 

 

3    

 

2  Review  of  the  Literature    

2.1 EPIDEMIOLOGY

PC  is  the  most  frequent  malignancy  experienced  by  elderly  men  in  Europe.  In  Finland,  4778  new   cases   were   diagnosed   in   2013.   Due   to   good   prognosis   of   the   average   patient,   there  were  45690  patients   living  with   the  disease  during   that   same  period.  There  were  854  PC-­‐‑related  deaths  registered  during  the  year  2013  in  Finland  which  means  that  PC  is  still   the  second  leading  cause  of  cancer  deaths.  It  is  believed  that  PSA-­‐‑screening  and  early  detection  have   augmented   the  detection  of   localised  PC   compared   to  distant   stage  disease.  During  the   last  decades,   relative   survival   for  PC  has   increased   slightly   (Figure  1)(Finnish  Cancer  Registry  2015,  Arnold  et  al.  2015,  De  Angelis  et  al.  2014,  Schroder  et  al.  2012).    

 

Figure 1. Number of new cases and age-adjusted mortality trends of the most common malignancies among Finnish men (Finnish Cancer Registry 2015).

2.2 RISK FACTORS

The  mechanisms  linked  with  the  risk  of  development  of  PC  are  not  well  established.  Based  on  epidemiological  findings,  increasing  age,  ethnic  origin  and  heredity  are  some  of  the  few  well-­‐‑known   risk   factors.   In   studies   conducted   with   autopsy   material,   incidental   PC  prevalence  increases  with  age  from  3–8%  at  age  <35  years  to  48–71%  at  age  >79  years  (Bell  et  al.   2015).   In   the   black-­‐‑skinned   races,   PC   incidence   and   mortality   is   higher   compared   to  white-­‐‑skinned  populations  (Siegel  et  al.  2014).  It  is  estimated  that  only  9%  of  patients  have  a  

Page 23: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

2  

 

related   factor   2   (Nrf-­‐‑2),   peroxiredoxins   (Prx)   1,   2,   5   and   6   and   sulfiredoxin   (Srx))   were  analysed  by  immunohistochemistry  in  samples  of  PC  patients  who  had  been  treated  by  RP.  By   comparing   the   results   with   conventional   clinicopathological   factors,   biochemical  recurrence  and  survival,  their  role  as  biomarkers  was  evaluated  in  cancer  prognosis.    

 

 

 

 

 

 

 

 

 

3    

 

2  Review  of  the  Literature    

2.1 EPIDEMIOLOGY

PC  is  the  most  frequent  malignancy  experienced  by  elderly  men  in  Europe.  In  Finland,  4778  new   cases   were   diagnosed   in   2013.   Due   to   good   prognosis   of   the   average   patient,   there  were  45690  patients   living  with   the  disease  during   that   same  period.  There  were  854  PC-­‐‑related  deaths  registered  during  the  year  2013  in  Finland  which  means  that  PC  is  still   the  second  leading  cause  of  cancer  deaths.  It  is  believed  that  PSA-­‐‑screening  and  early  detection  have   augmented   the  detection  of   localised  PC   compared   to  distant   stage  disease.  During  the   last  decades,   relative   survival   for  PC  has   increased   slightly   (Figure  1)(Finnish  Cancer  Registry  2015,  Arnold  et  al.  2015,  De  Angelis  et  al.  2014,  Schroder  et  al.  2012).    

 

Figure 1. Number of new cases and age-adjusted mortality trends of the most common malignancies among Finnish men (Finnish Cancer Registry 2015).

2.2 RISK FACTORS

The  mechanisms  linked  with  the  risk  of  development  of  PC  are  not  well  established.  Based  on  epidemiological  findings,  increasing  age,  ethnic  origin  and  heredity  are  some  of  the  few  well-­‐‑known   risk   factors.   In   studies   conducted   with   autopsy   material,   incidental   PC  prevalence  increases  with  age  from  3–8%  at  age  <35  years  to  48–71%  at  age  >79  years  (Bell  et  al.   2015).   In   the   black-­‐‑skinned   races,   PC   incidence   and   mortality   is   higher   compared   to  white-­‐‑skinned  populations  (Siegel  et  al.  2014).  It  is  estimated  that  only  9%  of  patients  have  a  

Page 24: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

4  

 

true   hereditary   disease.   In   these   patients,   PC   develops   usually   six   to   seven   years   earlier  than  with   the   sporadic   disease   (Nelson,  De  Marzo  &   Isaacs   2003,   Leitzmann,   Rohrmann  2012).  However,  one  first-­‐‑line  relative  having  PC  at  least  doubles  the  risk  and  two  or  more  first-­‐‑line   affected   relatives   elevates   the   risk   by   5-­‐‑11-­‐‑fold   (Hemminki   2012,   Jansson   et   al.  2012).  Smokers  have  around  a  9%  to  30%  increased  risk  for  PC  compared  to  nonsmokers,  with   the   heaviest   cicarette   smoking   elevating   the   risk   of   death   from   PC   by   24–30%  (Hunchared  M  et  al.  2010).  Exogenous  factors,  such  as  smoking,  food  with  high  animal  fat  content,  promiscuous  sexual  behavior,  increased  alcohol  consumption  and  chronic  prostate  inflammation   have   been   postulated   to   exert   an   influence   on   PC  progression   (Nelson,  De  Marzo  &  Isaacs  2003).      2.3 PREVENTION Studies   conducted   with   5-­‐‑alpha-­‐‑reductase   inhibitors,   have   shown   that   administration   of  finasteride  and  dutasteride  reduces  the  risk  for  PC  by  approximately  25%  only  in  patients  with  Gleason   6   disease   (Thompson   et   al.   2003,  Andriole   et   al.   2010).  However,   officially,  these   drugs   have   not   been   approved   for   prevention   of   PC.   Even   although   high   physical  activity  and  low  meat  consumption  have  been  linked  with  decreased  PC  risk,  there  is  still  insufficient   evidence   to   recommend   any   particular   life   style   changes   or   dietary  interventions  as  a   form  of  PC  prevention   (Nelson,  De  Marzo  &  Isaacs  2003,  Leitzmann  &  Rohrmann  2012).    2.4 DIAGNOSIS

2.4.1  Clinical  diagnosis  Most   of  PC   cases   are   found   in   the  peripheral   zone  of   the  prostate   and  may  be  palpated.  Nowadays,  only  18%  of  tumours  are  diagnosed  by  digital  rectal  examination  (DRE)  alone  and  the  predictive  value  of  a  suspicious  DRE  alone  has  been  estimated  to  be  as   low  as  5-­‐‑30%  when   PSA   is   ≤   4ng/ml   (Richie   et   al.   1993,   Carvalhal   et   al.   1999).  An   abnormal  DRE  finding   predicts   the   presence   of   a   more   aggressive   tumour   and   a   higher   Gleason   score  (Gosselaar  et  al.  2008).    2.4.2  Tumour  Node  Metastasis  (TNM)  classification  PC   is  staged  by   the  TNM  classification  system  (Table  1)  according   to  Union   International  Contre  le  Cancer  (UICC)  guidelines.  Tumours  belonging  to  T-­‐‑classes  of  1  and  2  are  confined  within   the  prostate.  Tumours   in  T-­‐‑classes  of   3   and  4   are  defined  as   locally   advanced.  N-­‐‑class  defines   the  presence  of  node  metastases  and  distant  metastases  are   indicated  by   the  M-­‐‑class  (Sobin  et  al.  2010).  In  the  case  of  localised  and  locally  advanced  PC,  a  higher  T-­‐‑class  has  been  shown  to  predict  an  increased  cancer  recurrence  rate  and  poorer  survival.  If  one  takes   a   ten  year  perspective,   then   the   risk   for  biochemical   recurrence   (BCR)   is   23–31%   in  patients  with  clinical  stage  (cT)  1  but  85%  in  those  with  cT3  tumours  after  RP  (Roehl  et  al.  2004).  The  corresponding  five  year  BCR  probabilities  are  7  –  12  %  and  86  –  89  %  in  patients  with  pathological  stage  (pT)  2  and  pT3  tumous,  respectively  (Chun  et  al.  2006).  In  addition,  pT-­‐‑class  is  an  independent  predictor  of  prostate  cancer  specific  survival  (PCS)  (Porter  et  al.  2006).      

5    

 

Table 1. Tumour Node Metastasis (TNM) classification of prostate cancer according to Union Internationale Contre le Cancer (UICC) (Sobin et al. 2010). T – Primary tumour TX Primary tumour cannot be assessed T0 No evidence of primary tumour T1 Clinically inapparent tumour not palpable or visible by imaging T1a Tumour incidental histological finding in 5% or less of tissue resected T1b Tumour incidental histological finding in more than 5% of tissue resected T1c Tumour identified by needle biopsy (e.g. because of elevated PSAlevel T2 Tumour confined within the prostate T2a Tumour involves one half of one lobe or less T2b Tumour involves more than half of one lobe, but not both lobes T2c Tumour involves both lobes T3 Tumour extends through the prostatic capsule T3a Extracapsular extension (unilateral or bilateral) including microscopic bladder neck

involvement T3b Tumour invades seminal vesicle(s) T4 Tumour is fixed or invades adjacent structures other than seminal vesicles: external sphincter,

rectum, levator muscles, and/or pelvic wall N - Regional lymph nodes NX Regional lymph nodes cannot be assessed N0 No regional lymph node metastasis N1 Regional lymph node metastasis M - Distant metastasis MX Distant metastasis cannot be assessed M0 No distant metastasis M1 Distant metastasis      2.4.3  Prostate  biopsy  The  diagnosis  of  PC  is  based  on  the  histopathological  evaluation  of  a  biopsy  sample.  The  indication   for   biopsies   is   abnormal   DRE   or   an   elevated   PSA   value.   Usually,   10-­‐‑12  transrectal  or  alternatively  perineal  ultrasound  guided  biopsies  are  taken  according  to  the  routine  protocol  (Hara  et  al.  2008,  Shariat,  Roehrborn  2008).      

2.4.4  Prostate  specific  antigen  (PSA)  Under   physiological   conditions,   PSA   is   excreted   by   the   epithelial   cells   of   the   prostate  (Armbruster   1993).   Increased   levels   of   serum   PSA   may   be   detected   in   benign   prostatic  hyperplasia,   prostatitis,   urinary   retention,   urinary   tract   infection   and   after   prostate  operations.  Currently,  an  elevated  level  of  serum  PSA  is  the  most  important  reason  leading  to   PC   diagnosis.   However,   PSA   is   not   truly   cancer   specific   but   rather   an   organ   specific  marker,  which  makes  PSA  less  specific  in  PC  diagnosis  (Nadler  et  al.  1995,  Hagood,  Parra  &  

Page 25: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

4  

 

true   hereditary   disease.   In   these   patients,   PC   develops   usually   six   to   seven   years   earlier  than  with   the   sporadic   disease   (Nelson,  De  Marzo  &   Isaacs   2003,   Leitzmann,   Rohrmann  2012).  However,  one  first-­‐‑line  relative  having  PC  at  least  doubles  the  risk  and  two  or  more  first-­‐‑line   affected   relatives   elevates   the   risk   by   5-­‐‑11-­‐‑fold   (Hemminki   2012,   Jansson   et   al.  2012).  Smokers  have  around  a  9%  to  30%  increased  risk  for  PC  compared  to  nonsmokers,  with   the   heaviest   cicarette   smoking   elevating   the   risk   of   death   from   PC   by   24–30%  (Hunchared  M  et  al.  2010).  Exogenous  factors,  such  as  smoking,  food  with  high  animal  fat  content,  promiscuous  sexual  behavior,  increased  alcohol  consumption  and  chronic  prostate  inflammation   have   been   postulated   to   exert   an   influence   on   PC  progression   (Nelson,  De  Marzo  &  Isaacs  2003).      2.3 PREVENTION Studies   conducted   with   5-­‐‑alpha-­‐‑reductase   inhibitors,   have   shown   that   administration   of  finasteride  and  dutasteride  reduces  the  risk  for  PC  by  approximately  25%  only  in  patients  with  Gleason   6   disease   (Thompson   et   al.   2003,  Andriole   et   al.   2010).  However,   officially,  these   drugs   have   not   been   approved   for   prevention   of   PC.   Even   although   high   physical  activity  and  low  meat  consumption  have  been  linked  with  decreased  PC  risk,  there  is  still  insufficient   evidence   to   recommend   any   particular   life   style   changes   or   dietary  interventions  as  a   form  of  PC  prevention   (Nelson,  De  Marzo  &  Isaacs  2003,  Leitzmann  &  Rohrmann  2012).    2.4 DIAGNOSIS

2.4.1  Clinical  diagnosis  Most   of  PC   cases   are   found   in   the  peripheral   zone  of   the  prostate   and  may  be  palpated.  Nowadays,  only  18%  of  tumours  are  diagnosed  by  digital  rectal  examination  (DRE)  alone  and  the  predictive  value  of  a  suspicious  DRE  alone  has  been  estimated  to  be  as   low  as  5-­‐‑30%  when   PSA   is   ≤   4ng/ml   (Richie   et   al.   1993,   Carvalhal   et   al.   1999).  An   abnormal  DRE  finding   predicts   the   presence   of   a   more   aggressive   tumour   and   a   higher   Gleason   score  (Gosselaar  et  al.  2008).    2.4.2  Tumour  Node  Metastasis  (TNM)  classification  PC   is  staged  by   the  TNM  classification  system  (Table  1)  according   to  Union   International  Contre  le  Cancer  (UICC)  guidelines.  Tumours  belonging  to  T-­‐‑classes  of  1  and  2  are  confined  within   the  prostate.  Tumours   in  T-­‐‑classes  of   3   and  4   are  defined  as   locally   advanced.  N-­‐‑class  defines   the  presence  of  node  metastases  and  distant  metastases  are   indicated  by   the  M-­‐‑class  (Sobin  et  al.  2010).  In  the  case  of  localised  and  locally  advanced  PC,  a  higher  T-­‐‑class  has  been  shown  to  predict  an  increased  cancer  recurrence  rate  and  poorer  survival.  If  one  takes   a   ten  year  perspective,   then   the   risk   for  biochemical   recurrence   (BCR)   is   23–31%   in  patients  with  clinical  stage  (cT)  1  but  85%  in  those  with  cT3  tumours  after  RP  (Roehl  et  al.  2004).  The  corresponding  five  year  BCR  probabilities  are  7  –  12  %  and  86  –  89  %  in  patients  with  pathological  stage  (pT)  2  and  pT3  tumous,  respectively  (Chun  et  al.  2006).  In  addition,  pT-­‐‑class  is  an  independent  predictor  of  prostate  cancer  specific  survival  (PCS)  (Porter  et  al.  2006).      

5    

 

Table 1. Tumour Node Metastasis (TNM) classification of prostate cancer according to Union Internationale Contre le Cancer (UICC) (Sobin et al. 2010). T – Primary tumour TX Primary tumour cannot be assessed T0 No evidence of primary tumour T1 Clinically inapparent tumour not palpable or visible by imaging T1a Tumour incidental histological finding in 5% or less of tissue resected T1b Tumour incidental histological finding in more than 5% of tissue resected T1c Tumour identified by needle biopsy (e.g. because of elevated PSAlevel T2 Tumour confined within the prostate T2a Tumour involves one half of one lobe or less T2b Tumour involves more than half of one lobe, but not both lobes T2c Tumour involves both lobes T3 Tumour extends through the prostatic capsule T3a Extracapsular extension (unilateral or bilateral) including microscopic bladder neck

involvement T3b Tumour invades seminal vesicle(s) T4 Tumour is fixed or invades adjacent structures other than seminal vesicles: external sphincter,

rectum, levator muscles, and/or pelvic wall N - Regional lymph nodes NX Regional lymph nodes cannot be assessed N0 No regional lymph node metastasis N1 Regional lymph node metastasis M - Distant metastasis MX Distant metastasis cannot be assessed M0 No distant metastasis M1 Distant metastasis      2.4.3  Prostate  biopsy  The  diagnosis  of  PC  is  based  on  the  histopathological  evaluation  of  a  biopsy  sample.  The  indication   for   biopsies   is   abnormal   DRE   or   an   elevated   PSA   value.   Usually,   10-­‐‑12  transrectal  or  alternatively  perineal  ultrasound  guided  biopsies  are  taken  according  to  the  routine  protocol  (Hara  et  al.  2008,  Shariat,  Roehrborn  2008).      

2.4.4  Prostate  specific  antigen  (PSA)  Under   physiological   conditions,   PSA   is   excreted   by   the   epithelial   cells   of   the   prostate  (Armbruster   1993).   Increased   levels   of   serum   PSA   may   be   detected   in   benign   prostatic  hyperplasia,   prostatitis,   urinary   retention,   urinary   tract   infection   and   after   prostate  operations.  Currently,  an  elevated  level  of  serum  PSA  is  the  most  important  reason  leading  to   PC   diagnosis.   However,   PSA   is   not   truly   cancer   specific   but   rather   an   organ   specific  marker,  which  makes  PSA  less  specific  in  PC  diagnosis  (Nadler  et  al.  1995,  Hagood,  Parra  &  

Page 26: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

6  

 

Rauscher   1994,   Oesterling   et   al.   1993).   PSA   is   a   continuous   parameter   and   there   is   no  agreement   about  what   should  be   the   cut-­‐‑off  value   in  PC   risk   evaluation.  Histological  PC  might  be  found  in  up  to  27%  of  men  with  a  PSA  value  ≤4.0  ng/ml  (Thompson  et  al.  2004).  In  addition   to   diagnostic   purposes,   PSA   measures   are   used   in   PC   cancer   risk   assessment,  especially   in  disease   follow-­‐‑up  after   treatment.  The  PSA  value  at   the   time  of  diagnosis   is  also  a  well-­‐‑known  prognosticator  of   treatment   failure  after  radical  procedures   (Paul  et  al.  2010,  Roehl  et  al.  2004,  Porter  et  al.  2006).    2.4.5  Histology  and  Gleason  score  Approximately  95%  of  PC  cases  are  referred  to  as  conventional  adenocarcinomas  consisting  of   glandular   structures.   Other   variants   of   carcinoma,   such   as   ductal,   sarcomatoid   and  squamous  cell  carcinoma  are  rare  (Santoni  et  al.  2015,  Fine  2012).  The  incidence  of  isolated  urothelial  carcinoma  is  4%  of  all  prostatic  neoplasms  (Esrig  et  al.  1996).       The  Gleason  score  grading  system  for  PC  is  based  on  the  tumour  histology.  Nowadays,  the  standard  histopathological  report  is  given  according  to  the  modifications  issued  by  the  International  Society  of  Urological  Pathology   (ISUP).  The  Gleason  score   is   the  sum  of   the  most   common   and   the   second-­‐‑most   common  Gleason   grade   in   terms   of   tumour   volume  and   it   has   a   range   between   two   and   ten,   with   the   score   of   ten   representing   the   most  aggressive  form.  Tertiary  Gleason  grade  4–5  and  its  proportion  of  cancer  volume  have  also  been  reported  (Epstein  et  al.  2005).  The  presence  of  gribriform  glands  is  usually  assessed  as  pattern   4   in   routine   practice   (Brimo   et   al.   2013).   Gleason   grade   is   considered   to   be   the  strongest  prognostic   factor   for   clinical   behavior   and   treatment   failure   of  PC   (Partin   et   al.  2001).  Five  years  BCR  probabilities  are  9%,  44%  and  90%  in  Gleason  groups  6,  7  and  8-­‐‑10  after   RP,   respectively   (Chun   et   al.   2006).   Higher   Gleason   score   is   also   associated   with  shortened  PCS  and  OS  (Porter  et  al.  2006).    2.4.6  Risk  groups  The   risk   groups   for  BCR   are  divided   into   three   classes   (low,   intermediate   and  high   risk)  criteria  according  to  the  PSA  value  at  diagnosis,  clinical  T-­‐‑class  and  Gleason  score  (Table  2).  The  classification  is  traditionally  based  on  the  system  developed  by  D’Amico  (D'ʹAmico  et  al.  1998,  Cooperberg  et  al.  2005).            Table 2. Risk groups for BCR of localised and locally advanced prostate cancer. Low-risk

Intermediate-risk High-risk

Definition

PSA < 10 ng/ml

PSA 10-20 ng/ml PSA > 20 ng/ml any PSA

and Gleason < 7

or Gleason 7 or Gleason > 7 any Gleason cT3-4

and cT1-2a

or cT2b or cT2c or cN+

Localised

Locally advanced

   

7    

 

2.5 TREATMENTS FOR LOCALISED PROSTATE CANCER (PC)  2.5.1  Active  surveillance  (AS)  Approximately  40–50%  cases  of  new  PC  diagnoses  represent  clinical  stage  T1c  (Klotz  2008).  In   order   to   minimize   the   adverse   effects   of   curative   treatments,   AS   can   be   offered   to  patients   with   low   risk   disease   and   a   life   expectancy   of   10–15   years.   In   this   kind   of  surveillance,   the   patient’s   evaluation   is   based   on   clinical   examination,   frequent   PSA-­‐‑monitoring   and   repeated   biopsies.  AS   aims   to   diminish   the   loss   of   quality   of   life   and   to  detect  possible  cancer  progression  from  the  organ  confined  stage.  Curative  treatments  are  provided  to  selected  patients  at  risk  of   tumour  progression  (Welty,  Cooperberg  &  Carroll  2014).  During  ten  years  of  surveillance,   just  over  half  of   the  men  (55%)  will   terminate   the  AS   protocol.   The   majority   of   these   will   be   treated   with   radical   modalities   and   only   a  minority   (8–10%)   terminates   the   surveillance   by   their   own   request   (Thomsen   et   al.   2014,  van  den  Bergh  et   al.   2009).   In   large   cohorts  of  AS  patients,  disease   specific   survival  with  men  continuing  surveillance  has  been  found  to  be  excellent  i.e.  from  96  to  100%  over  a  ten  year  period  (Klotz  et  al.  2010,  Thomsen  et  al.  2014,  van  den  Bergh  et  al.  2009).    2.5.2  Definitive  radiotherapy  (RT)  External   RT   can   be   given   to   PC   patients   in   all   three   risk   groups   with   a   curative   intent.  Patients   suffering   from   low-­‐‑risk   disease   can   be   offered   external   RT   or   alternatively   low  dose  brachytherapy  which  procedures  having  similar  outcome  results  (Morris  et  al.  2013).  Neo-­‐‑adjuvant   and   adjuvant  hormone   therapies   are   recommended   for   those  patients  with  intermediate  or  high  risk  PC  undergoing  RT   (Bolla  et  al.   2010).  There  are  adverse  effects,  such  as  impotence  and  genito-­‐‑urinary  toxicity  associated  with  both  RT  and  brachytherapy  (Robinson,  Moritz  &  Fung  2002,  Zelefsky  et  al.  2008,  Kishan,  Kupelian  2015).    2.5.3  Radical  prostatectomy  (RP)  The  standard  surgical   treatment  of  PC  is  radical  retropubic  prostatectomy.  The  procedure  can  be  performed  by  open,  laparoscopic  or  a  robotic  assisted  technique  (RALP).  During  the  proecedure,   the  entire  prostatic  gland  is  removed  and  the  seminal  vesicles  are  resected  to  achieve  total  eradication  of  cancer  tissue.  The  procedure  is  often  accompanied  by  a  bilateral  dissection  of  obturatoric  or  pelvic  lymph  nodes  in  subjects  in  the  intermediate  and  high  risk  groups.    Nowadays,  RALP  is  the  most  commonly  used  technique  since  it  is  associated  with  lower  blood  transfusion  rates  and  shorter  hospital  stays  compared  to  open  RP.  There  seems  to   be   no   significant   difference   between   the   open   technique   and  RALP  with   repect   to   the  incidence  of  urinary  incontinence  after  the  operation.  There  is  some  evidence  that  potency  rates  might  be  better  in  patients  treated  with  RALP  (Haglind  et  al.  2015,  Ficarra  et  al.  2012,  Gandaglia  et  al.  2014,  Ramsay  et  al.  2012).  All  the  surgical  procedures  have  the  same  impact  on   cancer   control,   and   the   clearest   benefit   of   survival   can  be  observed  with   intermediate  risk  PC  patients  under  the  age  of  65  years.  In  studies  with  a  follow-­‐‑up  period  of  18  years,  PCS  rates  of  84.9–94.2%  were  reported  in  the  low  and  intermediate  risk  groups  (Wilt  et  al.  2012,  Bill-­‐‑Axelson  et  al.  2014).    2.5.3.1  Clinicopathological  prognosis  factors  In  addition   to   the  possibility  of  a   curative   treatment,  RP  offers   the  advantage  of  accurate  local  staging  after  the  prostatectomy  preparate  has  been  removed  and  analysed.  In  clinical  

Page 27: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

6  

 

Rauscher   1994,   Oesterling   et   al.   1993).   PSA   is   a   continuous   parameter   and   there   is   no  agreement   about  what   should  be   the   cut-­‐‑off  value   in  PC   risk   evaluation.  Histological  PC  might  be  found  in  up  to  27%  of  men  with  a  PSA  value  ≤4.0  ng/ml  (Thompson  et  al.  2004).  In  addition   to   diagnostic   purposes,   PSA   measures   are   used   in   PC   cancer   risk   assessment,  especially   in  disease   follow-­‐‑up  after   treatment.  The  PSA  value  at   the   time  of  diagnosis   is  also  a  well-­‐‑known  prognosticator  of   treatment   failure  after  radical  procedures   (Paul  et  al.  2010,  Roehl  et  al.  2004,  Porter  et  al.  2006).    2.4.5  Histology  and  Gleason  score  Approximately  95%  of  PC  cases  are  referred  to  as  conventional  adenocarcinomas  consisting  of   glandular   structures.   Other   variants   of   carcinoma,   such   as   ductal,   sarcomatoid   and  squamous  cell  carcinoma  are  rare  (Santoni  et  al.  2015,  Fine  2012).  The  incidence  of  isolated  urothelial  carcinoma  is  4%  of  all  prostatic  neoplasms  (Esrig  et  al.  1996).       The  Gleason  score  grading  system  for  PC  is  based  on  the  tumour  histology.  Nowadays,  the  standard  histopathological  report  is  given  according  to  the  modifications  issued  by  the  International  Society  of  Urological  Pathology   (ISUP).  The  Gleason  score   is   the  sum  of   the  most   common   and   the   second-­‐‑most   common  Gleason   grade   in   terms   of   tumour   volume  and   it   has   a   range   between   two   and   ten,   with   the   score   of   ten   representing   the   most  aggressive  form.  Tertiary  Gleason  grade  4–5  and  its  proportion  of  cancer  volume  have  also  been  reported  (Epstein  et  al.  2005).  The  presence  of  gribriform  glands  is  usually  assessed  as  pattern   4   in   routine   practice   (Brimo   et   al.   2013).   Gleason   grade   is   considered   to   be   the  strongest  prognostic   factor   for   clinical   behavior   and   treatment   failure   of  PC   (Partin   et   al.  2001).  Five  years  BCR  probabilities  are  9%,  44%  and  90%  in  Gleason  groups  6,  7  and  8-­‐‑10  after   RP,   respectively   (Chun   et   al.   2006).   Higher   Gleason   score   is   also   associated   with  shortened  PCS  and  OS  (Porter  et  al.  2006).    2.4.6  Risk  groups  The   risk   groups   for  BCR   are  divided   into   three   classes   (low,   intermediate   and  high   risk)  criteria  according  to  the  PSA  value  at  diagnosis,  clinical  T-­‐‑class  and  Gleason  score  (Table  2).  The  classification  is  traditionally  based  on  the  system  developed  by  D’Amico  (D'ʹAmico  et  al.  1998,  Cooperberg  et  al.  2005).            Table 2. Risk groups for BCR of localised and locally advanced prostate cancer. Low-risk

Intermediate-risk High-risk

Definition

PSA < 10 ng/ml

PSA 10-20 ng/ml PSA > 20 ng/ml any PSA

and Gleason < 7

or Gleason 7 or Gleason > 7 any Gleason cT3-4

and cT1-2a

or cT2b or cT2c or cN+

Localised

Locally advanced

   

7    

 

2.5 TREATMENTS FOR LOCALISED PROSTATE CANCER (PC)  2.5.1  Active  surveillance  (AS)  Approximately  40–50%  cases  of  new  PC  diagnoses  represent  clinical  stage  T1c  (Klotz  2008).  In   order   to   minimize   the   adverse   effects   of   curative   treatments,   AS   can   be   offered   to  patients   with   low   risk   disease   and   a   life   expectancy   of   10–15   years.   In   this   kind   of  surveillance,   the   patient’s   evaluation   is   based   on   clinical   examination,   frequent   PSA-­‐‑monitoring   and   repeated   biopsies.  AS   aims   to   diminish   the   loss   of   quality   of   life   and   to  detect  possible  cancer  progression  from  the  organ  confined  stage.  Curative  treatments  are  provided  to  selected  patients  at  risk  of   tumour  progression  (Welty,  Cooperberg  &  Carroll  2014).  During  ten  years  of  surveillance,   just  over  half  of   the  men  (55%)  will   terminate   the  AS   protocol.   The   majority   of   these   will   be   treated   with   radical   modalities   and   only   a  minority   (8–10%)   terminates   the   surveillance   by   their   own   request   (Thomsen   et   al.   2014,  van  den  Bergh  et   al.   2009).   In   large   cohorts  of  AS  patients,  disease   specific   survival  with  men  continuing  surveillance  has  been  found  to  be  excellent  i.e.  from  96  to  100%  over  a  ten  year  period  (Klotz  et  al.  2010,  Thomsen  et  al.  2014,  van  den  Bergh  et  al.  2009).    2.5.2  Definitive  radiotherapy  (RT)  External   RT   can   be   given   to   PC   patients   in   all   three   risk   groups   with   a   curative   intent.  Patients   suffering   from   low-­‐‑risk   disease   can   be   offered   external   RT   or   alternatively   low  dose  brachytherapy  which  procedures  having  similar  outcome  results  (Morris  et  al.  2013).  Neo-­‐‑adjuvant   and   adjuvant  hormone   therapies   are   recommended   for   those  patients  with  intermediate  or  high  risk  PC  undergoing  RT   (Bolla  et  al.   2010).  There  are  adverse  effects,  such  as  impotence  and  genito-­‐‑urinary  toxicity  associated  with  both  RT  and  brachytherapy  (Robinson,  Moritz  &  Fung  2002,  Zelefsky  et  al.  2008,  Kishan,  Kupelian  2015).    2.5.3  Radical  prostatectomy  (RP)  The  standard  surgical   treatment  of  PC  is  radical  retropubic  prostatectomy.  The  procedure  can  be  performed  by  open,  laparoscopic  or  a  robotic  assisted  technique  (RALP).  During  the  proecedure,   the  entire  prostatic  gland  is  removed  and  the  seminal  vesicles  are  resected  to  achieve  total  eradication  of  cancer  tissue.  The  procedure  is  often  accompanied  by  a  bilateral  dissection  of  obturatoric  or  pelvic  lymph  nodes  in  subjects  in  the  intermediate  and  high  risk  groups.    Nowadays,  RALP  is  the  most  commonly  used  technique  since  it  is  associated  with  lower  blood  transfusion  rates  and  shorter  hospital  stays  compared  to  open  RP.  There  seems  to   be   no   significant   difference   between   the   open   technique   and  RALP  with   repect   to   the  incidence  of  urinary  incontinence  after  the  operation.  There  is  some  evidence  that  potency  rates  might  be  better  in  patients  treated  with  RALP  (Haglind  et  al.  2015,  Ficarra  et  al.  2012,  Gandaglia  et  al.  2014,  Ramsay  et  al.  2012).  All  the  surgical  procedures  have  the  same  impact  on   cancer   control,   and   the   clearest   benefit   of   survival   can  be  observed  with   intermediate  risk  PC  patients  under  the  age  of  65  years.  In  studies  with  a  follow-­‐‑up  period  of  18  years,  PCS  rates  of  84.9–94.2%  were  reported  in  the  low  and  intermediate  risk  groups  (Wilt  et  al.  2012,  Bill-­‐‑Axelson  et  al.  2014).    2.5.3.1  Clinicopathological  prognosis  factors  In  addition   to   the  possibility  of  a   curative   treatment,  RP  offers   the  advantage  of  accurate  local  staging  after  the  prostatectomy  preparate  has  been  removed  and  analysed.  In  clinical  

Page 28: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

8  

 

practice,   standard   parameters,   such   as   Gleason   score,   pT-­‐‑class,   surgical   margin   status,  capsule   invasion   and   seminal   vesicle   invasion,   as   assessed   by   the   pathologist,   can   all   be  used  in  the  cancer  risk  assessment  of  PC  patients  (Adamis,  Varkarakis  2014).      2.5.3.1.1  Capsule  invasion    If  the  cancer  tissue  has  invaded  the  prostatic  capsule,  this  is  designated  as  capsule  invasion.  In  those  cases  with  extraprostatic  extension,  the  tumour  has  penetrated  beyond  the  capsule.  An   extraprostatic   extension   is   associated   with   shortened   biochemical   recurrence   free  survival   (BFS)  and  worse  PCS  (Tanaka  et  al.  2003,  Chun  et  al.  2006,  Porter  et  al.  2006).   In  patients  with   low  or   intermediate  risk  disease,   the  rate  for  BCR  after  RP  is  reported  to  be  10%   (no   capsule   invasion)   and   55%   (extra-­‐‑capsular   extension),   respectively   during   five  years  (D'ʹAmico  et  al.  2000).    2.5.3.1.2  Surgical  margin  status  The  surgical  margin  is  positive  when  tumour  cells  are  in  contact  with  the  inked  border  of  the   tissue   specimen.   In  RP   series,   the   rate   of   positive  margin   has   varied   from   11   to   38%  (Yossepowitch  et  al.  2009).  There  are  several  reports  demonstrating  that  a  positive  margin  is  an  independent  risk  factor  for  cancer  recurrence,  however  the  relationship  between  margin  extent   and   risk   of   recurrence   is   uncertain   (Sammon   et   al.   2013,   Marks   et   al.   2007).  Furthermore,   artefacts,   such   as   tissue   crushing   or   incomplete   inking,   can   make   the  determination  of  the  margin  status  unreliable  (Evans  et  al.  2008).    2.5.3.1.3  Seminal  vesicle  invasion    Seminal  vesicle  invasion  is  found  in  5–10%  of  PC  patients  undergoing  RP.  Seminal  vesicle  invasion   independently   predicts   a   shortened   BCR   and   the   median   time   to   recurrence   is  estimated   to   be   2   years   after   RP.   Of   these   patients,   30–60%   are   likely   to   progress   to   a  metastatic   stage   within   5   years   (Ploussard   et   al.   2013,   Carver   et   al.   2006,   Ball,   Partin   &  Epstein  2015,  Kasibhatla,  Peterson  &  Anscher  2005).    2.5.3.2  Definition  of  biochemical  recurrence  (BCR)  after  RP  The   PSA-­‐‑value   is   expected   to   be   immeasurable   following   RP   with   curative   intent   and  therefore   any   PSA-­‐‑rise   may   be   due   to   cancer   recurrence   in   local   or   distant   sites.   The  definition  of  BCR  has  commonly  been  stated  as  two  subsequent  PSA  rises  above  the  cut-­‐‑off  value   0.2   ng/ml   after  RP   (Moul   2000,   Stephenson   et   al.   2006,  Walz   et   al.   2009).   PSA-­‐‑only  recurrence  has  been  detected   in  15–40%  of  men  subjected   to  RP  but  only  a  minority   (20–35%)  of   these  men  develop  a  clinical  recurrence  and  only  around  10%  will  actually  die  of  PC  (Pound  et  al.  1999,  Boorjian  et  al.  2011,  Boorjian  et  al.  2012).   2.6 BIOMOLECULAR PROGNOSTIC MARKERS  There   are   a   large   number   of   studies   searching   for   candidate   markers   to   help   in   PC  prognosis.  The  cancer  progression  can  trigger  the  activation  of  regulatory  pathways  within  prostate  tissue  leading  to  altered  levels  of  detectable  biomolecules  as  putative  indicators  of  PC   aggressiveness.   Several   pathways   are   activated;   these   can   be   divided   into   apoptosis,  signal  transduction,  proliferation  and  cell  cycle  regulation,  cell  adhesion  and  angiogenesis  (Quinn,  Henshall  &  Sutherland  2005,  Lopergolo,  Zaffaroni  2009).  

9    

 

2.6.1  Apoptosis  Apoptosis   is   induced  by   two  main   routes   in   cells;   the  mitochondrion  dependent   and   the  mitochondrion   independent   pathways.   In   the   mitochondrion   dependent   pathway,   B-­‐‑cell  lymphoma   2   (Bcl-­‐‑2)   family   proteins   play   a   significant   role.   These   proteins   change   the  electrical  potential  of  mitochondrial  membranes,  leading  to  an  efflux  of  apoptosis-­‐‑inducing  compounds   into   the  cell’s  cytoplasm,  ultimately   leading   to   the   formation  of  apoptosomes  and   the   activation   of   caspase   enzymes.   In   the   mitochondrial   independent   pathway,  caspases  are  induced  directly  through  membrane  receptor  activation  after  a  ligand  binds  to  this  receptor  (Zielinski,  Eigl  &  Chi  2013).    

In  the  mitochondrion  dependent  pathway,  the  levels  of  p53  and  Bcl-­‐‑2  have  been  shown  to  reflect  abnormal  function  of  PC  progression.  The  p53  protein  is  a  tumour  suppressor,  the  so-­‐‑called  guardian  of  the  genome.  When  there  has  been  genetic  damage,  p53  halts  the  cell  cycle  at  its  first  phase  to  allow  time  for  the  action  of  DNA  repair  enzymes.    If  this  fails,  p53  launches   apoptosis   by   inducing   Bax,   a   proapoptotic   gene   of   the   Bcl-­‐‑2   group,   which  ultimately  leads  to  a  process  called  programmed  cell  death  (Quinn,  Henshall  &  Sutherland  2005,  Zielinski,  Eigl  &  Chi  2013).  

There  are  a  large  number  of  reports  suggesting  that  in  metastatic  and  hormone  refractory  PC,  mutations  are  present  in  p53  and  Bcl-­‐‑2  linked  genes  accompanied  by  alterations  in  the  expression   levels   of   apoptotic   signaling   proteins.   Some   studies   have   also   found   the  overexpression  of  p53  to  be  a  predictor  of  BCR  concerning  localised  PC  (Quinn,  Henshall  &  Sutherland  2005).  Bcl-­‐‑2  positivity  has  been  revealed  to  predict  PSA-­‐‑relapse  and  analyses  of  Bcl-­‐‑2  polymorphisms  have  suggested  that  certain  modulated  genotypes  may  be  linked  with  cancer  recurrence  (Revelos  et  al.  2005,  Hirata  et  al.  2009).    2.6.2  Signal  transduction  Modifications   of   tyrosine  kinase   receptors   belonging   the   epidermal   growth   factor   family,  such   as   human   epidermal   growth   factor   receptor   2   (HER-­‐‑2),   are   associated   with   worse  outcome  of  PC.  Overexpression  of  HER-­‐‑2  has  been  linked  with  reduced  BFS  and  PCS  in  the  radically  treated  patients  (Ross  et  al.  1997,  Fossa  et  al.  2002).  Caveolins,  which  are  integral  membrane  proteins  of   the   caveole,   are   involved   in  endocytosis  and  also  act  as   cell   signal  regulators  under  physiological  conditions.   In  addition,  an  overexpression  of   these  normal  cell-­‐‑signal   transduction   proteins   has   been   demonstrated   to   correlate   with   shortened   BFS  and  aggressive  behavior  of  PC  in  patients  with  localised  disease  (Yang  et  al.  2005,  Karam  et  al.  2007).    2.6.3  Proliferation  and  cell  cycle  regulation  The   cell  proliferation  marker,  Ki67  protein,  has  been  one  of   the  most   extensively   studied  molecules   of   this   group.   An   elevated   level   of   this   biomarker   is   associated   with   tumour  progression  and  it  has  been  shown  to  be  an  independent  predictor  of  BFS  (Bubendorf  et  al.  1996,  Halvorsen  et  al.  2001).  The  better  understanding  of   the  molecular  basis  of  cell   cycle  regulatory  cyclins  has  revealed  changes  in  the  proteins  linked  with  many  cancer  types.  In  the   case   of  PC  patients,   alterations  of   the   cyclin-­‐‑dependent  kinase   inhibitor  proteins  p16,  p21   and  p27  have  been   associated  with  PSA   relapse   after   surgery   (Halvorsen   et   al.   2000,  Lacombe  et  al.  2001,  Freedland  et  al.  2003).        

Page 29: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

8  

 

practice,   standard   parameters,   such   as   Gleason   score,   pT-­‐‑class,   surgical   margin   status,  capsule   invasion   and   seminal   vesicle   invasion,   as   assessed   by   the   pathologist,   can   all   be  used  in  the  cancer  risk  assessment  of  PC  patients  (Adamis,  Varkarakis  2014).      2.5.3.1.1  Capsule  invasion    If  the  cancer  tissue  has  invaded  the  prostatic  capsule,  this  is  designated  as  capsule  invasion.  In  those  cases  with  extraprostatic  extension,  the  tumour  has  penetrated  beyond  the  capsule.  An   extraprostatic   extension   is   associated   with   shortened   biochemical   recurrence   free  survival   (BFS)  and  worse  PCS  (Tanaka  et  al.  2003,  Chun  et  al.  2006,  Porter  et  al.  2006).   In  patients  with   low  or   intermediate  risk  disease,   the  rate  for  BCR  after  RP  is  reported  to  be  10%   (no   capsule   invasion)   and   55%   (extra-­‐‑capsular   extension),   respectively   during   five  years  (D'ʹAmico  et  al.  2000).    2.5.3.1.2  Surgical  margin  status  The  surgical  margin  is  positive  when  tumour  cells  are  in  contact  with  the  inked  border  of  the   tissue   specimen.   In  RP   series,   the   rate   of   positive  margin   has   varied   from   11   to   38%  (Yossepowitch  et  al.  2009).  There  are  several  reports  demonstrating  that  a  positive  margin  is  an  independent  risk  factor  for  cancer  recurrence,  however  the  relationship  between  margin  extent   and   risk   of   recurrence   is   uncertain   (Sammon   et   al.   2013,   Marks   et   al.   2007).  Furthermore,   artefacts,   such   as   tissue   crushing   or   incomplete   inking,   can   make   the  determination  of  the  margin  status  unreliable  (Evans  et  al.  2008).    2.5.3.1.3  Seminal  vesicle  invasion    Seminal  vesicle  invasion  is  found  in  5–10%  of  PC  patients  undergoing  RP.  Seminal  vesicle  invasion   independently   predicts   a   shortened   BCR   and   the   median   time   to   recurrence   is  estimated   to   be   2   years   after   RP.   Of   these   patients,   30–60%   are   likely   to   progress   to   a  metastatic   stage   within   5   years   (Ploussard   et   al.   2013,   Carver   et   al.   2006,   Ball,   Partin   &  Epstein  2015,  Kasibhatla,  Peterson  &  Anscher  2005).    2.5.3.2  Definition  of  biochemical  recurrence  (BCR)  after  RP  The   PSA-­‐‑value   is   expected   to   be   immeasurable   following   RP   with   curative   intent   and  therefore   any   PSA-­‐‑rise   may   be   due   to   cancer   recurrence   in   local   or   distant   sites.   The  definition  of  BCR  has  commonly  been  stated  as  two  subsequent  PSA  rises  above  the  cut-­‐‑off  value   0.2   ng/ml   after  RP   (Moul   2000,   Stephenson   et   al.   2006,  Walz   et   al.   2009).   PSA-­‐‑only  recurrence  has  been  detected   in  15–40%  of  men  subjected   to  RP  but  only  a  minority   (20–35%)  of   these  men  develop  a  clinical  recurrence  and  only  around  10%  will  actually  die  of  PC  (Pound  et  al.  1999,  Boorjian  et  al.  2011,  Boorjian  et  al.  2012).   2.6 BIOMOLECULAR PROGNOSTIC MARKERS  There   are   a   large   number   of   studies   searching   for   candidate   markers   to   help   in   PC  prognosis.  The  cancer  progression  can  trigger  the  activation  of  regulatory  pathways  within  prostate  tissue  leading  to  altered  levels  of  detectable  biomolecules  as  putative  indicators  of  PC   aggressiveness.   Several   pathways   are   activated;   these   can   be   divided   into   apoptosis,  signal  transduction,  proliferation  and  cell  cycle  regulation,  cell  adhesion  and  angiogenesis  (Quinn,  Henshall  &  Sutherland  2005,  Lopergolo,  Zaffaroni  2009).  

9    

 

2.6.1  Apoptosis  Apoptosis   is   induced  by   two  main   routes   in   cells;   the  mitochondrion  dependent   and   the  mitochondrion   independent   pathways.   In   the   mitochondrion   dependent   pathway,   B-­‐‑cell  lymphoma   2   (Bcl-­‐‑2)   family   proteins   play   a   significant   role.   These   proteins   change   the  electrical  potential  of  mitochondrial  membranes,  leading  to  an  efflux  of  apoptosis-­‐‑inducing  compounds   into   the  cell’s  cytoplasm,  ultimately   leading   to   the   formation  of  apoptosomes  and   the   activation   of   caspase   enzymes.   In   the   mitochondrial   independent   pathway,  caspases  are  induced  directly  through  membrane  receptor  activation  after  a  ligand  binds  to  this  receptor  (Zielinski,  Eigl  &  Chi  2013).    

In  the  mitochondrion  dependent  pathway,  the  levels  of  p53  and  Bcl-­‐‑2  have  been  shown  to  reflect  abnormal  function  of  PC  progression.  The  p53  protein  is  a  tumour  suppressor,  the  so-­‐‑called  guardian  of  the  genome.  When  there  has  been  genetic  damage,  p53  halts  the  cell  cycle  at  its  first  phase  to  allow  time  for  the  action  of  DNA  repair  enzymes.    If  this  fails,  p53  launches   apoptosis   by   inducing   Bax,   a   proapoptotic   gene   of   the   Bcl-­‐‑2   group,   which  ultimately  leads  to  a  process  called  programmed  cell  death  (Quinn,  Henshall  &  Sutherland  2005,  Zielinski,  Eigl  &  Chi  2013).  

There  are  a  large  number  of  reports  suggesting  that  in  metastatic  and  hormone  refractory  PC,  mutations  are  present  in  p53  and  Bcl-­‐‑2  linked  genes  accompanied  by  alterations  in  the  expression   levels   of   apoptotic   signaling   proteins.   Some   studies   have   also   found   the  overexpression  of  p53  to  be  a  predictor  of  BCR  concerning  localised  PC  (Quinn,  Henshall  &  Sutherland  2005).  Bcl-­‐‑2  positivity  has  been  revealed  to  predict  PSA-­‐‑relapse  and  analyses  of  Bcl-­‐‑2  polymorphisms  have  suggested  that  certain  modulated  genotypes  may  be  linked  with  cancer  recurrence  (Revelos  et  al.  2005,  Hirata  et  al.  2009).    2.6.2  Signal  transduction  Modifications   of   tyrosine  kinase   receptors   belonging   the   epidermal   growth   factor   family,  such   as   human   epidermal   growth   factor   receptor   2   (HER-­‐‑2),   are   associated   with   worse  outcome  of  PC.  Overexpression  of  HER-­‐‑2  has  been  linked  with  reduced  BFS  and  PCS  in  the  radically  treated  patients  (Ross  et  al.  1997,  Fossa  et  al.  2002).  Caveolins,  which  are  integral  membrane  proteins  of   the   caveole,   are   involved   in  endocytosis  and  also  act  as   cell   signal  regulators  under  physiological  conditions.   In  addition,  an  overexpression  of   these  normal  cell-­‐‑signal   transduction   proteins   has   been   demonstrated   to   correlate   with   shortened   BFS  and  aggressive  behavior  of  PC  in  patients  with  localised  disease  (Yang  et  al.  2005,  Karam  et  al.  2007).    2.6.3  Proliferation  and  cell  cycle  regulation  The   cell  proliferation  marker,  Ki67  protein,  has  been  one  of   the  most   extensively   studied  molecules   of   this   group.   An   elevated   level   of   this   biomarker   is   associated   with   tumour  progression  and  it  has  been  shown  to  be  an  independent  predictor  of  BFS  (Bubendorf  et  al.  1996,  Halvorsen  et  al.  2001).  The  better  understanding  of   the  molecular  basis  of  cell   cycle  regulatory  cyclins  has  revealed  changes  in  the  proteins  linked  with  many  cancer  types.  In  the   case   of  PC  patients,   alterations  of   the   cyclin-­‐‑dependent  kinase   inhibitor  proteins  p16,  p21   and  p27  have  been   associated  with  PSA   relapse   after   surgery   (Halvorsen   et   al.   2000,  Lacombe  et  al.  2001,  Freedland  et  al.  2003).        

Page 30: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

10  

 

2.6.4  Angiogenesis  Blood   vessel   formation   is   essential   to   allow   tumour   progression.   Many   cancer   types,  including   PC   are   characterized   by   increased  microvessel   growth.   In   agreement  with   this  hypothesis,  an  augmented  microvessel  density  has  been  shown  to  predict  PSA  recurrence  after  RP  (de   la  Taille  et  al.  2000).  Furthermore,   the  process  of  neovascularization   involves  many   regulatory   molecules,   e.g.   vascular   endothelial   growth   factor   (VEGF).   An  overexpression   of   VEGF   in   cancer   tissue   has   been   demonstrated   to   correlate   with   PSA  relapse  following  RP  and  cancer  death  in  a  cohort  of  patients  that  underwent  observation  for  organ  confined  PC  (Strohmeyer  et  al.  2000,  Borre,  Nerstrom  &  Overgaard  2000).    2.6.5  Androgen  receptor  (AR)  Since  PC   is   an   androgen-­‐‑dependent   cancer,   one  might   consider   the  AR   to  be   an  obvious  marker  to  predict  the  outcome  of  PC  patients.  However,  AR  signaling  pathways  are  known  to  be   complex  and  are   regulated  at  many   levels.  The  heterogeneity   in  AR  expression  has  been   demonstrated   to   be   increased   with   the   progression   of   PC   from   organ   confined   to  metastatic   disease,   with   AR   signaling   being   more   prominent   in   the   later   stages   of   PC  (Miyamoto  et  al.  1993,  Magi-­‐‑Galluzzi  et  al.  1997).  In  patients  who  have  undergone  RP,  AR  overexpression  has  been  associated  with  differentiation  status  and  BFS,  although   the   link  between   this   parameter   and   cancer   survival   is   less   convincing   (Li   et   al.   2004,  Theodoropoulos  et  al.  2005b,  Sweat  et  al.  1999).    2.6.6  Cell  adhesion  E-­‐‑cadherin   plays   an   important   role   in   the  maintenance   of   cell-­‐‑to-­‐‑cell   adhesion   and   other  aspects   of   cell   morphology.   Furthermore,   E-­‐‑cadherin   has   direct   effects   on   signaling  pathways   in   EMT   process   and   modulates   the   activities   of   several   transcription   factors  linked  with  remodeling  of  the  cytoskeleton  (Kang,  Massague  2004).  In  cancer  progression,  E-­‐‑cadherin  is  usually  down-­‐‑regulated  and  a  reduced  expression  has  also  been  linked  with  PSA   relapse   and   disease   progression   in   RP   patients   (Brewster   et   al.   1999,   Kuczyk   et   al.  1998).    2.7 EPITHELIAL-MESENCHYMAL TRANSITION (EMT) Normal  epithelial  cells  are  arranged  with  close  contacts  to  their  neighbors  through  adherent  junctions,  desmosomes  and   tight   junctions  whereas  mesenchymal   stromal   cells   can  move  more   or   less   loosely   within   the   extracellular   matrix.   The   phenomenon   that   converts  epithelial  cells  into  migratory  mesenchymal-­‐‑like  cells  is  known  as  the  EMT  process  (Kang,  Massague  2004).  Based  on  its  biological  context,  EMT  can  be  divided  into  three  subtypes.  In  normal   development,   type   1   EMT   takes   place   in   implantation,   embryogenesis   and   organ  formation.  Type  2  EMT  is  encountered  during  wound  healing  and  tissue  regeneration.  EMT  mediated  inflammatory  signaling  ceases  when  the  tissue  damage  is  repaired  and  restored  to   normal   conditions.  However,   if   there   should   be   ongoing   inflammation,   the   prolonged  EMT  activation  may  lead  fibrotic  organ  destruction,  such  as  kidney,  liver  and  lung  fibrosis.  The  type  3  EMT  process  is  cancer  associated  and  characterized  by  diminished  cell  adhesion.  In  this  type  of  EMT,  E-­‐‑cadherin  is  downregulated  and  simultaneously,  mesenchymal  type  genes,   such   as   vimentin   and   alpha   smooth   muscle   actin,   are   activated,   resulting   in   the  tumor   cells   acquiring   mesenchymal-­‐‑type   features.   This   property   confers   on   these   tumor  

11    

 

cells  the  capability  to  invade  other  tissues  and  metastasize  (Acloque  et  al.  2009,  Thiery  et  al.  2009,   Kalluri,   Weinberg   2009)   (Figure   2).   The   activation   of   the   EMT   program   has   been  postulated   as   one   of   the   critical  mechanisms   initiating   epithelial   cell   derived  malignancy  (Thiery  2002).  

EMT  is  orchestrated  by  several  genes,  such  as  Snail1,  Slug,  Zeb1,  TWIST  and  SIP1  which  influence   the   E-­‐‑cadherin   switch   by   down-­‐‑regulating   it   and   up-­‐‑regulating   mesenchymal  type   genes.  Upstream   of   these   several   signaling   pathways,   other   protein   factors   such   as,  transforming   growth   factor   β   (TGF-­‐‑β),   influence   the   expression   of   these   EMT   related  transcription   factors.   It   has   been   claimed   that   TGF-­‐‑β   is   most   important   of   these   up-­‐‑regulating  factors  (Zheng,  Kang  2014).                                                              

   Figure 2. EMT-process in cancer initiation and progression. Epithelial cells acquire mesenchymal features, allowing them to transform so that they are invasive and spread metastases to distant sites.    2.7.1  EMT-­‐‑related  transcription  factor  TWIST  and  cancer  TWIST   is   a  basic  helix-­‐‑loop-­‐‑helix   transcription   factor   first   reported   to  mediate  mesoderm  formation   in   Drosophila   and   later   found   to   be   an   important   regulator   of   mammalian  

       

       

 

 

   

   

 

 

 

   

EMT

Spread to circulation

Fragmentation of

basement membrane

and invasion

Page 31: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

10  

 

2.6.4  Angiogenesis  Blood   vessel   formation   is   essential   to   allow   tumour   progression.   Many   cancer   types,  including   PC   are   characterized   by   increased  microvessel   growth.   In   agreement  with   this  hypothesis,  an  augmented  microvessel  density  has  been  shown  to  predict  PSA  recurrence  after  RP  (de   la  Taille  et  al.  2000).  Furthermore,   the  process  of  neovascularization   involves  many   regulatory   molecules,   e.g.   vascular   endothelial   growth   factor   (VEGF).   An  overexpression   of   VEGF   in   cancer   tissue   has   been   demonstrated   to   correlate   with   PSA  relapse  following  RP  and  cancer  death  in  a  cohort  of  patients  that  underwent  observation  for  organ  confined  PC  (Strohmeyer  et  al.  2000,  Borre,  Nerstrom  &  Overgaard  2000).    2.6.5  Androgen  receptor  (AR)  Since  PC   is   an   androgen-­‐‑dependent   cancer,   one  might   consider   the  AR   to  be   an  obvious  marker  to  predict  the  outcome  of  PC  patients.  However,  AR  signaling  pathways  are  known  to  be   complex  and  are   regulated  at  many   levels.  The  heterogeneity   in  AR  expression  has  been   demonstrated   to   be   increased   with   the   progression   of   PC   from   organ   confined   to  metastatic   disease,   with   AR   signaling   being   more   prominent   in   the   later   stages   of   PC  (Miyamoto  et  al.  1993,  Magi-­‐‑Galluzzi  et  al.  1997).  In  patients  who  have  undergone  RP,  AR  overexpression  has  been  associated  with  differentiation  status  and  BFS,  although   the   link  between   this   parameter   and   cancer   survival   is   less   convincing   (Li   et   al.   2004,  Theodoropoulos  et  al.  2005b,  Sweat  et  al.  1999).    2.6.6  Cell  adhesion  E-­‐‑cadherin   plays   an   important   role   in   the  maintenance   of   cell-­‐‑to-­‐‑cell   adhesion   and   other  aspects   of   cell   morphology.   Furthermore,   E-­‐‑cadherin   has   direct   effects   on   signaling  pathways   in   EMT   process   and   modulates   the   activities   of   several   transcription   factors  linked  with  remodeling  of  the  cytoskeleton  (Kang,  Massague  2004).  In  cancer  progression,  E-­‐‑cadherin  is  usually  down-­‐‑regulated  and  a  reduced  expression  has  also  been  linked  with  PSA   relapse   and   disease   progression   in   RP   patients   (Brewster   et   al.   1999,   Kuczyk   et   al.  1998).    2.7 EPITHELIAL-MESENCHYMAL TRANSITION (EMT) Normal  epithelial  cells  are  arranged  with  close  contacts  to  their  neighbors  through  adherent  junctions,  desmosomes  and   tight   junctions  whereas  mesenchymal   stromal   cells   can  move  more   or   less   loosely   within   the   extracellular   matrix.   The   phenomenon   that   converts  epithelial  cells  into  migratory  mesenchymal-­‐‑like  cells  is  known  as  the  EMT  process  (Kang,  Massague  2004).  Based  on  its  biological  context,  EMT  can  be  divided  into  three  subtypes.  In  normal   development,   type   1   EMT   takes   place   in   implantation,   embryogenesis   and   organ  formation.  Type  2  EMT  is  encountered  during  wound  healing  and  tissue  regeneration.  EMT  mediated  inflammatory  signaling  ceases  when  the  tissue  damage  is  repaired  and  restored  to   normal   conditions.  However,   if   there   should   be   ongoing   inflammation,   the   prolonged  EMT  activation  may  lead  fibrotic  organ  destruction,  such  as  kidney,  liver  and  lung  fibrosis.  The  type  3  EMT  process  is  cancer  associated  and  characterized  by  diminished  cell  adhesion.  In  this  type  of  EMT,  E-­‐‑cadherin  is  downregulated  and  simultaneously,  mesenchymal  type  genes,   such   as   vimentin   and   alpha   smooth   muscle   actin,   are   activated,   resulting   in   the  tumor   cells   acquiring   mesenchymal-­‐‑type   features.   This   property   confers   on   these   tumor  

11    

 

cells  the  capability  to  invade  other  tissues  and  metastasize  (Acloque  et  al.  2009,  Thiery  et  al.  2009,   Kalluri,   Weinberg   2009)   (Figure   2).   The   activation   of   the   EMT   program   has   been  postulated   as   one   of   the   critical  mechanisms   initiating   epithelial   cell   derived  malignancy  (Thiery  2002).  

EMT  is  orchestrated  by  several  genes,  such  as  Snail1,  Slug,  Zeb1,  TWIST  and  SIP1  which  influence   the   E-­‐‑cadherin   switch   by   down-­‐‑regulating   it   and   up-­‐‑regulating   mesenchymal  type   genes.  Upstream   of   these   several   signaling   pathways,   other   protein   factors   such   as,  transforming   growth   factor   β   (TGF-­‐‑β),   influence   the   expression   of   these   EMT   related  transcription   factors.   It   has   been   claimed   that   TGF-­‐‑β   is   most   important   of   these   up-­‐‑regulating  factors  (Zheng,  Kang  2014).                                                              

   Figure 2. EMT-process in cancer initiation and progression. Epithelial cells acquire mesenchymal features, allowing them to transform so that they are invasive and spread metastases to distant sites.    2.7.1  EMT-­‐‑related  transcription  factor  TWIST  and  cancer  TWIST   is   a  basic  helix-­‐‑loop-­‐‑helix   transcription   factor   first   reported   to  mediate  mesoderm  formation   in   Drosophila   and   later   found   to   be   an   important   regulator   of   mammalian  

       

       

 

 

   

   

 

 

 

   

EMT

Spread to circulation

Fragmentation of

basement membrane

and invasion

Page 32: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

12  

 

embryogenesis   (Castanon,   Baylies   2002).   TWIST   is   one   of   the   inducers   of   EMT,   not   only  leading   to   down-­‐‑regulation   of   E-­‐‑cadherin   but   also   acting   by   up-­‐‑regulating   several  mesenchymal   markers.   In   the   progression   of   tumours,   TWIST   activation   allows   cells   to  become  invasive  and  penetrate  through  the  lymphatic  and  blood  vessels  so  that  they  gain  access   to   the   systemic   circulation.   Finally,   tumour   cells   form   micrometastases   and  secondary  malignant   tumours.   TWIST   expression   is   a   sign   of   the   aggressive   potential   of  cancer   cells,   with   very   high   expression   being   observed   in   metastatic   tissues   (Yang   et   al.  2004).  The  activation  of  TWIST  has  been  shown  to  be  a  sufficient  trigger  to  lead  carcinoma  cells  through  the  EMT  process  and  gain  access  into  the  circulation  (Tsai  et  al.  2012).  TWIST  has   also   been   found   to   inhibit   several   apoptotic   genes,   such   as  p53,   and   thus   arrests   on-­‐‑going   attempts   at   tumour   suppression   (Maestro   et   al.   1999).   Bmi1,   a   member   of   the  polycomb-­‐‑group   repressor   complex   proteins,   has   been   demonstrated   to   be   frequently  overexpressed  in  tumour-­‐‑initiating  cells  and  is  believed  to  be  a  direct  target  for  the  TWIST  gene.  Furthermore,  the  activation  of  a  known  oncogene,  AKT2,  has  been  identified  as  being  a  direct  up-­‐‑regulator  of  TWIST  and  it  confers  resistance  to  anticancer  drugs  (Cheng,  Chan  2007).    

In  addition  to  a  well  known  role  of  TWIST  in  cancer  progression  in  vitro  in  PC-­‐‑derived  cell-­‐‑lines,  there  are  reports  suggesting  that  TWIST  could  be  used  as  a  biomarker  for  cancer  prognosis.  Higher  levels  of  TWIST  expression  have  been  reported  in  samples  of  malignant  tissues  in  comparison  to  normal  tissues  in  many  cancer  types.  Furthermore,  several  authors  have  found  strong  positive  associations  between  increased  TWIST  expression  and  disease  progression   and   survival   rates   in   malignancies,   such   as   breast   cancer,   bladder   cancer,  cervical   cancer,   oral   and   pharyngeal   squamous   cell   carcinoma   and   renal   cell   cancer  carcinoma  (Soini  et  al.  2011,  Riaz  et  al.  2012,  Song  et  al.  2014,  Shibata  et  al.  2008a,  Fan  et  al.  2013,  Jouppila-­‐‑Mättö  et  al.  2011,  Ohba  et  al.  2014).    2.7.2  Role  of  TWIST  in  prostate  cancer  In  experiments  conducted  in  both  PC  cell  lines  and  tissue  material,  TWIST  expression  has  been  shown  to  be  significantly  augmented  in  PC  cells  in  comparison  to  benign  cells.  Kwok  et   al  observed   that   the  degree  of  TWIST  expression  was  dependent  on   the  Gleason   score  and   the   state   of   metastases   suggesting   that   TWIST   could   be   utilized   as   an   indicator   of  cancer   aggressiveness   (Kwok   et   al.   2005).   The   association   of   TWIST   expression   with  Gleason   score   and   probability   to   bone   metastases   has   been   also   detected   in   tissue   bank  material   of   PC   samples.   Furthermore,   increased   TWIST   expression   has   also   been   linked  with   suppressed   E-­‐‑cadherin   expression,   suggesting   that   the   changes   in   the   cadherin  pathway  could  be  mediated  by  TWIST  (Yuen  et  al.  2007).  In  addition,  the  E-­‐‑cadherin  switch  to   N-­‐‑cadherin,   a   phenomenon   commonly   encountered   in   invasive   carcinomas,   has   been  observed   to  be  activated  by  TWIST  signaling  at   the   transcriptional   level   (Alexander  et  al.  2006).  

Since  TWIST  signaling  is  associated  with  unfavorable  behavior  in  PC,  it  is  not  surprising  that   several   studies   have   indicated   that   TWIST   activation  may  promote   the   formation   of  metastases.  This  kind  of  TWIST  mediated  effect  has  been  observed   in  metastatic  PC  cells  and   there   is   also   evidence   that   TWIST   can   modulate   bone   cell   activity   in   a   paracrine  manner   in   cell   culture   settings   (Yuen   et   al.   2008).   In   agreement  with   findings  originating  from  other  cancer  types,  TWIST  mediated  signaling  has  also  been  demonstrated  to  induce  lung  metastases  in  animal  models  of  PC  (Gajula  et  al.  2013).  

13    

 

The   pathways   linked   with   TWIST   signaling,   interact   with   the   mechanisms   of   some  anticancer  drugs,  such  as  docetaxel  and  enzalutamide.  There  are  experiments  which  have  examined   the   mechanisms   linking   TWIST   with   chemo-­‐‑resistance   but   it   has   also   been  suggested   that   TWIST   could   be   a   therapeutic   target   for   future   drugs   (Shiota   et   al.   2013,  Shiota  et  al.  2014).  

There  is  one  earlier  report  evaluating  EMT-­‐‑markers,   including  TWIST,   in  PC  prognosis  of  clinical  patients.  In  that  study,  Behnsawy  et  al  found  increased  TWIST  expression  to  be  associated   with   traditional   clinicopathological   prognostic   factors   and   to   predict  independently  BFS  in  PC  patients  after  RP  (Behnsawy  et  al.  2013).    

One  important  link  between  AR  and  TWIST  expression  was  revealed  by  Shiota  et  al.  In  a  cell   line   study   conducted   with   human   PC   cells,   induction   of   TWIST   led   to   AR  overexpression   and   conversely,   silencing   of   TWIST   suppressed   AR   expression   and  triggered  cellular  apoptosis.  The  site  of  action  of  the  modulation  was  identified  as  being  in  the  promoter  region  of  AR-­‐‑gene  where  there  was  a  TWIST  binding  site  (Shiota  et  al.  2010).   2.8 OXIDATIVE DAMAGE  ROS   refer   to   a   wide   range   of   molecules   and   molecular   fragments   formed   in   aerobic  organisms  mostly  as  a   consequence  of  aerobic   respiration.  Extracellular   stressors,   such  as  exposure  to  chemicals  or  radiation  can  also  lead  to  the  formation  of  ROS.  Highly  reactive  free  radicals,  superoxide-­‐‑,  hydroxyl-­‐‑  and  nitric  oxide  radical  contain  unpaired  electrons  on  their   outermost   orbital.   Even   though   it   possesses   less   reactivity   than   many   other   free  radicals,  hydrogen  peroxide  is  still  important  in  carcinogenesis  since  it  has  the  capability  to  diffuse   through   membranes   and   thus   can   reach   critical   cellular   targets   and   cause   an  oxidative  injury.  Hydrogen  peroxide  can  be  produced  spontaneously  from  oxygen  or  as  the  result   of   catalytic   activity   from   superoxide   radicals   by   superoxide   dismutases   (Evans,  Dizdaroglu  &  Cooke  2004,  Karihtala,  Soini  2007).    

Under   physiological   conditions,   ROS   are   participants   in   many   cellular   processes.   For  example,   nitric   oxide   radicals   have   an   effect   on   platelet   adhesion   and   vascular   tone   and  superoxide  radicals  and  hydrogen  peroxide  are  involved  in  cellular  signaling  (Rhee  1999).  Human  cells  have  numerous  mechanisms  for  neutralizing  ROS.  However,  if  the  capacity  of  cellular   antioxidant   defense   system   becomes   overwhelmed,   oxidative   stress   occurs   (Ray,  Huang  &  Tsuji  2012).  

ROS-­‐‑mediated   damage   has   been   linked   with   several   benign   diseases.   In   times   of  infection,   elevated   levels   of   ROS   are   generated   in   damaged   tissues   by   neutrophils   and  macrophages   to   combat   the   invading   microbes.   However,   there   are   also   conditions   of  chronic  inflammation,  such  as  rheumatoid  arthritis  and  inflammatory  bowel  disease,  and  in  this   case,   oxidative  damage   can  evoke   connective   tissue  destruction  and  modifications  of  biomolecules  (Evans,  Dizdaroglu  &  Cooke  2004,  Wiseman,  Halliwell  1996).    2.8.1  Oxidative  stress  in  carcinogenesis  Persistent   oxidative   exposure   and   augmented   ROS   formation   are   characteristic   changes  detected   in   carcinoma   cells.  Macrophage   infiltration   and   increased   glycolytic  metabolism  are  also  linked  with  oxidative  imbalance  in  the  tumour  tissue.  DNA  is  the  most  important  site   of  ROS   related  damage   in   carcinogenesis.   There   are  many   complex   and   inter-­‐‑related  mechanisms   leading   to   cancer   initiation   involving   the   inactivation   of   tumour   suppressor  

Page 33: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

12  

 

embryogenesis   (Castanon,   Baylies   2002).   TWIST   is   one   of   the   inducers   of   EMT,   not   only  leading   to   down-­‐‑regulation   of   E-­‐‑cadherin   but   also   acting   by   up-­‐‑regulating   several  mesenchymal   markers.   In   the   progression   of   tumours,   TWIST   activation   allows   cells   to  become  invasive  and  penetrate  through  the  lymphatic  and  blood  vessels  so  that  they  gain  access   to   the   systemic   circulation.   Finally,   tumour   cells   form   micrometastases   and  secondary  malignant   tumours.   TWIST   expression   is   a   sign   of   the   aggressive   potential   of  cancer   cells,   with   very   high   expression   being   observed   in   metastatic   tissues   (Yang   et   al.  2004).  The  activation  of  TWIST  has  been  shown  to  be  a  sufficient  trigger  to  lead  carcinoma  cells  through  the  EMT  process  and  gain  access  into  the  circulation  (Tsai  et  al.  2012).  TWIST  has   also   been   found   to   inhibit   several   apoptotic   genes,   such   as  p53,   and   thus   arrests   on-­‐‑going   attempts   at   tumour   suppression   (Maestro   et   al.   1999).   Bmi1,   a   member   of   the  polycomb-­‐‑group   repressor   complex   proteins,   has   been   demonstrated   to   be   frequently  overexpressed  in  tumour-­‐‑initiating  cells  and  is  believed  to  be  a  direct  target  for  the  TWIST  gene.  Furthermore,  the  activation  of  a  known  oncogene,  AKT2,  has  been  identified  as  being  a  direct  up-­‐‑regulator  of  TWIST  and  it  confers  resistance  to  anticancer  drugs  (Cheng,  Chan  2007).    

In  addition  to  a  well  known  role  of  TWIST  in  cancer  progression  in  vitro  in  PC-­‐‑derived  cell-­‐‑lines,  there  are  reports  suggesting  that  TWIST  could  be  used  as  a  biomarker  for  cancer  prognosis.  Higher  levels  of  TWIST  expression  have  been  reported  in  samples  of  malignant  tissues  in  comparison  to  normal  tissues  in  many  cancer  types.  Furthermore,  several  authors  have  found  strong  positive  associations  between  increased  TWIST  expression  and  disease  progression   and   survival   rates   in   malignancies,   such   as   breast   cancer,   bladder   cancer,  cervical   cancer,   oral   and   pharyngeal   squamous   cell   carcinoma   and   renal   cell   cancer  carcinoma  (Soini  et  al.  2011,  Riaz  et  al.  2012,  Song  et  al.  2014,  Shibata  et  al.  2008a,  Fan  et  al.  2013,  Jouppila-­‐‑Mättö  et  al.  2011,  Ohba  et  al.  2014).    2.7.2  Role  of  TWIST  in  prostate  cancer  In  experiments  conducted  in  both  PC  cell  lines  and  tissue  material,  TWIST  expression  has  been  shown  to  be  significantly  augmented  in  PC  cells  in  comparison  to  benign  cells.  Kwok  et   al  observed   that   the  degree  of  TWIST  expression  was  dependent  on   the  Gleason   score  and   the   state   of   metastases   suggesting   that   TWIST   could   be   utilized   as   an   indicator   of  cancer   aggressiveness   (Kwok   et   al.   2005).   The   association   of   TWIST   expression   with  Gleason   score   and   probability   to   bone   metastases   has   been   also   detected   in   tissue   bank  material   of   PC   samples.   Furthermore,   increased   TWIST   expression   has   also   been   linked  with   suppressed   E-­‐‑cadherin   expression,   suggesting   that   the   changes   in   the   cadherin  pathway  could  be  mediated  by  TWIST  (Yuen  et  al.  2007).  In  addition,  the  E-­‐‑cadherin  switch  to   N-­‐‑cadherin,   a   phenomenon   commonly   encountered   in   invasive   carcinomas,   has   been  observed   to  be  activated  by  TWIST  signaling  at   the   transcriptional   level   (Alexander  et  al.  2006).  

Since  TWIST  signaling  is  associated  with  unfavorable  behavior  in  PC,  it  is  not  surprising  that   several   studies   have   indicated   that   TWIST   activation  may  promote   the   formation   of  metastases.  This  kind  of  TWIST  mediated  effect  has  been  observed   in  metastatic  PC  cells  and   there   is   also   evidence   that   TWIST   can   modulate   bone   cell   activity   in   a   paracrine  manner   in   cell   culture   settings   (Yuen   et   al.   2008).   In   agreement  with   findings  originating  from  other  cancer  types,  TWIST  mediated  signaling  has  also  been  demonstrated  to  induce  lung  metastases  in  animal  models  of  PC  (Gajula  et  al.  2013).  

13    

 

The   pathways   linked   with   TWIST   signaling,   interact   with   the   mechanisms   of   some  anticancer  drugs,  such  as  docetaxel  and  enzalutamide.  There  are  experiments  which  have  examined   the   mechanisms   linking   TWIST   with   chemo-­‐‑resistance   but   it   has   also   been  suggested   that   TWIST   could   be   a   therapeutic   target   for   future   drugs   (Shiota   et   al.   2013,  Shiota  et  al.  2014).  

There  is  one  earlier  report  evaluating  EMT-­‐‑markers,   including  TWIST,   in  PC  prognosis  of  clinical  patients.  In  that  study,  Behnsawy  et  al  found  increased  TWIST  expression  to  be  associated   with   traditional   clinicopathological   prognostic   factors   and   to   predict  independently  BFS  in  PC  patients  after  RP  (Behnsawy  et  al.  2013).    

One  important  link  between  AR  and  TWIST  expression  was  revealed  by  Shiota  et  al.  In  a  cell   line   study   conducted   with   human   PC   cells,   induction   of   TWIST   led   to   AR  overexpression   and   conversely,   silencing   of   TWIST   suppressed   AR   expression   and  triggered  cellular  apoptosis.  The  site  of  action  of  the  modulation  was  identified  as  being  in  the  promoter  region  of  AR-­‐‑gene  where  there  was  a  TWIST  binding  site  (Shiota  et  al.  2010).   2.8 OXIDATIVE DAMAGE  ROS   refer   to   a   wide   range   of   molecules   and   molecular   fragments   formed   in   aerobic  organisms  mostly  as  a   consequence  of  aerobic   respiration.  Extracellular   stressors,   such  as  exposure  to  chemicals  or  radiation  can  also  lead  to  the  formation  of  ROS.  Highly  reactive  free  radicals,  superoxide-­‐‑,  hydroxyl-­‐‑  and  nitric  oxide  radical  contain  unpaired  electrons  on  their   outermost   orbital.   Even   though   it   possesses   less   reactivity   than   many   other   free  radicals,  hydrogen  peroxide  is  still  important  in  carcinogenesis  since  it  has  the  capability  to  diffuse   through   membranes   and   thus   can   reach   critical   cellular   targets   and   cause   an  oxidative  injury.  Hydrogen  peroxide  can  be  produced  spontaneously  from  oxygen  or  as  the  result   of   catalytic   activity   from   superoxide   radicals   by   superoxide   dismutases   (Evans,  Dizdaroglu  &  Cooke  2004,  Karihtala,  Soini  2007).    

Under   physiological   conditions,   ROS   are   participants   in   many   cellular   processes.   For  example,   nitric   oxide   radicals   have   an   effect   on   platelet   adhesion   and   vascular   tone   and  superoxide  radicals  and  hydrogen  peroxide  are  involved  in  cellular  signaling  (Rhee  1999).  Human  cells  have  numerous  mechanisms  for  neutralizing  ROS.  However,  if  the  capacity  of  cellular   antioxidant   defense   system   becomes   overwhelmed,   oxidative   stress   occurs   (Ray,  Huang  &  Tsuji  2012).  

ROS-­‐‑mediated   damage   has   been   linked   with   several   benign   diseases.   In   times   of  infection,   elevated   levels   of   ROS   are   generated   in   damaged   tissues   by   neutrophils   and  macrophages   to   combat   the   invading   microbes.   However,   there   are   also   conditions   of  chronic  inflammation,  such  as  rheumatoid  arthritis  and  inflammatory  bowel  disease,  and  in  this   case,   oxidative  damage   can  evoke   connective   tissue  destruction  and  modifications  of  biomolecules  (Evans,  Dizdaroglu  &  Cooke  2004,  Wiseman,  Halliwell  1996).    2.8.1  Oxidative  stress  in  carcinogenesis  Persistent   oxidative   exposure   and   augmented   ROS   formation   are   characteristic   changes  detected   in   carcinoma   cells.  Macrophage   infiltration   and   increased   glycolytic  metabolism  are  also  linked  with  oxidative  imbalance  in  the  tumour  tissue.  DNA  is  the  most  important  site   of  ROS   related  damage   in   carcinogenesis.   There   are  many   complex   and   inter-­‐‑related  mechanisms   leading   to   cancer   initiation   involving   the   inactivation   of   tumour   suppressor  

Page 34: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

14  

 

genes  and  the  activation  of  oncogenes.  In  most  cases,  mutations  are  either  irrelevant  as  they  do   not   occur   in   critical   parts   of   the   DNA   base   sequences   or   quickly   neutralized   by   cell  defense   systems;   only   the   mutations   in   critical   genes   are   capable   of   inititaing   a   cascade  resulting  in  the  formation  of  a  clone  of  malignant  cells.  However,  ROS  can  harm  almost  all  of   the   macromolecules   within   the   cell,   such   as   membrane   lipid   structures,   signaling  proteins   and   enzymes   causing   alteration   of   cell   signaling   and   regulation   of   critical  pathways  (Karihtala,  Soini  2007,  Paschos  et  al.  2013).      2.8.1.1  8-­‐‑Hydroxydeoxyguanosine  (8-­‐‑OHDG)  DNA  damage  originating  from  hydroxyl  radical  exposure  yields  8-­‐‑OHDG,  which  has  been  used  as  a  classical  fingerprint  marker  of  oxidative  damage  in  the  DNA  molecule  (Marnett  2000).  Many   of   the  mutagenic   features   of   8-­‐‑OHDG   are   believed   to   be   attributable   to   the  appearance  of  guanine  to  thymidine  transversions  in  the  nucleotide  bases,  which  have  been  detected  in  p53  tumour  suppressor  gene  and  ras  oncogenes  (Dreher,  Junod  1996).  In  many  different   kinds   of   cancer   types,   such   as   B-­‐‑cell   lymphomas,   bladder   cancer,   breast   cancer,  renal  cell  cancer  and  ovarian  cancer,  higher  concentrations  of  8-­‐‑OHDG  have  been  measured  in  the  tumour  than  in  healthy  tissue  and  this  is  thought  to  be  a  consequence  of  an  oxidative  burst   in  carcinogenesis  (Pasanen  et  al.  2012,  Soini  et  al.  2011,  Musarrat,  Arezina-­‐‑Wilson  &  Wani  1996,  Okamoto  et  al.  1994,  Karihtala  et  al.  2009).    

There  are  a  few  reports  that  have  explored  the  role  of  8-­‐‑OHDG  in  PC.  Decreased  levels  of  8-­‐‑OHDG  have  been   found   in  urine  after  hormonal   therapy  and   interpreted  as  a  sign  of  a  treatment  effect  (Miyake  et  al.  2004)  and  augmented  8-­‐‑OHDG  expression  has  been  observed  in   metastatic   lesions   (Oberley   et   al.   2000).   In   studies   conducted   with   prostate   biopsy  samples  and   radical  prostatectomy  specimens,   an  oxidative   stress   related  mechanism  has  been  shown  to  be  linked  with  the  progression  of  PC.  However,  the  relationship  between  8-­‐‑OHDG  expression  as  a  biomarker  and  outcome  of  clinical  patients  is  still  unclear  (Bostwick  et  al.  2000,  Richardson  et  al.  2009).    2.8.1.2  Nuclear  factor  erythroid  2-­‐‑related  factor  2  (Nrf-­‐‑2)  Under   normal   conditions,   oxidative   damage   related   genes   are   minimally   expressed   but  they   can   be   induced   by   endogenous   or   exogenous   stressors.   Nrf-­‐‑2   is   one   of   the   most  important  mediators  leading  to  signaling  at  the  transcriptional  level.  This  property  was  first  described  in  humans  in  1994  (Moi  et  al.  1994).  Under  quiescent  conditions,  Nrf-­‐‑2  is  mainly  in  close  contact   in  cytoplasm  with  Kelch  ECH  associating  protein  1  (Keap1).  It   is  believed  that   the   cysteine   residues   in   Keap1   function   as   sensors   for   oxidative   stress   and   mediate  structural   changes,   allowing   Nrf-­‐‑2   to   be   released   from   Keap1.   Once   liberated,   Nrf-­‐‑2   is  transferred   to   the   nucleus,   where   it   accumulates.   In   the   nucleus,   it   associates   with   Maf  proteins   and   interacts  with   a   specific   enhancer,   antioxidant   response   element   (ARE).  The  activation  of  ARE-­‐‑depended  gene  transcription  initiates  cell  defensive  functions,  such  DNA  damage   recognition,   free   radical   metabolism,   production   of   antioxidants   and   protease  functions   (Figure   3)(Kensler,   Wakabayashi   2010,   Nguyen,   Yang   &   Pickett   2004,   Kensler,  Wakabayashi  &  Biswal  2007,  Itoh,  Mimura  &  Yamamoto  2010).            

15    

 

 

Figure 3. Nrf-2 is released from Keap1 in the cytoplasm and is transferred to the nucleus where it associates with Maf proteins and initiates transcription of oxidative damage combating genes by binding to the ARE element.

 Several   studies   have   established   the   important   link   between   Nrf-­‐‑2   mediated   cell  

protection  mechanism  and  cancer  initiation  caused  by  oxidative  damage.    In  experimental  animals,   Nrf-­‐‑2   knockout   mice   have   shown   to   be   susceptible   to   chemical   induced   fore-­‐‑stomach  and  bladder  tumours  (Iida  et  al.  2004,  Ramos-­‐‑Gomez  et  al.  2001).    Nfr-­‐‑2-­‐‑dependent  chemoresistance   has   also   been   observed   after   genetic   manipulation   of   Nrf-­‐‑2   activity   in  cancer   cell   lines   (Lau   et   al.   2008).   In   addition,  mutations   repressing  Keap1   or  Nrf-­‐‑2   gene  functions  have  been  found  in  malignant  tissue  samples  of  patients  with  lung  cancer  or  head  and  neck   cancer   (Shibata   et   al.   2008b).   Furthermore,  modifications  of   expression  of  Nrf-­‐‑2  regulating  downstream  genes  have  evoked  carcinogenesis  and  endowed  cancer  cells  with  invasive  properties  (Lau  et  al.  2008).    

There  are  many  reports  conducted  with  clinical  cohorts  indicating  that  Nrf-­‐‑2  expression  can  predict  outcome  of  patients  in  several  cancer  types.  For  example,  in  patients  with  breast  cancer,  gastric  cancer,  glioma,   lung  cancer  and  ovarian  cancer,   increased  Nrf-­‐‑2  expression  has   been   shown   to   associate   with   unfavorable   clinicopathological   factors   and   poorer  survival   (Hartikainen   et   al.   2012,  Kawasaki   et   al.   2015,   Zhao   et   al.   2015,  Merikallio   et   al.  2012,  Liew  et  al.  2015).  

Cytoplasmm

Nucleus

ARE

Nrf-2

Nrf-2

Keap1

SH SH

Maf gene transcription

Target gene functions

Cell survival

Stressors, inducers

Page 35: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

14  

 

genes  and  the  activation  of  oncogenes.  In  most  cases,  mutations  are  either  irrelevant  as  they  do   not   occur   in   critical   parts   of   the   DNA   base   sequences   or   quickly   neutralized   by   cell  defense   systems;   only   the   mutations   in   critical   genes   are   capable   of   inititaing   a   cascade  resulting  in  the  formation  of  a  clone  of  malignant  cells.  However,  ROS  can  harm  almost  all  of   the   macromolecules   within   the   cell,   such   as   membrane   lipid   structures,   signaling  proteins   and   enzymes   causing   alteration   of   cell   signaling   and   regulation   of   critical  pathways  (Karihtala,  Soini  2007,  Paschos  et  al.  2013).      2.8.1.1  8-­‐‑Hydroxydeoxyguanosine  (8-­‐‑OHDG)  DNA  damage  originating  from  hydroxyl  radical  exposure  yields  8-­‐‑OHDG,  which  has  been  used  as  a  classical  fingerprint  marker  of  oxidative  damage  in  the  DNA  molecule  (Marnett  2000).  Many   of   the  mutagenic   features   of   8-­‐‑OHDG   are   believed   to   be   attributable   to   the  appearance  of  guanine  to  thymidine  transversions  in  the  nucleotide  bases,  which  have  been  detected  in  p53  tumour  suppressor  gene  and  ras  oncogenes  (Dreher,  Junod  1996).  In  many  different   kinds   of   cancer   types,   such   as   B-­‐‑cell   lymphomas,   bladder   cancer,   breast   cancer,  renal  cell  cancer  and  ovarian  cancer,  higher  concentrations  of  8-­‐‑OHDG  have  been  measured  in  the  tumour  than  in  healthy  tissue  and  this  is  thought  to  be  a  consequence  of  an  oxidative  burst   in  carcinogenesis  (Pasanen  et  al.  2012,  Soini  et  al.  2011,  Musarrat,  Arezina-­‐‑Wilson  &  Wani  1996,  Okamoto  et  al.  1994,  Karihtala  et  al.  2009).    

There  are  a  few  reports  that  have  explored  the  role  of  8-­‐‑OHDG  in  PC.  Decreased  levels  of  8-­‐‑OHDG  have  been   found   in  urine  after  hormonal   therapy  and   interpreted  as  a  sign  of  a  treatment  effect  (Miyake  et  al.  2004)  and  augmented  8-­‐‑OHDG  expression  has  been  observed  in   metastatic   lesions   (Oberley   et   al.   2000).   In   studies   conducted   with   prostate   biopsy  samples  and   radical  prostatectomy  specimens,   an  oxidative   stress   related  mechanism  has  been  shown  to  be  linked  with  the  progression  of  PC.  However,  the  relationship  between  8-­‐‑OHDG  expression  as  a  biomarker  and  outcome  of  clinical  patients  is  still  unclear  (Bostwick  et  al.  2000,  Richardson  et  al.  2009).    2.8.1.2  Nuclear  factor  erythroid  2-­‐‑related  factor  2  (Nrf-­‐‑2)  Under   normal   conditions,   oxidative   damage   related   genes   are   minimally   expressed   but  they   can   be   induced   by   endogenous   or   exogenous   stressors.   Nrf-­‐‑2   is   one   of   the   most  important  mediators  leading  to  signaling  at  the  transcriptional  level.  This  property  was  first  described  in  humans  in  1994  (Moi  et  al.  1994).  Under  quiescent  conditions,  Nrf-­‐‑2  is  mainly  in  close  contact   in  cytoplasm  with  Kelch  ECH  associating  protein  1  (Keap1).  It   is  believed  that   the   cysteine   residues   in   Keap1   function   as   sensors   for   oxidative   stress   and   mediate  structural   changes,   allowing   Nrf-­‐‑2   to   be   released   from   Keap1.   Once   liberated,   Nrf-­‐‑2   is  transferred   to   the   nucleus,   where   it   accumulates.   In   the   nucleus,   it   associates   with   Maf  proteins   and   interacts  with   a   specific   enhancer,   antioxidant   response   element   (ARE).  The  activation  of  ARE-­‐‑depended  gene  transcription  initiates  cell  defensive  functions,  such  DNA  damage   recognition,   free   radical   metabolism,   production   of   antioxidants   and   protease  functions   (Figure   3)(Kensler,   Wakabayashi   2010,   Nguyen,   Yang   &   Pickett   2004,   Kensler,  Wakabayashi  &  Biswal  2007,  Itoh,  Mimura  &  Yamamoto  2010).            

15    

 

 

Figure 3. Nrf-2 is released from Keap1 in the cytoplasm and is transferred to the nucleus where it associates with Maf proteins and initiates transcription of oxidative damage combating genes by binding to the ARE element.

 Several   studies   have   established   the   important   link   between   Nrf-­‐‑2   mediated   cell  

protection  mechanism  and  cancer  initiation  caused  by  oxidative  damage.    In  experimental  animals,   Nrf-­‐‑2   knockout   mice   have   shown   to   be   susceptible   to   chemical   induced   fore-­‐‑stomach  and  bladder  tumours  (Iida  et  al.  2004,  Ramos-­‐‑Gomez  et  al.  2001).    Nfr-­‐‑2-­‐‑dependent  chemoresistance   has   also   been   observed   after   genetic   manipulation   of   Nrf-­‐‑2   activity   in  cancer   cell   lines   (Lau   et   al.   2008).   In   addition,  mutations   repressing  Keap1   or  Nrf-­‐‑2   gene  functions  have  been  found  in  malignant  tissue  samples  of  patients  with  lung  cancer  or  head  and  neck   cancer   (Shibata   et   al.   2008b).   Furthermore,  modifications  of   expression  of  Nrf-­‐‑2  regulating  downstream  genes  have  evoked  carcinogenesis  and  endowed  cancer  cells  with  invasive  properties  (Lau  et  al.  2008).    

There  are  many  reports  conducted  with  clinical  cohorts  indicating  that  Nrf-­‐‑2  expression  can  predict  outcome  of  patients  in  several  cancer  types.  For  example,  in  patients  with  breast  cancer,  gastric  cancer,  glioma,   lung  cancer  and  ovarian  cancer,   increased  Nrf-­‐‑2  expression  has   been   shown   to   associate   with   unfavorable   clinicopathological   factors   and   poorer  survival   (Hartikainen   et   al.   2012,  Kawasaki   et   al.   2015,   Zhao   et   al.   2015,  Merikallio   et   al.  2012,  Liew  et  al.  2015).  

Cytoplasmm

Nucleus

ARE

Nrf-2

Nrf-2

Keap1

SH SH

Maf gene transcription

Target gene functions

Cell survival

Stressors, inducers

Page 36: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

16  

 

The  studies  concerning  Nrf-­‐‑2  signaling  in  PC  have  been  carried  out  using  cancer  tissues  and  cell  lines.  Xu  et  al  revealed  that  an  increase  in  the  oxidative  burst  affects  the  expression  of   many   antioxidant   genes   as   well   as   with   activation   of   the   Nrf-­‐‑2   pathway   in   human  prostate  cells  (Xu  et  al.  2013).  Changes  in  Nrf-­‐‑2  activity  have  also  been  observed  as  a  result  of  KEAP1  manipulation   and   administration   of   oxidative   stress-­‐‑inducing   chemicals   in   PC  tissue  models   and   cell   cultures   (Frohlich   et   al.   2008,  Pettazzoni   et   al.   2011).   Furthermore,  radioresistance,  chemoresistance  and  tumour  growth  were  enhanced  after  promoting  Nrf-­‐‑2  function  by  Keap1  inhibition  in  PC  cell  lines.  In  addition,  a  higher  expression  of  Nrf-­‐‑2  target  genes   has   been   detected   in   PC   cells   compared   to   normal   prostate   cells   in   this   situation  (Zhang  et  al.  2010).  In  an  animal  model  of  PC,  suppression  of  Nrf-­‐‑2  expression  in  transgenic  mice   with   PC   facilitated   cancer   progression,   in   contrast   to   the   situation   in   non-­‐‑tumourigenic  mice  which  were  not   subjected   to  alterations   in   their  Nrf-­‐‑2   levels   (Yu  et  al.  2010).  

 2.8.1.3  Peroxiredoxin  (Prx)  and  sulfiredoxin  (Srx)  The  Prx-­‐‑family  is  widely  distributed  in  human  tissues  being  one  of  the  most  crucial  sensors  and  regulators  of  redox  balance.  Prx  enzymes  are  found  in  six  isoforms  located  in  cytosol  and   with   some   also   being   found   in   distinct   cell   organelles   (Karihtala,   Soini   2007).   Prxs  possess   enzymatic   properties   and   act   to   protect   the   cell   against   oxidative   damage   by  converting   alkyl   hydroperoxides   and   hydrogen   peroxide   into   alcohol   and   water.   The  structure  of  Prxs  includes  one  or  two  reactive  cysteines  that  are  weakly  oxidized  when  they  come   into   contact   with   ROS,   leading   to   a   reduction   and   loss   of   activity   of   the   ROS  (Rabilloud  et  al.  2002).  In  order  to  regenerate  Prxs  back  to  their  active  form,  oxidized  Prxs  are   normally   reduced   by   thioredoxin   (Trx)   during   the   catalytic   cycle   (Rhee   et   al.   2005).  However,  Prxs  may  be  converted  into  hyperoxidized  forms  if  there  is  intense  oxidation  and  then  Trx  cannot  restore  their  enzymatic  activity.  In  the  cases  of  hyperoxidation,  Srx  may  be  able  to  perform  the  reduction  in  a  reaction  requiring  hydrolysis  of  adenosine  triphosphate,  thus   preserving   Prxs   from   destruction   (Woo   et   al.   2005).   Srx   is   also   sensitive   to   signals  present   in   the   oxidative   burst;   this   enzyme   mediates   responses   through   cytoprotective  pathways  and  thus  has  the  functions  of  a  modulator  molecule  (Jeong  et  al.  2012).         Prxs  function  also  as  chaperones.  When  exposed  to  a  high  peroxide  concentration,  they  form  oligomers  such  as  decamers  which  prevent  proteins  from  being  misfolded  (Saccoccia  et  al.  2012).  Glutathionylation  of  Prxs,  such  as  Prx1  at  Cys83  reverts  the  complex  back  to  its  dimer  form,  inhibiting  its  chaperone  function  and  affecting  its  ability  to  modulate  some  cell  signaling  pathways  (Chae  et  al.  2012).  

In   addition   to   the   protective   function   exerted   by   Prxs   under   physiological   conditions  against   oxidative   injury,   they   have   been   claimed   to   act   as   endogenous   indicators   of  disrupted   redox   balance   (Poynton,   Hampton   2014).   The   role   of   an   up-­‐‑regulated   Prx  pathway  in  carcinogenesis  has  been  demonstrated  in  cell  line  studies  and  in  animal  models.  ROS   may   directly   activate   enzymatic   detoxifying   systems,   leading   to   malignant  transformation   but   they   can   also   affect   signal   transduction   at   the   transcriptional   level  (Immenschuh,   Baumgart-­‐‑Vogt   2005).   Furthermore,   augmented   levels   of   Prxs   have   been  shown  to  be  linked  with  aggressive  features  of  many  cancer  types  in  humans,  such  as  B-­‐‑cell  lymphoma,   breast   cancer,   gall   bladder   carcinoma,   hepatocellular   cancer   and     renal   cell  cancer  (Kuusisto  et  al.  2015,  Karihtala  et  al.  2003,  Li  et  al.  2013,  Sun  et  al.  2014,  Soini  et  al.  2006).  

17    

 

The   reports   evaluating   the   Prx   expression   in   PC   have   been   mainly   carried   out   using  tissue  samples  and  cell  cultures.  Increased  Prx  1  -­‐‑  6  activity  has  been  detected  in  malignant  samples  compared  to  benign  tissue  and  the  up-­‐‑regulation  of  Prx  3  and  4  has  led  to  cancer  progression  in  PC  cell  lines  (Valdman  et  al.  2009,  Whitaker  et  al.  2013,  Chaiswing,  Zhong  &  Oberley  2014,  Ummanni  et  al.  2012,  He  et  al.  2012,  Riddell  et  al.  2011).  Furthermore,  Prx2  mediated   regulation   has   been   demonstrated   to   be   linked   with   AR-­‐‑expressing   PC-­‐‑cells,  under   conditions   where   the   silencing   of   Prx2   has   decreased   the   AR-­‐‑dependent   gene  expression  and  further  reduced  cell  survival  (Shiota  et  al.  2011).  In  a  study  conducted  with  tissue  bank  material,  augmented  Prx3  activity  associated  with  tumour  grade  and  predicted  biochemical  progression  (Basu  et  al.  2011).  

Several  reports  have  indicated  that  disturbances  in  the  Srx  pathway  are  associated  with  the  pathogenesis  of  oxidative  stress  mediated  diseases,  such  as  atherosclerosis  and  chronic  obstructive  pulmonary  disease  (Ramesh  et  al.  2014).   In  malignancies,  up-­‐‑regulation  of  Srx  has  been  detected  in  lung  cancer  and  skin  tumours  and  it  has  been  found  to  predict  worse  survival  of  melanoma  patients  (Merikallio  et  al.  2012,  Wei  et  al.  2008,  Hintsala  et  al.  2015).  In  contrast,  there  do  not  seem  to  be  any  studies  conducted  with  PC  material.        

 

 

 

 

 

 

Page 37: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

16  

 

The  studies  concerning  Nrf-­‐‑2  signaling  in  PC  have  been  carried  out  using  cancer  tissues  and  cell  lines.  Xu  et  al  revealed  that  an  increase  in  the  oxidative  burst  affects  the  expression  of   many   antioxidant   genes   as   well   as   with   activation   of   the   Nrf-­‐‑2   pathway   in   human  prostate  cells  (Xu  et  al.  2013).  Changes  in  Nrf-­‐‑2  activity  have  also  been  observed  as  a  result  of  KEAP1  manipulation   and   administration   of   oxidative   stress-­‐‑inducing   chemicals   in   PC  tissue  models   and   cell   cultures   (Frohlich   et   al.   2008,  Pettazzoni   et   al.   2011).   Furthermore,  radioresistance,  chemoresistance  and  tumour  growth  were  enhanced  after  promoting  Nrf-­‐‑2  function  by  Keap1  inhibition  in  PC  cell  lines.  In  addition,  a  higher  expression  of  Nrf-­‐‑2  target  genes   has   been   detected   in   PC   cells   compared   to   normal   prostate   cells   in   this   situation  (Zhang  et  al.  2010).  In  an  animal  model  of  PC,  suppression  of  Nrf-­‐‑2  expression  in  transgenic  mice   with   PC   facilitated   cancer   progression,   in   contrast   to   the   situation   in   non-­‐‑tumourigenic  mice  which  were  not   subjected   to  alterations   in   their  Nrf-­‐‑2   levels   (Yu  et  al.  2010).  

 2.8.1.3  Peroxiredoxin  (Prx)  and  sulfiredoxin  (Srx)  The  Prx-­‐‑family  is  widely  distributed  in  human  tissues  being  one  of  the  most  crucial  sensors  and  regulators  of  redox  balance.  Prx  enzymes  are  found  in  six  isoforms  located  in  cytosol  and   with   some   also   being   found   in   distinct   cell   organelles   (Karihtala,   Soini   2007).   Prxs  possess   enzymatic   properties   and   act   to   protect   the   cell   against   oxidative   damage   by  converting   alkyl   hydroperoxides   and   hydrogen   peroxide   into   alcohol   and   water.   The  structure  of  Prxs  includes  one  or  two  reactive  cysteines  that  are  weakly  oxidized  when  they  come   into   contact   with   ROS,   leading   to   a   reduction   and   loss   of   activity   of   the   ROS  (Rabilloud  et  al.  2002).  In  order  to  regenerate  Prxs  back  to  their  active  form,  oxidized  Prxs  are   normally   reduced   by   thioredoxin   (Trx)   during   the   catalytic   cycle   (Rhee   et   al.   2005).  However,  Prxs  may  be  converted  into  hyperoxidized  forms  if  there  is  intense  oxidation  and  then  Trx  cannot  restore  their  enzymatic  activity.  In  the  cases  of  hyperoxidation,  Srx  may  be  able  to  perform  the  reduction  in  a  reaction  requiring  hydrolysis  of  adenosine  triphosphate,  thus   preserving   Prxs   from   destruction   (Woo   et   al.   2005).   Srx   is   also   sensitive   to   signals  present   in   the   oxidative   burst;   this   enzyme   mediates   responses   through   cytoprotective  pathways  and  thus  has  the  functions  of  a  modulator  molecule  (Jeong  et  al.  2012).         Prxs  function  also  as  chaperones.  When  exposed  to  a  high  peroxide  concentration,  they  form  oligomers  such  as  decamers  which  prevent  proteins  from  being  misfolded  (Saccoccia  et  al.  2012).  Glutathionylation  of  Prxs,  such  as  Prx1  at  Cys83  reverts  the  complex  back  to  its  dimer  form,  inhibiting  its  chaperone  function  and  affecting  its  ability  to  modulate  some  cell  signaling  pathways  (Chae  et  al.  2012).  

In   addition   to   the   protective   function   exerted   by   Prxs   under   physiological   conditions  against   oxidative   injury,   they   have   been   claimed   to   act   as   endogenous   indicators   of  disrupted   redox   balance   (Poynton,   Hampton   2014).   The   role   of   an   up-­‐‑regulated   Prx  pathway  in  carcinogenesis  has  been  demonstrated  in  cell  line  studies  and  in  animal  models.  ROS   may   directly   activate   enzymatic   detoxifying   systems,   leading   to   malignant  transformation   but   they   can   also   affect   signal   transduction   at   the   transcriptional   level  (Immenschuh,   Baumgart-­‐‑Vogt   2005).   Furthermore,   augmented   levels   of   Prxs   have   been  shown  to  be  linked  with  aggressive  features  of  many  cancer  types  in  humans,  such  as  B-­‐‑cell  lymphoma,   breast   cancer,   gall   bladder   carcinoma,   hepatocellular   cancer   and     renal   cell  cancer  (Kuusisto  et  al.  2015,  Karihtala  et  al.  2003,  Li  et  al.  2013,  Sun  et  al.  2014,  Soini  et  al.  2006).  

17    

 

The   reports   evaluating   the   Prx   expression   in   PC   have   been   mainly   carried   out   using  tissue  samples  and  cell  cultures.  Increased  Prx  1  -­‐‑  6  activity  has  been  detected  in  malignant  samples  compared  to  benign  tissue  and  the  up-­‐‑regulation  of  Prx  3  and  4  has  led  to  cancer  progression  in  PC  cell  lines  (Valdman  et  al.  2009,  Whitaker  et  al.  2013,  Chaiswing,  Zhong  &  Oberley  2014,  Ummanni  et  al.  2012,  He  et  al.  2012,  Riddell  et  al.  2011).  Furthermore,  Prx2  mediated   regulation   has   been   demonstrated   to   be   linked   with   AR-­‐‑expressing   PC-­‐‑cells,  under   conditions   where   the   silencing   of   Prx2   has   decreased   the   AR-­‐‑dependent   gene  expression  and  further  reduced  cell  survival  (Shiota  et  al.  2011).  In  a  study  conducted  with  tissue  bank  material,  augmented  Prx3  activity  associated  with  tumour  grade  and  predicted  biochemical  progression  (Basu  et  al.  2011).  

Several  reports  have  indicated  that  disturbances  in  the  Srx  pathway  are  associated  with  the  pathogenesis  of  oxidative  stress  mediated  diseases,  such  as  atherosclerosis  and  chronic  obstructive  pulmonary  disease  (Ramesh  et  al.  2014).   In  malignancies,  up-­‐‑regulation  of  Srx  has  been  detected  in  lung  cancer  and  skin  tumours  and  it  has  been  found  to  predict  worse  survival  of  melanoma  patients  (Merikallio  et  al.  2012,  Wei  et  al.  2008,  Hintsala  et  al.  2015).  In  contrast,  there  do  not  seem  to  be  any  studies  conducted  with  PC  material.        

 

 

 

 

 

 

Page 38: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

18  

 

3  Aims  of  the  Study    

The  prognosis  of  localised  PC  after  radical  prostatectomy  is  mostly  good.  In  only  a  minor  proportion  of  the  PC  cases  is  the  tumor  aggressive,  leading  to  metastatic  disease  and  death.  Traditionally,   prognostic   tools   have   been   based   on   clinical   and   pathological   parameters.  However,  there  is  a  clear  need  for  more  specific  markers  in  order  to  predict  more  precisely  which  PC  patients  need  adjuvant  treatment  modalities  after  RP  and  which  patients  should  simply  be  followed.  In  clinical  practice,  there  are  still  no  biomarkers  available  for  predicting  the  prognosis  of  PC.    The  specific  aims  of  the  study  were:    

1. To   examine   the   expressions   of  AR   and   the   EMT-­‐‑marker   TWIST   in   tissue   samples  from  PC  patients  treated  by  radical  prostatectomy  and  to  evaluate  whether  there  was  any   correlation   between   the   extent   of   the   expression   and   conventional  clinicopathological  prognostigators  and  BFS.  

 2. To  explore  the  levels  of  expression  of  oxidative  stress  markers  8-­‐‑OHDG  and  Nrf-­‐‑2  in  

PC  samples  taken  from  radical  prostatectomy  patients  and  to  examine  whether  they  show  any  association  with  clinopathological  prognostic  factors  and  survival.    

3. To  evaluate   the  expression   levels  of  oxidative  stress   induced  proteins  Prx  1,  2,  5,  6  and  Srx   in  PC   tissues  of  patients  after   radical  prostatectomy  and   to  elucidate   their  association  with  clinical  factors  and  survival  of  the  patients.  

                                     

19    

 

4  Materials  and  Methods    

4.1 STUDY POPULATION

The   current   study   was   retrospective   and   population-­‐‑based.   RP   had   been   performed   in  Kuopio  University  Hospital  in  181  PC  patients  in  study  cohort  I  and  in  240  PC  patients  in  study  cohorts   II  and   III.  The  patients  underwent   the   surgery  between   the  years  1998  and  2009   (I)  and  between  the  years  1987  and  2009   (II,   III).  Prostatectomy  tissues  were  used  as  the   sample  material.   Patient   records   and   the   laboratory  database  were   the   sources   of   the  clinical   data   and   clinical   follow-­‐‑up   data.   According   to   DRE   and   transrectal  ultrasonography,   all   the   patients   had   a   clinically   localised   tumour   with   no   invasion   to  adjacent   structures,   such  as   rectum  or  pelvic  wall.  Lymphadenectomy  was  performed  on  those   patients   in   the   intermediate   or   high   risk   groups,   but   none   of   these   patients   had  positive  lymph  nodes.  Bone  scans  were  used  to  exclude  distant  metastases  when  there  was  a  need  for  confirmation  of  the  clinical  status;  this  procedure  initiated  at  the  discretion  of  the  urologist.   Therefore,   all   the   cases   fulfilled   the   definition   of   the   clinical   classification   of  localised  tumours  (T1-­‐‑3N0M0)  according  to  UICC  guidelines  (Sobin  et  al.  2010).    

None   of   the   patients   had   received   hormone   therapy   prior   to   RP.   The   follow-­‐‑up   was  conducted   after   2,   6   and   12   months   and   then   according   to   clinical   practice.   The   median  follow-­‐‑up   times  were  7.6   (2.3-­‐‑14.1)  years   (I)   and  11.7   (3.3-­‐‑25.8)  years   (II,   III),   respectively.  During  the  observation  period,  BCR  was  observed  in  67  (37.0%)  (I)  and  109  (45.4%)  (II,  III)  patients.  Of  the  240  patients,  51  (21.2%)  patients  died,  with  PC  being  the  cause  of  death  in  19  (7.9%)  cases  (II,  III).  An  elevation  of  the  PSA  value  of  0.2  ng/ml  or  more  was  considered  as  a  biochemical  recurrence  (Walz  et  al.  2009).  Tables  3  and  4  summarise  the  demographic  data  of  the  patients.                                            

Page 39: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

18  

 

3  Aims  of  the  Study    

The  prognosis  of  localised  PC  after  radical  prostatectomy  is  mostly  good.  In  only  a  minor  proportion  of  the  PC  cases  is  the  tumor  aggressive,  leading  to  metastatic  disease  and  death.  Traditionally,   prognostic   tools   have   been   based   on   clinical   and   pathological   parameters.  However,  there  is  a  clear  need  for  more  specific  markers  in  order  to  predict  more  precisely  which  PC  patients  need  adjuvant  treatment  modalities  after  RP  and  which  patients  should  simply  be  followed.  In  clinical  practice,  there  are  still  no  biomarkers  available  for  predicting  the  prognosis  of  PC.    The  specific  aims  of  the  study  were:    

1. To   examine   the   expressions   of  AR   and   the   EMT-­‐‑marker   TWIST   in   tissue   samples  from  PC  patients  treated  by  radical  prostatectomy  and  to  evaluate  whether  there  was  any   correlation   between   the   extent   of   the   expression   and   conventional  clinicopathological  prognostigators  and  BFS.  

 2. To  explore  the  levels  of  expression  of  oxidative  stress  markers  8-­‐‑OHDG  and  Nrf-­‐‑2  in  

PC  samples  taken  from  radical  prostatectomy  patients  and  to  examine  whether  they  show  any  association  with  clinopathological  prognostic  factors  and  survival.    

3. To  evaluate   the  expression   levels  of  oxidative  stress   induced  proteins  Prx  1,  2,  5,  6  and  Srx   in  PC   tissues  of  patients  after   radical  prostatectomy  and   to  elucidate   their  association  with  clinical  factors  and  survival  of  the  patients.  

                                     

19    

 

4  Materials  and  Methods    

4.1 STUDY POPULATION

The   current   study   was   retrospective   and   population-­‐‑based.   RP   had   been   performed   in  Kuopio  University  Hospital  in  181  PC  patients  in  study  cohort  I  and  in  240  PC  patients  in  study  cohorts   II  and   III.  The  patients  underwent   the   surgery  between   the  years  1998  and  2009   (I)  and  between  the  years  1987  and  2009   (II,   III).  Prostatectomy  tissues  were  used  as  the   sample  material.   Patient   records   and   the   laboratory  database  were   the   sources   of   the  clinical   data   and   clinical   follow-­‐‑up   data.   According   to   DRE   and   transrectal  ultrasonography,   all   the   patients   had   a   clinically   localised   tumour   with   no   invasion   to  adjacent   structures,   such  as   rectum  or  pelvic  wall.  Lymphadenectomy  was  performed  on  those   patients   in   the   intermediate   or   high   risk   groups,   but   none   of   these   patients   had  positive  lymph  nodes.  Bone  scans  were  used  to  exclude  distant  metastases  when  there  was  a  need  for  confirmation  of  the  clinical  status;  this  procedure  initiated  at  the  discretion  of  the  urologist.   Therefore,   all   the   cases   fulfilled   the   definition   of   the   clinical   classification   of  localised  tumours  (T1-­‐‑3N0M0)  according  to  UICC  guidelines  (Sobin  et  al.  2010).    

None   of   the   patients   had   received   hormone   therapy   prior   to   RP.   The   follow-­‐‑up   was  conducted   after   2,   6   and   12   months   and   then   according   to   clinical   practice.   The   median  follow-­‐‑up   times  were  7.6   (2.3-­‐‑14.1)  years   (I)   and  11.7   (3.3-­‐‑25.8)  years   (II,   III),   respectively.  During  the  observation  period,  BCR  was  observed  in  67  (37.0%)  (I)  and  109  (45.4%)  (II,  III)  patients.  Of  the  240  patients,  51  (21.2%)  patients  died,  with  PC  being  the  cause  of  death  in  19  (7.9%)  cases  (II,  III).  An  elevation  of  the  PSA  value  of  0.2  ng/ml  or  more  was  considered  as  a  biochemical  recurrence  (Walz  et  al.  2009).  Tables  3  and  4  summarise  the  demographic  data  of  the  patients.                                            

Page 40: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

20  

 

Table 3. Demographic data of the patients (I), (n=181). Variable Median age, years (Standard deviation, SD) 62.3 (5.3) Median follow up, years (range) 7.6 (2.3-14.1) Median PSA at diagnosis, ng/ml (SD) 7.8 (6.7) PSA µg/l, n (%) <10 10-20 >20

122 (67.4) 49 (27.1) 10 (5.5)

pT category, n (%) 2 130 (71.8) 3 51 (28.2) Gleason score, n (%) 2-6 111 (61.4) 7 58 (32.0) 8-10 12 (6.6) Capsule invasion, n (%) No 131 (72.4) Yes 50 (27.6) Surgical margin status, n (%) Negative 115 (63.5) Positive 66 (36.5) Biochemical recurrence, n (%) Yes 67 (37.0) No 114 (63.0)

                                                     

21    

 

Table 4. Demografic data of the patients (II, III), (n=240). Variable

Median age, years (Standard deviation, SD) 63.0 (5.5) Median follow up, years (range) 11.7 (3.3-25.8) Median PSA at diagnosis, ng/ml (SD) 8.1 (12.3) PSAa ng/ml, n (%) <10 144 (60.0) ≥10 92 (38.3) pT category, n (%) 2 160 (66.7) 3a 49 (20.4) 3b 31 (12.9) Gleason score, n (%) 2-6 154 (64.2) 7-10 86 (35.8) Capsule invasion, n (%) No 157 (65.4) Yes 83 (34.6) Surgical margin status, n (%) Negative 141 (58.8) Positive 99 (41.2) Biochemical recurrence, n (%) Yes 109 (45.4) No 131 (54.6) Prostate cancer specific survival, n (%) Alive 221 (92.1) Dead 19 (7.9) Overall survival, n (%) Alive 189 (78.8) Dead 51 (21.2) aPSA value missing in four cases

 

4.2 HISTOPATHOLOGICAL ANALYSES

All  the  samples  had  been  fixed  in  10%  neutral  buffered  formalin  and  embedded  in  paraffin.  Two  experienced  pathologists  (Ylermi  Soini  and  Vesa  Kärjä),  blinded  to  the  clinical  data,  re-­‐‑evaluated  the  samples  to  determine  pT-­‐‑class,  Gleason  score,  capsule  invasion  and  surgical  margin  status.  The  clinical  TNM-­‐‑classification  was  conducted  according  to  UICC  guidelines  and  the  Gleason  score  was  calculated  according  to  the  ISUP  2005  modification  (Sobin  et  al.  2010,  Epstein  et  al.  2005).    

In   the   immunohistochemical   analyses   of   TWIST   and   AR   expressions,   microarray  samples  were   taken   from   four   representative   regions   (high  Gleason,   low  Gleason,   central  and   margin)   of   the   PC   tissues   and   benign   prostate   tissue,   respectively.   The   samples   for  assessing   the  expression  of  Nrf-­‐‑2,   8-­‐‑OHDG,  Prx,  Srx  were   taken   from   four   representative  regions  of  the  PC  tissues.  In  the  analyses  of  Nrf-­‐‑2  and  8-­‐‑OHDG  expressions,  the  samples  of  benign  prostate  tissue  were  taken  for  comparison.  In  all  analyses,  one  microarray  puncture  of   each   tumour   region  was   considered   as   one   sample   unit.   All   blocks   from   the   resected  prostate  were   used   for   selection   of   the   array   samples.   The   samples  were   taken   from   the  

Page 41: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

20  

 

Table 3. Demographic data of the patients (I), (n=181). Variable Median age, years (Standard deviation, SD) 62.3 (5.3) Median follow up, years (range) 7.6 (2.3-14.1) Median PSA at diagnosis, ng/ml (SD) 7.8 (6.7) PSA µg/l, n (%) <10 10-20 >20

122 (67.4) 49 (27.1) 10 (5.5)

pT category, n (%) 2 130 (71.8) 3 51 (28.2) Gleason score, n (%) 2-6 111 (61.4) 7 58 (32.0) 8-10 12 (6.6) Capsule invasion, n (%) No 131 (72.4) Yes 50 (27.6) Surgical margin status, n (%) Negative 115 (63.5) Positive 66 (36.5) Biochemical recurrence, n (%) Yes 67 (37.0) No 114 (63.0)

                                                     

21    

 

Table 4. Demografic data of the patients (II, III), (n=240). Variable

Median age, years (Standard deviation, SD) 63.0 (5.5) Median follow up, years (range) 11.7 (3.3-25.8) Median PSA at diagnosis, ng/ml (SD) 8.1 (12.3) PSAa ng/ml, n (%) <10 144 (60.0) ≥10 92 (38.3) pT category, n (%) 2 160 (66.7) 3a 49 (20.4) 3b 31 (12.9) Gleason score, n (%) 2-6 154 (64.2) 7-10 86 (35.8) Capsule invasion, n (%) No 157 (65.4) Yes 83 (34.6) Surgical margin status, n (%) Negative 141 (58.8) Positive 99 (41.2) Biochemical recurrence, n (%) Yes 109 (45.4) No 131 (54.6) Prostate cancer specific survival, n (%) Alive 221 (92.1) Dead 19 (7.9) Overall survival, n (%) Alive 189 (78.8) Dead 51 (21.2) aPSA value missing in four cases

 

4.2 HISTOPATHOLOGICAL ANALYSES

All  the  samples  had  been  fixed  in  10%  neutral  buffered  formalin  and  embedded  in  paraffin.  Two  experienced  pathologists  (Ylermi  Soini  and  Vesa  Kärjä),  blinded  to  the  clinical  data,  re-­‐‑evaluated  the  samples  to  determine  pT-­‐‑class,  Gleason  score,  capsule  invasion  and  surgical  margin  status.  The  clinical  TNM-­‐‑classification  was  conducted  according  to  UICC  guidelines  and  the  Gleason  score  was  calculated  according  to  the  ISUP  2005  modification  (Sobin  et  al.  2010,  Epstein  et  al.  2005).    

In   the   immunohistochemical   analyses   of   TWIST   and   AR   expressions,   microarray  samples  were   taken   from   four   representative   regions   (high  Gleason,   low  Gleason,   central  and   margin)   of   the   PC   tissues   and   benign   prostate   tissue,   respectively.   The   samples   for  assessing   the  expression  of  Nrf-­‐‑2,   8-­‐‑OHDG,  Prx,  Srx  were   taken   from   four   representative  regions  of  the  PC  tissues.  In  the  analyses  of  Nrf-­‐‑2  and  8-­‐‑OHDG  expressions,  the  samples  of  benign  prostate  tissue  were  taken  for  comparison.  In  all  analyses,  one  microarray  puncture  of   each   tumour   region  was   considered   as   one   sample   unit.   All   blocks   from   the   resected  prostate  were   used   for   selection   of   the   array   samples.   The   samples  were   taken   from   the  

Page 42: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

22  

 

dominant   tumour   nodule   and   the   benign   tissue   was   collected   from   sites   away   from   the  cancer  zone,  usually  from  a  different  prostatic  zone.  The  margin  area  or  invasive  front  was  defined   as   the   boundary   area   between   histological   tumor   mass   and   adjacent   benign  prostate  tissue  as  visualized  in  haematoxylin-­‐‑eosin  stained  slides.  The  samples  were  placed  into   multitissue   microarray   blocks   with   Beecher   Instruments   Manual   Tissue   Arrayer  (Beecher   Instruments,   Silver   Spring,   MD,   USA).   The   microarray   sample   diameter   was  1300µμm.   4.3 IMMUNOHISTOCHEMISTRY  Four-­‐‑micrometer-­‐‑thick   tissue   sections   were   cut   from   the   paraffin-­‐‑embedded   microarray  blocks.  The   sections  were  deparaffinised   in  xylene  and   rehydrated   in  descending  ethanol  series  in  the  routine  manner.  In  the  analysis  of  TWIST,  AR,  8-­‐‑OHDG  and  Nrf-­‐‑2,  the  sections  were  heated  in  a  microwave  oven  for  2  x  5  min  in  Tris-­‐‑ethylendiaminetetraacetate  (EDTA)  buffer  (pH  9.0),  incubated  in  a  Tris-­‐‑EDTA  buffer  for  20  min  and  washed  twice  for  5  min  in  phosphate   buffered   saline   (PBS).   Hydrogen   peroxide   (5%,   5   min)   was   used   to   block  endogenous  peroxidase.  Non-­‐‑specific  binding  was  blocked  with  1.5%  normal  serum  in  PBS  for  35  min  at  room  temperature.  In  the  analysis  of  Prxs  and  Srx,  the  sections  were  incubated  in  10  mM  citrate  buffer  (pH  6.0)  in  a  microwave  oven  for  2  minutes  at  850  W  followed  by  8  minutes   at   350   W.   Endogenous   peroxidase   activity   was   blocked   by   incubation   in   0.1%  hydrogen  peroxide   in   absolute  methanol   for   10  minutes.  All   the   sections  were   incubated  overnight  at  4°C  with  specific  antibodies  (Table  5).  The  slides  were  then  incubated  with  a  biotinylated   secondary   antibody   and   avidin-­‐‑biotin-­‐‑peroxidase   complex   (ABC   Vectastain  Elite  Kit,  Vector  Laboratories,  Burlingame,  CA,  USA)  to  reveal  the  primary  antibodies  in  the  analysis  of  TWIST,  AR,  8-­‐‑OHDG  and  Nrf-­‐‑2.  The  primary  antibodies  for  Prxs  and  Srx  were  revealed  using  the  Histostain-­‐‑Plus  Kit  (Zymed  Laboratories  Inc,  South  San  Francisco,  CA).  Several  rinses  were  performed  with  PBS  at  each  step  of  the  immunostaining  procedure.  The  color   was   developed   with   diaminobenzidine   tetrahydrochloride   (Sigma,   St.   Louis,   MO,  USA).   The   slides   were   counterstained   with   Mayer'ʹs   haematoxylin,   washed,   dehydrated,  cleared  and  mounted  with  Depex  (BDH,  Poole,  UK).  In  the  negative  controls,  the  primary  antibody  was  omitted.                                

23    

 

Table 5. Specific antibodies used for immunohistochemical stainings. Marker

Dilution

Primary antibody

Manufacturer

TWIST

1:500

mouse monoclonal anti-TWIST

Abcam, Cambridge, UK

AR

1:500 mouse monoclonal anti-AR non-commercial (Karvonen et al. 1997)

8-OHDG

1:1000 mouse monoclonal anti-8-OHDG

JaICA, Nikken SEIL Co., Ltd, Fukuroi, Shizuoka, Japan

Nrf-2

1:50 mouse monoclonal anti-Nrf-2

Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA

Prx1

1:1500 rabbit polyclonal anti-Prx1 LabFrontier, York, UK

Prx2

1:1000 rabbit polyclonal anti-Prx2 LabFrontier, York, UK

Prx5

1:2000 rabbit polyclonal anti-Prx5 LabFrontier, York, UK

Prx6

1:500 rabbit polyclonal anti-Prx6 LabFrontier, York, UK

Srx

1:500 rabbit polyclonal anti-Srx LabFrontier, York, UK

4.4 EVALUATION OF THE EXPRESSION  The  microscopic   evaluation   of   biomarker   expression  was   performed   by   two   pathologists  (Ylermi   Soini   and   Vesa   Kärjä)   blinded   to   the   clinical   data.   The   pathologists   made   a  consensus  assessment  in  each  case.  In  the  analysis  of  all  biomarkers,  the  grade  of  positive  expression  was  evaluated  as  a  percentage  of  positive  cells.  

The  immunoreactivity  for  TWIST  and  AR  was  first  analysed  in  tumor  cells  as  follows;  0-­‐‑5%   =   negative,   6-­‐‑50%   =   weak   positive,   51-­‐‑100%   =   strong   positive.   The   data   were   then  dichotomized  into  two  groups;  negative  =  0-­‐‑5%  and  positive  =  5-­‐‑100%.  It  was  determined  that   adequate   immunostainings   of   AR   expression   were   available   in   165   cases   (91.2%).  TWIST  expression  in  different  tumour  areas  was  obtained  in  the  samples  of  the  PC  cases  as  follows:  high  Gleason  (170,  93.9%);   low  Gleason  (169,  93.4%);  central   (169,  93.4%);  margin  (167,   92.2%)(Figure   4).   In   the   samples,   TWIST   expression   was   nuclear   and   cytoplasmic  whereas  AR  expression  was  nuclear.  

Nrf-­‐‑2  was  expressed  both  in  the  nucleus  and  cytoplasm  and  was  assessed  separately  in  these   two   locations,   whereas   the   expression   of   8-­‐‑OHDG   was   exclusively   nuclear.   The  immunoreactivity  for  8-­‐‑OHDG,  Nrf-­‐‑2  in  nucleus  (n-­‐‑Nrf-­‐‑2)  and  Nrf-­‐‑2  in  cytoplasm  (c-­‐‑Nrf-­‐‑2)  was  initially  analysed  in  tumour  cells  as  follows;  8-­‐‑OHDG:  0-­‐‑5%  =  negative,  6-­‐‑50%  =  weak  positive,  51-­‐‑100%  strong  positive;  n-­‐‑Nrf-­‐‑2:  0-­‐‑50%  =  negative,  51-­‐‑100%  =  positive;  c-­‐‑Nrf-­‐‑2:  0%  =  negative,  1-­‐‑5%  =    weak  positive,  6-­‐‑50%  =  moderately  positive,  51-­‐‑100%  =  strong  positive.  The   mean   value   of   the   sum   from   the   four   malignant   areas   was   considered   as   the  

Page 43: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

22  

 

dominant   tumour   nodule   and   the   benign   tissue   was   collected   from   sites   away   from   the  cancer  zone,  usually  from  a  different  prostatic  zone.  The  margin  area  or  invasive  front  was  defined   as   the   boundary   area   between   histological   tumor   mass   and   adjacent   benign  prostate  tissue  as  visualized  in  haematoxylin-­‐‑eosin  stained  slides.  The  samples  were  placed  into   multitissue   microarray   blocks   with   Beecher   Instruments   Manual   Tissue   Arrayer  (Beecher   Instruments,   Silver   Spring,   MD,   USA).   The   microarray   sample   diameter   was  1300µμm.   4.3 IMMUNOHISTOCHEMISTRY  Four-­‐‑micrometer-­‐‑thick   tissue   sections   were   cut   from   the   paraffin-­‐‑embedded   microarray  blocks.  The   sections  were  deparaffinised   in  xylene  and   rehydrated   in  descending  ethanol  series  in  the  routine  manner.  In  the  analysis  of  TWIST,  AR,  8-­‐‑OHDG  and  Nrf-­‐‑2,  the  sections  were  heated  in  a  microwave  oven  for  2  x  5  min  in  Tris-­‐‑ethylendiaminetetraacetate  (EDTA)  buffer  (pH  9.0),  incubated  in  a  Tris-­‐‑EDTA  buffer  for  20  min  and  washed  twice  for  5  min  in  phosphate   buffered   saline   (PBS).   Hydrogen   peroxide   (5%,   5   min)   was   used   to   block  endogenous  peroxidase.  Non-­‐‑specific  binding  was  blocked  with  1.5%  normal  serum  in  PBS  for  35  min  at  room  temperature.  In  the  analysis  of  Prxs  and  Srx,  the  sections  were  incubated  in  10  mM  citrate  buffer  (pH  6.0)  in  a  microwave  oven  for  2  minutes  at  850  W  followed  by  8  minutes   at   350   W.   Endogenous   peroxidase   activity   was   blocked   by   incubation   in   0.1%  hydrogen  peroxide   in   absolute  methanol   for   10  minutes.  All   the   sections  were   incubated  overnight  at  4°C  with  specific  antibodies  (Table  5).  The  slides  were  then  incubated  with  a  biotinylated   secondary   antibody   and   avidin-­‐‑biotin-­‐‑peroxidase   complex   (ABC   Vectastain  Elite  Kit,  Vector  Laboratories,  Burlingame,  CA,  USA)  to  reveal  the  primary  antibodies  in  the  analysis  of  TWIST,  AR,  8-­‐‑OHDG  and  Nrf-­‐‑2.  The  primary  antibodies  for  Prxs  and  Srx  were  revealed  using  the  Histostain-­‐‑Plus  Kit  (Zymed  Laboratories  Inc,  South  San  Francisco,  CA).  Several  rinses  were  performed  with  PBS  at  each  step  of  the  immunostaining  procedure.  The  color   was   developed   with   diaminobenzidine   tetrahydrochloride   (Sigma,   St.   Louis,   MO,  USA).   The   slides   were   counterstained   with   Mayer'ʹs   haematoxylin,   washed,   dehydrated,  cleared  and  mounted  with  Depex  (BDH,  Poole,  UK).  In  the  negative  controls,  the  primary  antibody  was  omitted.                                

23    

 

Table 5. Specific antibodies used for immunohistochemical stainings. Marker

Dilution

Primary antibody

Manufacturer

TWIST

1:500

mouse monoclonal anti-TWIST

Abcam, Cambridge, UK

AR

1:500 mouse monoclonal anti-AR non-commercial (Karvonen et al. 1997)

8-OHDG

1:1000 mouse monoclonal anti-8-OHDG

JaICA, Nikken SEIL Co., Ltd, Fukuroi, Shizuoka, Japan

Nrf-2

1:50 mouse monoclonal anti-Nrf-2

Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA

Prx1

1:1500 rabbit polyclonal anti-Prx1 LabFrontier, York, UK

Prx2

1:1000 rabbit polyclonal anti-Prx2 LabFrontier, York, UK

Prx5

1:2000 rabbit polyclonal anti-Prx5 LabFrontier, York, UK

Prx6

1:500 rabbit polyclonal anti-Prx6 LabFrontier, York, UK

Srx

1:500 rabbit polyclonal anti-Srx LabFrontier, York, UK

4.4 EVALUATION OF THE EXPRESSION  The  microscopic   evaluation   of   biomarker   expression  was   performed   by   two   pathologists  (Ylermi   Soini   and   Vesa   Kärjä)   blinded   to   the   clinical   data.   The   pathologists   made   a  consensus  assessment  in  each  case.  In  the  analysis  of  all  biomarkers,  the  grade  of  positive  expression  was  evaluated  as  a  percentage  of  positive  cells.  

The  immunoreactivity  for  TWIST  and  AR  was  first  analysed  in  tumor  cells  as  follows;  0-­‐‑5%   =   negative,   6-­‐‑50%   =   weak   positive,   51-­‐‑100%   =   strong   positive.   The   data   were   then  dichotomized  into  two  groups;  negative  =  0-­‐‑5%  and  positive  =  5-­‐‑100%.  It  was  determined  that   adequate   immunostainings   of   AR   expression   were   available   in   165   cases   (91.2%).  TWIST  expression  in  different  tumour  areas  was  obtained  in  the  samples  of  the  PC  cases  as  follows:  high  Gleason  (170,  93.9%);   low  Gleason  (169,  93.4%);  central   (169,  93.4%);  margin  (167,   92.2%)(Figure   4).   In   the   samples,   TWIST   expression   was   nuclear   and   cytoplasmic  whereas  AR  expression  was  nuclear.  

Nrf-­‐‑2  was  expressed  both  in  the  nucleus  and  cytoplasm  and  was  assessed  separately  in  these   two   locations,   whereas   the   expression   of   8-­‐‑OHDG   was   exclusively   nuclear.   The  immunoreactivity  for  8-­‐‑OHDG,  Nrf-­‐‑2  in  nucleus  (n-­‐‑Nrf-­‐‑2)  and  Nrf-­‐‑2  in  cytoplasm  (c-­‐‑Nrf-­‐‑2)  was  initially  analysed  in  tumour  cells  as  follows;  8-­‐‑OHDG:  0-­‐‑5%  =  negative,  6-­‐‑50%  =  weak  positive,  51-­‐‑100%  strong  positive;  n-­‐‑Nrf-­‐‑2:  0-­‐‑50%  =  negative,  51-­‐‑100%  =  positive;  c-­‐‑Nrf-­‐‑2:  0%  =  negative,  1-­‐‑5%  =    weak  positive,  6-­‐‑50%  =  moderately  positive,  51-­‐‑100%  =  strong  positive.  The   mean   value   of   the   sum   from   the   four   malignant   areas   was   considered   as   the  

Page 44: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

24  

 

representative  score.  The  data  were  then  dichotomized  into  two  groups;  0-­‐‑50%  =  negative  and  51-­‐‑100%  =  positive.    

The  immunostainings  revealing  the  expressions  of  8-­‐‑OHDG,  c-­‐‑Nrf-­‐‑2  and  n-­‐‑Nrf-­‐‑2  in  208  (86.7%),  204  (85.0%)  and  205  (85.4%)  were  obtained  from  the  cases  of  the  PC  samples.  There  were   available   adequate   immunostainings   of   8-­‐‑OHDG,   c-­‐‑Nrf-­‐‑2   expression   and   n-­‐‑Nrf-­‐‑2  expression   in   159   (66.3%),   152   (63.3%)   and   153   (63.8%)   cases   from   the   samples   from   the  adjacent  benign  area,  respectively  (Figure  5).  

In   the   samples,   the   expression   levels   of   Prx1,   Prx2,   Prx5,   Prx6   and   Srx   were   partly  nuclear   but  mainly   cytoplasmic.  At   first,   the   immunoreactivity   for   these   five   biomarkers  was  analysed   in   the   tumour   cells   as   follows;  Prx1  and  Prx2:   0%  =  negative,   1-­‐‑5%  =  weak  positive,  6-­‐‑50%  =  moderately  positive,  51-­‐‑100%  =  strong  positive;  Prx5,  Prx6  and  Srx:  0-­‐‑5%  =  negative,  6-­‐‑50%  =  weak  positive,  51-­‐‑100%  strong  positive.  The  mean  value  of  the  sum  from  the   four  malignant   areas  was   considered   as   the   representative   score.  The  data  were   then  dichotomized  into  two  groups;  0-­‐‑50%  =  negative  and  51-­‐‑100%  =  positive.  

The   expressions   of   the   biomarkers   were   obtained   in   the   samples   of   the   PC   cases   as  follows:  Prx1   (233,  97.1%),  Prx2   (233,  97.1%),  Prx5   (232,  96.7%),  Prx6   (231,  96.3%)  and  Srx  (229,  95.4%)(Figure  6).                                                        

25    

 

Figure 4. Positive nuclear TWIST expression in PC tissue taken from the margin part of the tumour (A) In benign prostatic hyperplasia, no TWIST expression could be detected (B).

Figure 5. Cytoplasmic (A) and nuclear (B) Nrf-2 positivity in a PC sample. Negative Nrf-2 expression in PC tissue (C). 8-OHDG expression in the nuclei of prostate adenocarcinoma (D).

Figure 6. Positive (A) and negative (B) Prx6 expression in PC tissue.

A B

Page 45: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

24

representative  score.  The  data  were  then  dichotomized  into  two  groups;  0-­‐‑50%  =  negative  and  51-­‐‑100%  =  positive.    

The  immunostainings  revealing  the  expressions  of  8-­‐‑OHDG,  c-­‐‑Nrf-­‐‑2  and  n-­‐‑Nrf-­‐‑2  in  208  (86.7%),  204  (85.0%)  and  205  (85.4%)  were  obtained  from  the  cases  of  the  PC  samples.  There  were   available   adequate   immunostainings   of   8-­‐‑OHDG,   c-­‐‑Nrf-­‐‑2   expression   and   n-­‐‑Nrf-­‐‑2  expression   in   159   (66.3%),   152   (63.3%)   and   153   (63.8%)   cases   from   the   samples   from   the  adjacent  benign  area,  respectively  (Figure  5).  

In   the   samples,   the   expression   levels   of   Prx1,   Prx2,   Prx5,   Prx6   and   Srx   were   partly  nuclear   but  mainly   cytoplasmic.  At   first,   the   immunoreactivity   for   these   five   biomarkers  was  analysed   in   the   tumour   cells   as   follows;  Prx1  and  Prx2:   0%  =  negative,   1-­‐‑5%  =  weak  positive,  6-­‐‑50%  =  moderately  positive,  51-­‐‑100%  =  strong  positive;  Prx5,  Prx6  and  Srx:  0-­‐‑5%  =  negative,  6-­‐‑50%  =  weak  positive,  51-­‐‑100%  strong  positive.  The  mean  value  of  the  sum  from  the   four  malignant   areas  was   considered   as   the   representative   score.  The  data  were   then  dichotomized  into  two  groups;  0-­‐‑50%  =  negative  and  51-­‐‑100%  =  positive.  

The   expressions   of   the   biomarkers   were   obtained   in   the   samples   of   the   PC   cases   as  follows:  Prx1   (233,  97.1%),  Prx2   (233,  97.1%),  Prx5   (232,  96.7%),  Prx6   (231,  96.3%)  and  Srx  (229,  95.4%)(Figure  6).  

25  

Figure 4. Positive nuclear TWIST expression in PC tissue taken from the margin part of the tumour (A) In benign prostatic hyperplasia, no TWIST expression could be detected (B).

Figure 5. Cytoplasmic (A) and nuclear (B) Nrf-2 positivity in a PC sample. Negative Nrf-2 expression in PC tissue (C). 8-OHDG expression in the nuclei of prostate adenocarcinoma (D).

Figure 6. Positive (A) and negative (B) Prx6 expression in PC tissue.

A B

Page 46: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

26  

 

4.5 STATISTICAL ANALYSES  The  statistical  analyses  were  performed  with   the  SPSS  19.0  program  package.  Differences  between  groups  were  evaluated  with  t-­‐‑test.  The  Chi-­‐‑square  test  was  used  to  determine  the  association   between   clinicopathological   prognostic   factors   and   expression   of   biomarkers.  BFS,   PCS   and   OS   were   analysed   by   the   Kaplan   Meier   method.   The   univariate   and  multivariate   analyses   were   done   according   to   Cox’s   method.   P   values   <0.05   were  considered  statistically  significant.      4.6 ETHICAL CONSIDERATIONS  This   study  was  approved  by  Research  Ethical  Committee  of  Kuopio  University  Hospital.  All  the  procedures  have  been  performed  according  to  the  institutional  guidelines  of  Kuopio  University  Hospital  and  University  of  Eastern  Finland.                                                                

27    

 

5  Results    

5.1 TWIST AND AR EXPRESSION AND THEIR ASSOCIATION WITH CLINICOPATHOLOCIGAL PROGNOSTIGATORS (I)  TWIST  expression  was  observed  in  all  samples  taken  from  different  tumour  areas  but  with  a   variable   frequency   (high   Gleason   8.2%,   low   Gleason   3.0%,   central   4.7%   and   margin  11.4%).   In   contrast   to   the   situation   with   malignant   samples,   there   was   no   evidence   of  TWIST   expression   in   benign   tissue.   The   difference   between   TWIST   expression   in   the  malignant   parts   of   tumour   was   observed   between   the   following   tumour   areas:   high  Gleason  and  low  Gleason  (P=0.029),  low  Gleason  and  margin  (P=0.002),  central  and  margin  regions  (P=0.016)(Table  6).      Table 6. TWIST expression in benign samples and in different parts of the tumour. Tumour area positive

expression negative expression

benign vs malignant

high Gleason vs other parts of tumour

low Gleason vs central and margin

central vs margin

n (%) n (%) P-value P-value P-value P-value benign 0 (0) 169 (100) high Gleason 14 (8.2) 156 (91.8) ˂0.0001 low Gleason 5 (3.0) 164 (97.0) 0.025 0.029 central 8 (4.7) 161 (95.3) 0.004 ns. ns. margin 19 (11.4) 148 (88.6) ˂0.0001 ns. 0.002 0.016

   TWIST   overexpression   in   the   invasive,   margin   front   of   the   tumour   (M-­‐‑TWIST)   was  associated  with  a  positive  surgical  margin  status  (P=0.047),  capsule  invasion  (P=0.006)  and  BCR  (P=0.004).  The  analysis  was  continued  with  the  samples  from  the  margin  area,  because  of  the  significant  findings  found  there  for  M-­‐‑TWIST.  The  AR  expression  in  the  margin  area  of   the   tumour   (M-­‐‑AR)   was   associated   with   a   higher   Gleason   score   (P=0.004),   positive  surgical  margin   status   (P=0.004)   and  BCR   (P=0.05)   (Table   7).   The   association   between  M-­‐‑TWIST  and  M-­‐‑AR  expression  was  explored  in  order  to  test  the  possibility  that  TWIST  could  be  regulating  AR  expression.  The  association  was  highly  significant  (P<0.0001).      

Page 47: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

26  

 

4.5 STATISTICAL ANALYSES  The  statistical  analyses  were  performed  with   the  SPSS  19.0  program  package.  Differences  between  groups  were  evaluated  with  t-­‐‑test.  The  Chi-­‐‑square  test  was  used  to  determine  the  association   between   clinicopathological   prognostic   factors   and   expression   of   biomarkers.  BFS,   PCS   and   OS   were   analysed   by   the   Kaplan   Meier   method.   The   univariate   and  multivariate   analyses   were   done   according   to   Cox’s   method.   P   values   <0.05   were  considered  statistically  significant.      4.6 ETHICAL CONSIDERATIONS  This   study  was  approved  by  Research  Ethical  Committee  of  Kuopio  University  Hospital.  All  the  procedures  have  been  performed  according  to  the  institutional  guidelines  of  Kuopio  University  Hospital  and  University  of  Eastern  Finland.                                                                

27    

 

5  Results    

5.1 TWIST AND AR EXPRESSION AND THEIR ASSOCIATION WITH CLINICOPATHOLOCIGAL PROGNOSTIGATORS (I)  TWIST  expression  was  observed  in  all  samples  taken  from  different  tumour  areas  but  with  a   variable   frequency   (high   Gleason   8.2%,   low   Gleason   3.0%,   central   4.7%   and   margin  11.4%).   In   contrast   to   the   situation   with   malignant   samples,   there   was   no   evidence   of  TWIST   expression   in   benign   tissue.   The   difference   between   TWIST   expression   in   the  malignant   parts   of   tumour   was   observed   between   the   following   tumour   areas:   high  Gleason  and  low  Gleason  (P=0.029),  low  Gleason  and  margin  (P=0.002),  central  and  margin  regions  (P=0.016)(Table  6).      Table 6. TWIST expression in benign samples and in different parts of the tumour. Tumour area positive

expression negative expression

benign vs malignant

high Gleason vs other parts of tumour

low Gleason vs central and margin

central vs margin

n (%) n (%) P-value P-value P-value P-value benign 0 (0) 169 (100) high Gleason 14 (8.2) 156 (91.8) ˂0.0001 low Gleason 5 (3.0) 164 (97.0) 0.025 0.029 central 8 (4.7) 161 (95.3) 0.004 ns. ns. margin 19 (11.4) 148 (88.6) ˂0.0001 ns. 0.002 0.016

   TWIST   overexpression   in   the   invasive,   margin   front   of   the   tumour   (M-­‐‑TWIST)   was  associated  with  a  positive  surgical  margin  status  (P=0.047),  capsule  invasion  (P=0.006)  and  BCR  (P=0.004).  The  analysis  was  continued  with  the  samples  from  the  margin  area,  because  of  the  significant  findings  found  there  for  M-­‐‑TWIST.  The  AR  expression  in  the  margin  area  of   the   tumour   (M-­‐‑AR)   was   associated   with   a   higher   Gleason   score   (P=0.004),   positive  surgical  margin   status   (P=0.004)   and  BCR   (P=0.05)   (Table   7).   The   association   between  M-­‐‑TWIST  and  M-­‐‑AR  expression  was  explored  in  order  to  test  the  possibility  that  TWIST  could  be  regulating  AR  expression.  The  association  was  highly  significant  (P<0.0001).      

Page 48: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

28  

 

Table 7. Summary of the significant findings for the expression of biomarkers associating with clinical and pathological prognosis factors. Bio-marker

pT class

PSA at diagnosis

Gleason score

Margin status

Capsule invasion

BCR PCS OS

TWIST n=167 * ** **

AR n=165 ** ** *

c-Nrf-2 n=204 ** * * **

n-Nrf-2 n=205 *** * * * ***

Prx1 n=233 ***

Prx2 n=233 * ** *** * * ***

Prx5 n=232 ***

Prx6 n=231 ** ** ** *** ***

Srx n=229 *** *

*Association is statistically significant at the level P-value 0.05 **Association is statistically significant at the level P-value 0.01 ***Association is statistically significant at the level P-value 0.001 Srx expression has inverse association with clinical parameters

     5.2 TWIST AND AR EXPRESSION IN THE PREDICTION OF BFS (I)  M-­‐‑TWIST  overexpression  was  clearly  associated  with  shortened  BFS  (P<0.0001)  (Figure  7).  An  association  with  BFS  was  also   found  with  a  positive   surgical  margin   status   (P=0.003),  Gleason  score  (P<0.0001)  and  M-­‐‑AR  expression  (P=0.008).    

When  these  factors  (positive  surgical  margin  status,  Gleason  score  and  M-­‐‑AR  expression)  were   included   into  a  multivariate   analysis,  M-­‐‑TWIST  overexpression   (Hazard   ratio   (HR):  2.516,  95%  confidence  interval  (95%  CI):  1.235-­‐‑5.125,  P=0.011)  and  Gleason  score  (HR:  1.483,  95%  CI:  1.155-­‐‑1.904,  P=0.002)  were  found  to  be  the  only  independent  predictors  of  BFS.            

29    

 

 Figure 7. Kaplan Meier curve demonstrating the association between positive M-TWIST expression and decreased BFS (log-rank: P<0.0001).   5.3 8-OHDG AND NRF-2 EXPRESSIONS AND THEIR ASSOCIATION WITH CLINICOPATHOLOCIGAL PROGNOSTIGATORS (II)  The   positive   expression   8-­‐‑OHDG   (P<0.001),   c-­‐‑Nrf-­‐‑2   (P=0.015)   and   n-­‐‑Nrf-­‐‑2   (P=0.016)   was  more   abundant   in   the   malignant   samples   as   compared   to   benign   tissues,   respectively  (Figure   8).   The   following   associations   were   detected   between   c-­‐‑Nrf-­‐‑2   expression   and  clinicopathologial   factors;   positive   surgical   margin   (P=0.005),   capsule   invasion   (P=0.031),  BCR  (P=0.030)  and  OS  (P=0.002).  N-­‐‑Nrf-­‐‑2  expression  was  associated  with  pT  class  (P=0.001),  Gleason  score  (P=0.026),  capsule  invasion  (P=0.027),  BCR  (P=0.037)  and  OS  (P<0.0001)  (Table  7).   The   expression   of   8-­‐‑OHDG   did   not   exhibit   an   association   with   any   of   the  clinicopathological  prognostic  factors  or  outcome.  

                     

Page 49: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

28  

 

Table 7. Summary of the significant findings for the expression of biomarkers associating with clinical and pathological prognosis factors. Bio-marker

pT class

PSA at diagnosis

Gleason score

Margin status

Capsule invasion

BCR PCS OS

TWIST n=167 * ** **

AR n=165 ** ** *

c-Nrf-2 n=204 ** * * **

n-Nrf-2 n=205 *** * * * ***

Prx1 n=233 ***

Prx2 n=233 * ** *** * * ***

Prx5 n=232 ***

Prx6 n=231 ** ** ** *** ***

Srx n=229 *** *

*Association is statistically significant at the level P-value 0.05 **Association is statistically significant at the level P-value 0.01 ***Association is statistically significant at the level P-value 0.001 Srx expression has inverse association with clinical parameters

     5.2 TWIST AND AR EXPRESSION IN THE PREDICTION OF BFS (I)  M-­‐‑TWIST  overexpression  was  clearly  associated  with  shortened  BFS  (P<0.0001)  (Figure  7).  An  association  with  BFS  was  also   found  with  a  positive   surgical  margin   status   (P=0.003),  Gleason  score  (P<0.0001)  and  M-­‐‑AR  expression  (P=0.008).    

When  these  factors  (positive  surgical  margin  status,  Gleason  score  and  M-­‐‑AR  expression)  were   included   into  a  multivariate   analysis,  M-­‐‑TWIST  overexpression   (Hazard   ratio   (HR):  2.516,  95%  confidence  interval  (95%  CI):  1.235-­‐‑5.125,  P=0.011)  and  Gleason  score  (HR:  1.483,  95%  CI:  1.155-­‐‑1.904,  P=0.002)  were  found  to  be  the  only  independent  predictors  of  BFS.            

29    

 

 Figure 7. Kaplan Meier curve demonstrating the association between positive M-TWIST expression and decreased BFS (log-rank: P<0.0001).   5.3 8-OHDG AND NRF-2 EXPRESSIONS AND THEIR ASSOCIATION WITH CLINICOPATHOLOCIGAL PROGNOSTIGATORS (II)  The   positive   expression   8-­‐‑OHDG   (P<0.001),   c-­‐‑Nrf-­‐‑2   (P=0.015)   and   n-­‐‑Nrf-­‐‑2   (P=0.016)   was  more   abundant   in   the   malignant   samples   as   compared   to   benign   tissues,   respectively  (Figure   8).   The   following   associations   were   detected   between   c-­‐‑Nrf-­‐‑2   expression   and  clinicopathologial   factors;   positive   surgical   margin   (P=0.005),   capsule   invasion   (P=0.031),  BCR  (P=0.030)  and  OS  (P=0.002).  N-­‐‑Nrf-­‐‑2  expression  was  associated  with  pT  class  (P=0.001),  Gleason  score  (P=0.026),  capsule  invasion  (P=0.027),  BCR  (P=0.037)  and  OS  (P<0.0001)  (Table  7).   The   expression   of   8-­‐‑OHDG   did   not   exhibit   an   association   with   any   of   the  clinicopathological  prognostic  factors  or  outcome.  

                     

Page 50: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

30  

 

       

Figure 8. Positive expression of biomarkers (8-OHDG, P<0.0001; c-Nrf-2, P=0.015 and n-Nrf-2, P=0.016) in benign and malignant samples, respectively.   5.4 NRF-2 EXPRESSION IN SURVIVAL ANALYSIS (II)  In  the  Kaplan  Meier  analysis,  increased  c-­‐‑Nrf-­‐‑2  expression  (P=0.034)  (Figure  9A)  and  n-­‐‑Nrf-­‐‑2  expression  (P=0.024)  was  associated  with  a  shortened  BFS.  An  association  with  shortened  BFS  was  also  demonstrated  for  the  positive  surgical  margin  status  (P<0.0001),  high  Gleason  score  (P<0.0001)  and  pT  class  (P<0.0001).  None  of  the  markers  analysed  predicted  shortened  PCS.  An  increase  in  the  expressions  of  c-­‐‑Nrf-­‐‑2  (P=0.017)  (Figure  9B)  and  n-­‐‑Nrf-­‐‑2  (P=0.006)  was   related   to   worse   OS,   as   well   as   the   clinicopathological   factors   high   Gleason   score  (P<0.0001),  pT  class  (P<0.0001)  and  higher  PSA  levels  at  diagnosis  (P=0.037).  

In   the   multivariate   analysis,   c-­‐‑Nrf-­‐‑2   expression   (Hazard   ratio   (HR):   1.664,   95%  confidence   interval   (95%   CI):   1.056-­‐‑2.621,   P=0.028   and   HR:   2.462,   95%   CI:   1.162-­‐‑5.216,  P=0.019)  and  Gleason  score  (HR:  2.156,  95%  CI:  1.373-­‐‑3.386,  P=0.001  and  HR:  2.166,  95%  CI:  1.066-­‐‑4.401,   P=0.033)   proved   to   be   independent   prognostic   predictors   of   BFS   and   OS  respectively,   when   the   other   factors   (PSA   at   diagnosis,   surgical   margin   status,   capsule  invasion,   pT   class,   age,   n-­‐‑Nrf-­‐‑expression   and   8-­‐‑OHDG   expression)   were   included   in   the  analysis.    

       

 

31    

 

     

   

Figure 9. Positive Nrf-2 expression in cytoplasm is associated shortened (A) biochemical recurrence free survival (BFS) (log-rank: P=0.034) and (B) poor overall survival (log-rank: P=0.017) in Kaplan Meier survival analysis.  

Page 51: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

30  

 

       

Figure 8. Positive expression of biomarkers (8-OHDG, P<0.0001; c-Nrf-2, P=0.015 and n-Nrf-2, P=0.016) in benign and malignant samples, respectively.   5.4 NRF-2 EXPRESSION IN SURVIVAL ANALYSIS (II)  In  the  Kaplan  Meier  analysis,  increased  c-­‐‑Nrf-­‐‑2  expression  (P=0.034)  (Figure  9A)  and  n-­‐‑Nrf-­‐‑2  expression  (P=0.024)  was  associated  with  a  shortened  BFS.  An  association  with  shortened  BFS  was  also  demonstrated  for  the  positive  surgical  margin  status  (P<0.0001),  high  Gleason  score  (P<0.0001)  and  pT  class  (P<0.0001).  None  of  the  markers  analysed  predicted  shortened  PCS.  An  increase  in  the  expressions  of  c-­‐‑Nrf-­‐‑2  (P=0.017)  (Figure  9B)  and  n-­‐‑Nrf-­‐‑2  (P=0.006)  was   related   to   worse   OS,   as   well   as   the   clinicopathological   factors   high   Gleason   score  (P<0.0001),  pT  class  (P<0.0001)  and  higher  PSA  levels  at  diagnosis  (P=0.037).  

In   the   multivariate   analysis,   c-­‐‑Nrf-­‐‑2   expression   (Hazard   ratio   (HR):   1.664,   95%  confidence   interval   (95%   CI):   1.056-­‐‑2.621,   P=0.028   and   HR:   2.462,   95%   CI:   1.162-­‐‑5.216,  P=0.019)  and  Gleason  score  (HR:  2.156,  95%  CI:  1.373-­‐‑3.386,  P=0.001  and  HR:  2.166,  95%  CI:  1.066-­‐‑4.401,   P=0.033)   proved   to   be   independent   prognostic   predictors   of   BFS   and   OS  respectively,   when   the   other   factors   (PSA   at   diagnosis,   surgical   margin   status,   capsule  invasion,   pT   class,   age,   n-­‐‑Nrf-­‐‑expression   and   8-­‐‑OHDG   expression)   were   included   in   the  analysis.    

       

 

31    

 

     

   

Figure 9. Positive Nrf-2 expression in cytoplasm is associated shortened (A) biochemical recurrence free survival (BFS) (log-rank: P=0.034) and (B) poor overall survival (log-rank: P=0.017) in Kaplan Meier survival analysis.  

Page 52: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

32  

 

5.5 THE ASSOCIATION BETWEEN PRXS AND SRX AND CLINICOPATHOLOGICAL PROGNOSTIGATORS (III)  The   following  associations  were   found  between   clinicopathological  prognosis   factors   and    positive   Prxs   expression:   Positive   Prx1   expression   was   related   with   capsule   invasion  (P=0.001);  Prx2  with  pT  class  (P=  0.037),  positive  surgical  margin  (P=0.003),  capsule  invasion  (P<0.001),  BCR  (P=0.043),  PCS  (P=0.036)  and  OS  (P<0.001);  Prx5  with  OS  (P=0.001);  Prx6  with  pT   class   (P=0.006),   capsule   invasion   (P=0.009),   BCR   (P=0.004),   PCS   (P<0.001)   and   OS  (P<0.001).   Furthermore,   there  was   an   inverse   association  between  positive   Srx   expression  and  a  high  PSA  level  at  diagnosis  (P=0.001)  and  OS  (P=0.026)  (Table  7).    5.6 PRX2 AND PRX6 EXPRESSION IN SURVIVAL ANALYSIS (III)  The  Kaplan  Meier   analysis   revealed   that   the   shortened  BFS  was   associated  with  positive  expressions  of  Prx2   (P=0.027)   and  Prx6   (P=   0.020)   (Figure   10).  A  positive   surgical  margin  status   (P<0.001),   high   Gleason   score   (P<0.001)   and   pT   class   (P<0.001)   also   displayed   an  association  with  shortened  BFS.  A  positive  expression  of  Prx6  (P=0.037)  was  associated  with  PCS.    Furthermore,  several  clinicopathological   factors,  such  as  capsule   invasion  (P=0.008),  high  Gleason  score   (P<0.001)  and  pT  class   (P<0.001)  were   related  with  PCS.  Positive  Prx2  (P=0.045)   and   Prx6   expression   (P=0.033)   predicted   worse   OS,   as   well   as   the   important  clinicopathological   prognosis   factors   i.e.   high   Gleason   score   (P<0.001),   pT   class   (P<0.001)  and  higher  PSA  levels  at  diagnosis  (P=0.037).    

   

Figure 10. Kaplan Meier estimates of BFS according to Prx6 expression. (Log rank P=0.020).    

33    

 

The   multivariate   analysis   revealed   that   positive   Prx6   expression   (P=0.030),   pT   class  (P=0.020),   positive   surgical   margin   status   (P=0.025)   and   Gleason   score   (P<0.001)   were  independent   predictors   of   BFS.   Those   factors   (Prx2   expression,   surgical   margin   status,  Gleason   score  and  pT  class)   found   to  be   statistically   significant   in   the  univariate  analysis  were   included   in   the   analysis.   Subsequently,   Prx2   and   Prx6   expression   displayed   no  independent   predictive   value   for   PCS   or   OS   according   to   the   results   of   the   multivariate  analysis.                                                                      

 

Page 53: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

32  

 

5.5 THE ASSOCIATION BETWEEN PRXS AND SRX AND CLINICOPATHOLOGICAL PROGNOSTIGATORS (III)  The   following  associations  were   found  between   clinicopathological  prognosis   factors   and    positive   Prxs   expression:   Positive   Prx1   expression   was   related   with   capsule   invasion  (P=0.001);  Prx2  with  pT  class  (P=  0.037),  positive  surgical  margin  (P=0.003),  capsule  invasion  (P<0.001),  BCR  (P=0.043),  PCS  (P=0.036)  and  OS  (P<0.001);  Prx5  with  OS  (P=0.001);  Prx6  with  pT   class   (P=0.006),   capsule   invasion   (P=0.009),   BCR   (P=0.004),   PCS   (P<0.001)   and   OS  (P<0.001).   Furthermore,   there  was   an   inverse   association  between  positive   Srx   expression  and  a  high  PSA  level  at  diagnosis  (P=0.001)  and  OS  (P=0.026)  (Table  7).    5.6 PRX2 AND PRX6 EXPRESSION IN SURVIVAL ANALYSIS (III)  The  Kaplan  Meier   analysis   revealed   that   the   shortened  BFS  was   associated  with  positive  expressions  of  Prx2   (P=0.027)   and  Prx6   (P=   0.020)   (Figure   10).  A  positive   surgical  margin  status   (P<0.001),   high   Gleason   score   (P<0.001)   and   pT   class   (P<0.001)   also   displayed   an  association  with  shortened  BFS.  A  positive  expression  of  Prx6  (P=0.037)  was  associated  with  PCS.    Furthermore,  several  clinicopathological   factors,  such  as  capsule   invasion  (P=0.008),  high  Gleason  score   (P<0.001)  and  pT  class   (P<0.001)  were   related  with  PCS.  Positive  Prx2  (P=0.045)   and   Prx6   expression   (P=0.033)   predicted   worse   OS,   as   well   as   the   important  clinicopathological   prognosis   factors   i.e.   high   Gleason   score   (P<0.001),   pT   class   (P<0.001)  and  higher  PSA  levels  at  diagnosis  (P=0.037).    

   

Figure 10. Kaplan Meier estimates of BFS according to Prx6 expression. (Log rank P=0.020).    

33    

 

The   multivariate   analysis   revealed   that   positive   Prx6   expression   (P=0.030),   pT   class  (P=0.020),   positive   surgical   margin   status   (P=0.025)   and   Gleason   score   (P<0.001)   were  independent   predictors   of   BFS.   Those   factors   (Prx2   expression,   surgical   margin   status,  Gleason   score  and  pT  class)   found   to  be   statistically   significant   in   the  univariate  analysis  were   included   in   the   analysis.   Subsequently,   Prx2   and   Prx6   expression   displayed   no  independent   predictive   value   for   PCS   or   OS   according   to   the   results   of   the   multivariate  analysis.                                                                      

 

Page 54: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

34  

 

6  Discussion  

6.1 TWIST AND AR IN PROGNOSIS OF PC (I)  Augmented   TWIST   expression   has   been   found   in   malignant   tissue   in   comparison   with  benign   tissue   in   other  publications   examining  PC  and  other  malignancies,   such   as   breast  cancer  and  squamous  cell  carcinoma  (Kwok  et  al.  2005,  Soini  et  al.  2011,  Fan  et  al.  2013).  In  the   present   study,   there   was   no   TWIST   expression   detected   in   benign   samples   whereas  positive  expression  was  found  in  all  PC  samples  taken  from  different  malignant  parts  of  the  tumours,   in   agreement   with   earlier   reports.   The   expression   in   a   high   Gleason   area   was  more  abundant  than  in  a  low  Gleason  area,  and  furthermore  the  expression  in  the  margin  part   of   the   tumour   was   higher   than   in   the   tumour’s   central   part,   evidence   of   the   more  aggressive  behavior  of  the  cancer  cells  in  the  invasive  front.  Furthermore,  the  associations  between  TWIST  overexpression  and  clinical  factors,  positive  surgical  margin  status,  capsule  invasion   and   BCR,   were   observed   in   the   samples   of   margin   area.   In   contrast,   TWIST  expression  in  the  samples  of  the  other  tumour  areas  displayed  no  association  with  clinical  prognostic   factors   or   survival.   This   finding   is   in   accordance   with   the   hypothesis   that  generally   in  cancer  biology,   the  most  active  area   is   the   invasive   front  of   the   tumour  since  this  is  the  region  where  one  finds  cells  with  the  highest  proliferation  and  the  clearest  signs  of  the  EMT  process.  

Recently,   Behnsawy   et   al.   published   a   study   conducted   with   almost   identical  methodology  and  sample  processing  as  in  the  present  study.  They  found  a  similar  kind  of  association  between  TWIST  overexpression  and  clinical  prognostic  factors,  such  as  capsule  invasion  and  surgical  margin  status,  in  agreement  with  this  study.  In  contrast  to  the  present  results,   these   investigators   observed   also   an   association   between   TWIST   overexpression  and   pT-­‐‑class,   Gleason   score   and   PSA   value   at   diagnosis   (Behnsawy   et   al.   2013).   One  probable  explanation  is  that  in  that  other  study,  more  aggressive  PC  material  was  used.  In  their   report,   tumours   belonging   to   T-­‐‑classes   3   and   4   accounted   for   40%   of   the   cohort  compared   to   28%  of   cases   in   the   present   study.     In   addition,   73%   of   the   tissues   samples  displayed   Gleason   grade   7   or   higher   in   comparison   of   38%   of   the   cases   in   this   study.  Furthermore,   the  discordant  results  might  be  explained  by  the  difference   in   the   incidence  and  mortality  rates  of  PC  between  European  and  Asian  countries  (Center  et  al.  2012).    The  main   observation   in   both   studies   was   that   TWIST   overexpression   was   an   independent  predictor   of   shortened   BFS   in   localised   PC   after   RP.   The   strongly   significant   predictive  potential  was   confirmed   in   the  present   study   even   though   it   assessed   less   aggressive  PC  material.  The  finding  emphasizes  that  increased  TWIST  activity  could  be  used  as  a  sign  of  progression  in  the  early  stage  of  organ  confined  disease.  

AR   overexpression   associated   with   several   clinicopathological   factors   and   predicted  shortened   BFS,   in   accordance   with   many   other   publications   (Mori   et   al.   2008,  Theodoropoulos  et  al.  2005,  Takeda  et  al.  1996,  Shukla-­‐‑Dave  et  al.  2009,  Li  et  al.  2004a).  In  the  multivariate  analysis,  AR  expression  was  not  observed  to  be  an  independent  predictor  of  BFS,  probably  due  the  stronger  effect  of  TWIST  expression.  In  an  investigation  conducted  with   human  PC   cells,   TWIST   activation   has   been   shown   to   up-­‐‑regulate  AR.   The   authors  

35    

 

speculated   that   TWIST   would   be   functioning   as   an   AR   gene   promoter,   modulating   AR  activity  (Shiota  et  al.  2010).  In  support  of  this  observation,  in  the  present  study,  a  significant  association  was  also  detected  between  TWIST  and  AR  expressions.    6.2 8-OHDG AND NRF-2 IN PROGNOSIS OF PC (II)  Higher  8-­‐‑OHDG  expression  was   found   in  malignant  samples  compared   to  benign   tissues  evidence  that  oxidative  DNA-­‐‑damage  is  associated  with  a  malignant  process  also  in  PC,  as  observed  in  the  case  of  other  malignancies,  such  as  ovarian  cancer  (Karihtala  et  al.  2009).  In  agreement   with   earlier   reports   evaluating   8-­‐‑OHDG   as   a   marker   of   the   cancer  aggressiveness   in   patients   with   low   risk   PC,   the   present   study   failed   to   detect   any   link  between  8-­‐‑OHDG  expression  and  clinical  parameters  or  survival  (Richardson  et  al.  2009).  In  localised   PC   with   a   low   malignant   potential,   8-­‐‑OHDG   has   been   assessed   as   having  insufficient   reliability   as   a   prognostic   marker   alone,   due   to   the   multistep   nature   of   the  oxidative   injury   in   carcinogenesis   (Bostwick   et   al.   2000).   However,   8-­‐‑OHDG   might   have  predictive   value   in   higher   risk   PC,   since   Miyake   et   al.   have   found   augmented   8-­‐‑OHDG  concentrations   in   the   samples   of   advanced   PC   cases   in   comparison   to   the   samples   of  localised  disease  (Miyake  et  al.  2004).  

The   activation   of  Nrf-­‐‑2-­‐‑mediated   oxidative   stress   as   an   adaptive  mechanism   has   been  demonstrated  previously  in  experiments  conducted  with  cell  cultures,  animal  models  and  the  samples  of  clinical  patients  in  many  cancer  types  (Iida  et  al.  2004,  Ramos-­‐‑Gomez  et  al.  2001,  Lau  et  al.  2008).  In  addition,  in  the  case  of  PC,  augmented  Nrf-­‐‑2  expression  has  been  detected   in  malignant   tissue   compared   to  benign   samples,   in   agreement  with   findings   in  the   present   study   (Pettazzoni   et   al.   2011,   Zhang   et   al.   2010).   In   contrast   to   earlier  publications,  this  is  the  first  study  comparing  Nrf-­‐‑2  expression  with  conventional  prognosis  factors   in   a   clinical   PC   patient   cohort.   In   the   present   study,   increased   levels   of   both  cytoplasmic  and  nuclear  Nrf-­‐‑2  expressions  were  associated  with  several  clinical  prognostic  factors  and  predicted  shortened  BFS  and  OS.    

According  to  previous  research,  under  normal  conditions,  Nrf-­‐‑2  is  located  in  cytoplasm  bound  to  Keap1.  When  a  cell   is  exposed  to  oxidative  stress,  Nrf-­‐‑2  migrates  to  the  nucleus  and   activates   numerous   protecting   genes   (Nguyen,   Yang   &   Pickett   2004,   Kensler,  Wakabayashi   &   Biswal   2007,   Itoh,   Mimura   &   Yamamoto   2010).   Based   on   previous  evidence,  one  could  theoretically  expect  nuclear  expression  to  be  more  abundant  and  more  relevant   for   comparison   with   the   clinical   parameters.   However,   only   cytoplasmic  expression,   in   contrast   to   the   situation   with   nuclear   expression,   was   an   independent  predictor   of   shortened   BFS   and   OS   in   the   multivariate   analysis.   The   significance   of   this  finding  based  on  clinical  outcome  is  still  unclear  and  must  be  interpreted  with  caution.  

This   study   could   not   find   any   evidence   that   Nrf-­‐‑2   expression   would   be   predictive   of  cancer  specific  survival  in  contrast  to  the  situation  with  numerous  other  malignancies,  such  as  lung  cancer  and  breast  cancer  (Merikallio  et  al.  2012,  Hartikainen  et  al.  2012).  The  much  lower   cancer   specific   mortality   of   organ   confined   PC   compared   to   these   other   more  aggressive   cancers   might   explain   this   result.   For   example,   the   PC   specific   mortality   was  only  7.9%  in  this  cohort,  in  comparison  to  the  much  more  dismal,  87%,  five  year  mortality  of   lung   cancer   (De  Angelis   et   al.   2014).  On   the   other   hand,  Nrf-­‐‑2   expression   exhibited   a  strong  association  with  OS.  Possibly,  this  observation  is  evidence  that  the  Nrf-­‐‑2  modulated  mechanism  plays  a  multimodal  role  in  the  cell  survival  process  and  the  changes  occurring  

Page 55: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

34  

 

6  Discussion  

6.1 TWIST AND AR IN PROGNOSIS OF PC (I)  Augmented   TWIST   expression   has   been   found   in   malignant   tissue   in   comparison   with  benign   tissue   in   other  publications   examining  PC  and  other  malignancies,   such   as   breast  cancer  and  squamous  cell  carcinoma  (Kwok  et  al.  2005,  Soini  et  al.  2011,  Fan  et  al.  2013).  In  the   present   study,   there   was   no   TWIST   expression   detected   in   benign   samples   whereas  positive  expression  was  found  in  all  PC  samples  taken  from  different  malignant  parts  of  the  tumours,   in   agreement   with   earlier   reports.   The   expression   in   a   high   Gleason   area   was  more  abundant  than  in  a  low  Gleason  area,  and  furthermore  the  expression  in  the  margin  part   of   the   tumour   was   higher   than   in   the   tumour’s   central   part,   evidence   of   the   more  aggressive  behavior  of  the  cancer  cells  in  the  invasive  front.  Furthermore,  the  associations  between  TWIST  overexpression  and  clinical  factors,  positive  surgical  margin  status,  capsule  invasion   and   BCR,   were   observed   in   the   samples   of   margin   area.   In   contrast,   TWIST  expression  in  the  samples  of  the  other  tumour  areas  displayed  no  association  with  clinical  prognostic   factors   or   survival.   This   finding   is   in   accordance   with   the   hypothesis   that  generally   in  cancer  biology,   the  most  active  area   is   the   invasive   front  of   the   tumour  since  this  is  the  region  where  one  finds  cells  with  the  highest  proliferation  and  the  clearest  signs  of  the  EMT  process.  

Recently,   Behnsawy   et   al.   published   a   study   conducted   with   almost   identical  methodology  and  sample  processing  as  in  the  present  study.  They  found  a  similar  kind  of  association  between  TWIST  overexpression  and  clinical  prognostic  factors,  such  as  capsule  invasion  and  surgical  margin  status,  in  agreement  with  this  study.  In  contrast  to  the  present  results,   these   investigators   observed   also   an   association   between   TWIST   overexpression  and   pT-­‐‑class,   Gleason   score   and   PSA   value   at   diagnosis   (Behnsawy   et   al.   2013).   One  probable  explanation  is  that  in  that  other  study,  more  aggressive  PC  material  was  used.  In  their   report,   tumours   belonging   to   T-­‐‑classes   3   and   4   accounted   for   40%   of   the   cohort  compared   to   28%  of   cases   in   the   present   study.     In   addition,   73%   of   the   tissues   samples  displayed   Gleason   grade   7   or   higher   in   comparison   of   38%   of   the   cases   in   this   study.  Furthermore,   the  discordant  results  might  be  explained  by  the  difference   in   the   incidence  and  mortality  rates  of  PC  between  European  and  Asian  countries  (Center  et  al.  2012).    The  main   observation   in   both   studies   was   that   TWIST   overexpression   was   an   independent  predictor   of   shortened   BFS   in   localised   PC   after   RP.   The   strongly   significant   predictive  potential  was   confirmed   in   the  present   study   even   though   it   assessed   less   aggressive  PC  material.  The  finding  emphasizes  that  increased  TWIST  activity  could  be  used  as  a  sign  of  progression  in  the  early  stage  of  organ  confined  disease.  

AR   overexpression   associated   with   several   clinicopathological   factors   and   predicted  shortened   BFS,   in   accordance   with   many   other   publications   (Mori   et   al.   2008,  Theodoropoulos  et  al.  2005,  Takeda  et  al.  1996,  Shukla-­‐‑Dave  et  al.  2009,  Li  et  al.  2004a).  In  the  multivariate  analysis,  AR  expression  was  not  observed  to  be  an  independent  predictor  of  BFS,  probably  due  the  stronger  effect  of  TWIST  expression.  In  an  investigation  conducted  with   human  PC   cells,   TWIST   activation   has   been   shown   to   up-­‐‑regulate  AR.   The   authors  

35    

 

speculated   that   TWIST   would   be   functioning   as   an   AR   gene   promoter,   modulating   AR  activity  (Shiota  et  al.  2010).  In  support  of  this  observation,  in  the  present  study,  a  significant  association  was  also  detected  between  TWIST  and  AR  expressions.    6.2 8-OHDG AND NRF-2 IN PROGNOSIS OF PC (II)  Higher  8-­‐‑OHDG  expression  was   found   in  malignant  samples  compared   to  benign   tissues  evidence  that  oxidative  DNA-­‐‑damage  is  associated  with  a  malignant  process  also  in  PC,  as  observed  in  the  case  of  other  malignancies,  such  as  ovarian  cancer  (Karihtala  et  al.  2009).  In  agreement   with   earlier   reports   evaluating   8-­‐‑OHDG   as   a   marker   of   the   cancer  aggressiveness   in   patients   with   low   risk   PC,   the   present   study   failed   to   detect   any   link  between  8-­‐‑OHDG  expression  and  clinical  parameters  or  survival  (Richardson  et  al.  2009).  In  localised   PC   with   a   low   malignant   potential,   8-­‐‑OHDG   has   been   assessed   as   having  insufficient   reliability   as   a   prognostic   marker   alone,   due   to   the   multistep   nature   of   the  oxidative   injury   in   carcinogenesis   (Bostwick   et   al.   2000).   However,   8-­‐‑OHDG   might   have  predictive   value   in   higher   risk   PC,   since   Miyake   et   al.   have   found   augmented   8-­‐‑OHDG  concentrations   in   the   samples   of   advanced   PC   cases   in   comparison   to   the   samples   of  localised  disease  (Miyake  et  al.  2004).  

The   activation   of  Nrf-­‐‑2-­‐‑mediated   oxidative   stress   as   an   adaptive  mechanism   has   been  demonstrated  previously  in  experiments  conducted  with  cell  cultures,  animal  models  and  the  samples  of  clinical  patients  in  many  cancer  types  (Iida  et  al.  2004,  Ramos-­‐‑Gomez  et  al.  2001,  Lau  et  al.  2008).  In  addition,  in  the  case  of  PC,  augmented  Nrf-­‐‑2  expression  has  been  detected   in  malignant   tissue   compared   to  benign   samples,   in   agreement  with   findings   in  the   present   study   (Pettazzoni   et   al.   2011,   Zhang   et   al.   2010).   In   contrast   to   earlier  publications,  this  is  the  first  study  comparing  Nrf-­‐‑2  expression  with  conventional  prognosis  factors   in   a   clinical   PC   patient   cohort.   In   the   present   study,   increased   levels   of   both  cytoplasmic  and  nuclear  Nrf-­‐‑2  expressions  were  associated  with  several  clinical  prognostic  factors  and  predicted  shortened  BFS  and  OS.    

According  to  previous  research,  under  normal  conditions,  Nrf-­‐‑2  is  located  in  cytoplasm  bound  to  Keap1.  When  a  cell   is  exposed  to  oxidative  stress,  Nrf-­‐‑2  migrates  to  the  nucleus  and   activates   numerous   protecting   genes   (Nguyen,   Yang   &   Pickett   2004,   Kensler,  Wakabayashi   &   Biswal   2007,   Itoh,   Mimura   &   Yamamoto   2010).   Based   on   previous  evidence,  one  could  theoretically  expect  nuclear  expression  to  be  more  abundant  and  more  relevant   for   comparison   with   the   clinical   parameters.   However,   only   cytoplasmic  expression,   in   contrast   to   the   situation   with   nuclear   expression,   was   an   independent  predictor   of   shortened   BFS   and   OS   in   the   multivariate   analysis.   The   significance   of   this  finding  based  on  clinical  outcome  is  still  unclear  and  must  be  interpreted  with  caution.  

This   study   could   not   find   any   evidence   that   Nrf-­‐‑2   expression   would   be   predictive   of  cancer  specific  survival  in  contrast  to  the  situation  with  numerous  other  malignancies,  such  as  lung  cancer  and  breast  cancer  (Merikallio  et  al.  2012,  Hartikainen  et  al.  2012).  The  much  lower   cancer   specific   mortality   of   organ   confined   PC   compared   to   these   other   more  aggressive   cancers   might   explain   this   result.   For   example,   the   PC   specific   mortality   was  only  7.9%  in  this  cohort,  in  comparison  to  the  much  more  dismal,  87%,  five  year  mortality  of   lung   cancer   (De  Angelis   et   al.   2014).  On   the   other   hand,  Nrf-­‐‑2   expression   exhibited   a  strong  association  with  OS.  Possibly,  this  observation  is  evidence  that  the  Nrf-­‐‑2  modulated  mechanism  plays  a  multimodal  role  in  the  cell  survival  process  and  the  changes  occurring  

Page 56: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

36  

 

in   PC  may   be   one  way   to   induce  Nrf-­‐‑2   expression.   In   support   of   this   speculation,   it   has  been  proposed   that   over   200  genes   are   linked  with  ROS  activated   signalling   through   the  Nrf-­‐‑2  mediated  pathway  (Lewis  et  al.  2010).  

In   summary,   the   data   suggest   that   increased   Nrf-­‐‑2   expression   is   associated   with  conventional  prognosticators  and  predicts  worse  outcome  of  patients  with  localised  PC.    6.3 PRXS AND SRX IN PROGNOSIS OF PC (III)  In  mammalian   cells,   Prxs   have   been   found   to   exist   in   six   isoforms  which   are   distributed  throughout   tissues.  The   functions  of   these  enzymes  are   to  act   as  neutralizing  enzymes   in  combatting  an  ROS  attack.  As  a  consequence  of  normal  aerobic  respiration,  free  radicals  are  continuously  formed  and  should  be  detoxified.  While  this  is  the  situation  in  physiological  conditions,  an  augmented  oxidative  burst  is  involved  in  the  pathogenesis  of  many  diseases,  such   as   malignancies   (Karihtala,   Soini   2007,   Poynton,   Hampton   2014).   Since   a   clear  association   has   been   observed   earlier   between   Prx   3   and   4   expression   and   cancer  aggressiveness   in   PC   cells,   this   present   study   explored   Prx   1,   2,   5   and   6   expression   in  samples  from  PC  patients  (Basu  et  al.  2011,  Whitaker  et  al.  2013).  In  previous  publications,  augmented  Prxs  expression  has  been  found  in  malignant  samples  in  comparison  to  benign  samples   (Basu   et   al.   2011,   Chaiswing,   Zhong  &  Oberley   2014,   Valdman   et   al.   2009).   The  association  between  higher  Gleason  score  and  increased  Prx  expression  has  been  detected  with  Prx  2,  3  and  4  (Basu  et  al.  2011,  Chaiswing,  Zhong  &  Oberley  2014).      

In   the   present   study,   Prx   2   and   6   displayed   the   strongest   association   with   the  clinicopathological  prognostic  factors.  Basu  et  al.  reported  augmented  Prx6  expression  to  be  linked  with  pT   class,   in   agreement  with   this   study.  These   investigators   also   revealed   the  association   between   the   Gleason   score   and   increased   Prx2   expression   in   contrast   to   the  findings  in  this  study  (Basu  et  al.  2011).  The  difference  might  be  explained  with  the  samples  of   more   advanced   and   aggressive   tumours   compared   to   the   material   examined   here.  Indeed,  in  the  study  of  Basu  et  al.,  the  vast  majority  (95%)  of  tumours  had  a  Gleason  score  of  7  or  higher,  in  comparison  with  36%  in  present  study.    On  the  other  hand,  an  association  was  found  here  between  Prx2  expression  with  positive  surgical  margin  status  and  capsule  invasion.  There  are  no  reports  which  have  examined  the  association  between  expression  of  Prxs  and  surgical  pathological  parameters,  such  as  capsule  invasion  and  margin  status.  

There  are  a  few  publications  which  have  evaluated  Prx  expression  in  PC  progression  but  none  of  them  have  been  conducted  with  a  clinical  patient  cohort.  The  activity  of  Prx  3  and  4  has  been  shown  to  be  increased  in  PC  cell  cultures  after  exposure  to  oxidative  stress  and  the  levels  of    protecting  gene  functions  have  been  found  be  augmented,  promoting  cancer  cell  survival   (Ummanni  et   al.   2012,  Whitaker  et   al.   2013).  Basu  et   al.   analysed  150   samples  of  tissue  bank  material  and  found  that  Prx3  overexpression  did  predict  BFS.  However,  these  workers   reported  very   little   clinical  data  e.g.   there  was  no   information  available  on  BCR,  detailed  follow-­‐‑up  routines  or  observation  time.  Furthermore,  no  multivariate  analysis  was  performed  (Basu  et  al.  2011).  The  present  study  is  the  first  to  demonstrate  that  increased  Prx  2   and  6   expressions   in  PC   samples  with  organ   confined  disease   is   connected  with  worse  clinical   outcome.   Elevated   expression   of   Prx   2   and   6   predicted   shortened   BFS   and   Prx6  expression   remained   an   independent   factor   in   the   multivariate   analysis.   The   finding   is  important   in   the  context  of  PC  patients  after  RP,  since  at  present,  PSA-­‐‑relapse   is   the  only  

37    

 

biochemical  indicator  of  disease  recurrence  in  clinical  use  (Oefelein  et  al.  1995,  Stephenson  et  al.  2006).    

There  are  no  earlier  studies  exploring  the  expression  of  Prxs  in  predicting  the  survival  of  PC   patients.   In   this   study,   the   augmented   expressions   Prx   2   and   6   were   found   to   be  predictors  of  worse  OS,  but  these  biomarkers  failed  to  show  any  independent  value  in  the  multivariate   analysis.   Furthermore,   Prx6   expression   predicted   PCS   in   the   univariate  analysis.   The   observations   are   in   line   with   the   earlier   findings   that   Prxs   function   as  neutralizing   enzymes,   combatting   ROS   to   promote   cell   survival.   On   the   other   hand,   the  progression  of  localised  PC  is  slow  and  disease  specific  mortality  low  and  these  are  factors  that  complicate  conducting  a  survival  analysis.  

Srx  expression  displayed  an  inverse  association  with  clinical  factors  such  as  high  PSA  at  diagnosis  and  OS.  One  might  presume  Srx  expression  to  be  up-­‐‑regulated,  since  Srx  reduces  hyperoxidized  Prx   enzymes   into   their   active   state   (Woo   et   al.   2005).   Based   on   this   study  conducted   with   clinical   material,   the   relevance   of   this   observation   remains   unclear.   In  addition,  there  are  no  previous  publications  examining  Srx  expression  in  PC.    6.4 CLINICAL IMPLICATIONS  Nowadays,  an  ever-­‐‑increasing  number  of  PC  cases  are  being  diagnosed  at  an  early  stage.  Most  of  these  men  suffering  from  PC  have  a  slow-­‐‑growing  tumour  with  excellent  prognosis  and   only   a   small   number   of   patients   are   at   risk   of   suffering   a   life-­‐‑threatening   disease  (Johansson  et  al.  2004,  Soloway  et  al.  2010).    

Clinicopathological   factors,   such   as   Gleason   score,   pT   class   and   PSA-­‐‑value   at   the  diagnosis  have  been  used  in  cancer  risk  assessment  with  patients  after  RP.  These  have  been  simplified  for  clinicians  by  developing  nomograms  to  quantify  the  aggressiveness  of  PC  at  the   diagnosis   or   after   curative   treatment,   but   their   accuracy   is   still   as   low   as   70-­‐‑80%  (Capitanio   et   al.   2010).   Several   attempts  have  been  made   to   improve   the  precision  of   the  evaluation  of  the  cancer  risk  by  introducing  biomarkers  for  clinical  practice.  Although  there  has  been  active  research,  at  present,  no  biomolecules  are  available  which  are  either  suitable  or  sufficiently  reliable  for  clinical  use  (Heidenreich  et  al.  2011).  

The  curative  treatments  may  cause  undesirable  adverse  effects  and  decrease  the  quality  of   life.  Depending  on   the   study  design,   after  RP,   as  many  as  72%  of  patients   suffer   from  urinary  incontinence  and  69  %  from  erectile  dysfunction,  (Boorjian  et  al.  2012,  Sanda  et  al.  2008).  Since  it  is  desirable  to  avoid  overtreatment,  active  surveillance  should  be  offered  to  patients  with  low  risk  PC.  If  the  disease  of  a  patient  under  active  surveillance  displays  signs  of   progression,   he   should   be   treated   at   a   sufficiently   early   stage   to   achieve   a   curative  outcome   (Welty,   Cooperberg   &   Carroll   2014).   Currently,   monitoring   is   based   on   clinical  examination,   frequent   PSA-­‐‑testing   and   repeated   prostate   biopsy   samples.   During   active  follow-­‐‑up,   approximately   10%   of   the   patients   themselves   request   that   they   discontinue  surveillance  due  to  anxiety  (Thomsen  et  al.  2014,  van  den  Bergh  et  al.  2009).  There  is  a  clear  need   for   new   prognostic   tools,   such   as   biomarkers,   which   could   be   beneficial   for  counselling  patients  under   surveillance   in  order   to  achieve  a  more  accurate  evaluation  of  cancer  behaviour  (Fleshner,  Lawrentschuk  2009).  

This  study  showed  that  TWIST  is  overexpressed  in  PC  samples  and  predicts  shortened  BFS.   In  agreement  with  earlier  reports,  processes   involved   in  EMT-­‐‑transition  and  TWIST-­‐‑mediated   signalling   are   involved   with   carcinogenesis   and   tumour   progression   (Thiery  

Page 57: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

36  

 

in   PC  may   be   one  way   to   induce  Nrf-­‐‑2   expression.   In   support   of   this   speculation,   it   has  been  proposed   that   over   200  genes   are   linked  with  ROS  activated   signalling   through   the  Nrf-­‐‑2  mediated  pathway  (Lewis  et  al.  2010).  

In   summary,   the   data   suggest   that   increased   Nrf-­‐‑2   expression   is   associated   with  conventional  prognosticators  and  predicts  worse  outcome  of  patients  with  localised  PC.    6.3 PRXS AND SRX IN PROGNOSIS OF PC (III)  In  mammalian   cells,   Prxs   have   been   found   to   exist   in   six   isoforms  which   are   distributed  throughout   tissues.  The   functions  of   these  enzymes  are   to  act   as  neutralizing  enzymes   in  combatting  an  ROS  attack.  As  a  consequence  of  normal  aerobic  respiration,  free  radicals  are  continuously  formed  and  should  be  detoxified.  While  this  is  the  situation  in  physiological  conditions,  an  augmented  oxidative  burst  is  involved  in  the  pathogenesis  of  many  diseases,  such   as   malignancies   (Karihtala,   Soini   2007,   Poynton,   Hampton   2014).   Since   a   clear  association   has   been   observed   earlier   between   Prx   3   and   4   expression   and   cancer  aggressiveness   in   PC   cells,   this   present   study   explored   Prx   1,   2,   5   and   6   expression   in  samples  from  PC  patients  (Basu  et  al.  2011,  Whitaker  et  al.  2013).  In  previous  publications,  augmented  Prxs  expression  has  been  found  in  malignant  samples  in  comparison  to  benign  samples   (Basu   et   al.   2011,   Chaiswing,   Zhong  &  Oberley   2014,   Valdman   et   al.   2009).   The  association  between  higher  Gleason  score  and  increased  Prx  expression  has  been  detected  with  Prx  2,  3  and  4  (Basu  et  al.  2011,  Chaiswing,  Zhong  &  Oberley  2014).      

In   the   present   study,   Prx   2   and   6   displayed   the   strongest   association   with   the  clinicopathological  prognostic  factors.  Basu  et  al.  reported  augmented  Prx6  expression  to  be  linked  with  pT   class,   in   agreement  with   this   study.  These   investigators   also   revealed   the  association   between   the   Gleason   score   and   increased   Prx2   expression   in   contrast   to   the  findings  in  this  study  (Basu  et  al.  2011).  The  difference  might  be  explained  with  the  samples  of   more   advanced   and   aggressive   tumours   compared   to   the   material   examined   here.  Indeed,  in  the  study  of  Basu  et  al.,  the  vast  majority  (95%)  of  tumours  had  a  Gleason  score  of  7  or  higher,  in  comparison  with  36%  in  present  study.    On  the  other  hand,  an  association  was  found  here  between  Prx2  expression  with  positive  surgical  margin  status  and  capsule  invasion.  There  are  no  reports  which  have  examined  the  association  between  expression  of  Prxs  and  surgical  pathological  parameters,  such  as  capsule  invasion  and  margin  status.  

There  are  a  few  publications  which  have  evaluated  Prx  expression  in  PC  progression  but  none  of  them  have  been  conducted  with  a  clinical  patient  cohort.  The  activity  of  Prx  3  and  4  has  been  shown  to  be  increased  in  PC  cell  cultures  after  exposure  to  oxidative  stress  and  the  levels  of    protecting  gene  functions  have  been  found  be  augmented,  promoting  cancer  cell  survival   (Ummanni  et   al.   2012,  Whitaker  et   al.   2013).  Basu  et   al.   analysed  150   samples  of  tissue  bank  material  and  found  that  Prx3  overexpression  did  predict  BFS.  However,  these  workers   reported  very   little   clinical  data  e.g.   there  was  no   information  available  on  BCR,  detailed  follow-­‐‑up  routines  or  observation  time.  Furthermore,  no  multivariate  analysis  was  performed  (Basu  et  al.  2011).  The  present  study  is  the  first  to  demonstrate  that  increased  Prx  2   and  6   expressions   in  PC   samples  with  organ   confined  disease   is   connected  with  worse  clinical   outcome.   Elevated   expression   of   Prx   2   and   6   predicted   shortened   BFS   and   Prx6  expression   remained   an   independent   factor   in   the   multivariate   analysis.   The   finding   is  important   in   the  context  of  PC  patients  after  RP,  since  at  present,  PSA-­‐‑relapse   is   the  only  

37    

 

biochemical  indicator  of  disease  recurrence  in  clinical  use  (Oefelein  et  al.  1995,  Stephenson  et  al.  2006).    

There  are  no  earlier  studies  exploring  the  expression  of  Prxs  in  predicting  the  survival  of  PC   patients.   In   this   study,   the   augmented   expressions   Prx   2   and   6   were   found   to   be  predictors  of  worse  OS,  but  these  biomarkers  failed  to  show  any  independent  value  in  the  multivariate   analysis.   Furthermore,   Prx6   expression   predicted   PCS   in   the   univariate  analysis.   The   observations   are   in   line   with   the   earlier   findings   that   Prxs   function   as  neutralizing   enzymes,   combatting   ROS   to   promote   cell   survival.   On   the   other   hand,   the  progression  of  localised  PC  is  slow  and  disease  specific  mortality  low  and  these  are  factors  that  complicate  conducting  a  survival  analysis.  

Srx  expression  displayed  an  inverse  association  with  clinical  factors  such  as  high  PSA  at  diagnosis  and  OS.  One  might  presume  Srx  expression  to  be  up-­‐‑regulated,  since  Srx  reduces  hyperoxidized  Prx   enzymes   into   their   active   state   (Woo   et   al.   2005).   Based   on   this   study  conducted   with   clinical   material,   the   relevance   of   this   observation   remains   unclear.   In  addition,  there  are  no  previous  publications  examining  Srx  expression  in  PC.    6.4 CLINICAL IMPLICATIONS  Nowadays,  an  ever-­‐‑increasing  number  of  PC  cases  are  being  diagnosed  at  an  early  stage.  Most  of  these  men  suffering  from  PC  have  a  slow-­‐‑growing  tumour  with  excellent  prognosis  and   only   a   small   number   of   patients   are   at   risk   of   suffering   a   life-­‐‑threatening   disease  (Johansson  et  al.  2004,  Soloway  et  al.  2010).    

Clinicopathological   factors,   such   as   Gleason   score,   pT   class   and   PSA-­‐‑value   at   the  diagnosis  have  been  used  in  cancer  risk  assessment  with  patients  after  RP.  These  have  been  simplified  for  clinicians  by  developing  nomograms  to  quantify  the  aggressiveness  of  PC  at  the   diagnosis   or   after   curative   treatment,   but   their   accuracy   is   still   as   low   as   70-­‐‑80%  (Capitanio   et   al.   2010).   Several   attempts  have  been  made   to   improve   the  precision  of   the  evaluation  of  the  cancer  risk  by  introducing  biomarkers  for  clinical  practice.  Although  there  has  been  active  research,  at  present,  no  biomolecules  are  available  which  are  either  suitable  or  sufficiently  reliable  for  clinical  use  (Heidenreich  et  al.  2011).  

The  curative  treatments  may  cause  undesirable  adverse  effects  and  decrease  the  quality  of   life.  Depending  on   the   study  design,   after  RP,   as  many  as  72%  of  patients   suffer   from  urinary  incontinence  and  69  %  from  erectile  dysfunction,  (Boorjian  et  al.  2012,  Sanda  et  al.  2008).  Since  it  is  desirable  to  avoid  overtreatment,  active  surveillance  should  be  offered  to  patients  with  low  risk  PC.  If  the  disease  of  a  patient  under  active  surveillance  displays  signs  of   progression,   he   should   be   treated   at   a   sufficiently   early   stage   to   achieve   a   curative  outcome   (Welty,   Cooperberg   &   Carroll   2014).   Currently,   monitoring   is   based   on   clinical  examination,   frequent   PSA-­‐‑testing   and   repeated   prostate   biopsy   samples.   During   active  follow-­‐‑up,   approximately   10%   of   the   patients   themselves   request   that   they   discontinue  surveillance  due  to  anxiety  (Thomsen  et  al.  2014,  van  den  Bergh  et  al.  2009).  There  is  a  clear  need   for   new   prognostic   tools,   such   as   biomarkers,   which   could   be   beneficial   for  counselling  patients  under   surveillance   in  order   to  achieve  a  more  accurate  evaluation  of  cancer  behaviour  (Fleshner,  Lawrentschuk  2009).  

This  study  showed  that  TWIST  is  overexpressed  in  PC  samples  and  predicts  shortened  BFS.   In  agreement  with  earlier  reports,  processes   involved   in  EMT-­‐‑transition  and  TWIST-­‐‑mediated   signalling   are   involved   with   carcinogenesis   and   tumour   progression   (Thiery  

Page 58: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

38  

 

2002).  Furthermore,  it  has  been  demonstrated  that  mechanisms  linked  with  oxidative  stress  are  activated  in  cancer  cells  supporting  the  findings  of  the  present  study  in  which  increased  expression  Nrf-­‐‑2  and  Prx6  predicted  worse  outcome  of  PC  patients  (Karihtala,  Soini  2007).  Augmented   expressions   of   TWIST,   Nrf-­‐‑2   and   Prx6   were   independent   predictors   of  shortened  BFS   in   organ   confined  PC.   In   the   previous   reports,   the   same   biomarkers   have  been  found  to  be  linked  to  malignancies  with  poorer  survival  expectations,  such  as  breast  cancer  and  B-­‐‑cell  lymphoma  (Soini  et  al.  2011,  Hartikainen  et  al.  2012,  Kuusisto  et  al.  2015).  Since   an   elevation   in   the   PSA   value   is   the   first   sign   of   clinical   progression   in   PC,   it   is  important   to   note   that   these   markers   have   the   same   predictive   value   in   the   PC   patients  examined   here   with   long   life   expectancies   as   in   those   more   aggressive   malignancies  (Stephenson   et   al.   2006).   In   this   context,   these   markers   could   serve   indicators   for   early  cancer  recurrence.    6.5 LIMITATIONS  This   study   is   retrospective   and   was   conducted   with   PC   samples   collected   after   RP.   In  addition,   the   data   were   collated   from   patient   records   and   the   laboratory   database   and  naturally,  an  exact  control  protocol  could  not  be  followed.  Even  although  the  samples  were  re-­‐‑evaluated   to   ensure   standardization   of   histopathological   parameters,   the   treatment  decisions  were  made  individually  for  each  patient  according  to  clinical  practice.  In  order  to  validate   biomarkers   for   clinical   use,   a   prospective   study   with   biopsy   samples   would   be  needed.  Since  the  natural  history  of  PC  is  slow,  a  longer  follow-­‐‑up  time  and  a  larger  patient  cohort  would  be  essential  to  evaluate  prognostic  potential  of  biomarkers  for  PCS.    6.6 FUTURE PERSPECTIVES  Since  TWIST,  Nrf-­‐‑2  and  Prx6  exhibited   independent  prognostic  value  for  BFS   in   localised  PC,   they   could   serve   as   candidate   molecules   for   future   research   in   developing   more  accurate  surveillance  protocols  for  PC  patients  after  RP.  In  addition,  it  might  be  reasonable  to  analyse  expression  of  these  biomarkers  in  prostate  biopsy  samples  in  a  prospective  pre-­‐‑treatment   setting   since   this   could   help   in   selecting   the   optimal   strategy   between  surveillance   and   curative   treatment.   Furthermore,   a   clarification   of   molecular   targets   in  disturbed   regulatory   pathways   in   cancer   cells   could   provide   new   targets   for   drug  development  and  the  possibility  of  personalized  cancer  treatment  in  the  future.        

 

 

39    

 

7  Summary  and  conclusions  

The   prognosis   of   patients   with   localised   PC   is   normally   excellent   and   only   a   small  proportion  of  PC  cases  progress   to  a  metastatic   stage.  Currently,   the  evaluation  of  cancer  aggressiveness   is   based  on   clinicopathological   factors   and   the  data   from   the  pathological  report   of   the   prostatectomy   specimen   after   RP.   Biomarkers   are   needed   to   predict   more  accurately  the  behavior  of  PC  and  to  pinpoint   those  patients  with  aggressive  tumours  for  multimodal   treatments   and   careful   follow-­‐‑up.   TWIST   and   oxidative   stress   related  biomolecules  could  provide  possibilities  for  counselling  of  the  PC  patient  about  his  cancer  risk.    Based  on  the  results  of  the  present  study,  the  following  conclusions  can  be  drawn:    

1. High  AR  and  TWIST  expression  associated  with   several   clinicopathological   factors  and   augmented   TWIST   expression   predicted   shortened   BFS   in   the  margin   area   of  tumour.  

 2. The   levels   of   expression   of   8-­‐‑OHDG,   n-­‐‑Nrf-­‐‑2   and   c-­‐‑Nrf-­‐‑2   were   abundant   in  

malignant   tissue   in   comparison   to   benign   tissue.   Elevated   n-­‐‑Nrf-­‐‑2   and   c-­‐‑Nrf-­‐‑2  expressions  were   linked  with  conventional  prognosticators  and  shortened  BFS  and  OS.   Increased  c-­‐‑Nrf-­‐‑2  expression   independently  predicted  shortened  BFS  and  poor  OS.    

 3. Augmented   Prxs   expression   was   associated   with   clinical   and   pathological  

prognosticators.  Elevated  Prx6  expression  proved  to  be  an  independent  predictor  of  shortened  BFS.    

 

 

 

 

Page 59: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

38  

 

2002).  Furthermore,  it  has  been  demonstrated  that  mechanisms  linked  with  oxidative  stress  are  activated  in  cancer  cells  supporting  the  findings  of  the  present  study  in  which  increased  expression  Nrf-­‐‑2  and  Prx6  predicted  worse  outcome  of  PC  patients  (Karihtala,  Soini  2007).  Augmented   expressions   of   TWIST,   Nrf-­‐‑2   and   Prx6   were   independent   predictors   of  shortened  BFS   in   organ   confined  PC.   In   the   previous   reports,   the   same   biomarkers   have  been  found  to  be  linked  to  malignancies  with  poorer  survival  expectations,  such  as  breast  cancer  and  B-­‐‑cell  lymphoma  (Soini  et  al.  2011,  Hartikainen  et  al.  2012,  Kuusisto  et  al.  2015).  Since   an   elevation   in   the   PSA   value   is   the   first   sign   of   clinical   progression   in   PC,   it   is  important   to   note   that   these   markers   have   the   same   predictive   value   in   the   PC   patients  examined   here   with   long   life   expectancies   as   in   those   more   aggressive   malignancies  (Stephenson   et   al.   2006).   In   this   context,   these   markers   could   serve   indicators   for   early  cancer  recurrence.    6.5 LIMITATIONS  This   study   is   retrospective   and   was   conducted   with   PC   samples   collected   after   RP.   In  addition,   the   data   were   collated   from   patient   records   and   the   laboratory   database   and  naturally,  an  exact  control  protocol  could  not  be  followed.  Even  although  the  samples  were  re-­‐‑evaluated   to   ensure   standardization   of   histopathological   parameters,   the   treatment  decisions  were  made  individually  for  each  patient  according  to  clinical  practice.  In  order  to  validate   biomarkers   for   clinical   use,   a   prospective   study   with   biopsy   samples   would   be  needed.  Since  the  natural  history  of  PC  is  slow,  a  longer  follow-­‐‑up  time  and  a  larger  patient  cohort  would  be  essential  to  evaluate  prognostic  potential  of  biomarkers  for  PCS.    6.6 FUTURE PERSPECTIVES  Since  TWIST,  Nrf-­‐‑2  and  Prx6  exhibited   independent  prognostic  value  for  BFS   in   localised  PC,   they   could   serve   as   candidate   molecules   for   future   research   in   developing   more  accurate  surveillance  protocols  for  PC  patients  after  RP.  In  addition,  it  might  be  reasonable  to  analyse  expression  of  these  biomarkers  in  prostate  biopsy  samples  in  a  prospective  pre-­‐‑treatment   setting   since   this   could   help   in   selecting   the   optimal   strategy   between  surveillance   and   curative   treatment.   Furthermore,   a   clarification   of   molecular   targets   in  disturbed   regulatory   pathways   in   cancer   cells   could   provide   new   targets   for   drug  development  and  the  possibility  of  personalized  cancer  treatment  in  the  future.        

 

 

39    

 

7  Summary  and  conclusions  

The   prognosis   of   patients   with   localised   PC   is   normally   excellent   and   only   a   small  proportion  of  PC  cases  progress   to  a  metastatic   stage.  Currently,   the  evaluation  of  cancer  aggressiveness   is   based  on   clinicopathological   factors   and   the  data   from   the  pathological  report   of   the   prostatectomy   specimen   after   RP.   Biomarkers   are   needed   to   predict   more  accurately  the  behavior  of  PC  and  to  pinpoint   those  patients  with  aggressive  tumours  for  multimodal   treatments   and   careful   follow-­‐‑up.   TWIST   and   oxidative   stress   related  biomolecules  could  provide  possibilities  for  counselling  of  the  PC  patient  about  his  cancer  risk.    Based  on  the  results  of  the  present  study,  the  following  conclusions  can  be  drawn:    

1. High  AR  and  TWIST  expression  associated  with   several   clinicopathological   factors  and   augmented   TWIST   expression   predicted   shortened   BFS   in   the  margin   area   of  tumour.  

 2. The   levels   of   expression   of   8-­‐‑OHDG,   n-­‐‑Nrf-­‐‑2   and   c-­‐‑Nrf-­‐‑2   were   abundant   in  

malignant   tissue   in   comparison   to   benign   tissue.   Elevated   n-­‐‑Nrf-­‐‑2   and   c-­‐‑Nrf-­‐‑2  expressions  were   linked  with  conventional  prognosticators  and  shortened  BFS  and  OS.   Increased  c-­‐‑Nrf-­‐‑2  expression   independently  predicted  shortened  BFS  and  poor  OS.    

 3. Augmented   Prxs   expression   was   associated   with   clinical   and   pathological  

prognosticators.  Elevated  Prx6  expression  proved  to  be  an  independent  predictor  of  shortened  BFS.    

 

 

 

 

Page 60: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

40  

 

8  References    

Acloque,  H.,  Adams,  M.S.,  Fishwick,  K.,  Bronner-­‐‑Fraser,  M.  &  Nieto,  M.A.  2009,  "ʺEpithelial-­‐‑mesenchymal  transitions:  the  importance  of  changing  cell  state  in  development  and  disease"ʺ,  The  Journal  of  clinical  investigation,  vol.  119,  no.  6,  pp.  1438-­‐‑1449.  

 Adamis,  S.  &  Varkarakis,  I.M.  2014,  "ʺDefining  prostate  cancer  risk  after  radical  

prostatectomy"ʺ,  European  journal  of  surgical  oncology  :  the  journal  of  the  European  Society  of  Surgical  Oncology  and  the  British  Association  of  Surgical  Oncology,  vol.  40,  no.  5,  pp.  496-­‐‑504.  

 Alexander,  N.R.,  Tran,  N.L.,  Rekapally,  H.,  Summers,  C.E.,  Glackin,  C.  &  Heimark,  R.L.  

2006,  "ʺN-­‐‑cadherin  gene  expression  in  prostate  carcinoma  is  modulated  by  integrin-­‐‑dependent  nuclear  translocation  of  Twist1"ʺ,  Cancer  research,  vol.  66,  no.  7,  pp.  3365-­‐‑3369.  

 Andriole,  G.L.,  Bostwick,  D.G.,  Brawley,  O.W.,  Gomella,  L.G.,  Marberger,  M.,  Montorsi,  F.,  

Pettaway,  C.A.,  Tammela,  T.L.,  Teloken,  C.,  Tindall,  D.J.,  Somerville,  M.C.,  Wilson,  T.H.,  Fowler,  I.L.,  Rittmaster,  R.S.  &  REDUCE  Study  Group  2010,  "ʺEffect  of  dutasteride  on  the  risk  of  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  362,  no.  13,  pp.  1192-­‐‑1202.  

 Armbruster,  D.A.  1993,  "ʺProstate-­‐‑specific  antigen:  biochemistry,  analytical  methods,  and  

clinical  application"ʺ,  Clinical  chemistry,  vol.  39,  no.  2,  pp.  181-­‐‑195.    Arnold,  M.,  Karim-­‐‑Kos,  H.E.,  Coebergh,  J.W.,  Byrnes,  G.,  Antilla,  A.,  Ferlay,  J.,  Renehan,  

A.G.,  Forman,  D.  &  Soerjomataram,  I.  2015,  "ʺRecent  trends  in  incidence  of  five  common  cancers  in  26  European  countries  since  1988:  Analysis  of  the  European  Cancer  Observatory"ʺ,  European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  51,  no.  9,  pp.  1164-­‐‑1187.  

 Ball,  M.W.,  Partin,  A.W.  &  Epstein,  J.I.  2015,  "ʺExtent  of  extraprostatic  extension  

independently  influences  biochemical  recurrence-­‐‑free  survival:  evidence  for  further  pT3  subclassification"ʺ,  Urology,  vol.  85,  no.  1,  pp.  161-­‐‑164.  

 Bastian,  P.J.,  Carter,  B.H.,  Bjartell,  A.,  Seitz,  M.,  Stanislaus,  P.,  Montorsi,  F.,  Stief,  C.G.  &  

Schroder,  F.  2009,  "ʺInsignificant  prostate  cancer  and  active  surveillance:  from  definition  to  clinical  implications"ʺ,  European  urology,  vol.  55,  no.  6,  pp.  1321-­‐‑1330.  

 Basu,  A.,  Banerjee,  H.,  Rojas,  H.,  Martinez,  S.R.,  Roy,  S.,  Jia,  Z.,  Lilly,  M.B.,  De  Leon,  M.  &  

Casiano,  C.A.  2011,  "ʺDifferential  expression  of  peroxiredoxins  in  prostate  cancer:  consistent  upregulation  of  PRDX3  and  PRDX4"ʺ,  The  Prostate,  vol.  71,  no.  7,  pp.  755-­‐‑765.  

 

41    

 

Behnsawy,  H.M.,  Miyake,  H.,  Harada,  K.  &  Fujisawa,  M.  2013,  "ʺExpression  patterns  of  epithelial-­‐‑mesenchymal  transition  markers  in  localized  prostate  cancer:  significance  in  clinicopathological  outcomes  following  radical  prostatectomy"ʺ,  BJU  international,  vol.  111,  no.  1,  pp.  30-­‐‑37.  

 Bell,  K.J.,  Del  Mar,  C.,  Wright,  G.,  Dickinson,  J.  &  Glasziou,  P.  2015,  "ʺPrevalence  of  

incidental  prostate  cancer:  A  systematic  review  of  autopsy  studies"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  137,  no.  7,  pp.  1749-­‐‑1757.  

 Bill-­‐‑Axelson,  A.,  Holmberg,  L.,  Garmo,  H.,  Rider,  J.R.,  Taari,  K.,  Busch,  C.,  Nordling,  S.,  

Haggman,  M.,  Andersson,  S.O.,  Spangberg,  A.,  Andren,  O.,  Palmgren,  J.,  Steineck,  G.,  Adami,  H.O.  &  Johansson,  J.E.  2014,  "ʺRadical  prostatectomy  or  watchful  waiting  in  early  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  370,  no.  10,  pp.  932-­‐‑942.  

 Bolla,  M.,  Van  Tienhoven,  G.,  Warde,  P.,  Dubois,  J.B.,  Mirimanoff,  R.O.,  Storme,  G.,  Bernier,  

J.,  Kuten,  A.,  Sternberg,  C.,  Billiet,  I.,  Torecilla,  J.L.,  Pfeffer,  R.,  Cutajar,  C.L.,  Van  der  Kwast,  T.  &  Collette,  L.  2010,  "ʺExternal  irradiation  with  or  without  long-­‐‑term  androgen  suppression  for  prostate  cancer  with  high  metastatic  risk:  10-­‐‑year  results  of  an  EORTC  randomised  study"ʺ,  The  Lancet.Oncology,  vol.  11,  no.  11,  pp.  1066-­‐‑1073.  

 Boorjian,  S.A.,  Eastham,  J.A.,  Graefen,  M.,  Guillonneau,  B.,  Karnes,  R.J.,  Moul,  J.W.,  

Schaeffer,  E.M.,  Stief,  C.  &  Zorn,  K.C.  2012,  "ʺA  critical  analysis  of  the  long-­‐‑term  impact  of  radical  prostatectomy  on  cancer  control  and  function  outcomes"ʺ,  European  urology,  vol.  61,  no.  4,  pp.  664-­‐‑675.  

 Boorjian,  S.A.,  Thompson,  R.H.,  Tollefson,  M.K.,  Rangel,  L.J.,  Bergstralh,  E.J.,  Blute,  M.L.  &  

Karnes,  R.J.  2011,  "ʺLong-­‐‑term  risk  of  clinical  progression  after  biochemical  recurrence  following  radical  prostatectomy:  the  impact  of  time  from  surgery  to  recurrence"ʺ,  European  urology,  vol.  59,  no.  6,  pp.  893-­‐‑899.  

 Borre,  M.,  Nerstrom,  B.  &  Overgaard,  J.  2000,  "ʺAssociation  between  immunohistochemical  

expression  of  vascular  endothelial  growth  factor  (VEGF),  VEGF-­‐‑expressing  neuroendocrine-­‐‑differentiated  tumor  cells,  and  outcome  in  prostate  cancer  patients  subjected  to  watchful  waiting"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  6,  no.  5,  pp.  1882-­‐‑1890.  

 Bosetti,  C.,  Bertuccio,  P.,  Chatenoud,  L.,  Negri,  E.,  La  Vecchia,  C.  &  Levi,  F.  2011,  "ʺTrends  in  

mortality  from  urologic  cancers  in  Europe,  1970-­‐‑2008"ʺ,  European  urology,  vol.  60,  no.  1,  pp.  1-­‐‑15.  

 Bostwick,  D.G.,  Alexander,  E.E.,  Singh,  R.,  Shan,  A.,  Qian,  J.,  Santella,  R.M.,  Oberley,  L.W.,  

Yan,  T.,  Zhong,  W.,  Jiang,  X.  &  Oberley,  T.D.  2000,  "ʺAntioxidant  enzyme  expression  and  reactive  oxygen  species  damage  in  prostatic  intraepithelial  neoplasia  and  cancer"ʺ,  Cancer,  vol.  89,  no.  1,  pp.  123-­‐‑134.  

Page 61: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

40  

 

8  References    

Acloque,  H.,  Adams,  M.S.,  Fishwick,  K.,  Bronner-­‐‑Fraser,  M.  &  Nieto,  M.A.  2009,  "ʺEpithelial-­‐‑mesenchymal  transitions:  the  importance  of  changing  cell  state  in  development  and  disease"ʺ,  The  Journal  of  clinical  investigation,  vol.  119,  no.  6,  pp.  1438-­‐‑1449.  

 Adamis,  S.  &  Varkarakis,  I.M.  2014,  "ʺDefining  prostate  cancer  risk  after  radical  

prostatectomy"ʺ,  European  journal  of  surgical  oncology  :  the  journal  of  the  European  Society  of  Surgical  Oncology  and  the  British  Association  of  Surgical  Oncology,  vol.  40,  no.  5,  pp.  496-­‐‑504.  

 Alexander,  N.R.,  Tran,  N.L.,  Rekapally,  H.,  Summers,  C.E.,  Glackin,  C.  &  Heimark,  R.L.  

2006,  "ʺN-­‐‑cadherin  gene  expression  in  prostate  carcinoma  is  modulated  by  integrin-­‐‑dependent  nuclear  translocation  of  Twist1"ʺ,  Cancer  research,  vol.  66,  no.  7,  pp.  3365-­‐‑3369.  

 Andriole,  G.L.,  Bostwick,  D.G.,  Brawley,  O.W.,  Gomella,  L.G.,  Marberger,  M.,  Montorsi,  F.,  

Pettaway,  C.A.,  Tammela,  T.L.,  Teloken,  C.,  Tindall,  D.J.,  Somerville,  M.C.,  Wilson,  T.H.,  Fowler,  I.L.,  Rittmaster,  R.S.  &  REDUCE  Study  Group  2010,  "ʺEffect  of  dutasteride  on  the  risk  of  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  362,  no.  13,  pp.  1192-­‐‑1202.  

 Armbruster,  D.A.  1993,  "ʺProstate-­‐‑specific  antigen:  biochemistry,  analytical  methods,  and  

clinical  application"ʺ,  Clinical  chemistry,  vol.  39,  no.  2,  pp.  181-­‐‑195.    Arnold,  M.,  Karim-­‐‑Kos,  H.E.,  Coebergh,  J.W.,  Byrnes,  G.,  Antilla,  A.,  Ferlay,  J.,  Renehan,  

A.G.,  Forman,  D.  &  Soerjomataram,  I.  2015,  "ʺRecent  trends  in  incidence  of  five  common  cancers  in  26  European  countries  since  1988:  Analysis  of  the  European  Cancer  Observatory"ʺ,  European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  51,  no.  9,  pp.  1164-­‐‑1187.  

 Ball,  M.W.,  Partin,  A.W.  &  Epstein,  J.I.  2015,  "ʺExtent  of  extraprostatic  extension  

independently  influences  biochemical  recurrence-­‐‑free  survival:  evidence  for  further  pT3  subclassification"ʺ,  Urology,  vol.  85,  no.  1,  pp.  161-­‐‑164.  

 Bastian,  P.J.,  Carter,  B.H.,  Bjartell,  A.,  Seitz,  M.,  Stanislaus,  P.,  Montorsi,  F.,  Stief,  C.G.  &  

Schroder,  F.  2009,  "ʺInsignificant  prostate  cancer  and  active  surveillance:  from  definition  to  clinical  implications"ʺ,  European  urology,  vol.  55,  no.  6,  pp.  1321-­‐‑1330.  

 Basu,  A.,  Banerjee,  H.,  Rojas,  H.,  Martinez,  S.R.,  Roy,  S.,  Jia,  Z.,  Lilly,  M.B.,  De  Leon,  M.  &  

Casiano,  C.A.  2011,  "ʺDifferential  expression  of  peroxiredoxins  in  prostate  cancer:  consistent  upregulation  of  PRDX3  and  PRDX4"ʺ,  The  Prostate,  vol.  71,  no.  7,  pp.  755-­‐‑765.  

 

41    

 

Behnsawy,  H.M.,  Miyake,  H.,  Harada,  K.  &  Fujisawa,  M.  2013,  "ʺExpression  patterns  of  epithelial-­‐‑mesenchymal  transition  markers  in  localized  prostate  cancer:  significance  in  clinicopathological  outcomes  following  radical  prostatectomy"ʺ,  BJU  international,  vol.  111,  no.  1,  pp.  30-­‐‑37.  

 Bell,  K.J.,  Del  Mar,  C.,  Wright,  G.,  Dickinson,  J.  &  Glasziou,  P.  2015,  "ʺPrevalence  of  

incidental  prostate  cancer:  A  systematic  review  of  autopsy  studies"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  137,  no.  7,  pp.  1749-­‐‑1757.  

 Bill-­‐‑Axelson,  A.,  Holmberg,  L.,  Garmo,  H.,  Rider,  J.R.,  Taari,  K.,  Busch,  C.,  Nordling,  S.,  

Haggman,  M.,  Andersson,  S.O.,  Spangberg,  A.,  Andren,  O.,  Palmgren,  J.,  Steineck,  G.,  Adami,  H.O.  &  Johansson,  J.E.  2014,  "ʺRadical  prostatectomy  or  watchful  waiting  in  early  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  370,  no.  10,  pp.  932-­‐‑942.  

 Bolla,  M.,  Van  Tienhoven,  G.,  Warde,  P.,  Dubois,  J.B.,  Mirimanoff,  R.O.,  Storme,  G.,  Bernier,  

J.,  Kuten,  A.,  Sternberg,  C.,  Billiet,  I.,  Torecilla,  J.L.,  Pfeffer,  R.,  Cutajar,  C.L.,  Van  der  Kwast,  T.  &  Collette,  L.  2010,  "ʺExternal  irradiation  with  or  without  long-­‐‑term  androgen  suppression  for  prostate  cancer  with  high  metastatic  risk:  10-­‐‑year  results  of  an  EORTC  randomised  study"ʺ,  The  Lancet.Oncology,  vol.  11,  no.  11,  pp.  1066-­‐‑1073.  

 Boorjian,  S.A.,  Eastham,  J.A.,  Graefen,  M.,  Guillonneau,  B.,  Karnes,  R.J.,  Moul,  J.W.,  

Schaeffer,  E.M.,  Stief,  C.  &  Zorn,  K.C.  2012,  "ʺA  critical  analysis  of  the  long-­‐‑term  impact  of  radical  prostatectomy  on  cancer  control  and  function  outcomes"ʺ,  European  urology,  vol.  61,  no.  4,  pp.  664-­‐‑675.  

 Boorjian,  S.A.,  Thompson,  R.H.,  Tollefson,  M.K.,  Rangel,  L.J.,  Bergstralh,  E.J.,  Blute,  M.L.  &  

Karnes,  R.J.  2011,  "ʺLong-­‐‑term  risk  of  clinical  progression  after  biochemical  recurrence  following  radical  prostatectomy:  the  impact  of  time  from  surgery  to  recurrence"ʺ,  European  urology,  vol.  59,  no.  6,  pp.  893-­‐‑899.  

 Borre,  M.,  Nerstrom,  B.  &  Overgaard,  J.  2000,  "ʺAssociation  between  immunohistochemical  

expression  of  vascular  endothelial  growth  factor  (VEGF),  VEGF-­‐‑expressing  neuroendocrine-­‐‑differentiated  tumor  cells,  and  outcome  in  prostate  cancer  patients  subjected  to  watchful  waiting"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  6,  no.  5,  pp.  1882-­‐‑1890.  

 Bosetti,  C.,  Bertuccio,  P.,  Chatenoud,  L.,  Negri,  E.,  La  Vecchia,  C.  &  Levi,  F.  2011,  "ʺTrends  in  

mortality  from  urologic  cancers  in  Europe,  1970-­‐‑2008"ʺ,  European  urology,  vol.  60,  no.  1,  pp.  1-­‐‑15.  

 Bostwick,  D.G.,  Alexander,  E.E.,  Singh,  R.,  Shan,  A.,  Qian,  J.,  Santella,  R.M.,  Oberley,  L.W.,  

Yan,  T.,  Zhong,  W.,  Jiang,  X.  &  Oberley,  T.D.  2000,  "ʺAntioxidant  enzyme  expression  and  reactive  oxygen  species  damage  in  prostatic  intraepithelial  neoplasia  and  cancer"ʺ,  Cancer,  vol.  89,  no.  1,  pp.  123-­‐‑134.  

Page 62: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

42  

 

Boyle,  P.  &  Ferlay,  J.  2005,  "ʺCancer  incidence  and  mortality  in  Europe,  2004"ʺ,  Annals  of  Oncology  :  Official  Journal  of  the  European  Society  for  Medical  Oncology  /  ESMO,  vol.  16,  no.  3,  pp.  481-­‐‑488.  

 Brewster,  S.F.,  Oxley,  J.D.,  Trivella,  M.,  Abbott,  C.D.  &  Gillatt,  D.A.  1999,  "ʺPreoperative  p53,  

bcl-­‐‑2,  CD44  and  E-­‐‑cadherin  immunohistochemistry  as  predictors  of  biochemical  relapse  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  161,  no.  4,  pp.  1238-­‐‑1243.  

 Brimo,  F.,  Montironi,  R.,  Egevad,  L.,  Erbersdobler,  A.,  Lin,  D.  W.,  Nelson,  J.B.,    Rubin,  M.A.,  

van  der  Kwast,  T.,  Amin,  M.  &  Epstein,  J.I.  2013,  “Contemporary  grading  for  prostate  cancer:  implications  for  patient  care”,  European  urology,  vol.  63,  no.  5,  pp.  892-­‐‑901.  

 Bubendorf,  L.,  Sauter,  G.,  Moch,  H.,  Schmid,  H.P.,  Gasser,  T.C.,  Jordan,  P.  &  Mihatsch,  M.J.  

1996,  "ʺKi67  labelling  index:  an  independent  predictor  of  progression  in  prostate  cancer  treated  by  radical  prostatectomy"ʺ,  The  Journal  of  pathology,  vol.  178,  no.  4,  pp.  437-­‐‑441.  

 Capitanio,  U.,  Briganti,  A.,  Gallina,  A.,  Suardi,  N.,  Karakiewicz,  P.I.,  Montorsi,  F.  &  Scattoni,  

V.  2010,  "ʺPredictive  models  before  and  after  radical  prostatectomy"ʺ,  The  Prostate,  vol.  70,  no.  12,  pp.  1371-­‐‑1378.  

 Carvalhal,  G.F.,  Smith,  D.S.,  Mager,  D.E.,  Ramos,  C.  &  Catalona,  W.J.  1999,  "ʺDigital  rectal  

examination  for  detecting  prostate  cancer  at  prostate  specific  antigen  levels  of  4  ng./ml.  or  less"ʺ,  The  Journal  of  urology,  vol.  161,  no.  3,  pp.  835-­‐‑839.  

 Carver,  B.S.,  Bianco,  F.J.,Jr,  Scardino,  P.T.  &  Eastham,  J.A.  2006,  "ʺLong-­‐‑term  outcome  

following  radical  prostatectomy  in  men  with  clinical  stage  T3  prostate  cancer"ʺ,  The  Journal  of  urology,  vol.  176,  no.  2,  pp.  564-­‐‑568.  

 Castanon,  I.  &  Baylies,  M.K.  2002,  "ʺA  Twist  in  fate:  evolutionary  comparison  of  Twist  

structure  and  function"ʺ,  Gene,  vol.  287,  no.  1-­‐‑2,  pp.  11-­‐‑22.    Center,  M.M.,  Jemal,  A.,  Lortet-­‐‑Tieulent,  J.,  Ward,  E.,  Ferlay,  J.,  Brawley,  O.  &  Bray,  F.  2012,  

"ʺInternational  variation  in  prostate  cancer  incidence  and  mortality  rates"ʺ,  European  urology,  vol.  61,  no.  6,  pp.  1079-­‐‑1092.  

 Chaiswing,  L.,  Zhong,  W.  &  Oberley,  T.D.  2014,  "ʺIncreasing  discordant  antioxidant  protein  

levels  and  enzymatic  activities  contribute  to  increasing  redox  imbalance  observed  during  human  prostate  cancer  progression"ʺ,  Free  radical  biology  &  medicine,  vol.  67,  pp.  342-­‐‑352.  

 Cheng,  G.Z.  &  Chan,  J.  2007,  "ʺTwist  transcriptionally  up-­‐‑regulates  AKT2  in  breast  cancer  

cells  leading  to  increased  migration,  invasion,  and  resistance  to  paclitaxel"ʺ,  vol.  67,  no.  5,  pp.  1979-­‐‑1987.  

 Chun,  F.K.,  Graefen,  M.,  Zacharias,  M.,  Haese,  A.,  Steuber,  T.,  Schlomm,  T.,  Walz,  J.,  

Karakiewicz,  P.I.  &  Huland,  H.  2006,  "ʺAnatomic  radical  retropubic  prostatectomy-­‐‑long-­‐‑

43    

 

term  recurrence-­‐‑free  survival  rates  for  localized  prostate  cancer"ʺ,  World  journal  of  urology,  vol.  24,  no.  3,  pp.  273-­‐‑280.  

 Cooperberg,  M.R.,  Pasta,  D.J.,  Elkin,  E.P.,  Litwin,  M.S.,  Latini,  D.M.,  Du  Chane,  J.  &  Carroll,  

P.R.  2005,  "ʺThe  University  of  California,  San  Francisco  Cancer  of  the  Prostate  Risk  Assessment  score:  a  straightforward  and  reliable  preoperative  predictor  of  disease  recurrence  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  173,  no.  6,  pp.  1938-­‐‑1942.  

 D'ʹAmico,  A.V.,  Whittington,  R.,  Malkowicz,  S.B.,  Schultz,  D.,  Blank,  K.,  Broderick,  G.A.,  

Tomaszewski,  J.E.,  Renshaw,  A.A.,  Kaplan,  I.,  Beard,  C.J.  &  Wein,  A.  1998,  "ʺBiochemical  outcome  after  radical  prostatectomy,  external  beam  radiation  therapy,  or  interstitial  radiation  therapy  for  clinically  localized  prostate  cancer"ʺ,  Jama,  vol.  280,  no.  11,  pp.  969-­‐‑974.  

 D'ʹAmico,  A.V.,  Whittington,  R.,  Malkowicz,  S.B.,  Schultz,  D.,  Tomaszewski,  J.E.  &  Wein,  A.  

2000,  "ʺProstate  specific  antigen  outcome  based  on  the  extent  of  extracapsular  extension  and  margin  status  in  patients  with  seminal  vesicle  negative  prostate  carcinoma  of  Gleason  score  <  or  =  7"ʺ,  Cancer,  vol.  88,  no.  9,  pp.  2110-­‐‑2115.  

 De  Angelis,  R.,  Sant,  M.,  Coleman,  M.P.,  Francisci,  S.,  Baili,  P.,  Pierannunzio,  D.,  Trama,  A.,  

Visser,  O.,  Brenner,  H.,  Ardanaz,  E.,  Bielska-­‐‑Lasota,  M.,  Engholm,  G.,  Nennecke,  A.,  Siesling,  S.,  Berrino,  F.,  Capocaccia,  R.  &  EUROCARE-­‐‑5  Working  Group  2014,  "ʺCancer  survival  in  Europe  1999-­‐‑2007  by  country  and  age:  results  of  EUROCARE-­‐‑-­‐‑5-­‐‑a  population-­‐‑based  study"ʺ,  The  Lancet.Oncology,  vol.  15,  no.  1,  pp.  23-­‐‑34.  

 de  la  Taille,  A.,  Katz,  A.E.,  Bagiella,  E.,  Buttyan,  R.,  Sharir,  S.,  Olsson,  C.A.,  Burchardt,  T.,  

Ennis,  R.D.  &  Rubin,  M.A.  2000,  "ʺMicrovessel  density  as  a  predictor  of  PSA  recurrence  after  radical  prostatectomy.  A  comparison  of  CD34  and  CD31"ʺ,  American  Journal  of  Clinical  Pathology,  vol.  113,  no.  4,  pp.  555-­‐‑562.  

 Dreher,  D.  &  Junod,  A.F.  1996,  "ʺRole  of  oxygen  free  radicals  in  cancer  development"ʺ,  

European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  32A,  no.  1,  pp.  30-­‐‑38.    Epstein,  J.I.,  Allsbrook,  W.C.,Jr,  Amin,  M.B.,  Egevad,  L.L.  &  ISUP  Grading  Committee  2005,  

"ʺThe  2005  International  Society  of  Urological  Pathology  (ISUP)  Consensus  Conference  on  Gleason  Grading  of  Prostatic  Carcinoma"ʺ,  The  American  Journal  of  Surgical  Pathology,  vol.  29,  no.  9,  pp.  1228-­‐‑1242.  

 Esrig,  D.,  Freeman,  J.A.,  Elmajian,  D.A.,  Stein,  J.P.,  Chen,  S.C.,  Groshen,  S.,  Simoneau,  A.,  

Skinner,  E.C.,  Lieskovsky,  G.,  Boyd,  S.D.,  Cote,  R.J.  &  Skinner,  D.G.  1996,  "ʺTransitional  cell  carcinoma  involving  the  prostate  with  a  proposed  staging  classification  for  stromal  invasion"ʺ,  The  Journal  of  urology,  vol.  156,  no.  3,  pp.  1071-­‐‑1076.  

 Evans,  A.J.,  Henry,  P.C.,  Van  der  Kwast,  T.H.,  Tkachuk,  D.C.,  Watson,  K.,  Lockwood,  G.A.,  

Fleshner,  N.E.,  Cheung,  C.,  Belanger,  E.C.,  Amin,  M.B.,  Boccon-­‐‑Gibod,  L.,  Bostwick,  

Page 63: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

42  

 

Boyle,  P.  &  Ferlay,  J.  2005,  "ʺCancer  incidence  and  mortality  in  Europe,  2004"ʺ,  Annals  of  Oncology  :  Official  Journal  of  the  European  Society  for  Medical  Oncology  /  ESMO,  vol.  16,  no.  3,  pp.  481-­‐‑488.  

 Brewster,  S.F.,  Oxley,  J.D.,  Trivella,  M.,  Abbott,  C.D.  &  Gillatt,  D.A.  1999,  "ʺPreoperative  p53,  

bcl-­‐‑2,  CD44  and  E-­‐‑cadherin  immunohistochemistry  as  predictors  of  biochemical  relapse  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  161,  no.  4,  pp.  1238-­‐‑1243.  

 Brimo,  F.,  Montironi,  R.,  Egevad,  L.,  Erbersdobler,  A.,  Lin,  D.  W.,  Nelson,  J.B.,    Rubin,  M.A.,  

van  der  Kwast,  T.,  Amin,  M.  &  Epstein,  J.I.  2013,  “Contemporary  grading  for  prostate  cancer:  implications  for  patient  care”,  European  urology,  vol.  63,  no.  5,  pp.  892-­‐‑901.  

 Bubendorf,  L.,  Sauter,  G.,  Moch,  H.,  Schmid,  H.P.,  Gasser,  T.C.,  Jordan,  P.  &  Mihatsch,  M.J.  

1996,  "ʺKi67  labelling  index:  an  independent  predictor  of  progression  in  prostate  cancer  treated  by  radical  prostatectomy"ʺ,  The  Journal  of  pathology,  vol.  178,  no.  4,  pp.  437-­‐‑441.  

 Capitanio,  U.,  Briganti,  A.,  Gallina,  A.,  Suardi,  N.,  Karakiewicz,  P.I.,  Montorsi,  F.  &  Scattoni,  

V.  2010,  "ʺPredictive  models  before  and  after  radical  prostatectomy"ʺ,  The  Prostate,  vol.  70,  no.  12,  pp.  1371-­‐‑1378.  

 Carvalhal,  G.F.,  Smith,  D.S.,  Mager,  D.E.,  Ramos,  C.  &  Catalona,  W.J.  1999,  "ʺDigital  rectal  

examination  for  detecting  prostate  cancer  at  prostate  specific  antigen  levels  of  4  ng./ml.  or  less"ʺ,  The  Journal  of  urology,  vol.  161,  no.  3,  pp.  835-­‐‑839.  

 Carver,  B.S.,  Bianco,  F.J.,Jr,  Scardino,  P.T.  &  Eastham,  J.A.  2006,  "ʺLong-­‐‑term  outcome  

following  radical  prostatectomy  in  men  with  clinical  stage  T3  prostate  cancer"ʺ,  The  Journal  of  urology,  vol.  176,  no.  2,  pp.  564-­‐‑568.  

 Castanon,  I.  &  Baylies,  M.K.  2002,  "ʺA  Twist  in  fate:  evolutionary  comparison  of  Twist  

structure  and  function"ʺ,  Gene,  vol.  287,  no.  1-­‐‑2,  pp.  11-­‐‑22.    Center,  M.M.,  Jemal,  A.,  Lortet-­‐‑Tieulent,  J.,  Ward,  E.,  Ferlay,  J.,  Brawley,  O.  &  Bray,  F.  2012,  

"ʺInternational  variation  in  prostate  cancer  incidence  and  mortality  rates"ʺ,  European  urology,  vol.  61,  no.  6,  pp.  1079-­‐‑1092.  

 Chaiswing,  L.,  Zhong,  W.  &  Oberley,  T.D.  2014,  "ʺIncreasing  discordant  antioxidant  protein  

levels  and  enzymatic  activities  contribute  to  increasing  redox  imbalance  observed  during  human  prostate  cancer  progression"ʺ,  Free  radical  biology  &  medicine,  vol.  67,  pp.  342-­‐‑352.  

 Cheng,  G.Z.  &  Chan,  J.  2007,  "ʺTwist  transcriptionally  up-­‐‑regulates  AKT2  in  breast  cancer  

cells  leading  to  increased  migration,  invasion,  and  resistance  to  paclitaxel"ʺ,  vol.  67,  no.  5,  pp.  1979-­‐‑1987.  

 Chun,  F.K.,  Graefen,  M.,  Zacharias,  M.,  Haese,  A.,  Steuber,  T.,  Schlomm,  T.,  Walz,  J.,  

Karakiewicz,  P.I.  &  Huland,  H.  2006,  "ʺAnatomic  radical  retropubic  prostatectomy-­‐‑long-­‐‑

43    

 

term  recurrence-­‐‑free  survival  rates  for  localized  prostate  cancer"ʺ,  World  journal  of  urology,  vol.  24,  no.  3,  pp.  273-­‐‑280.  

 Cooperberg,  M.R.,  Pasta,  D.J.,  Elkin,  E.P.,  Litwin,  M.S.,  Latini,  D.M.,  Du  Chane,  J.  &  Carroll,  

P.R.  2005,  "ʺThe  University  of  California,  San  Francisco  Cancer  of  the  Prostate  Risk  Assessment  score:  a  straightforward  and  reliable  preoperative  predictor  of  disease  recurrence  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  173,  no.  6,  pp.  1938-­‐‑1942.  

 D'ʹAmico,  A.V.,  Whittington,  R.,  Malkowicz,  S.B.,  Schultz,  D.,  Blank,  K.,  Broderick,  G.A.,  

Tomaszewski,  J.E.,  Renshaw,  A.A.,  Kaplan,  I.,  Beard,  C.J.  &  Wein,  A.  1998,  "ʺBiochemical  outcome  after  radical  prostatectomy,  external  beam  radiation  therapy,  or  interstitial  radiation  therapy  for  clinically  localized  prostate  cancer"ʺ,  Jama,  vol.  280,  no.  11,  pp.  969-­‐‑974.  

 D'ʹAmico,  A.V.,  Whittington,  R.,  Malkowicz,  S.B.,  Schultz,  D.,  Tomaszewski,  J.E.  &  Wein,  A.  

2000,  "ʺProstate  specific  antigen  outcome  based  on  the  extent  of  extracapsular  extension  and  margin  status  in  patients  with  seminal  vesicle  negative  prostate  carcinoma  of  Gleason  score  <  or  =  7"ʺ,  Cancer,  vol.  88,  no.  9,  pp.  2110-­‐‑2115.  

 De  Angelis,  R.,  Sant,  M.,  Coleman,  M.P.,  Francisci,  S.,  Baili,  P.,  Pierannunzio,  D.,  Trama,  A.,  

Visser,  O.,  Brenner,  H.,  Ardanaz,  E.,  Bielska-­‐‑Lasota,  M.,  Engholm,  G.,  Nennecke,  A.,  Siesling,  S.,  Berrino,  F.,  Capocaccia,  R.  &  EUROCARE-­‐‑5  Working  Group  2014,  "ʺCancer  survival  in  Europe  1999-­‐‑2007  by  country  and  age:  results  of  EUROCARE-­‐‑-­‐‑5-­‐‑a  population-­‐‑based  study"ʺ,  The  Lancet.Oncology,  vol.  15,  no.  1,  pp.  23-­‐‑34.  

 de  la  Taille,  A.,  Katz,  A.E.,  Bagiella,  E.,  Buttyan,  R.,  Sharir,  S.,  Olsson,  C.A.,  Burchardt,  T.,  

Ennis,  R.D.  &  Rubin,  M.A.  2000,  "ʺMicrovessel  density  as  a  predictor  of  PSA  recurrence  after  radical  prostatectomy.  A  comparison  of  CD34  and  CD31"ʺ,  American  Journal  of  Clinical  Pathology,  vol.  113,  no.  4,  pp.  555-­‐‑562.  

 Dreher,  D.  &  Junod,  A.F.  1996,  "ʺRole  of  oxygen  free  radicals  in  cancer  development"ʺ,  

European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  32A,  no.  1,  pp.  30-­‐‑38.    Epstein,  J.I.,  Allsbrook,  W.C.,Jr,  Amin,  M.B.,  Egevad,  L.L.  &  ISUP  Grading  Committee  2005,  

"ʺThe  2005  International  Society  of  Urological  Pathology  (ISUP)  Consensus  Conference  on  Gleason  Grading  of  Prostatic  Carcinoma"ʺ,  The  American  Journal  of  Surgical  Pathology,  vol.  29,  no.  9,  pp.  1228-­‐‑1242.  

 Esrig,  D.,  Freeman,  J.A.,  Elmajian,  D.A.,  Stein,  J.P.,  Chen,  S.C.,  Groshen,  S.,  Simoneau,  A.,  

Skinner,  E.C.,  Lieskovsky,  G.,  Boyd,  S.D.,  Cote,  R.J.  &  Skinner,  D.G.  1996,  "ʺTransitional  cell  carcinoma  involving  the  prostate  with  a  proposed  staging  classification  for  stromal  invasion"ʺ,  The  Journal  of  urology,  vol.  156,  no.  3,  pp.  1071-­‐‑1076.  

 Evans,  A.J.,  Henry,  P.C.,  Van  der  Kwast,  T.H.,  Tkachuk,  D.C.,  Watson,  K.,  Lockwood,  G.A.,  

Fleshner,  N.E.,  Cheung,  C.,  Belanger,  E.C.,  Amin,  M.B.,  Boccon-­‐‑Gibod,  L.,  Bostwick,  

Page 64: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

44

D.G.,  Egevad,  L.,  Epstein,  J.I.,  Grignon,  D.J.,  Jones,  E.C.,  Montironi,  R.,  Moussa,  M.,Sweet,  J.M.,  Trpkov,  K.,  Wheeler,  T.M.  &  Srigley,  J.R.  2008,  "ʺInterobserver  variabilitybetween  expert  urologic  pathologists  for  extraprostatic  extension  and  surgical  marginstatus  in  radical  prostatectomy  specimens"ʺ,  The  American  Journal  of  Surgical  Pathology,vol.  32,  no.  10,  pp.  1503-­‐‑1512.

Evans,  M.D.,  Dizdaroglu,  M.  &  Cooke,  M.S.  2004,  "ʺOxidative  DNA  damage  and  disease:  induction,  repair  and  significance"ʺ,  Mutation  research,  vol.  567,  no.  1,  pp.  1-­‐‑61.  

Fan,  C.C.,  Wang,  T.Y.,  Cheng,  Y.A.,  Jiang,  S.S.,  Cheng,  C.W.,  Lee,  A.Y.  &  Kao,  T.Y.  2013,  "ʺExpression  of  E-­‐‑cadherin,  Twist,  and  p53  and  their  prognostic  value  in  patients  with  oral  squamous  cell  carcinoma"ʺ,  Journal  of  cancer  research  and  clinical  oncology,  vol.  139,  no.  10,  pp.  1735-­‐‑1744.  

Ficarra,  V.,  Novara,  G.,  Ahlering,  T.E.,  Costello,  A.,  Eastham,  J.A.,  Graefen,  M.,  Guazzoni,  G.,  Menon,  M.,  Mottrie,  A.,  Patel,  V.R.,  Van  der  Poel,  H.,  Rosen,  R.C.,  Tewari,  A.K.,  Wilson,  T.G.,  Zattoni,  F.  &  Montorsi,  F.  2012,  "ʺSystematic  review  and  meta-­‐‑analysis  of  studies  reporting  potency  rates  after  robot-­‐‑assisted  radical  prostatectomy"ʺ,  European  urology,  vol.  62,  no.  3,  pp.  418-­‐‑430.  

Fine,  S.W.  2012,  "ʺVariants  and  unusual  patterns  of  prostate  cancer:  clinicopathologic  and  differential  diagnostic  considerations"ʺ,  Advances  in  Anatomic  Pathology,  vol.  19,  no.  4,  pp.  204-­‐‑216.  

Finnish  Cancer  Registry  2015.  Available:  http://www.cancer.fi/syoparekisteri/en/statistics/  

Fleshner,  N.E.  &  Lawrentschuk,  N.  2009,  "ʺRisk  of  developing  prostate  cancer  in  the  future:  overview  of  prognostic  biomarkers"ʺ,  Urology,  vol.  73,  no.  5  Suppl,  pp.  S21-­‐‑7.  

Fossa,  A.,  Lilleby,  W.,  Fossa,  S.D.,  Gaudernack,  G.,  Torlakovic,  G.  &  Berner,  A.  2002,  "ʺIndependent  prognostic  significance  of  HER-­‐‑2  oncoprotein  expression  in  pN0  prostate  cancer  undergoing  curative  radiotherapy"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  99,  no.  1,  pp.  100-­‐‑105.  

Freedland,  S.J.,  deGregorio,  F.,  Sacoolidge,  J.C.,  Elshimali,  Y.I.,  Csathy,  G.S.,  Dorey,  F.,  Reiter,  R.E.  &  Aronson,  W.J.  2003,  "ʺPreoperative  p27  status  is  an  independent  predictor  of  prostate  specific  antigen  failure  following  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  169,  no.  4,  pp.  1325-­‐‑1330.  

Frohlich,  D.A.,  McCabe,  M.T.,  Arnold,  R.S.  &  Day,  M.L.  2008,  "ʺThe  role  of  Nrf2  in  increased  reactive  oxygen  species  and  DNA  damage  in  prostate  tumorigenesis"ʺ,  Oncogene,  vol.  27,  no.  31,  pp.  4353-­‐‑4362.  

Gajula,  R.P.,  Chettiar,  S.T.,  Williams,  R.D.,  Thiyagarajan,  S.,  Kato,  Y.,  Aziz,  K.,  Wang,  R.,  Gandhi,  N.,  Wild,  A.T.,  Vesuna,  F.,  Ma,  J.,  Salih,  T.,  Cades,  J.,  Fertig,  E.,  Biswal,  S.,  Burns,  T.F.,  Chung,  C.H.,  Rudin,  C.M.,  Herman,  J.M.,  Hales,  R.K.,  Raman,  V.,  An,  S.S.  &  

45    

 

Tran,  P.T.  2013,  "ʺThe  twist  box  domain  is  required  for  Twist1-­‐‑induced  prostate  cancer  metastasis"ʺ,  Molecular  cancer  research  :  MCR,  vol.  11,  no.  11,  pp.  1387-­‐‑1400.  

 Gandaglia,  G.,  Sammon,  J.D.,  Chang,  S.L.,  Choueiri,  T.K.,  Hu,  J.C.,  Karakiewicz,  P.I.,  Kibel,  

A.S.,  Kim,  S.P.,  Konijeti,  R.,  Montorsi,  F.,  Nguyen,  P.L.,  Sukumar,  S.,  Menon,  M.,  Sun,  M.  &  Trinh,  Q.D.  2014,  "ʺComparative  effectiveness  of  robot-­‐‑assisted  and  open  radical  prostatectomy  in  the  postdissemination  era"ʺ,  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  32,  no.  14,  pp.  1419-­‐‑1426.  

 Gosselaar,  C.,  Roobol,  M.J.,  Roemeling,  S.  &  Schroder,  F.H.  2008,  "ʺThe  role  of  the  digital  

rectal  examination  in  subsequent  screening  visits  in  the  European  randomized  study  of  screening  for  prostate  cancer  (ERSPC),  Rotterdam"ʺ,  European  urology,  vol.  54,  no.  3,  pp.  581-­‐‑588.  

 Haglind,  E.,  Carlsson,  S.,  Stranne,  J.,  Wallerstedt,  A.,  Wilderang,  U.,  Thorsteinsdottir,  T.,  

Lagerkvist,  M.,  Damber,  J.E.,  Bjartell,  A.,  Hugosson,  J.,  Wiklund,  P.,  Steineck,  G.  &  LAPPRO  steering  committee  2015,  "ʺUrinary  Incontinence  and  Erectile  Dysfunction  After  Robotic  Versus  Open  Radical  Prostatectomy:  A  Prospective,  Controlled,  Nonrandomised  Trial"ʺ,  European  urology,  vol.  68,  no.  2,  pp.  216-­‐‑225.  

 Hagood,  P.G.,  Parra,  R.O.  &  Rauscher,  J.A.  1994,  "ʺNontraumatic  elevation  of  prostate  

specific  antigen  following  cardiac  surgery  and  extracorporeal  cardiopulmonary  bypass"ʺ,  The  Journal  of  urology,  vol.  152,  no.  6  Pt  1,  pp.  2043-­‐‑2045.  

 Halvorsen,  O.J.,  Haukaas,  S.,  Hoisaeter,  P.A.  &  Akslen,  L.A.  2001,  "ʺMaximum  Ki-­‐‑67  staining  

in  prostate  cancer  provides  independent  prognostic  information  after  radical  prostatectomy"ʺ,  Anticancer  Research,  vol.  21,  no.  6A,  pp.  4071-­‐‑4076.  

 Halvorsen,  O.J.,  Hostmark,  J.,  Haukaas,  S.,  Hoisaeter,  P.A.  &  Akslen,  L.A.  2000,  "ʺPrognostic  

significance  of  p16  and  CDK4  proteins  in  localized  prostate  carcinoma"ʺ,  Cancer,  vol.  88,  no.  2,  pp.  416-­‐‑424.  

 Hara,  R.,  Jo,  Y.,  Fujii,  T.,  Kondo,  N.,  Yokoyoma,  T.,  Miyaji,  Y.  &  Nagai,  A.  2008,  "ʺOptimal  

approach  for  prostate  cancer  detection  as  initial  biopsy:  prospective  randomized  study  comparing  transperineal  versus  transrectal  systematic  12-­‐‑core  biopsy"ʺ,  Urology,  vol.  71,  no.  2,  pp.  191-­‐‑195.  

 Hartikainen,  J.M.,  Tengström,  M.,  Kosma,  V.M.,  Kinnula,  V.L.,  Mannermaa,  A.  &  Soini,  Y.  

2012,  "ʺGenetic  polymorphisms  and  protein  expression  of  NRF2  and  Sulfiredoxin  predict  survival  outcomes  in  breast  cancer"ʺ,  Cancer  research,  vol.  72,  no.  21,  pp.  5537-­‐‑5546.  

 He,  H.C.,  Zhu,  J.G.,  Chen,  X.B.,  Chen,  S.M.,  Han,  Z.D.,  Dai,  Q.S.,  Ling,  X.H.,  Fu,  X.,  Lin,  

Z.Y.,  Deng,  Y.H.,  Qin,  G.Q.,  Cai,  C.,  Chen,  J.H.  &  Zhong,  W.D.  2012,  "ʺMicroRNA-­‐‑23b  downregulates  peroxiredoxin  III  in  human  prostate  cancer"ʺ,  FEBS  letters,  vol.  586,  no.  16,  pp.  2451-­‐‑2458.  

Page 65: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

44

D.G.,  Egevad,  L.,  Epstein,  J.I.,  Grignon,  D.J.,  Jones,  E.C.,  Montironi,  R.,  Moussa,  M.,Sweet,  J.M.,  Trpkov,  K.,  Wheeler,  T.M.  &  Srigley,  J.R.  2008,  "ʺInterobserver  variabilitybetween  expert  urologic  pathologists  for  extraprostatic  extension  and  surgical  marginstatus  in  radical  prostatectomy  specimens"ʺ,  The  American  Journal  of  Surgical  Pathology,vol.  32,  no.  10,  pp.  1503-­‐‑1512.

Evans,  M.D.,  Dizdaroglu,  M.  &  Cooke,  M.S.  2004,  "ʺOxidative  DNA  damage  and  disease:  induction,  repair  and  significance"ʺ,  Mutation  research,  vol.  567,  no.  1,  pp.  1-­‐‑61.  

Fan,  C.C.,  Wang,  T.Y.,  Cheng,  Y.A.,  Jiang,  S.S.,  Cheng,  C.W.,  Lee,  A.Y.  &  Kao,  T.Y.  2013,  "ʺExpression  of  E-­‐‑cadherin,  Twist,  and  p53  and  their  prognostic  value  in  patients  with  oral  squamous  cell  carcinoma"ʺ,  Journal  of  cancer  research  and  clinical  oncology,  vol.  139,  no.  10,  pp.  1735-­‐‑1744.  

Ficarra,  V.,  Novara,  G.,  Ahlering,  T.E.,  Costello,  A.,  Eastham,  J.A.,  Graefen,  M.,  Guazzoni,  G.,  Menon,  M.,  Mottrie,  A.,  Patel,  V.R.,  Van  der  Poel,  H.,  Rosen,  R.C.,  Tewari,  A.K.,  Wilson,  T.G.,  Zattoni,  F.  &  Montorsi,  F.  2012,  "ʺSystematic  review  and  meta-­‐‑analysis  of  studies  reporting  potency  rates  after  robot-­‐‑assisted  radical  prostatectomy"ʺ,  European  urology,  vol.  62,  no.  3,  pp.  418-­‐‑430.  

Fine,  S.W.  2012,  "ʺVariants  and  unusual  patterns  of  prostate  cancer:  clinicopathologic  and  differential  diagnostic  considerations"ʺ,  Advances  in  Anatomic  Pathology,  vol.  19,  no.  4,  pp.  204-­‐‑216.  

Finnish  Cancer  Registry  2015.  Available:  http://www.cancer.fi/syoparekisteri/en/statistics/  

Fleshner,  N.E.  &  Lawrentschuk,  N.  2009,  "ʺRisk  of  developing  prostate  cancer  in  the  future:  overview  of  prognostic  biomarkers"ʺ,  Urology,  vol.  73,  no.  5  Suppl,  pp.  S21-­‐‑7.  

Fossa,  A.,  Lilleby,  W.,  Fossa,  S.D.,  Gaudernack,  G.,  Torlakovic,  G.  &  Berner,  A.  2002,  "ʺIndependent  prognostic  significance  of  HER-­‐‑2  oncoprotein  expression  in  pN0  prostate  cancer  undergoing  curative  radiotherapy"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  99,  no.  1,  pp.  100-­‐‑105.  

Freedland,  S.J.,  deGregorio,  F.,  Sacoolidge,  J.C.,  Elshimali,  Y.I.,  Csathy,  G.S.,  Dorey,  F.,  Reiter,  R.E.  &  Aronson,  W.J.  2003,  "ʺPreoperative  p27  status  is  an  independent  predictor  of  prostate  specific  antigen  failure  following  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  169,  no.  4,  pp.  1325-­‐‑1330.  

Frohlich,  D.A.,  McCabe,  M.T.,  Arnold,  R.S.  &  Day,  M.L.  2008,  "ʺThe  role  of  Nrf2  in  increased  reactive  oxygen  species  and  DNA  damage  in  prostate  tumorigenesis"ʺ,  Oncogene,  vol.  27,  no.  31,  pp.  4353-­‐‑4362.  

Gajula,  R.P.,  Chettiar,  S.T.,  Williams,  R.D.,  Thiyagarajan,  S.,  Kato,  Y.,  Aziz,  K.,  Wang,  R.,  Gandhi,  N.,  Wild,  A.T.,  Vesuna,  F.,  Ma,  J.,  Salih,  T.,  Cades,  J.,  Fertig,  E.,  Biswal,  S.,  Burns,  T.F.,  Chung,  C.H.,  Rudin,  C.M.,  Herman,  J.M.,  Hales,  R.K.,  Raman,  V.,  An,  S.S.  &  

45    

 

Tran,  P.T.  2013,  "ʺThe  twist  box  domain  is  required  for  Twist1-­‐‑induced  prostate  cancer  metastasis"ʺ,  Molecular  cancer  research  :  MCR,  vol.  11,  no.  11,  pp.  1387-­‐‑1400.  

 Gandaglia,  G.,  Sammon,  J.D.,  Chang,  S.L.,  Choueiri,  T.K.,  Hu,  J.C.,  Karakiewicz,  P.I.,  Kibel,  

A.S.,  Kim,  S.P.,  Konijeti,  R.,  Montorsi,  F.,  Nguyen,  P.L.,  Sukumar,  S.,  Menon,  M.,  Sun,  M.  &  Trinh,  Q.D.  2014,  "ʺComparative  effectiveness  of  robot-­‐‑assisted  and  open  radical  prostatectomy  in  the  postdissemination  era"ʺ,  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  32,  no.  14,  pp.  1419-­‐‑1426.  

 Gosselaar,  C.,  Roobol,  M.J.,  Roemeling,  S.  &  Schroder,  F.H.  2008,  "ʺThe  role  of  the  digital  

rectal  examination  in  subsequent  screening  visits  in  the  European  randomized  study  of  screening  for  prostate  cancer  (ERSPC),  Rotterdam"ʺ,  European  urology,  vol.  54,  no.  3,  pp.  581-­‐‑588.  

 Haglind,  E.,  Carlsson,  S.,  Stranne,  J.,  Wallerstedt,  A.,  Wilderang,  U.,  Thorsteinsdottir,  T.,  

Lagerkvist,  M.,  Damber,  J.E.,  Bjartell,  A.,  Hugosson,  J.,  Wiklund,  P.,  Steineck,  G.  &  LAPPRO  steering  committee  2015,  "ʺUrinary  Incontinence  and  Erectile  Dysfunction  After  Robotic  Versus  Open  Radical  Prostatectomy:  A  Prospective,  Controlled,  Nonrandomised  Trial"ʺ,  European  urology,  vol.  68,  no.  2,  pp.  216-­‐‑225.  

 Hagood,  P.G.,  Parra,  R.O.  &  Rauscher,  J.A.  1994,  "ʺNontraumatic  elevation  of  prostate  

specific  antigen  following  cardiac  surgery  and  extracorporeal  cardiopulmonary  bypass"ʺ,  The  Journal  of  urology,  vol.  152,  no.  6  Pt  1,  pp.  2043-­‐‑2045.  

 Halvorsen,  O.J.,  Haukaas,  S.,  Hoisaeter,  P.A.  &  Akslen,  L.A.  2001,  "ʺMaximum  Ki-­‐‑67  staining  

in  prostate  cancer  provides  independent  prognostic  information  after  radical  prostatectomy"ʺ,  Anticancer  Research,  vol.  21,  no.  6A,  pp.  4071-­‐‑4076.  

 Halvorsen,  O.J.,  Hostmark,  J.,  Haukaas,  S.,  Hoisaeter,  P.A.  &  Akslen,  L.A.  2000,  "ʺPrognostic  

significance  of  p16  and  CDK4  proteins  in  localized  prostate  carcinoma"ʺ,  Cancer,  vol.  88,  no.  2,  pp.  416-­‐‑424.  

 Hara,  R.,  Jo,  Y.,  Fujii,  T.,  Kondo,  N.,  Yokoyoma,  T.,  Miyaji,  Y.  &  Nagai,  A.  2008,  "ʺOptimal  

approach  for  prostate  cancer  detection  as  initial  biopsy:  prospective  randomized  study  comparing  transperineal  versus  transrectal  systematic  12-­‐‑core  biopsy"ʺ,  Urology,  vol.  71,  no.  2,  pp.  191-­‐‑195.  

 Hartikainen,  J.M.,  Tengström,  M.,  Kosma,  V.M.,  Kinnula,  V.L.,  Mannermaa,  A.  &  Soini,  Y.  

2012,  "ʺGenetic  polymorphisms  and  protein  expression  of  NRF2  and  Sulfiredoxin  predict  survival  outcomes  in  breast  cancer"ʺ,  Cancer  research,  vol.  72,  no.  21,  pp.  5537-­‐‑5546.  

 He,  H.C.,  Zhu,  J.G.,  Chen,  X.B.,  Chen,  S.M.,  Han,  Z.D.,  Dai,  Q.S.,  Ling,  X.H.,  Fu,  X.,  Lin,  

Z.Y.,  Deng,  Y.H.,  Qin,  G.Q.,  Cai,  C.,  Chen,  J.H.  &  Zhong,  W.D.  2012,  "ʺMicroRNA-­‐‑23b  downregulates  peroxiredoxin  III  in  human  prostate  cancer"ʺ,  FEBS  letters,  vol.  586,  no.  16,  pp.  2451-­‐‑2458.  

Page 66: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

46  

 

Heidenreich,  A.,  Bellmunt,  J.,  Bolla,  M.,  Joniau,  S.,  Mason,  M.,  Matveev,  V.,  Mottet,  N.,  Schmid,  H.P.,  van  der  Kwast,  T.,  Wiegel,  T.,  Zattoni,  F.  &  European  Association  of  Urology  2011,  "ʺEAU  guidelines  on  prostate  cancer.  Part  1:  screening,  diagnosis,  and  treatment  of  clinically  localised  disease"ʺ,  European  urology,  vol.  59,  no.  1,  pp.  61-­‐‑71.  

 Hemminki,  K.  2012,  "ʺFamilial  risk  and  familial  survival  in  prostate  cancer"ʺ,  World  journal  of  

urology,  vol.  30,  no.  2,  pp.  143-­‐‑148.    Hintsala,  H.R.,  Soini,  Y.,  Haapasaari,  K.M.  &  Karihtala,  P.  2015,  "ʺDysregulation  of  redox-­‐‑

state-­‐‑regulating  enzymes  in  melanocytic  skin  tumours  and  the  surrounding  microenvironment"ʺ,  Histopathology,  vol.  67,  no.  3,  pp.  348-­‐‑357.  

 Hirata,  H.,  Hinoda,  Y.,  Kikuno,  N.,  Suehiro,  Y.,  Shahryari,  V.,  Ahmad,  A.E.,  Tabatabai,  Z.L.,  

Igawa,  M.  &  Dahiya,  R.  2009,  "ʺBcl2  -­‐‑938C/A  polymorphism  carries  increased  risk  of  biochemical  recurrence  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  181,  no.  4,  pp.  1907-­‐‑1912.  

 Hunchared,  M.,  Haddock,  S.,  Reid,  R.  &  Kupelnick,  B.  2010,  “Smoking  as  a  risk  factor  for  

prostate  cancer:  a  meta-­‐‑analysis  of  24  prostective  cohort  studies”,  American  Journal  of  Public  Health,  vol.  100,  no.  4,  pp.  693-­‐‑701.  

 Iida,  K.,  Itoh,  K.,  Kumagai,  Y.,  Oyasu,  R.,  Hattori,  K.,  Kawai,  K.,  Shimazui,  T.,  Akaza,  H.  &  

Yamamoto,  M.  2004,  "ʺNrf2  is  essential  for  the  chemopreventive  efficacy  of  oltipraz  against  urinary  bladder  carcinogenesis"ʺ,  Cancer  research,  vol.  64,  no.  18,  pp.  6424-­‐‑6431.  

 Immenschuh,  S.  &  Baumgart-­‐‑Vogt,  E.  2005,  "ʺPeroxiredoxins,  oxidative  stress,  and  cell  

proliferation"ʺ,  Antioxidants  &  redox  signaling,  vol.  7,  no.  5-­‐‑6,  pp.  768-­‐‑777.    Itoh,  K.,  Mimura,  J.  &  Yamamoto,  M.  2010,  "ʺDiscovery  of  the  negative  regulator  of  Nrf2,  

Keap1:  a  historical  overview"ʺ,  Antioxidants  &  redox  signaling,  vol.  13,  no.  11,  pp.  1665-­‐‑1678.  

 Jansson,  K.F.,  Akre,  O.,  Garmo,  H.,  Bill-­‐‑Axelson,  A.,  Adolfsson,  J.,  Stattin,  P.  &  Bratt,  O.  

2012,  "ʺConcordance  of  tumor  differentiation  among  brothers  with  prostate  cancer"ʺ,  European  urology,  vol.  62,  no.  4,  pp.  656-­‐‑661.  

 Jeong,  W.,  Bae,  S.H.,  Toledano,  M.B.  &  Rhee,  S.G.  2012,  "ʺRole  of  sulfiredoxin  as  a  regulator  

of  peroxiredoxin  function  and  regulation  of  its  expression"ʺ,  Free  radical  biology  &  medicine,  vol.  53,  no.  3,  pp.  447-­‐‑456.  

 Johansson,  J.E.,  Andren,  O.,  Andersson,  S.O.,  Dickman,  P.W.,  Holmberg,  L.,  Magnuson,  A.  

&  Adami,  H.O.  2004,  "ʺNatural  history  of  early,  localized  prostate  cancer"ʺ,  JAMA  :  the  journal  of  the  American  Medical  Association,  vol.  291,  no.  22,  pp.  2713-­‐‑2719.  

 Jouppila-­‐‑Mättö,  A.,  Närkiö-­‐‑Mäkelä,  M.,  Soini,  Y.,  Pukkila,  M.,  Sironen,  R.,  Tuhkanen,  H.,  

Mannermaa,  A.  &  Kosma,  V.M.  2011,  "ʺTwist  and  snai1  expression  in  pharyngeal  

47    

 

squamous  cell  carcinoma  stroma  is  related  to  cancer  progression"ʺ,  BMC  cancer,  vol.  11,  pp.  350-­‐‑2407-­‐‑11-­‐‑350.  

 Kalluri,  R.  &  Weinberg,  R.A.  2009,  "ʺThe  basics  of  epithelial-­‐‑mesenchymal  transition"ʺ,  The  

Journal  of  clinical  investigation,  vol.  119,  no.  6,  pp.  1420-­‐‑1428.    Kang,  Y.  &  Massague,  J.  2004,  "ʺEpithelial-­‐‑mesenchymal  transitions:  twist  in  development  

and  metastasis"ʺ,  Cell,  vol.  118,  no.  3,  pp.  277-­‐‑279.    Karam,  J.A.,  Lotan,  Y.,  Roehrborn,  C.G.,  Ashfaq,  R.,  Karakiewicz,  P.I.  &  Shariat,  S.F.  2007,  

"ʺCaveolin-­‐‑1  overexpression  is  associated  with  aggressive  prostate  cancer  recurrence"ʺ,  The  Prostate,  vol.  67,  no.  6,  pp.  614-­‐‑622.  

 Karihtala,  P.,  Mäntyniemi,  A.,  Kang,  S.W.,  Kinnula,  V.L.  &  Soini,  Y.  2003,  "ʺPeroxiredoxins  in  

breast  carcinoma"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  9,  no.  9,  pp.  3418-­‐‑3424.  

 Karihtala,  P.  &  Soini,  Y.  2007,  "ʺReactive  oxygen  species  and  antioxidant  mechanisms  in  

human  tissues  and  their  relation  to  malignancies"ʺ,  APMIS  :  Acta  Pathologica,  Microbiologica,  et  Immunologica  Scandinavica,  vol.  115,  no.  2,  pp.  81-­‐‑103.  

 Karihtala,  P.,  Soini,  Y.,  Vaskivuo,  L.,  Bloigu,  R.  &  Puistola,  U.  2009,  "ʺDNA  adduct  8-­‐‑

hydroxydeoxyguanosine,  a  novel  putative  marker  of  prognostic  significance  in  ovarian  carcinoma"ʺ,  International  journal  of  gynecological  cancer  :  official  journal  of  the  International  Gynecological  Cancer  Society,  vol.  19,  no.  6,  pp.  1047-­‐‑1051.  

 Karvonen,  U.,  Kallio,  P.J.,  Janne,  O.A.  &  Palvimo,  J.J.  1997,  "ʺInteraction  of  androgen  

receptors  with  androgen  response  element  in  intact  cells.  Roles  of  amino-­‐‑  and  carboxyl-­‐‑terminal  regions  and  the  ligand"ʺ,  The  Journal  of  biological  chemistry,  vol.  272,  no.  25,  pp.  15973-­‐‑15979.  

 Kasibhatla,  M.,  Peterson,  B.  &  Anscher,  M.S.  2005,  "ʺWhat  is  the  best  postoperative  treatment  

for  patients  with  pT3bN0M0  adenocarcinoma  of  the  prostate?"ʺ,  Prostate  cancer  and  prostatic  diseases,  vol.  8,  no.  2,  pp.  167-­‐‑173.  

 Kawasaki,  Y.,  Ishigami,  S.,  Arigami,  T.,  Uenosono,  Y.,  Yanagita,  S.,  Uchikado,  Y.,  Kita,  Y.,  

Nishizono,  Y.,  Okumura,  H.,  Nakajo,  A.,  Kijima,  Y.,  Maemura,  K.  &  Natsugoe,  S.  2015,  "ʺClinicopathological  significance  of  nuclear  factor  (erythroid-­‐‑2)-­‐‑related  factor  2  (Nrf2)  expression  in  gastric  cancer"ʺ,  BMC  cancer,  vol.  15,  pp.  5-­‐‑015-­‐‑1008-­‐‑4.  

 Kensler,  T.W.  &  Wakabayashi,  N.  2010,  "ʺNrf2:  friend  or  foe  for  chemoprevention?"ʺ,  

Carcinogenesis,  vol.  31,  no.  1,  pp.  90-­‐‑99.    Kensler,  T.W.,  Wakabayashi,  N.  &  Biswal,  S.  2007,  "ʺCell  survival  responses  to  

environmental  stresses  via  the  Keap1-­‐‑Nrf2-­‐‑ARE  pathway"ʺ,  Annual  Review  of  Pharmacology  and  Toxicology,  vol.  47,  pp.  89-­‐‑116.  

Page 67: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

46  

 

Heidenreich,  A.,  Bellmunt,  J.,  Bolla,  M.,  Joniau,  S.,  Mason,  M.,  Matveev,  V.,  Mottet,  N.,  Schmid,  H.P.,  van  der  Kwast,  T.,  Wiegel,  T.,  Zattoni,  F.  &  European  Association  of  Urology  2011,  "ʺEAU  guidelines  on  prostate  cancer.  Part  1:  screening,  diagnosis,  and  treatment  of  clinically  localised  disease"ʺ,  European  urology,  vol.  59,  no.  1,  pp.  61-­‐‑71.  

 Hemminki,  K.  2012,  "ʺFamilial  risk  and  familial  survival  in  prostate  cancer"ʺ,  World  journal  of  

urology,  vol.  30,  no.  2,  pp.  143-­‐‑148.    Hintsala,  H.R.,  Soini,  Y.,  Haapasaari,  K.M.  &  Karihtala,  P.  2015,  "ʺDysregulation  of  redox-­‐‑

state-­‐‑regulating  enzymes  in  melanocytic  skin  tumours  and  the  surrounding  microenvironment"ʺ,  Histopathology,  vol.  67,  no.  3,  pp.  348-­‐‑357.  

 Hirata,  H.,  Hinoda,  Y.,  Kikuno,  N.,  Suehiro,  Y.,  Shahryari,  V.,  Ahmad,  A.E.,  Tabatabai,  Z.L.,  

Igawa,  M.  &  Dahiya,  R.  2009,  "ʺBcl2  -­‐‑938C/A  polymorphism  carries  increased  risk  of  biochemical  recurrence  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  181,  no.  4,  pp.  1907-­‐‑1912.  

 Hunchared,  M.,  Haddock,  S.,  Reid,  R.  &  Kupelnick,  B.  2010,  “Smoking  as  a  risk  factor  for  

prostate  cancer:  a  meta-­‐‑analysis  of  24  prostective  cohort  studies”,  American  Journal  of  Public  Health,  vol.  100,  no.  4,  pp.  693-­‐‑701.  

 Iida,  K.,  Itoh,  K.,  Kumagai,  Y.,  Oyasu,  R.,  Hattori,  K.,  Kawai,  K.,  Shimazui,  T.,  Akaza,  H.  &  

Yamamoto,  M.  2004,  "ʺNrf2  is  essential  for  the  chemopreventive  efficacy  of  oltipraz  against  urinary  bladder  carcinogenesis"ʺ,  Cancer  research,  vol.  64,  no.  18,  pp.  6424-­‐‑6431.  

 Immenschuh,  S.  &  Baumgart-­‐‑Vogt,  E.  2005,  "ʺPeroxiredoxins,  oxidative  stress,  and  cell  

proliferation"ʺ,  Antioxidants  &  redox  signaling,  vol.  7,  no.  5-­‐‑6,  pp.  768-­‐‑777.    Itoh,  K.,  Mimura,  J.  &  Yamamoto,  M.  2010,  "ʺDiscovery  of  the  negative  regulator  of  Nrf2,  

Keap1:  a  historical  overview"ʺ,  Antioxidants  &  redox  signaling,  vol.  13,  no.  11,  pp.  1665-­‐‑1678.  

 Jansson,  K.F.,  Akre,  O.,  Garmo,  H.,  Bill-­‐‑Axelson,  A.,  Adolfsson,  J.,  Stattin,  P.  &  Bratt,  O.  

2012,  "ʺConcordance  of  tumor  differentiation  among  brothers  with  prostate  cancer"ʺ,  European  urology,  vol.  62,  no.  4,  pp.  656-­‐‑661.  

 Jeong,  W.,  Bae,  S.H.,  Toledano,  M.B.  &  Rhee,  S.G.  2012,  "ʺRole  of  sulfiredoxin  as  a  regulator  

of  peroxiredoxin  function  and  regulation  of  its  expression"ʺ,  Free  radical  biology  &  medicine,  vol.  53,  no.  3,  pp.  447-­‐‑456.  

 Johansson,  J.E.,  Andren,  O.,  Andersson,  S.O.,  Dickman,  P.W.,  Holmberg,  L.,  Magnuson,  A.  

&  Adami,  H.O.  2004,  "ʺNatural  history  of  early,  localized  prostate  cancer"ʺ,  JAMA  :  the  journal  of  the  American  Medical  Association,  vol.  291,  no.  22,  pp.  2713-­‐‑2719.  

 Jouppila-­‐‑Mättö,  A.,  Närkiö-­‐‑Mäkelä,  M.,  Soini,  Y.,  Pukkila,  M.,  Sironen,  R.,  Tuhkanen,  H.,  

Mannermaa,  A.  &  Kosma,  V.M.  2011,  "ʺTwist  and  snai1  expression  in  pharyngeal  

47    

 

squamous  cell  carcinoma  stroma  is  related  to  cancer  progression"ʺ,  BMC  cancer,  vol.  11,  pp.  350-­‐‑2407-­‐‑11-­‐‑350.  

 Kalluri,  R.  &  Weinberg,  R.A.  2009,  "ʺThe  basics  of  epithelial-­‐‑mesenchymal  transition"ʺ,  The  

Journal  of  clinical  investigation,  vol.  119,  no.  6,  pp.  1420-­‐‑1428.    Kang,  Y.  &  Massague,  J.  2004,  "ʺEpithelial-­‐‑mesenchymal  transitions:  twist  in  development  

and  metastasis"ʺ,  Cell,  vol.  118,  no.  3,  pp.  277-­‐‑279.    Karam,  J.A.,  Lotan,  Y.,  Roehrborn,  C.G.,  Ashfaq,  R.,  Karakiewicz,  P.I.  &  Shariat,  S.F.  2007,  

"ʺCaveolin-­‐‑1  overexpression  is  associated  with  aggressive  prostate  cancer  recurrence"ʺ,  The  Prostate,  vol.  67,  no.  6,  pp.  614-­‐‑622.  

 Karihtala,  P.,  Mäntyniemi,  A.,  Kang,  S.W.,  Kinnula,  V.L.  &  Soini,  Y.  2003,  "ʺPeroxiredoxins  in  

breast  carcinoma"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  9,  no.  9,  pp.  3418-­‐‑3424.  

 Karihtala,  P.  &  Soini,  Y.  2007,  "ʺReactive  oxygen  species  and  antioxidant  mechanisms  in  

human  tissues  and  their  relation  to  malignancies"ʺ,  APMIS  :  Acta  Pathologica,  Microbiologica,  et  Immunologica  Scandinavica,  vol.  115,  no.  2,  pp.  81-­‐‑103.  

 Karihtala,  P.,  Soini,  Y.,  Vaskivuo,  L.,  Bloigu,  R.  &  Puistola,  U.  2009,  "ʺDNA  adduct  8-­‐‑

hydroxydeoxyguanosine,  a  novel  putative  marker  of  prognostic  significance  in  ovarian  carcinoma"ʺ,  International  journal  of  gynecological  cancer  :  official  journal  of  the  International  Gynecological  Cancer  Society,  vol.  19,  no.  6,  pp.  1047-­‐‑1051.  

 Karvonen,  U.,  Kallio,  P.J.,  Janne,  O.A.  &  Palvimo,  J.J.  1997,  "ʺInteraction  of  androgen  

receptors  with  androgen  response  element  in  intact  cells.  Roles  of  amino-­‐‑  and  carboxyl-­‐‑terminal  regions  and  the  ligand"ʺ,  The  Journal  of  biological  chemistry,  vol.  272,  no.  25,  pp.  15973-­‐‑15979.  

 Kasibhatla,  M.,  Peterson,  B.  &  Anscher,  M.S.  2005,  "ʺWhat  is  the  best  postoperative  treatment  

for  patients  with  pT3bN0M0  adenocarcinoma  of  the  prostate?"ʺ,  Prostate  cancer  and  prostatic  diseases,  vol.  8,  no.  2,  pp.  167-­‐‑173.  

 Kawasaki,  Y.,  Ishigami,  S.,  Arigami,  T.,  Uenosono,  Y.,  Yanagita,  S.,  Uchikado,  Y.,  Kita,  Y.,  

Nishizono,  Y.,  Okumura,  H.,  Nakajo,  A.,  Kijima,  Y.,  Maemura,  K.  &  Natsugoe,  S.  2015,  "ʺClinicopathological  significance  of  nuclear  factor  (erythroid-­‐‑2)-­‐‑related  factor  2  (Nrf2)  expression  in  gastric  cancer"ʺ,  BMC  cancer,  vol.  15,  pp.  5-­‐‑015-­‐‑1008-­‐‑4.  

 Kensler,  T.W.  &  Wakabayashi,  N.  2010,  "ʺNrf2:  friend  or  foe  for  chemoprevention?"ʺ,  

Carcinogenesis,  vol.  31,  no.  1,  pp.  90-­‐‑99.    Kensler,  T.W.,  Wakabayashi,  N.  &  Biswal,  S.  2007,  "ʺCell  survival  responses  to  

environmental  stresses  via  the  Keap1-­‐‑Nrf2-­‐‑ARE  pathway"ʺ,  Annual  Review  of  Pharmacology  and  Toxicology,  vol.  47,  pp.  89-­‐‑116.  

Page 68: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

48  

 

Kishan,  A.U.  &  Kupelian,  P.A.  2015,  "ʺLate  rectal  toxicity  after  low-­‐‑dose-­‐‑rate  brachytherapy:  incidence,  predictors,  and  management  of  side  effects"ʺ,  Brachytherapy,  vol.  14,  no.  2,  pp.  148-­‐‑159.  

 Klotz,  L.  2008,  "ʺActive  surveillance  for  prostate  cancer:  trials  and  tribulations"ʺ,  World  journal                

of  urology,  vol.  26,  no.  5,  pp.  437-­‐‑442.    Klotz,  L.,  Zhang,  L.,  Lam,  A.,  Nam,  R.,  Mamedov,  A.  &  Loblaw,  A.  2010,  "ʺClinical  results  of  

long-­‐‑term  follow-­‐‑up  of  a  large,  active  surveillance  cohort  with  localized  prostate  cancer"ʺ,  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  28,  no.  1,  pp.  126-­‐‑131.  

 Kuczyk,  M.,  Serth,  J.,  Machtens,  S.,  Bokemeyer,  C.,  Bathke,  W.,  Stief,  C.  &  Jonas,  U.  1998,  

"ʺExpression  of  E-­‐‑cadherin  in  primary  prostate  cancer:  correlation  with  clinical  features"ʺ,  British  journal  of  urology,  vol.  81,  no.  3,  pp.  406-­‐‑412.  

 Kuusisto,  M.E.,  Haapasaari,  K.M.,  Turpeenniemi-­‐‑Hujanen,  T.,  Jantunen,  E.,  Soini,  Y.,  Peroja,  

P.,  Bloigu,  R.,  Karihtala,  P.  &  Kuittinen,  O.  2015,  "ʺHigh  intensity  of  cytoplasmic  peroxiredoxin  VI  expression  is  associated  with  adverse  outcome  in  diffuse  large  B-­‐‑cell  lymphoma  independently  of  International  Prognostic  Index"ʺ,  Journal  of  clinical  pathology,  vol.  68,  no.  7,  pp.  552-­‐‑556.  

 Kwok,  W.K.,  Ling,  M.T.,  Lee,  T.W.,  Lau,  T.C.,  Zhou,  C.,  Zhang,  X.,  Chua,  C.W.,  Chan,  K.W.,  

Chan,  F.L.,  Glackin,  C.,  Wong,  Y.C.  &  Wang,  X.  2005,  "ʺUp-­‐‑regulation  of  TWIST  in  prostate  cancer  and  its  implication  as  a  therapeutic  target"ʺ,  Cancer  research,  vol.  65,  no.  12,  pp.  5153-­‐‑5162.  

 Lacombe,  L.,  Maillette,  A.,  Meyer,  F.,  Veilleux,  C.,  Moore,  L.  &  Fradet,  Y.  2001,  "ʺExpression  

of  p21  predicts  PSA  failure  in  locally  advanced  prostate  cancer  treated  by  prostatectomy"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  95,  no.  3,  pp.  135-­‐‑139.  

 Lau,  A.,  Villeneuve,  N.F.,  Sun,  Z.,  Wong,  P.K.  &  Zhang,  D.D.  2008,  "ʺDual  roles  of  Nrf2  in  

cancer"ʺ,  Pharmacological  research  :  the  official  journal  of  the  Italian  Pharmacological  Society,  vol.  58,  no.  5-­‐‑6,  pp.  262-­‐‑270.  

 Leitzmann,  M.F.  &  Rohrmann,  S.  2012,  "ʺRisk  factors  for  the  onset  of  prostatic  cancer:  age,  

location,  and  behavioral  correlates"ʺ,  Clinical  epidemiology,  vol.  4,  pp.  1-­‐‑11.    Lewis,  K.N.,  Mele,  J.,  Hayes,  J.D.  &  Buffenstein,  R.  2010,  "ʺNrf2,  a  guardian  of  healthspan  

and  gatekeeper  of  species  longevity"ʺ,  Integrative  and  comparative  biology,  vol.  50,  no.  5,  pp.  829-­‐‑843.  

 Li,  J.,  Yang,  Z.L.,  Ren,  X.,  Zou,  Q.,  Yuan,  Y.,  Liang,  L.,  Chen,  M.  &  Chen,  S.  2013,  "ʺILK  and  

PRDX1  are  prognostic  markers  in  squamous  cell/adenosquamous  carcinomas  and  

49    

 

adenocarcinoma  of  gallbladder"ʺ,  Tumour  biology  :  the  journal  of  the  International  Society  for  Oncodevelopmental  Biology  and  Medicine,  vol.  34,  no.  1,  pp.  359-­‐‑368.  

 Li,  R.,  Wheeler,  T.,  Dai,  H.,  Frolov,  A.,  Thompson,  T.  &  Ayala,  G.  2004a,  "ʺHigh  level  of  

androgen  receptor  is  associated  with  aggressive  clinicopathologic  features  and  decreased  biochemical  recurrence-­‐‑free  survival  in  prostate:  cancer  patients  treated  with  radical  prostatectomy"ʺ,  The  American  Journal  of  Surgical  Pathology,  vol.  28,  no.  7,  pp.  928-­‐‑934.  

 Liew,  P.L.,  Hsu,  C.S.,  Liu,  W.M.,  Lee,  Y.C.,  Lee,  Y.C.  &  Chen,  C.L.  2015,  "ʺPrognostic  and  

predictive  values  of  Nrf2,  Keap1,  p16  and  E-­‐‑cadherin  expression  in  ovarian  epithelial  carcinoma"ʺ,  International  journal  of  clinical  and  experimental  pathology,  vol.  8,  no.  5,  pp.  5642-­‐‑5649.  

 Lopergolo,  A.  &  Zaffaroni,  N.  2009,  "ʺBiomolecular  markers  of  outcome  prediction  in  

prostate  cancer"ʺ,  Cancer,  vol.  115,  no.  13  Suppl,  pp.  3058-­‐‑3067.    Luengo-­‐‑Fernandez,  R.,  Leal,  J.,  Gray,  A.  &  Sullivan,  R.  2013,  "ʺEconomic  burden  of  cancer  

across  the  European  Union:  a  population-­‐‑based  cost  analysis"ʺ,  The  Lancet.Oncology,  vol.  14,  no.  12,  pp.  1165-­‐‑1174.  

 Maestro,  R.,  Dei  Tos,  A.P.,  Hamamori,  Y.,  Krasnokutsky,  S.,  Sartorelli,  V.,  Kedes,  L.,  

Doglioni,  C.,  Beach,  D.H.  &  Hannon,  G.J.  1999,  "ʺTwist  is  a  potential  oncogene  that  inhibits  apoptosis"ʺ,  Genes  &  development,  vol.  13,  no.  17,  pp.  2207-­‐‑2217.  

 Magi-­‐‑Galluzzi,  C.,  Xu,  X.,  Hlatky,  L.,  Hahnfeldt,  P.,  Kaplan,  I.,  Hsiao,  P.,  Chang,  C.  &  Loda,  

M.  1997,  "ʺHeterogeneity  of  androgen  receptor  content  in  advanced  prostate  cancer"ʺ,  Modern  pathology  :  an  official  journal  of  the  United  States  and  Canadian  Academy  of  Pathology,  Inc,  vol.  10,  no.  8,  pp.  839-­‐‑845.  

 Marks,  R.A.,  Koch,  M.O.,  Lopez-­‐‑Beltran,  A.,  Montironi,  R.,  Juliar,  B.E.  &  Cheng,  L.  2007,  

"ʺThe  relationship  between  the  extent  of  surgical  margin  positivity  and  prostate  specific  antigen  recurrence  in  radical  prostatectomy  specimens"ʺ,  Human  pathology,  vol.  38,  no.  8,  pp.  1207-­‐‑1211.  

 Marnett,  L.J.  2000,  "ʺOxyradicals  and  DNA  damage"ʺ,  Carcinogenesis,  vol.  21,  no.  3,  pp.  361-­‐‑

370.    Merikallio,  H.,  Pääkkö,  P.,  Kinnula,  V.L.,  Harju,  T.  &  Soini,  Y.  2012a,  "ʺNuclear  factor  

erythroid-­‐‑derived  2-­‐‑like  2  (Nrf2)  and  DJ1  are  prognostic  factors  in  lung  cancer"ʺ,  Human  pathology,  vol.  43,  no.  4,  pp.  577-­‐‑584.  

 Miyake,  H.,  Hara,  I.,  Kamidono,  S.  &  Eto,  H.  2004,  "ʺOxidative  DNA  damage  in  patients  with  

prostate  cancer  and  its  response  to  treatment"ʺ,  The  Journal  of  urology,  vol.  171,  no.  4,  pp.  1533-­‐‑1536.  

 

Page 69: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

48  

 

Kishan,  A.U.  &  Kupelian,  P.A.  2015,  "ʺLate  rectal  toxicity  after  low-­‐‑dose-­‐‑rate  brachytherapy:  incidence,  predictors,  and  management  of  side  effects"ʺ,  Brachytherapy,  vol.  14,  no.  2,  pp.  148-­‐‑159.  

 Klotz,  L.  2008,  "ʺActive  surveillance  for  prostate  cancer:  trials  and  tribulations"ʺ,  World  journal                

of  urology,  vol.  26,  no.  5,  pp.  437-­‐‑442.    Klotz,  L.,  Zhang,  L.,  Lam,  A.,  Nam,  R.,  Mamedov,  A.  &  Loblaw,  A.  2010,  "ʺClinical  results  of  

long-­‐‑term  follow-­‐‑up  of  a  large,  active  surveillance  cohort  with  localized  prostate  cancer"ʺ,  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  28,  no.  1,  pp.  126-­‐‑131.  

 Kuczyk,  M.,  Serth,  J.,  Machtens,  S.,  Bokemeyer,  C.,  Bathke,  W.,  Stief,  C.  &  Jonas,  U.  1998,  

"ʺExpression  of  E-­‐‑cadherin  in  primary  prostate  cancer:  correlation  with  clinical  features"ʺ,  British  journal  of  urology,  vol.  81,  no.  3,  pp.  406-­‐‑412.  

 Kuusisto,  M.E.,  Haapasaari,  K.M.,  Turpeenniemi-­‐‑Hujanen,  T.,  Jantunen,  E.,  Soini,  Y.,  Peroja,  

P.,  Bloigu,  R.,  Karihtala,  P.  &  Kuittinen,  O.  2015,  "ʺHigh  intensity  of  cytoplasmic  peroxiredoxin  VI  expression  is  associated  with  adverse  outcome  in  diffuse  large  B-­‐‑cell  lymphoma  independently  of  International  Prognostic  Index"ʺ,  Journal  of  clinical  pathology,  vol.  68,  no.  7,  pp.  552-­‐‑556.  

 Kwok,  W.K.,  Ling,  M.T.,  Lee,  T.W.,  Lau,  T.C.,  Zhou,  C.,  Zhang,  X.,  Chua,  C.W.,  Chan,  K.W.,  

Chan,  F.L.,  Glackin,  C.,  Wong,  Y.C.  &  Wang,  X.  2005,  "ʺUp-­‐‑regulation  of  TWIST  in  prostate  cancer  and  its  implication  as  a  therapeutic  target"ʺ,  Cancer  research,  vol.  65,  no.  12,  pp.  5153-­‐‑5162.  

 Lacombe,  L.,  Maillette,  A.,  Meyer,  F.,  Veilleux,  C.,  Moore,  L.  &  Fradet,  Y.  2001,  "ʺExpression  

of  p21  predicts  PSA  failure  in  locally  advanced  prostate  cancer  treated  by  prostatectomy"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  95,  no.  3,  pp.  135-­‐‑139.  

 Lau,  A.,  Villeneuve,  N.F.,  Sun,  Z.,  Wong,  P.K.  &  Zhang,  D.D.  2008,  "ʺDual  roles  of  Nrf2  in  

cancer"ʺ,  Pharmacological  research  :  the  official  journal  of  the  Italian  Pharmacological  Society,  vol.  58,  no.  5-­‐‑6,  pp.  262-­‐‑270.  

 Leitzmann,  M.F.  &  Rohrmann,  S.  2012,  "ʺRisk  factors  for  the  onset  of  prostatic  cancer:  age,  

location,  and  behavioral  correlates"ʺ,  Clinical  epidemiology,  vol.  4,  pp.  1-­‐‑11.    Lewis,  K.N.,  Mele,  J.,  Hayes,  J.D.  &  Buffenstein,  R.  2010,  "ʺNrf2,  a  guardian  of  healthspan  

and  gatekeeper  of  species  longevity"ʺ,  Integrative  and  comparative  biology,  vol.  50,  no.  5,  pp.  829-­‐‑843.  

 Li,  J.,  Yang,  Z.L.,  Ren,  X.,  Zou,  Q.,  Yuan,  Y.,  Liang,  L.,  Chen,  M.  &  Chen,  S.  2013,  "ʺILK  and  

PRDX1  are  prognostic  markers  in  squamous  cell/adenosquamous  carcinomas  and  

49    

 

adenocarcinoma  of  gallbladder"ʺ,  Tumour  biology  :  the  journal  of  the  International  Society  for  Oncodevelopmental  Biology  and  Medicine,  vol.  34,  no.  1,  pp.  359-­‐‑368.  

 Li,  R.,  Wheeler,  T.,  Dai,  H.,  Frolov,  A.,  Thompson,  T.  &  Ayala,  G.  2004a,  "ʺHigh  level  of  

androgen  receptor  is  associated  with  aggressive  clinicopathologic  features  and  decreased  biochemical  recurrence-­‐‑free  survival  in  prostate:  cancer  patients  treated  with  radical  prostatectomy"ʺ,  The  American  Journal  of  Surgical  Pathology,  vol.  28,  no.  7,  pp.  928-­‐‑934.  

 Liew,  P.L.,  Hsu,  C.S.,  Liu,  W.M.,  Lee,  Y.C.,  Lee,  Y.C.  &  Chen,  C.L.  2015,  "ʺPrognostic  and  

predictive  values  of  Nrf2,  Keap1,  p16  and  E-­‐‑cadherin  expression  in  ovarian  epithelial  carcinoma"ʺ,  International  journal  of  clinical  and  experimental  pathology,  vol.  8,  no.  5,  pp.  5642-­‐‑5649.  

 Lopergolo,  A.  &  Zaffaroni,  N.  2009,  "ʺBiomolecular  markers  of  outcome  prediction  in  

prostate  cancer"ʺ,  Cancer,  vol.  115,  no.  13  Suppl,  pp.  3058-­‐‑3067.    Luengo-­‐‑Fernandez,  R.,  Leal,  J.,  Gray,  A.  &  Sullivan,  R.  2013,  "ʺEconomic  burden  of  cancer  

across  the  European  Union:  a  population-­‐‑based  cost  analysis"ʺ,  The  Lancet.Oncology,  vol.  14,  no.  12,  pp.  1165-­‐‑1174.  

 Maestro,  R.,  Dei  Tos,  A.P.,  Hamamori,  Y.,  Krasnokutsky,  S.,  Sartorelli,  V.,  Kedes,  L.,  

Doglioni,  C.,  Beach,  D.H.  &  Hannon,  G.J.  1999,  "ʺTwist  is  a  potential  oncogene  that  inhibits  apoptosis"ʺ,  Genes  &  development,  vol.  13,  no.  17,  pp.  2207-­‐‑2217.  

 Magi-­‐‑Galluzzi,  C.,  Xu,  X.,  Hlatky,  L.,  Hahnfeldt,  P.,  Kaplan,  I.,  Hsiao,  P.,  Chang,  C.  &  Loda,  

M.  1997,  "ʺHeterogeneity  of  androgen  receptor  content  in  advanced  prostate  cancer"ʺ,  Modern  pathology  :  an  official  journal  of  the  United  States  and  Canadian  Academy  of  Pathology,  Inc,  vol.  10,  no.  8,  pp.  839-­‐‑845.  

 Marks,  R.A.,  Koch,  M.O.,  Lopez-­‐‑Beltran,  A.,  Montironi,  R.,  Juliar,  B.E.  &  Cheng,  L.  2007,  

"ʺThe  relationship  between  the  extent  of  surgical  margin  positivity  and  prostate  specific  antigen  recurrence  in  radical  prostatectomy  specimens"ʺ,  Human  pathology,  vol.  38,  no.  8,  pp.  1207-­‐‑1211.  

 Marnett,  L.J.  2000,  "ʺOxyradicals  and  DNA  damage"ʺ,  Carcinogenesis,  vol.  21,  no.  3,  pp.  361-­‐‑

370.    Merikallio,  H.,  Pääkkö,  P.,  Kinnula,  V.L.,  Harju,  T.  &  Soini,  Y.  2012a,  "ʺNuclear  factor  

erythroid-­‐‑derived  2-­‐‑like  2  (Nrf2)  and  DJ1  are  prognostic  factors  in  lung  cancer"ʺ,  Human  pathology,  vol.  43,  no.  4,  pp.  577-­‐‑584.  

 Miyake,  H.,  Hara,  I.,  Kamidono,  S.  &  Eto,  H.  2004,  "ʺOxidative  DNA  damage  in  patients  with  

prostate  cancer  and  its  response  to  treatment"ʺ,  The  Journal  of  urology,  vol.  171,  no.  4,  pp.  1533-­‐‑1536.  

 

Page 70: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

50  

 

Miyamoto,  K.K.,  McSherry,  S.A.,  Dent,  G.A.,  Sar,  M.,  Wilson,  E.M.,  French,  F.S.,  Sharief,  Y.  &  Mohler,  J.L.  1993,  "ʺImmunohistochemistry  of  the  androgen  receptor  in  human  benign  and  malignant  prostate  tissue"ʺ,  The  Journal  of  urology,  vol.  149,  no.  5,  pp.  1015-­‐‑1019.  

 Moi,  P.,  Chan,  K.,  Asunis,  I.,  Cao,  A.  &  Kan,  Y.W.  1994,  "ʺIsolation  of  NF-­‐‑E2-­‐‑related  factor  2  

(Nrf2),  a  NF-­‐‑E2-­‐‑like  basic  leucine  zipper  transcriptional  activator  that  binds  to  the  tandem  NF-­‐‑E2/AP1  repeat  of  the  beta-­‐‑globin  locus  control  region"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  91,  no.  21,  pp.  9926-­‐‑9930.  

 Mori,  R.,  Wang,  Q.,  Quek,  M.L.,  Tarabolous,  C.,  Cheung,  E.,  Ye,  W.,  Groshen,  S.,  Hawes,  D.,  

Togo,  S.,  Shimada,  H.,  Danenberg,  K.D.,  Danenberg,  P.V.  &  Pinski,  J.K.  2008,  "ʺPrognostic  value  of  the  androgen  receptor  and  its  coactivators  in  patients  with  D1  prostate  cancer"ʺ,  Anticancer  Research,  vol.  28,  no.  1B,  pp.  425-­‐‑430.  

 Morris,  W.J.,  Keyes,  M.,  Spadinger,  I.,  Kwan,  W.,  Liu,  M.,  McKenzie,  M.,  Pai,  H.,  Pickles,  T.  

&  Tyldesley,  S.  2013,  "ʺPopulation-­‐‑based  10-­‐‑year  oncologic  outcomes  after  low-­‐‑dose-­‐‑rate  brachytherapy  for  low-­‐‑risk  and  intermediate-­‐‑risk  prostate  cancer"ʺ,  Cancer,  vol.  119,  no.  8,  pp.  1537-­‐‑1546.  

 Moul,  J.W.  2000,  "ʺProstate  specific  antigen  only  progression  of  prostate  cancer"ʺ,  The  Journal  

of  urology,  vol.  163,  no.  6,  pp.  1632-­‐‑1642.    Musarrat,  J.,  Arezina-­‐‑Wilson,  J.  &  Wani,  A.A.  1996,  "ʺPrognostic  and  aetiological  relevance  

of  8-­‐‑hydroxyguanosine  in  human  breast  carcinogenesis"ʺ,  European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  32A,  no.  7,  pp.  1209-­‐‑1214.  

 Nadler,  R.B.,  Humphrey,  P.A.,  Smith,  D.S.,  Catalona,  W.J.  &  Ratliff,  T.L.  1995,  "ʺEffect  of  

inflammation  and  benign  prostatic  hyperplasia  on  elevated  serum  prostate  specific  antigen  levels"ʺ,  The  Journal  of  urology,  vol.  154,  no.  2  Pt  1,  pp.  407-­‐‑413.  

 Nelson,  W.G.,  De  Marzo,  A.M.  &  Isaacs,  W.B.  2003,  "ʺProstate  cancer"ʺ,  The  New  England  

journal  of  medicine,  vol.  349,  no.  4,  pp.  366-­‐‑381.    Nguyen,  T.,  Yang,  C.S.  &  Pickett,  C.B.  2004,  "ʺThe  pathways  and  molecular  mechanisms  

regulating  Nrf2  activation  in  response  to  chemical  stress"ʺ,  Free  radical  biology  &  medicine,  vol.  37,  no.  4,  pp.  433-­‐‑441.  

 Oberley,  T.D.,  Zhong,  W.,  Szweda,  L.I.  &  Oberley,  L.W.  2000,  "ʺLocalization  of  antioxidant  

enzymes  and  oxidative  damage  products  in  normal  and  malignant  prostate  epithelium"ʺ,  The  Prostate,  vol.  44,  no.  2,  pp.  144-­‐‑155.  

 Oefelein,  M.G.,  Smith,  N.,  Carter,  M.,  Dalton,  D.  &  Schaeffer,  A.  1995,  "ʺThe  incidence  of    

prostate  cancer  progression  with  undetectable  serum  prostate  specific  antigen  in  a  series  of  394  radical  prostatectomies"ʺ,  The  Journal  of  urology,  vol.  154,  no.  6,  pp.  2128-­‐‑2131.  

 

51    

 

Oesterling,  J.E.,  Rice,  D.C.,  Glenski,  W.J.  &  Bergstralh,  E.J.  1993,  "ʺEffect  of  cystoscopy,  prostate  biopsy,  and  transurethral  resection  of  prostate  on  serum  prostate-­‐‑specific  antigen  concentration"ʺ,  Urology,  vol.  42,  no.  3,  pp.  276-­‐‑282.  

 Ohba,  K.,  Miyata,  Y.,  Matsuo,  T.,  Asai,  A.,  Mitsunari,  K.,  Shida,  Y.,  Kanda,  S.  &  Sakai,  H.  

2014,  "ʺHigh  expression  of  Twist  is  associated  with  tumor  aggressiveness  and  poor  prognosis  in  patients  with  renal  cell  carcinoma"ʺ,  International  journal  of  clinical  and  experimental  pathology,  vol.  7,  no.  6,  pp.  3158-­‐‑3165.  

 Okamoto,  K.,  Toyokuni,  S.,  Uchida,  K.,  Ogawa,  O.,  Takenewa,  J.,  Kakehi,  Y.,  Kinoshita,  H.,  

Hattori-­‐‑Nakakuki,  Y.,  Hiai,  H.  &  Yoshida,  O.  1994,  "ʺFormation  of  8-­‐‑hydroxy-­‐‑2'ʹ-­‐‑deoxyguanosine  and  4-­‐‑hydroxy-­‐‑2-­‐‑nonenal-­‐‑modified  proteins  in  human  renal-­‐‑cell  carcinoma"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  58,  no.  6,  pp.  825-­‐‑829.  

 Partin,  A.W.,  Mangold,  L.A.,  Lamm,  D.M.,  Walsh,  P.C.,  Epstein,  J.I.  &  Pearson,  J.D.  2001,  

"ʺContemporary  update  of  prostate  cancer  staging  nomograms  (Partin  Tables)  for  the  new  millennium"ʺ,  Urology,  vol.  58,  no.  6,  pp.  843-­‐‑848.  

 Pasanen,  A.K.,  Kuitunen,  H.,  Haapasaari,  K.M.,  Karihtala,  P.,  Kyllönen,  H.,  Soini,  Y.,  

Turpeenniemi-­‐‑Hujanen,  T.  &  Kuittinen,  O.  2012,  "ʺExpression  and  prognostic  evaluation  of  oxidative  stress  markers  in  an  immunohistochemical  study  of  B-­‐‑cell  derived  lymphomas"ʺ,  Leukemia  &  lymphoma,  vol.  53,  no.  4,  pp.  624-­‐‑631.  

 Paschos,  A.,  Pandya,  R.,  Duivenvoorden,  W.C.  &  Pinthus,  J.H.  2013,  "ʺOxidative  stress  in  

prostate  cancer:  changing  research  concepts  towards  a  novel  paradigm  for  prevention  and  therapeutics"ʺ,  Prostate  cancer  and  prostatic  diseases,  vol.  16,  no.  3,  pp.  217-­‐‑225.  

 Paul,  A.,  Ploussard,  G.,  Nicolaiew,  N.,  Xylinas,  E.,  Gillion,  N.,  de  la  Taille,  A.,  Vordos,  D.,  

Hoznek,  A.,  Yiou,  R.,  Abbou,  C.C.  &  Salomon,  L.  2010,  "ʺOncologic  outcome  after  extraperitoneal  laparoscopic  radical  prostatectomy:  midterm  follow-­‐‑up  of  1115  procedures"ʺ,  European  urology,  vol.  57,  no.  2,  pp.  267-­‐‑272.  

 Pettazzoni,  P.,  Ciamporcero,  E.,  Medana,  C.,  Pizzimenti,  S.,  Dal  Bello,  F.,  Minero,  V.G.,  

Toaldo,  C.,  Minelli,  R.,  Uchida,  K.,  Dianzani,  M.U.,  Pili,  R.  &  Barrera,  G.  2011,  "ʺNuclear  factor  erythroid  2-­‐‑related  factor-­‐‑2  activity  controls  4-­‐‑hydroxynonenal  metabolism  and  activity  in  prostate  cancer  cells"ʺ,  Free  radical  biology  &  medicine,  vol.  51,  no.  8,  pp.  1610-­‐‑1618.  

 Ploussard,  G.,  Staerman,  F.,  Pierrevelcin,  J.,  Saad,  R.,  Beauval,  J.B.,  Roupret,  M.,  Audenet,  F.,  

Peyromaure,  M.,  Delongchamps,  N.B.,  Vincendeau,  S.,  Fardoun,  T.,  Rigaud,  J.,  Villers,  A.,  Bastide,  C.,  Soulie,  M.,  Salomon,  L.  &  Committee  of  Cancerology  of  the  Association  of  French  Urology  2013,  "ʺPredictive  factors  of  oncologic  outcomes  in  patients  who  do  not  achieve  undetectable  prostate  specific  antigen  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  190,  no.  5,  pp.  1750-­‐‑1756.  

 

Page 71: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

50  

 

Miyamoto,  K.K.,  McSherry,  S.A.,  Dent,  G.A.,  Sar,  M.,  Wilson,  E.M.,  French,  F.S.,  Sharief,  Y.  &  Mohler,  J.L.  1993,  "ʺImmunohistochemistry  of  the  androgen  receptor  in  human  benign  and  malignant  prostate  tissue"ʺ,  The  Journal  of  urology,  vol.  149,  no.  5,  pp.  1015-­‐‑1019.  

 Moi,  P.,  Chan,  K.,  Asunis,  I.,  Cao,  A.  &  Kan,  Y.W.  1994,  "ʺIsolation  of  NF-­‐‑E2-­‐‑related  factor  2  

(Nrf2),  a  NF-­‐‑E2-­‐‑like  basic  leucine  zipper  transcriptional  activator  that  binds  to  the  tandem  NF-­‐‑E2/AP1  repeat  of  the  beta-­‐‑globin  locus  control  region"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  91,  no.  21,  pp.  9926-­‐‑9930.  

 Mori,  R.,  Wang,  Q.,  Quek,  M.L.,  Tarabolous,  C.,  Cheung,  E.,  Ye,  W.,  Groshen,  S.,  Hawes,  D.,  

Togo,  S.,  Shimada,  H.,  Danenberg,  K.D.,  Danenberg,  P.V.  &  Pinski,  J.K.  2008,  "ʺPrognostic  value  of  the  androgen  receptor  and  its  coactivators  in  patients  with  D1  prostate  cancer"ʺ,  Anticancer  Research,  vol.  28,  no.  1B,  pp.  425-­‐‑430.  

 Morris,  W.J.,  Keyes,  M.,  Spadinger,  I.,  Kwan,  W.,  Liu,  M.,  McKenzie,  M.,  Pai,  H.,  Pickles,  T.  

&  Tyldesley,  S.  2013,  "ʺPopulation-­‐‑based  10-­‐‑year  oncologic  outcomes  after  low-­‐‑dose-­‐‑rate  brachytherapy  for  low-­‐‑risk  and  intermediate-­‐‑risk  prostate  cancer"ʺ,  Cancer,  vol.  119,  no.  8,  pp.  1537-­‐‑1546.  

 Moul,  J.W.  2000,  "ʺProstate  specific  antigen  only  progression  of  prostate  cancer"ʺ,  The  Journal  

of  urology,  vol.  163,  no.  6,  pp.  1632-­‐‑1642.    Musarrat,  J.,  Arezina-­‐‑Wilson,  J.  &  Wani,  A.A.  1996,  "ʺPrognostic  and  aetiological  relevance  

of  8-­‐‑hydroxyguanosine  in  human  breast  carcinogenesis"ʺ,  European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  32A,  no.  7,  pp.  1209-­‐‑1214.  

 Nadler,  R.B.,  Humphrey,  P.A.,  Smith,  D.S.,  Catalona,  W.J.  &  Ratliff,  T.L.  1995,  "ʺEffect  of  

inflammation  and  benign  prostatic  hyperplasia  on  elevated  serum  prostate  specific  antigen  levels"ʺ,  The  Journal  of  urology,  vol.  154,  no.  2  Pt  1,  pp.  407-­‐‑413.  

 Nelson,  W.G.,  De  Marzo,  A.M.  &  Isaacs,  W.B.  2003,  "ʺProstate  cancer"ʺ,  The  New  England  

journal  of  medicine,  vol.  349,  no.  4,  pp.  366-­‐‑381.    Nguyen,  T.,  Yang,  C.S.  &  Pickett,  C.B.  2004,  "ʺThe  pathways  and  molecular  mechanisms  

regulating  Nrf2  activation  in  response  to  chemical  stress"ʺ,  Free  radical  biology  &  medicine,  vol.  37,  no.  4,  pp.  433-­‐‑441.  

 Oberley,  T.D.,  Zhong,  W.,  Szweda,  L.I.  &  Oberley,  L.W.  2000,  "ʺLocalization  of  antioxidant  

enzymes  and  oxidative  damage  products  in  normal  and  malignant  prostate  epithelium"ʺ,  The  Prostate,  vol.  44,  no.  2,  pp.  144-­‐‑155.  

 Oefelein,  M.G.,  Smith,  N.,  Carter,  M.,  Dalton,  D.  &  Schaeffer,  A.  1995,  "ʺThe  incidence  of    

prostate  cancer  progression  with  undetectable  serum  prostate  specific  antigen  in  a  series  of  394  radical  prostatectomies"ʺ,  The  Journal  of  urology,  vol.  154,  no.  6,  pp.  2128-­‐‑2131.  

 

51    

 

Oesterling,  J.E.,  Rice,  D.C.,  Glenski,  W.J.  &  Bergstralh,  E.J.  1993,  "ʺEffect  of  cystoscopy,  prostate  biopsy,  and  transurethral  resection  of  prostate  on  serum  prostate-­‐‑specific  antigen  concentration"ʺ,  Urology,  vol.  42,  no.  3,  pp.  276-­‐‑282.  

 Ohba,  K.,  Miyata,  Y.,  Matsuo,  T.,  Asai,  A.,  Mitsunari,  K.,  Shida,  Y.,  Kanda,  S.  &  Sakai,  H.  

2014,  "ʺHigh  expression  of  Twist  is  associated  with  tumor  aggressiveness  and  poor  prognosis  in  patients  with  renal  cell  carcinoma"ʺ,  International  journal  of  clinical  and  experimental  pathology,  vol.  7,  no.  6,  pp.  3158-­‐‑3165.  

 Okamoto,  K.,  Toyokuni,  S.,  Uchida,  K.,  Ogawa,  O.,  Takenewa,  J.,  Kakehi,  Y.,  Kinoshita,  H.,  

Hattori-­‐‑Nakakuki,  Y.,  Hiai,  H.  &  Yoshida,  O.  1994,  "ʺFormation  of  8-­‐‑hydroxy-­‐‑2'ʹ-­‐‑deoxyguanosine  and  4-­‐‑hydroxy-­‐‑2-­‐‑nonenal-­‐‑modified  proteins  in  human  renal-­‐‑cell  carcinoma"ʺ,  International  journal  of  cancer.Journal  international  du  cancer,  vol.  58,  no.  6,  pp.  825-­‐‑829.  

 Partin,  A.W.,  Mangold,  L.A.,  Lamm,  D.M.,  Walsh,  P.C.,  Epstein,  J.I.  &  Pearson,  J.D.  2001,  

"ʺContemporary  update  of  prostate  cancer  staging  nomograms  (Partin  Tables)  for  the  new  millennium"ʺ,  Urology,  vol.  58,  no.  6,  pp.  843-­‐‑848.  

 Pasanen,  A.K.,  Kuitunen,  H.,  Haapasaari,  K.M.,  Karihtala,  P.,  Kyllönen,  H.,  Soini,  Y.,  

Turpeenniemi-­‐‑Hujanen,  T.  &  Kuittinen,  O.  2012,  "ʺExpression  and  prognostic  evaluation  of  oxidative  stress  markers  in  an  immunohistochemical  study  of  B-­‐‑cell  derived  lymphomas"ʺ,  Leukemia  &  lymphoma,  vol.  53,  no.  4,  pp.  624-­‐‑631.  

 Paschos,  A.,  Pandya,  R.,  Duivenvoorden,  W.C.  &  Pinthus,  J.H.  2013,  "ʺOxidative  stress  in  

prostate  cancer:  changing  research  concepts  towards  a  novel  paradigm  for  prevention  and  therapeutics"ʺ,  Prostate  cancer  and  prostatic  diseases,  vol.  16,  no.  3,  pp.  217-­‐‑225.  

 Paul,  A.,  Ploussard,  G.,  Nicolaiew,  N.,  Xylinas,  E.,  Gillion,  N.,  de  la  Taille,  A.,  Vordos,  D.,  

Hoznek,  A.,  Yiou,  R.,  Abbou,  C.C.  &  Salomon,  L.  2010,  "ʺOncologic  outcome  after  extraperitoneal  laparoscopic  radical  prostatectomy:  midterm  follow-­‐‑up  of  1115  procedures"ʺ,  European  urology,  vol.  57,  no.  2,  pp.  267-­‐‑272.  

 Pettazzoni,  P.,  Ciamporcero,  E.,  Medana,  C.,  Pizzimenti,  S.,  Dal  Bello,  F.,  Minero,  V.G.,  

Toaldo,  C.,  Minelli,  R.,  Uchida,  K.,  Dianzani,  M.U.,  Pili,  R.  &  Barrera,  G.  2011,  "ʺNuclear  factor  erythroid  2-­‐‑related  factor-­‐‑2  activity  controls  4-­‐‑hydroxynonenal  metabolism  and  activity  in  prostate  cancer  cells"ʺ,  Free  radical  biology  &  medicine,  vol.  51,  no.  8,  pp.  1610-­‐‑1618.  

 Ploussard,  G.,  Staerman,  F.,  Pierrevelcin,  J.,  Saad,  R.,  Beauval,  J.B.,  Roupret,  M.,  Audenet,  F.,  

Peyromaure,  M.,  Delongchamps,  N.B.,  Vincendeau,  S.,  Fardoun,  T.,  Rigaud,  J.,  Villers,  A.,  Bastide,  C.,  Soulie,  M.,  Salomon,  L.  &  Committee  of  Cancerology  of  the  Association  of  French  Urology  2013,  "ʺPredictive  factors  of  oncologic  outcomes  in  patients  who  do  not  achieve  undetectable  prostate  specific  antigen  after  radical  prostatectomy"ʺ,  The  Journal  of  urology,  vol.  190,  no.  5,  pp.  1750-­‐‑1756.  

 

Page 72: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

52  

 

Porter,  C.R.,  Kodama,  K.,  Gibbons,  R.P.,  Correa,  R.,Jr,  Chun,  F.K.,  Perrotte,  P.  &  Karakiewicz,  P.I.  2006,  "ʺ25-­‐‑Year  Prostate  Cancer  Control  and  Survival  Outcomes:  a  40-­‐‑Year  Radical  Prostatectomy  Single  Institution  Series"ʺ,  The  Journal  of  urology,  vol.  176,  no.  2,  pp.  569-­‐‑574.  

 Pound,  C.R.,  Partin,  A.W.,  Eisenberger,  M.A.,  Chan,  D.W.,  Pearson,  J.D.  &  Walsh,  P.C.  1999,  

"ʺNatural  history  of  progression  after  PSA  elevation  following  radical  prostatectomy"ʺ,  Jama,  vol.  281,  no.  17,  pp.  1591-­‐‑1597.  

 Poynton,  R.A.  &  Hampton,  M.B.  2014,  "ʺPeroxiredoxins  as  biomarkers  of  oxidative  stress"ʺ,  

Biochimica  et  biophysica  acta,  vol.  1840,  no.  2,  pp.  906-­‐‑912.    Quinn,  D.I.,  Henshall,  S.M.  &  Sutherland,  R.L.  2005,  "ʺMolecular  markers  of  prostate  cancer  

outcome"ʺ,  European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  41,  no.  6,  pp.  858-­‐‑887.    Rabilloud,  T.,  Heller,  M.,  Gasnier,  F.,  Luche,  S.,  Rey,  C.,  Aebersold,  R.,  Benahmed,  M.,  

Louisot,  P.  &  Lunardi,  J.  2002,  "ʺProteomics  analysis  of  cellular  response  to  oxidative  stress.  Evidence  for  in  vivo  overoxidation  of  peroxiredoxins  at  their  active  site"ʺ,  The  Journal  of  biological  chemistry,  vol.  277,  no.  22,  pp.  19396-­‐‑19401.  

 Ramesh,  A.,  Varghese,  S.S.,  Doraiswamy,  J.  &  Malaiappan,  S.  2014,  "ʺRole  of  sulfiredoxin  in  

systemic  diseases  influenced  by  oxidative  stress"ʺ,  Redox  biology,  vol.  2C,  pp.  1023-­‐‑1028.    Ramos-­‐‑Gomez,  M.,  Kwak,  M.K.,  Dolan,  P.M.,  Itoh,  K.,  Yamamoto,  M.,  Talalay,  P.  &  Kensler,  

T.W.  2001,  "ʺSensitivity  to  carcinogenesis  is  increased  and  chemoprotective  efficacy  of  enzyme  inducers  is  lost  in  nrf2  transcription  factor-­‐‑deficient  mice"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  98,  no.  6,  pp.  3410-­‐‑3415.  

 Ramsay,  C.,  Pickard,  R.,  Robertson,  C.,  Close,  A.,  Vale,  L.,  Armstrong,  N.,  Barocas,  D.A.,  

Eden,  C.G.,  Fraser,  C.,  Gurung,  T.,  Jenkinson,  D.,  Jia,  X.,  Lam,  T.B.,  Mowatt,  G.,  Neal,  D.E.,  Robinson,  M.C.,  Royle,  J.,  Rushton,  S.P.,  Sharma,  P.,  Shirley,  M.D.  &  Soomro,  N.  2012,  "ʺSystematic  review  and  economic  modelling  of  the  relative  clinical  benefit  and  cost-­‐‑effectiveness  of  laparoscopic  surgery  and  robotic  surgery  for  removal  of  the  prostate  in  men  with  localised  prostate  cancer"ʺ,  Health  technology  assessment  (Winchester,  England),  vol.  16,  no.  41,  pp.  1-­‐‑313.  

 Ray,  P.D.,  Huang,  B.W.  &  Tsuji,  Y.  2012,  "ʺReactive  oxygen  species  (ROS)  homeostasis  and  

redox  regulation  in  cellular  signaling"ʺ,  Cellular  signalling,  vol.  24,  no.  5,  pp.  981-­‐‑990.    Revelos,  K.,  Petraki,  C.,  Gregorakis,  A.,  Scorilas,  A.,  Papanastasiou,  P.  &  Koutsilieris,  M.  

2005,  "ʺImmunohistochemical  expression  of  Bcl2  is  an  independent  predictor  of  time-­‐‑to-­‐‑biochemical  failure  in  patients  with  clinically  localized  prostate  cancer  following  radical  prostatectomy"ʺ,  Anticancer  Research,  vol.  25,  no.  4,  pp.  3123-­‐‑3133.  

 Rhee,  S.G.  1999,  "ʺRedox  signaling:  hydrogen  peroxide  as  intracellular  messenger"ʺ,  

Experimental  &  molecular  medicine,  vol.  31,  no.  2,  pp.  53-­‐‑59.  

53    

 

Rhee,  S.G.,  Yang,  K.S.,  Kang,  S.W.,  Woo,  H.A.  &  Chang,  T.S.  2005,  "ʺControlled  elimination  of  intracellular  H(2)O(2):  regulation  of  peroxiredoxin,  catalase,  and  glutathione  peroxidase  via  post-­‐‑translational  modification"ʺ,  Antioxidants  &  redox  signaling,  vol.  7,  no.  5-­‐‑6,  pp.  619-­‐‑626.  

 Riaz,  M.,  Sieuwerts,  A.M.,  Look,  M.P.,  Timmermans,  M.A.,  Smid,  M.,  Foekens,  J.A.  &  

Martens,  J.W.  2012,  "ʺHigh  TWIST1  mRNA  expression  is  associated  with  poor  prognosis  in  lymph  node-­‐‑negative  and  estrogen  receptor-­‐‑positive  human  breast  cancer  and  is  co-­‐‑expressed  with  stromal  as  well  as  ECM  related  genes"ʺ,  Breast  cancer  research  :  BCR,  vol.  14,  no.  5,  pp.  R123.  

 Richardson,  T.,  McCanse,  W.,  Casale,  G.P.,  Huang,  D.,  Tian,  J.,  Elkahwaji,  J.E.,  Lele,  S.  &  

Hemstreet,  G.P.  2009,  "ʺTissue-­‐‑based  quantification  of  8-­‐‑hydroxy-­‐‑2'ʹ-­‐‑deoxyguanosine  in  human  prostate  biopsies  using  quantitative  fluorescence  imaging  analysis"ʺ,  Urology,  vol.  74,  no.  5,  pp.  1174-­‐‑1179.  

 Richie,  J.P.,  Catalona,  W.J.,  Ahmann,  F.R.,  Hudson,  M.A.,  Scardino,  P.T.,  Flanigan,  R.C.,  

deKernion,  J.B.,  Ratliff,  T.L.,  Kavoussi,  L.R.  &  Dalkin,  B.L.  1993,  "ʺEffect  of  patient  age  on  early  detection  of  prostate  cancer  with  serum  prostate-­‐‑specific  antigen  and  digital  rectal  examination"ʺ,  Urology,  vol.  42,  no.  4,  pp.  365-­‐‑374.  

 Riddell,  J.R.,  Bshara,  W.,  Moser,  M.T.,  Spernyak,  J.A.,  Foster,  B.A.  &  Gollnick,  S.O.  2011,  

"ʺPeroxiredoxin  1  controls  prostate  cancer  growth  through  Toll-­‐‑like  receptor  4-­‐‑dependent  regulation  of  tumor  vasculature"ʺ,  Cancer  research,  vol.  71,  no.  5,  pp.  1637-­‐‑1646.  

 Robinson,  J.W.,  Moritz,  S.  &  Fung,  T.  2002,  "ʺMeta-­‐‑analysis  of  rates  of  erectile  function  after  

treatment  of  localized  prostate  carcinoma"ʺ,  International  journal  of  radiation  oncology,  biology,  physics,  vol.  54,  no.  4,  pp.  1063-­‐‑1068.  

 Roehl,  K.A.,  Han,  M.,  Ramos,  C.G.,  Antenor,  J.A.  &  Catalona,  W.J.  2004,  "ʺCancer  

progression  and  survival  rates  following  anatomical  radical  retropubic  prostatectomy  in  3,478  consecutive  patients:  long-­‐‑term  results"ʺ,  The  Journal  of  urology,  vol.  172,  no.  3,  pp.  910-­‐‑914.  

 Ross,  J.S.,  Sheehan,  C.E.,  Hayner-­‐‑Buchan,  A.M.,  Ambros,  R.A.,  Kallakury,  B.V.,  Kaufman,  

R.P.,Jr,  Fisher,  H.A.,  Rifkin,  M.D.  &  Muraca,  P.J.  1997,  "ʺPrognostic  significance  of  HER-­‐‑2/neu  gene  amplification  status  by  fluorescence  in  situ  hybridization  of  prostate  carcinoma"ʺ,  Cancer,  vol.  79,  no.  11,  pp.  2162-­‐‑2170.  

 Sammon,  J.D.,  Trinh,  Q.D.,  Sukumar,  S.,  Ravi,  P.,  Friedman,  A.,  Sun,  M.,  Schmitges,  J.,  

Jeldres,  C.,  Jeong,  W.,  Mander,  N.,  Peabody,  J.O.,  Karakiewicz,  P.I.  &  Harris,  M.  2013,  "ʺRisk  factors  for  biochemical  recurrence  following  radical  perineal  prostatectomy  in  a  large  contemporary  series:  a  detailed  assessment  of  margin  extent  and  location"ʺ,  Urologic  oncology,  vol.  31,  no.  8,  pp.  1470-­‐‑1476.  

 

Page 73: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

52  

 

Porter,  C.R.,  Kodama,  K.,  Gibbons,  R.P.,  Correa,  R.,Jr,  Chun,  F.K.,  Perrotte,  P.  &  Karakiewicz,  P.I.  2006,  "ʺ25-­‐‑Year  Prostate  Cancer  Control  and  Survival  Outcomes:  a  40-­‐‑Year  Radical  Prostatectomy  Single  Institution  Series"ʺ,  The  Journal  of  urology,  vol.  176,  no.  2,  pp.  569-­‐‑574.  

 Pound,  C.R.,  Partin,  A.W.,  Eisenberger,  M.A.,  Chan,  D.W.,  Pearson,  J.D.  &  Walsh,  P.C.  1999,  

"ʺNatural  history  of  progression  after  PSA  elevation  following  radical  prostatectomy"ʺ,  Jama,  vol.  281,  no.  17,  pp.  1591-­‐‑1597.  

 Poynton,  R.A.  &  Hampton,  M.B.  2014,  "ʺPeroxiredoxins  as  biomarkers  of  oxidative  stress"ʺ,  

Biochimica  et  biophysica  acta,  vol.  1840,  no.  2,  pp.  906-­‐‑912.    Quinn,  D.I.,  Henshall,  S.M.  &  Sutherland,  R.L.  2005,  "ʺMolecular  markers  of  prostate  cancer  

outcome"ʺ,  European  journal  of  cancer  (Oxford,  England  :  1990),  vol.  41,  no.  6,  pp.  858-­‐‑887.    Rabilloud,  T.,  Heller,  M.,  Gasnier,  F.,  Luche,  S.,  Rey,  C.,  Aebersold,  R.,  Benahmed,  M.,  

Louisot,  P.  &  Lunardi,  J.  2002,  "ʺProteomics  analysis  of  cellular  response  to  oxidative  stress.  Evidence  for  in  vivo  overoxidation  of  peroxiredoxins  at  their  active  site"ʺ,  The  Journal  of  biological  chemistry,  vol.  277,  no.  22,  pp.  19396-­‐‑19401.  

 Ramesh,  A.,  Varghese,  S.S.,  Doraiswamy,  J.  &  Malaiappan,  S.  2014,  "ʺRole  of  sulfiredoxin  in  

systemic  diseases  influenced  by  oxidative  stress"ʺ,  Redox  biology,  vol.  2C,  pp.  1023-­‐‑1028.    Ramos-­‐‑Gomez,  M.,  Kwak,  M.K.,  Dolan,  P.M.,  Itoh,  K.,  Yamamoto,  M.,  Talalay,  P.  &  Kensler,  

T.W.  2001,  "ʺSensitivity  to  carcinogenesis  is  increased  and  chemoprotective  efficacy  of  enzyme  inducers  is  lost  in  nrf2  transcription  factor-­‐‑deficient  mice"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  98,  no.  6,  pp.  3410-­‐‑3415.  

 Ramsay,  C.,  Pickard,  R.,  Robertson,  C.,  Close,  A.,  Vale,  L.,  Armstrong,  N.,  Barocas,  D.A.,  

Eden,  C.G.,  Fraser,  C.,  Gurung,  T.,  Jenkinson,  D.,  Jia,  X.,  Lam,  T.B.,  Mowatt,  G.,  Neal,  D.E.,  Robinson,  M.C.,  Royle,  J.,  Rushton,  S.P.,  Sharma,  P.,  Shirley,  M.D.  &  Soomro,  N.  2012,  "ʺSystematic  review  and  economic  modelling  of  the  relative  clinical  benefit  and  cost-­‐‑effectiveness  of  laparoscopic  surgery  and  robotic  surgery  for  removal  of  the  prostate  in  men  with  localised  prostate  cancer"ʺ,  Health  technology  assessment  (Winchester,  England),  vol.  16,  no.  41,  pp.  1-­‐‑313.  

 Ray,  P.D.,  Huang,  B.W.  &  Tsuji,  Y.  2012,  "ʺReactive  oxygen  species  (ROS)  homeostasis  and  

redox  regulation  in  cellular  signaling"ʺ,  Cellular  signalling,  vol.  24,  no.  5,  pp.  981-­‐‑990.    Revelos,  K.,  Petraki,  C.,  Gregorakis,  A.,  Scorilas,  A.,  Papanastasiou,  P.  &  Koutsilieris,  M.  

2005,  "ʺImmunohistochemical  expression  of  Bcl2  is  an  independent  predictor  of  time-­‐‑to-­‐‑biochemical  failure  in  patients  with  clinically  localized  prostate  cancer  following  radical  prostatectomy"ʺ,  Anticancer  Research,  vol.  25,  no.  4,  pp.  3123-­‐‑3133.  

 Rhee,  S.G.  1999,  "ʺRedox  signaling:  hydrogen  peroxide  as  intracellular  messenger"ʺ,  

Experimental  &  molecular  medicine,  vol.  31,  no.  2,  pp.  53-­‐‑59.  

53    

 

Rhee,  S.G.,  Yang,  K.S.,  Kang,  S.W.,  Woo,  H.A.  &  Chang,  T.S.  2005,  "ʺControlled  elimination  of  intracellular  H(2)O(2):  regulation  of  peroxiredoxin,  catalase,  and  glutathione  peroxidase  via  post-­‐‑translational  modification"ʺ,  Antioxidants  &  redox  signaling,  vol.  7,  no.  5-­‐‑6,  pp.  619-­‐‑626.  

 Riaz,  M.,  Sieuwerts,  A.M.,  Look,  M.P.,  Timmermans,  M.A.,  Smid,  M.,  Foekens,  J.A.  &  

Martens,  J.W.  2012,  "ʺHigh  TWIST1  mRNA  expression  is  associated  with  poor  prognosis  in  lymph  node-­‐‑negative  and  estrogen  receptor-­‐‑positive  human  breast  cancer  and  is  co-­‐‑expressed  with  stromal  as  well  as  ECM  related  genes"ʺ,  Breast  cancer  research  :  BCR,  vol.  14,  no.  5,  pp.  R123.  

 Richardson,  T.,  McCanse,  W.,  Casale,  G.P.,  Huang,  D.,  Tian,  J.,  Elkahwaji,  J.E.,  Lele,  S.  &  

Hemstreet,  G.P.  2009,  "ʺTissue-­‐‑based  quantification  of  8-­‐‑hydroxy-­‐‑2'ʹ-­‐‑deoxyguanosine  in  human  prostate  biopsies  using  quantitative  fluorescence  imaging  analysis"ʺ,  Urology,  vol.  74,  no.  5,  pp.  1174-­‐‑1179.  

 Richie,  J.P.,  Catalona,  W.J.,  Ahmann,  F.R.,  Hudson,  M.A.,  Scardino,  P.T.,  Flanigan,  R.C.,  

deKernion,  J.B.,  Ratliff,  T.L.,  Kavoussi,  L.R.  &  Dalkin,  B.L.  1993,  "ʺEffect  of  patient  age  on  early  detection  of  prostate  cancer  with  serum  prostate-­‐‑specific  antigen  and  digital  rectal  examination"ʺ,  Urology,  vol.  42,  no.  4,  pp.  365-­‐‑374.  

 Riddell,  J.R.,  Bshara,  W.,  Moser,  M.T.,  Spernyak,  J.A.,  Foster,  B.A.  &  Gollnick,  S.O.  2011,  

"ʺPeroxiredoxin  1  controls  prostate  cancer  growth  through  Toll-­‐‑like  receptor  4-­‐‑dependent  regulation  of  tumor  vasculature"ʺ,  Cancer  research,  vol.  71,  no.  5,  pp.  1637-­‐‑1646.  

 Robinson,  J.W.,  Moritz,  S.  &  Fung,  T.  2002,  "ʺMeta-­‐‑analysis  of  rates  of  erectile  function  after  

treatment  of  localized  prostate  carcinoma"ʺ,  International  journal  of  radiation  oncology,  biology,  physics,  vol.  54,  no.  4,  pp.  1063-­‐‑1068.  

 Roehl,  K.A.,  Han,  M.,  Ramos,  C.G.,  Antenor,  J.A.  &  Catalona,  W.J.  2004,  "ʺCancer  

progression  and  survival  rates  following  anatomical  radical  retropubic  prostatectomy  in  3,478  consecutive  patients:  long-­‐‑term  results"ʺ,  The  Journal  of  urology,  vol.  172,  no.  3,  pp.  910-­‐‑914.  

 Ross,  J.S.,  Sheehan,  C.E.,  Hayner-­‐‑Buchan,  A.M.,  Ambros,  R.A.,  Kallakury,  B.V.,  Kaufman,  

R.P.,Jr,  Fisher,  H.A.,  Rifkin,  M.D.  &  Muraca,  P.J.  1997,  "ʺPrognostic  significance  of  HER-­‐‑2/neu  gene  amplification  status  by  fluorescence  in  situ  hybridization  of  prostate  carcinoma"ʺ,  Cancer,  vol.  79,  no.  11,  pp.  2162-­‐‑2170.  

 Sammon,  J.D.,  Trinh,  Q.D.,  Sukumar,  S.,  Ravi,  P.,  Friedman,  A.,  Sun,  M.,  Schmitges,  J.,  

Jeldres,  C.,  Jeong,  W.,  Mander,  N.,  Peabody,  J.O.,  Karakiewicz,  P.I.  &  Harris,  M.  2013,  "ʺRisk  factors  for  biochemical  recurrence  following  radical  perineal  prostatectomy  in  a  large  contemporary  series:  a  detailed  assessment  of  margin  extent  and  location"ʺ,  Urologic  oncology,  vol.  31,  no.  8,  pp.  1470-­‐‑1476.  

 

Page 74: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

54  

 

Sanda,  M.G.,  Dunn,  R.L.,  Michalski,  J.,  Sandler,  H.M.,  Northouse,  L.,  Hembroff,  L.,  Lin,  X.,  Greenfield,  T.K.,  Litwin,  M.S.,  Saigal,  C.S.,  Mahadevan,  A.,  Klein,  E.,  Kibel,  A.,  Pisters,  L.L.,  Kuban,  D.,  Kaplan,  I.,  Wood,  D.,  Ciezki,  J.,  Shah,  N.  &  Wei,  J.T.  2008,  "ʺQuality  of  life  and  satisfaction  with  outcome  among  prostate-­‐‑cancer  survivors"ʺ,  The  New  England  journal  of  medicine,  vol.  358,  no.  12,  pp.  1250-­‐‑1261.  

 Santoni,  M.,  Scarpelli,  M.,  Mazzucchelli,  R.,  Lopez-­‐‑Beltran,  A.,  Cheng,  L.,  Epstein,  J.I.,  

Cascinu,  S.,  Briganti,  A.,  Catto,  J.W.,  Montorsi,  F.  &  Montironi,  R.  2015,  "ʺCurrent  Histopathologic  and  Molecular  Characterisations  of  Prostate  Cancer:  Towards  Individualised  Prognosis  and  Therapies"ʺ,  European  urology,  .  

 Schroder,  F.H.,  Hugosson,  J.,  Carlsson,  S.,  Tammela,  T.,  Määttänen,  L.,  Auvinen,  A.,  

Kwiatkowski,  M.,  Recker,  F.  &  Roobol,  M.J.  2012,  "ʺScreening  for  prostate  cancer  decreases  the  risk  of  developing  metastatic  disease:  findings  from  the  European  Randomized  Study  of  Screening  for  Prostate  Cancer  (ERSPC)"ʺ,  European  urology,  vol.  62,  no.  5,  pp.  745-­‐‑752.  

 Shariat,  S.F.  &  Roehrborn,  C.G.  2008,  "ʺUsing  biopsy  to  detect  prostate  cancer"ʺ,  Reviews  in  

urology,  vol.  10,  no.  4,  pp.  262-­‐‑280.    Shibata,  K.,  Kajiyama,  H.,  Ino,  K.,  Terauchi,  M.,  Yamamoto,  E.,  Nawa,  A.,  Nomura,  S.  &  

Kikkawa,  F.  2008a,  "ʺTwist  expression  in  patients  with  cervical  cancer  is  associated  with  poor  disease  outcome"ʺ,  Annals  of  Oncology  :  Official  Journal  of  the  European  Society  for  Medical  Oncology  /  ESMO,  vol.  19,  no.  1,  pp.  81-­‐‑85.  

 Shibata,  T.,  Ohta,  T.,  Tong,  K.I.,  Kokubu,  A.,  Odogawa,  R.,  Tsuta,  K.,  Asamura,  H.,  

Yamamoto,  M.  &  Hirohashi,  S.  2008b,  "ʺCancer  related  mutations  in  NRF2  impair  its  recognition  by  Keap1-­‐‑Cul3  E3  ligase  and  promote  malignancy"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  105,  no.  36,  pp.  13568-­‐‑13573.  

 Shiota,  M.,  Kashiwagi,  E.,  Yokomizo,  A.,  Takeuchi,  A.,  Dejima,  T.,  Song,  Y.,  Tatsugami,  K.,  

Inokuchi,  J.,  Uchiumi,  T.  &  Naito,  S.  2013,  "ʺInteraction  between  docetaxel  resistance  and  castration  resistance  in  prostate  cancer:  implications  of  Twist1,  YB-­‐‑1,  and  androgen  receptor"ʺ,  The  Prostate,  vol.  73,  no.  12,  pp.  1336-­‐‑1344.  

 Shiota,  M.,  Yokomizo,  A.,  Kashiwagi,  E.,  Takeuchi,  A.,  Fujimoto,  N.,  Uchiumi,  T.  &  Naito,  S.  

2011,  "ʺPeroxiredoxin  2  in  the  nucleus  and  cytoplasm  distinctly  regulates  androgen  receptor  activity  in  prostate  cancer  cells"ʺ,  Free  radical  biology  &  medicine,  vol.  51,  no.  1,  pp.  78-­‐‑87.  

 Shiota,  M.,  Yokomizo,  A.,  Tada,  Y.,  Inokuchi,  J.,  Kashiwagi,  E.,  Masubuchi,  D.,  Eto,  M.,  

Uchiumi,  T.  &  Naito,  S.  2010,  "ʺCastration  resistance  of  prostate  cancer  cells  caused  by  castration-­‐‑induced  oxidative  stress  through  Twist1  and  androgen  receptor  overexpression"ʺ,  Oncogene,  vol.  29,  no.  2,  pp.  237-­‐‑250.  

 

55    

 

Shiota,  M.,  Yokomizo,  A.,  Takeuchi,  A.,  Imada,  K.,  Kashiwagi,  E.,  Song,  Y.,  Inokuchi,  J.,  Tatsugami,  K.,  Uchiumi,  T.  &  Naito,  S.  2014,  "ʺInhibition  of  protein  kinase  C/Twist1  signaling  augments  anticancer  effects  of  androgen  deprivation  and  enzalutamide  in  prostate  cancer"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  20,  no.  4,  pp.  951-­‐‑961.  

 Shukla-­‐‑Dave,  A.,  Hricak,  H.,  Ishill,  N.,  Moskowitz,  C.S.,  Drobnjak,  M.,  Reuter,  V.E.,  Zakian,  

K.L.,  Scardino,  P.T.  &  Cordon-­‐‑Cardo,  C.  2009,  "ʺPrediction  of  prostate  cancer  recurrence  using  magnetic  resonance  imaging  and  molecular  profiles"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  15,  no.  11,  pp.  3842-­‐‑3849.  

 Siegel,  R.,  Ma,  J.,  Zou  Zhaohui  Z.  &  Jemal,  A.  2014,  "ʺCancer  statistics,  2014"ʺ,  CA:  a  cancer  

journal  for  clinicians,  vol.  64,  no.  1,  pp.  9-­‐‑29.    Sobin,  L.H.,  Wittekind,  C.,  Gospodarowicz,  M.K.  &  International  Union  Against  Cancer  

2010,  TNM  classification  of  malignant  tumours,  7th  ed.  2009  edn,  Wiley-­‐‑Blackwell,  Oxford.    Soini,  Y.,  Haapasaari,  K.M.,  Vaarala,  M.H.,  Turpeenniemi-­‐‑Hujanen,  T.,  Karja,  V.  &  

Karihtala,  P.  2011,  "ʺ8-­‐‑Hydroxydeguanosine  and  Nitrotyrosine  are  Prognostic  Factors  in  Urinary  Bladder  Carcinoma"ʺ,  International  journal  of  clinical  and  experimental  pathology,  vol.  4,  no.  3,  pp.  267-­‐‑275.  

 Soini,  Y.,  Kallio,  J.P.,  Hirvikoski,  P.,  Helin,  H.,  Kellokumpu-­‐‑Lehtinen,  P.,  Kang,  S.W.,  

Tammela,  T.L.,  Peltoniemi,  M.,  Martikainen,  P.M.  &  Kinnula,  V.L.  2006,  "ʺOxidative/nitrosative  stress  and  peroxiredoxin  2  are  associated  with  grade  and  prognosis  of  human  renal  carcinoma"ʺ,  APMIS  :  Acta  Pathologica,  Microbiologica,  et  Immunologica  Scandinavica,  vol.  114,  no.  5,  pp.  329-­‐‑337.  

 Soini,  Y.,  Tuhkanen,  H.,  Sironen,  R.,  Virtanen,  I.,  Kataja,  V.,  Auvinen,  P.,  Mannermaa,  A.  &  

Kosma,  V.M.  2011,  "ʺTranscription  factors  zeb1,  twist  and  snai1  in  breast  carcinoma"ʺ,  BMC  cancer,  vol.  11,  pp.  73-­‐‑2407-­‐‑11-­‐‑73.  

 Soloway,  M.S.,  Soloway,  C.T.,  Eldefrawy,  A.,  Acosta,  K.,  Kava,  B.  &  Manoharan,  M.  2010,  

"ʺCareful  selection  and  close  monitoring  of  low-­‐‑risk  prostate  cancer  patients  on  active  surveillance  minimizes  the  need  for  treatment"ʺ,  European  urology,  vol.  58,  no.  6,  pp.  831-­‐‑835.  

 Song,  Y.H.,  Shiota,  M.,  Yokomizo,  A.,  Uchiumi,  T.,  Kiyoshima,  K.,  Kuroiwa,  K.,  Oda,  Y.  &  

Naito,  S.  2014,  "ʺTwist1  and  Y-­‐‑box-­‐‑binding  protein-­‐‑1  are  potential  prognostic  factors  in  bladder  cancer"ʺ,  Urologic  oncology,  vol.  32,  no.  1,  pp.  31.e1-­‐‑31.e7.  

 Stephenson,  A.J.,  Kattan,  M.W.,  Eastham,  J.A.,  Dotan,  Z.A.,  Bianco,  F.J.,Jr,  Lilja,  H.  &  

Scardino,  P.T.  2006,  "ʺDefining  biochemical  recurrence  of  prostate  cancer  after  radical  prostatectomy:  a  proposal  for  a  standardized  definition"ʺ,  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  24,  no.  24,  pp.  3973-­‐‑3978.  

Page 75: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

54  

 

Sanda,  M.G.,  Dunn,  R.L.,  Michalski,  J.,  Sandler,  H.M.,  Northouse,  L.,  Hembroff,  L.,  Lin,  X.,  Greenfield,  T.K.,  Litwin,  M.S.,  Saigal,  C.S.,  Mahadevan,  A.,  Klein,  E.,  Kibel,  A.,  Pisters,  L.L.,  Kuban,  D.,  Kaplan,  I.,  Wood,  D.,  Ciezki,  J.,  Shah,  N.  &  Wei,  J.T.  2008,  "ʺQuality  of  life  and  satisfaction  with  outcome  among  prostate-­‐‑cancer  survivors"ʺ,  The  New  England  journal  of  medicine,  vol.  358,  no.  12,  pp.  1250-­‐‑1261.  

 Santoni,  M.,  Scarpelli,  M.,  Mazzucchelli,  R.,  Lopez-­‐‑Beltran,  A.,  Cheng,  L.,  Epstein,  J.I.,  

Cascinu,  S.,  Briganti,  A.,  Catto,  J.W.,  Montorsi,  F.  &  Montironi,  R.  2015,  "ʺCurrent  Histopathologic  and  Molecular  Characterisations  of  Prostate  Cancer:  Towards  Individualised  Prognosis  and  Therapies"ʺ,  European  urology,  .  

 Schroder,  F.H.,  Hugosson,  J.,  Carlsson,  S.,  Tammela,  T.,  Määttänen,  L.,  Auvinen,  A.,  

Kwiatkowski,  M.,  Recker,  F.  &  Roobol,  M.J.  2012,  "ʺScreening  for  prostate  cancer  decreases  the  risk  of  developing  metastatic  disease:  findings  from  the  European  Randomized  Study  of  Screening  for  Prostate  Cancer  (ERSPC)"ʺ,  European  urology,  vol.  62,  no.  5,  pp.  745-­‐‑752.  

 Shariat,  S.F.  &  Roehrborn,  C.G.  2008,  "ʺUsing  biopsy  to  detect  prostate  cancer"ʺ,  Reviews  in  

urology,  vol.  10,  no.  4,  pp.  262-­‐‑280.    Shibata,  K.,  Kajiyama,  H.,  Ino,  K.,  Terauchi,  M.,  Yamamoto,  E.,  Nawa,  A.,  Nomura,  S.  &  

Kikkawa,  F.  2008a,  "ʺTwist  expression  in  patients  with  cervical  cancer  is  associated  with  poor  disease  outcome"ʺ,  Annals  of  Oncology  :  Official  Journal  of  the  European  Society  for  Medical  Oncology  /  ESMO,  vol.  19,  no.  1,  pp.  81-­‐‑85.  

 Shibata,  T.,  Ohta,  T.,  Tong,  K.I.,  Kokubu,  A.,  Odogawa,  R.,  Tsuta,  K.,  Asamura,  H.,  

Yamamoto,  M.  &  Hirohashi,  S.  2008b,  "ʺCancer  related  mutations  in  NRF2  impair  its  recognition  by  Keap1-­‐‑Cul3  E3  ligase  and  promote  malignancy"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  105,  no.  36,  pp.  13568-­‐‑13573.  

 Shiota,  M.,  Kashiwagi,  E.,  Yokomizo,  A.,  Takeuchi,  A.,  Dejima,  T.,  Song,  Y.,  Tatsugami,  K.,  

Inokuchi,  J.,  Uchiumi,  T.  &  Naito,  S.  2013,  "ʺInteraction  between  docetaxel  resistance  and  castration  resistance  in  prostate  cancer:  implications  of  Twist1,  YB-­‐‑1,  and  androgen  receptor"ʺ,  The  Prostate,  vol.  73,  no.  12,  pp.  1336-­‐‑1344.  

 Shiota,  M.,  Yokomizo,  A.,  Kashiwagi,  E.,  Takeuchi,  A.,  Fujimoto,  N.,  Uchiumi,  T.  &  Naito,  S.  

2011,  "ʺPeroxiredoxin  2  in  the  nucleus  and  cytoplasm  distinctly  regulates  androgen  receptor  activity  in  prostate  cancer  cells"ʺ,  Free  radical  biology  &  medicine,  vol.  51,  no.  1,  pp.  78-­‐‑87.  

 Shiota,  M.,  Yokomizo,  A.,  Tada,  Y.,  Inokuchi,  J.,  Kashiwagi,  E.,  Masubuchi,  D.,  Eto,  M.,  

Uchiumi,  T.  &  Naito,  S.  2010,  "ʺCastration  resistance  of  prostate  cancer  cells  caused  by  castration-­‐‑induced  oxidative  stress  through  Twist1  and  androgen  receptor  overexpression"ʺ,  Oncogene,  vol.  29,  no.  2,  pp.  237-­‐‑250.  

 

55    

 

Shiota,  M.,  Yokomizo,  A.,  Takeuchi,  A.,  Imada,  K.,  Kashiwagi,  E.,  Song,  Y.,  Inokuchi,  J.,  Tatsugami,  K.,  Uchiumi,  T.  &  Naito,  S.  2014,  "ʺInhibition  of  protein  kinase  C/Twist1  signaling  augments  anticancer  effects  of  androgen  deprivation  and  enzalutamide  in  prostate  cancer"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  20,  no.  4,  pp.  951-­‐‑961.  

 Shukla-­‐‑Dave,  A.,  Hricak,  H.,  Ishill,  N.,  Moskowitz,  C.S.,  Drobnjak,  M.,  Reuter,  V.E.,  Zakian,  

K.L.,  Scardino,  P.T.  &  Cordon-­‐‑Cardo,  C.  2009,  "ʺPrediction  of  prostate  cancer  recurrence  using  magnetic  resonance  imaging  and  molecular  profiles"ʺ,  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer  Research,  vol.  15,  no.  11,  pp.  3842-­‐‑3849.  

 Siegel,  R.,  Ma,  J.,  Zou  Zhaohui  Z.  &  Jemal,  A.  2014,  "ʺCancer  statistics,  2014"ʺ,  CA:  a  cancer  

journal  for  clinicians,  vol.  64,  no.  1,  pp.  9-­‐‑29.    Sobin,  L.H.,  Wittekind,  C.,  Gospodarowicz,  M.K.  &  International  Union  Against  Cancer  

2010,  TNM  classification  of  malignant  tumours,  7th  ed.  2009  edn,  Wiley-­‐‑Blackwell,  Oxford.    Soini,  Y.,  Haapasaari,  K.M.,  Vaarala,  M.H.,  Turpeenniemi-­‐‑Hujanen,  T.,  Karja,  V.  &  

Karihtala,  P.  2011,  "ʺ8-­‐‑Hydroxydeguanosine  and  Nitrotyrosine  are  Prognostic  Factors  in  Urinary  Bladder  Carcinoma"ʺ,  International  journal  of  clinical  and  experimental  pathology,  vol.  4,  no.  3,  pp.  267-­‐‑275.  

 Soini,  Y.,  Kallio,  J.P.,  Hirvikoski,  P.,  Helin,  H.,  Kellokumpu-­‐‑Lehtinen,  P.,  Kang,  S.W.,  

Tammela,  T.L.,  Peltoniemi,  M.,  Martikainen,  P.M.  &  Kinnula,  V.L.  2006,  "ʺOxidative/nitrosative  stress  and  peroxiredoxin  2  are  associated  with  grade  and  prognosis  of  human  renal  carcinoma"ʺ,  APMIS  :  Acta  Pathologica,  Microbiologica,  et  Immunologica  Scandinavica,  vol.  114,  no.  5,  pp.  329-­‐‑337.  

 Soini,  Y.,  Tuhkanen,  H.,  Sironen,  R.,  Virtanen,  I.,  Kataja,  V.,  Auvinen,  P.,  Mannermaa,  A.  &  

Kosma,  V.M.  2011,  "ʺTranscription  factors  zeb1,  twist  and  snai1  in  breast  carcinoma"ʺ,  BMC  cancer,  vol.  11,  pp.  73-­‐‑2407-­‐‑11-­‐‑73.  

 Soloway,  M.S.,  Soloway,  C.T.,  Eldefrawy,  A.,  Acosta,  K.,  Kava,  B.  &  Manoharan,  M.  2010,  

"ʺCareful  selection  and  close  monitoring  of  low-­‐‑risk  prostate  cancer  patients  on  active  surveillance  minimizes  the  need  for  treatment"ʺ,  European  urology,  vol.  58,  no.  6,  pp.  831-­‐‑835.  

 Song,  Y.H.,  Shiota,  M.,  Yokomizo,  A.,  Uchiumi,  T.,  Kiyoshima,  K.,  Kuroiwa,  K.,  Oda,  Y.  &  

Naito,  S.  2014,  "ʺTwist1  and  Y-­‐‑box-­‐‑binding  protein-­‐‑1  are  potential  prognostic  factors  in  bladder  cancer"ʺ,  Urologic  oncology,  vol.  32,  no.  1,  pp.  31.e1-­‐‑31.e7.  

 Stephenson,  A.J.,  Kattan,  M.W.,  Eastham,  J.A.,  Dotan,  Z.A.,  Bianco,  F.J.,Jr,  Lilja,  H.  &  

Scardino,  P.T.  2006,  "ʺDefining  biochemical  recurrence  of  prostate  cancer  after  radical  prostatectomy:  a  proposal  for  a  standardized  definition"ʺ,  Journal  of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  24,  no.  24,  pp.  3973-­‐‑3978.  

Page 76: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

56  

 

Strohmeyer,  D.,  Rossing,  C.,  Bauerfeind,  A.,  Kaufmann,  O.,  Schlechte,  H.,  Bartsch,  G.  &  Loening,  S.  2000,  "ʺVascular  endothelial  growth  factor  and  its  correlation  with  angiogenesis  and  p53  expression  in  prostate  cancer"ʺ,  The  Prostate,  vol.  45,  no.  3,  pp.  216-­‐‑224.  

 Sun,  Q.K.,  Zhu,  J.Y.,  Wang,  W.,  Lv,  Y.,  Zhou,  H.C.,  Yu,  J.H.,  Xu,  G.L.,  Ma,  J.L.,  Zhong,  W.  &  

Jia,  W.D.  2014,  "ʺDiagnostic  and  prognostic  significance  of  peroxiredoxin  1  expression  in  human  hepatocellular  carcinoma"ʺ,  Medical  oncology  (Northwood,  London,  England),  vol.  31,  no.  1,  pp.  786-­‐‑013-­‐‑0786-­‐‑2.  Epub  2013  Dec  3.  

 Sweat,  S.D.,  Pacelli,  A.,  Bergstralh,  E.J.,  Slezak,  J.M.,  Cheng,  L.  &  Bostwick,  D.G.  1999,  

"ʺAndrogen  receptor  expression  in  prostate  cancer  lymph  node  metastases  is  predictive  of  outcome  after  surgery"ʺ,  The  Journal  of  urology,  vol.  161,  no.  4,  pp.  1233-­‐‑1237.  

 Takeda,  H.,  Akakura,  K.,  Masai,  M.,  Akimoto,  S.,  Yatani,  R.  &  Shimazaki,  J.  1996,  

"ʺAndrogen  receptor  content  of  prostate  carcinoma  cells  estimated  by  immunohistochemistry  is  related  to  prognosis  of  patients  with  stage  D2  prostate  carcinoma"ʺ,  Cancer,  vol.  77,  no.  5,  pp.  934-­‐‑940.  

 Tanaka,  M.,  Suzuki,  N.,  Nakatsu,  H.,  Murakami,  S.,  Matsuzaki,  O.  &  Shimazaki,  J.  2003,  

"ʺSignificance  of  capsular  attachment  and  invasion  of  cancer  tissues  in  prostate  cancer"ʺ,  International  journal  of  urology  :  official  journal  of  the  Japanese  Urological  Association,  vol.  10,  no.  6,  pp.  309-­‐‑314.  

 Theodoropoulos,  V.E.,  Tsigka,  A.,  Mihalopoulou,  A.,  Tsoukala,  V.,  Lazaris,  A.C.,  Patsouris,  

E.  &  Ghikonti,  I.  2005a,  "ʺEvaluation  of  neuroendocrine  staining  and  androgen  receptor  expression  in  incidental  prostatic  adenocarcinoma:  prognostic  implications"ʺ,  Urology,  vol.  66,  no.  4,  pp.  897-­‐‑902.  

 Thiery,  J.P.  2002,  "ʺEpithelial-­‐‑mesenchymal  transitions  in  tumour  progression"ʺ,  Nature  

reviews.Cancer,  vol.  2,  no.  6,  pp.  442-­‐‑454.    Thiery,  J.P.,  Acloque,  H.,  Huang,  R.Y.  &  Nieto,  M.A.  2009,  "ʺEpithelial-­‐‑mesenchymal  

transitions  in  development  and  disease"ʺ,  Cell,  vol.  139,  no.  5,  pp.  871-­‐‑890.    Thompson,  I.M.,  Goodman,  P.J.,  Tangen,  C.M.,  Lucia,  M.S.,  Miller,  G.J.,  Ford,  L.G.,  Lieber,  

M.M.,  Cespedes,  R.D.,  Atkins,  J.N.,  Lippman,  S.M.,  Carlin,  S.M.,  Ryan,  A.,  Szczepanek,  C.M.,  Crowley,  J.J.  &  Coltman,  C.A.,Jr  2003,  "ʺThe  influence  of  finasteride  on  the  development  of  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  349,  no.  3,  pp.  215-­‐‑224.  

 Thompson,  I.M.,  Pauler,  D.K.,  Goodman,  P.J.,  Tangen,  C.M.,  Lucia,  M.S.,  Parnes,  H.L.,  

Minasian,  L.M.,  Ford,  L.G.,  Lippman,  S.M.,  Crawford,  E.D.,  Crowley,  J.J.  &  Coltman,  C.A.,Jr  2004,  "ʺPrevalence  of  prostate  cancer  among  men  with  a  prostate-­‐‑specific  antigen  level  <  or  =4.0  ng  per  milliliter"ʺ,  The  New  England  journal  of  medicine,  vol.  350,  no.  22,  pp.  2239-­‐‑2246.  

57    

 

Thomsen,  F.B.,  Brasso,  K.,  Klotz,  L.H.,  Roder,  M.A.,  Berg,  K.D.  &  Iversen,  P.  2014,  "ʺActive  surveillance  for  clinically  localized  prostate  cancer-­‐‑-­‐‑a  systematic  review"ʺ,  Journal  of  surgical  oncology,  vol.  109,  no.  8,  pp.  830-­‐‑835.    Tsai,  J.H.,  Donaher,  J.L.,  Murphy,  D.A.,  Chau,  S.  &  Yang,  J.  2012,  "ʺSpatiotemporal  regulation  

of  epithelial-­‐‑mesenchymal  transition  is  essential  for  squamous  cell  carcinoma  metastasis"ʺ,  Cancer  cell,  vol.  22,  no.  6,  pp.  725-­‐‑736.  

 Ummanni,  R.,  Barreto,  F.,  Venz,  S.,  Scharf,  C.,  Barett,  C.,  Mannsperger,  H.A.,  Brase,  J.C.,  

Kuner,  R.,  Schlomm,  T.,  Sauter,  G.,  Sultmann,  H.,  Korf,  U.,  Bokemeyer,  C.,  Walther,  R.,  Brummendorf,  T.H.  &  Balabanov,  S.  2012,  "ʺPeroxiredoxins  3  and  4  are  overexpressed  in  prostate  cancer  tissue  and  affect  the  proliferation  of  prostate  cancer  cells  in  vitro"ʺ,  Journal  of  proteome  research,  vol.  11,  no.  4,  pp.  2452-­‐‑2466.  

 Valdman,  A.,  Haggarth,  L.,  Cheng,  L.,  Lopez-­‐‑Beltran,  A.,  Montironi,  R.,  Ekman,  P.  &  

Egevad,  L.  2009,  "ʺExpression  of  redox  pathway  enzymes  in  human  prostatic  tissue"ʺ,  Analytical  and  Quantitative  Cytology  and  Histology  /  the  International  Academy  of  Cytology  [and]  American  Society  of  Cytology,  vol.  31,  no.  6,  pp.  367-­‐‑374.  

 van  den  Bergh,  R.C.,  Roemeling,  S.,  Roobol,  M.J.,  Aus,  G.,  Hugosson,  J.,  Rannikko,  A.S.,  

Tammela,  T.L.,  Bangma,  C.H.  &  Schroder,  F.H.  2009,  "ʺOutcomes  of  men  with  screen-­‐‑detected  prostate  cancer  eligible  for  active  surveillance  who  were  managed  expectantly"ʺ,  European  urology,  vol.  55,  no.  1,  pp.  1-­‐‑8.  

 Walz,  J.,  Chun,  F.K.,  Klein,  E.A.,  Reuther,  A.,  Saad,  F.,  Graefen,  M.,  Huland,  H.  &  

Karakiewicz,  P.I.  2009,  "ʺNomogram  predicting  the  probability  of  early  recurrence  after  radical  prostatectomy  for  prostate  cancer"ʺ,  The  Journal  of  urology,  vol.  181,  no.  2,  pp.  601-­‐‑7;  discussion  607-­‐‑8.  

 Wei,  Q.,  Jiang,  H.,  Matthews,  C.P.  &  Colburn,  N.H.  2008,  "ʺSulfiredoxin  is  an  AP-­‐‑1  target  

gene  that  is  required  for  transformation  and  shows  elevated  expression  in  human  skin  malignancies"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  105,  no.  50,  pp.  19738-­‐‑19743.  

 Welty,  C.J.,  Cooperberg,  M.R.  &  Carroll,  P.R.  2014,  "ʺMeaningful  end  points  and  outcomes  in  

men  on  active  surveillance  for  early-­‐‑stage  prostate  cancer"ʺ,  Current  opinion  in  urology,  vol.  24,  no.  3,  pp.  288-­‐‑292.  

 Whitaker,  H.C.,  Patel,  D.,  Howat,  W.J.,  Warren,  A.Y.,  Kay,  J.D.,  Sangan,  T.,  Marioni,  J.C.,  

Mitchell,  J.,  Aldridge,  S.,  Luxton,  H.J.,  Massie,  C.,  Lynch,  A.G.  &  Neal,  D.E.  2013,  "ʺPeroxiredoxin-­‐‑3  is  overexpressed  in  prostate  cancer  and  promotes  cancer  cell  survival  by  protecting  cells  from  oxidative  stress"ʺ,  British  journal  of  cancer,  vol.  109,  no.  4,  pp.  983-­‐‑993.  

 Wilt,  T.J.,  Brawer,  M.K.,  Jones,  K.M.,  Barry,  M.J.,  Aronson,  W.J.,  Fox,  S.,  Gingrich,  J.R.,  Wei,  

J.T.,  Gilhooly,  P.,  Grob,  B.M.,  Nsouli,  I.,  Iyer,  P.,  Cartagena,  R.,  Snider,  G.,  Roehrborn,  

Page 77: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

56  

 

Strohmeyer,  D.,  Rossing,  C.,  Bauerfeind,  A.,  Kaufmann,  O.,  Schlechte,  H.,  Bartsch,  G.  &  Loening,  S.  2000,  "ʺVascular  endothelial  growth  factor  and  its  correlation  with  angiogenesis  and  p53  expression  in  prostate  cancer"ʺ,  The  Prostate,  vol.  45,  no.  3,  pp.  216-­‐‑224.  

 Sun,  Q.K.,  Zhu,  J.Y.,  Wang,  W.,  Lv,  Y.,  Zhou,  H.C.,  Yu,  J.H.,  Xu,  G.L.,  Ma,  J.L.,  Zhong,  W.  &  

Jia,  W.D.  2014,  "ʺDiagnostic  and  prognostic  significance  of  peroxiredoxin  1  expression  in  human  hepatocellular  carcinoma"ʺ,  Medical  oncology  (Northwood,  London,  England),  vol.  31,  no.  1,  pp.  786-­‐‑013-­‐‑0786-­‐‑2.  Epub  2013  Dec  3.  

 Sweat,  S.D.,  Pacelli,  A.,  Bergstralh,  E.J.,  Slezak,  J.M.,  Cheng,  L.  &  Bostwick,  D.G.  1999,  

"ʺAndrogen  receptor  expression  in  prostate  cancer  lymph  node  metastases  is  predictive  of  outcome  after  surgery"ʺ,  The  Journal  of  urology,  vol.  161,  no.  4,  pp.  1233-­‐‑1237.  

 Takeda,  H.,  Akakura,  K.,  Masai,  M.,  Akimoto,  S.,  Yatani,  R.  &  Shimazaki,  J.  1996,  

"ʺAndrogen  receptor  content  of  prostate  carcinoma  cells  estimated  by  immunohistochemistry  is  related  to  prognosis  of  patients  with  stage  D2  prostate  carcinoma"ʺ,  Cancer,  vol.  77,  no.  5,  pp.  934-­‐‑940.  

 Tanaka,  M.,  Suzuki,  N.,  Nakatsu,  H.,  Murakami,  S.,  Matsuzaki,  O.  &  Shimazaki,  J.  2003,  

"ʺSignificance  of  capsular  attachment  and  invasion  of  cancer  tissues  in  prostate  cancer"ʺ,  International  journal  of  urology  :  official  journal  of  the  Japanese  Urological  Association,  vol.  10,  no.  6,  pp.  309-­‐‑314.  

 Theodoropoulos,  V.E.,  Tsigka,  A.,  Mihalopoulou,  A.,  Tsoukala,  V.,  Lazaris,  A.C.,  Patsouris,  

E.  &  Ghikonti,  I.  2005a,  "ʺEvaluation  of  neuroendocrine  staining  and  androgen  receptor  expression  in  incidental  prostatic  adenocarcinoma:  prognostic  implications"ʺ,  Urology,  vol.  66,  no.  4,  pp.  897-­‐‑902.  

 Thiery,  J.P.  2002,  "ʺEpithelial-­‐‑mesenchymal  transitions  in  tumour  progression"ʺ,  Nature  

reviews.Cancer,  vol.  2,  no.  6,  pp.  442-­‐‑454.    Thiery,  J.P.,  Acloque,  H.,  Huang,  R.Y.  &  Nieto,  M.A.  2009,  "ʺEpithelial-­‐‑mesenchymal  

transitions  in  development  and  disease"ʺ,  Cell,  vol.  139,  no.  5,  pp.  871-­‐‑890.    Thompson,  I.M.,  Goodman,  P.J.,  Tangen,  C.M.,  Lucia,  M.S.,  Miller,  G.J.,  Ford,  L.G.,  Lieber,  

M.M.,  Cespedes,  R.D.,  Atkins,  J.N.,  Lippman,  S.M.,  Carlin,  S.M.,  Ryan,  A.,  Szczepanek,  C.M.,  Crowley,  J.J.  &  Coltman,  C.A.,Jr  2003,  "ʺThe  influence  of  finasteride  on  the  development  of  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  349,  no.  3,  pp.  215-­‐‑224.  

 Thompson,  I.M.,  Pauler,  D.K.,  Goodman,  P.J.,  Tangen,  C.M.,  Lucia,  M.S.,  Parnes,  H.L.,  

Minasian,  L.M.,  Ford,  L.G.,  Lippman,  S.M.,  Crawford,  E.D.,  Crowley,  J.J.  &  Coltman,  C.A.,Jr  2004,  "ʺPrevalence  of  prostate  cancer  among  men  with  a  prostate-­‐‑specific  antigen  level  <  or  =4.0  ng  per  milliliter"ʺ,  The  New  England  journal  of  medicine,  vol.  350,  no.  22,  pp.  2239-­‐‑2246.  

57    

 

Thomsen,  F.B.,  Brasso,  K.,  Klotz,  L.H.,  Roder,  M.A.,  Berg,  K.D.  &  Iversen,  P.  2014,  "ʺActive  surveillance  for  clinically  localized  prostate  cancer-­‐‑-­‐‑a  systematic  review"ʺ,  Journal  of  surgical  oncology,  vol.  109,  no.  8,  pp.  830-­‐‑835.    Tsai,  J.H.,  Donaher,  J.L.,  Murphy,  D.A.,  Chau,  S.  &  Yang,  J.  2012,  "ʺSpatiotemporal  regulation  

of  epithelial-­‐‑mesenchymal  transition  is  essential  for  squamous  cell  carcinoma  metastasis"ʺ,  Cancer  cell,  vol.  22,  no.  6,  pp.  725-­‐‑736.  

 Ummanni,  R.,  Barreto,  F.,  Venz,  S.,  Scharf,  C.,  Barett,  C.,  Mannsperger,  H.A.,  Brase,  J.C.,  

Kuner,  R.,  Schlomm,  T.,  Sauter,  G.,  Sultmann,  H.,  Korf,  U.,  Bokemeyer,  C.,  Walther,  R.,  Brummendorf,  T.H.  &  Balabanov,  S.  2012,  "ʺPeroxiredoxins  3  and  4  are  overexpressed  in  prostate  cancer  tissue  and  affect  the  proliferation  of  prostate  cancer  cells  in  vitro"ʺ,  Journal  of  proteome  research,  vol.  11,  no.  4,  pp.  2452-­‐‑2466.  

 Valdman,  A.,  Haggarth,  L.,  Cheng,  L.,  Lopez-­‐‑Beltran,  A.,  Montironi,  R.,  Ekman,  P.  &  

Egevad,  L.  2009,  "ʺExpression  of  redox  pathway  enzymes  in  human  prostatic  tissue"ʺ,  Analytical  and  Quantitative  Cytology  and  Histology  /  the  International  Academy  of  Cytology  [and]  American  Society  of  Cytology,  vol.  31,  no.  6,  pp.  367-­‐‑374.  

 van  den  Bergh,  R.C.,  Roemeling,  S.,  Roobol,  M.J.,  Aus,  G.,  Hugosson,  J.,  Rannikko,  A.S.,  

Tammela,  T.L.,  Bangma,  C.H.  &  Schroder,  F.H.  2009,  "ʺOutcomes  of  men  with  screen-­‐‑detected  prostate  cancer  eligible  for  active  surveillance  who  were  managed  expectantly"ʺ,  European  urology,  vol.  55,  no.  1,  pp.  1-­‐‑8.  

 Walz,  J.,  Chun,  F.K.,  Klein,  E.A.,  Reuther,  A.,  Saad,  F.,  Graefen,  M.,  Huland,  H.  &  

Karakiewicz,  P.I.  2009,  "ʺNomogram  predicting  the  probability  of  early  recurrence  after  radical  prostatectomy  for  prostate  cancer"ʺ,  The  Journal  of  urology,  vol.  181,  no.  2,  pp.  601-­‐‑7;  discussion  607-­‐‑8.  

 Wei,  Q.,  Jiang,  H.,  Matthews,  C.P.  &  Colburn,  N.H.  2008,  "ʺSulfiredoxin  is  an  AP-­‐‑1  target  

gene  that  is  required  for  transformation  and  shows  elevated  expression  in  human  skin  malignancies"ʺ,  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  vol.  105,  no.  50,  pp.  19738-­‐‑19743.  

 Welty,  C.J.,  Cooperberg,  M.R.  &  Carroll,  P.R.  2014,  "ʺMeaningful  end  points  and  outcomes  in  

men  on  active  surveillance  for  early-­‐‑stage  prostate  cancer"ʺ,  Current  opinion  in  urology,  vol.  24,  no.  3,  pp.  288-­‐‑292.  

 Whitaker,  H.C.,  Patel,  D.,  Howat,  W.J.,  Warren,  A.Y.,  Kay,  J.D.,  Sangan,  T.,  Marioni,  J.C.,  

Mitchell,  J.,  Aldridge,  S.,  Luxton,  H.J.,  Massie,  C.,  Lynch,  A.G.  &  Neal,  D.E.  2013,  "ʺPeroxiredoxin-­‐‑3  is  overexpressed  in  prostate  cancer  and  promotes  cancer  cell  survival  by  protecting  cells  from  oxidative  stress"ʺ,  British  journal  of  cancer,  vol.  109,  no.  4,  pp.  983-­‐‑993.  

 Wilt,  T.J.,  Brawer,  M.K.,  Jones,  K.M.,  Barry,  M.J.,  Aronson,  W.J.,  Fox,  S.,  Gingrich,  J.R.,  Wei,  

J.T.,  Gilhooly,  P.,  Grob,  B.M.,  Nsouli,  I.,  Iyer,  P.,  Cartagena,  R.,  Snider,  G.,  Roehrborn,  

Page 78: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

58  

 

C.,  Sharifi,  R.,  Blank,  W.,  Pandya,  P.,  Andriole,  G.L.,  Culkin,  D.,  Wheeler,  T.  &  Prostate  Cancer  Intervention  versus  Observation  Trial  (PIVOT)  Study  Group  2012,  "ʺRadical  prostatectomy  versus  observation  for  localized  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  367,  no.  3,  pp.  203-­‐‑213.  

Wiseman,  H.  &  Halliwell,  B.  1996,  "ʺDamage  to  DNA  by  reactive  oxygen  and  nitrogen  species:  role  in  inflammatory  disease  and  progression  to  cancer"ʺ,  The  Biochemical  journal,  vol.  313  (  Pt  1),  no.  Pt  1,  pp.  17-­‐‑29.  

 Woo,  H.A.,  Jeong,  W.,  Chang,  T.S.,  Park,  K.J.,  Park,  S.J.,  Yang,  J.S.  &  Rhee,  S.G.  2005,  

"ʺReduction  of  cysteine  sulfinic  acid  by  sulfiredoxin  is  specific  to  2-­‐‑cys  peroxiredoxins"ʺ,  The  Journal  of  biological  chemistry,  vol.  280,  no.  5,  pp.  3125-­‐‑3128.  

 Xu,  Y.,  Fang,  F.,  Miriyala,  S.,  Crooks,  P.A.,  Oberley,  T.D.,  Chaiswing,  L.,  Noel,  T.,  Holley,  

A.K.,  Zhao,  Y.,  Kiningham,  K.K.,  Clair,  D.K.  &  Clair,  W.H.  2013,  "ʺKEAP1  is  a  redox  sensitive  target  that  arbitrates  the  opposing  radiosensitive  effects  of  parthenolide  in  normal  and  cancer  cells"ʺ,  Cancer  research,  vol.  73,  no.  14,  pp.  4406-­‐‑4417.  

 Yang,  G.,  Timme,  T.L.,  Frolov,  A.,  Wheeler,  T.M.  &  Thompson,  T.C.  2005,  "ʺCombined  c-­‐‑Myc  

and  caveolin-­‐‑1  expression  in  human  prostate  carcinoma  predicts  prostate  carcinoma  progression"ʺ,  Cancer,  vol.  103,  no.  6,  pp.  1186-­‐‑1194.  

 Yang,  J.,  Mani,  S.A.,  Donaher,  J.L.,  Ramaswamy,  S.,  Itzykson,  R.A.,  Come,  C.,  Savagner,  P.,  

Gitelman,  I.,  Richardson,  A.  &  Weinberg,  R.A.  2004,  "ʺTwist,  a  master  regulator  of  morphogenesis,  plays  an  essential  role  in  tumor  metastasis"ʺ,  Cell,  vol.  117,  no.  7,  pp.  927-­‐‑939.  

Yossepowitch,  O.,  Bjartell,  A.,  Eastham,  J.A.,  Graefen,  M.,  Guillonneau,  B.D.,  Karakiewicz,  P.I.,  Montironi,  R.  &  Montorsi,  F.  2009,  "ʺPositive  surgical  margins  in  radical  prostatectomy:  outlining  the  problem  and  its  long-­‐‑term  consequences"ʺ,  European  urology,  vol.  55,  no.  1,  pp.  87-­‐‑99.  

 Yu,  S.,  Khor,  T.O.,  Cheung,  K.L.,  Li,  W.,  Wu,  T.Y.,  Huang,  Y.,  Foster,  B.A.,  Kan,  Y.W.  &  

Kong,  A.N.  2010,  "ʺNrf2  expression  is  regulated  by  epigenetic  mechanisms  in  prostate  cancer  of  TRAMP  mice"ʺ,  PloS  one,  vol.  5,  no.  1,  pp.  e8579.  

 Yuen,  H.F.,  Chua,  C.W.,  Chan,  Y.P.,  Wong,  Y.C.,  Wang,  X.  &  Chan,  K.W.  2007,  "ʺSignificance  

of  TWIST  and  E-­‐‑cadherin  expression  in  the  metastatic  progression  of  prostatic  cancer"ʺ,  Histopathology,  vol.  50,  no.  5,  pp.  648-­‐‑658.  

 Yuen,  H.F.,  Kwok,  W.K.,  Chan,  K.K.,  Chua,  C.W.,  Chan,  Y.P.,  Chu,  Y.Y.,  Wong,  Y.C.,  Wang,  

X.  &  Chan,  K.W.  2008,  "ʺTWIST  modulates  prostate  cancer  cell-­‐‑mediated  bone  cell  activity  and  is  upregulated  by  osteogenic  induction"ʺ,  Carcinogenesis,  vol.  29,  no.  8,  pp.  1509-­‐‑1518.  

 Zelefsky,  M.J.,  Levin,  E.J.,  Hunt,  M.,  Yamada,  Y.,  Shippy,  A.M.,  Jackson,  A.  &  Amols,  H.I.  

2008,  "ʺIncidence  of  late  rectal  and  urinary  toxicities  after  three-­‐‑dimensional  conformal  

59    

 

radiotherapy  and  intensity-­‐‑modulated  radiotherapy  for  localized  prostate  cancer"ʺ,  International  journal  of  radiation  oncology,  biology,  physics,  vol.  70,  no.  4,  pp.  1124-­‐‑1129.  

 Zhang,  P.,  Singh,  A.,  Yegnasubramanian,  S.,  Esopi,  D.,  Kombairaju,  P.,  Bodas,  M.,  Wu,  H.,  

Bova,  S.G.  &  Biswal,  S.  2010,  "ʺLoss  of  Kelch-­‐‑like  ECH-­‐‑associated  protein  1  function  in  prostate  cancer  cells  causes  chemoresistance  and  radioresistance  and  promotes  tumor  growth"ʺ,  Molecular  cancer  therapeutics,  vol.  9,  no.  2,  pp.  336-­‐‑346.  

 Zhao,  M.,  Xu,  H.,  Zhang,  B.,  Hong,  B.,  Yan,  W.  &  Zhang,  J.  2015,  "ʺImpact  of  nuclear  factor  

erythroid-­‐‑derived  2-­‐‑like  2  and  p62/sequestosome  expression  on  prognosis  of  patients  with  gliomas"ʺ,  Human  pathology,  vol.  46,  no.  6,  pp.  843-­‐‑849.  

 Zheng,  H.  &  Kang,  Y.  2014,  "ʺMultilayer  control  of  the  EMT  master  regulators"ʺ,  Oncogene,  

vol.  33,  no.  14,  pp.  1755-­‐‑1763.    Zielinski,  R.R.,  Eigl,  B.J.  &  Chi,  K.N.  2013,  "ʺTargeting  the  apoptosis  pathway  in  prostate  

cancer"ʺ,  Cancer  journal  (Sudbury,  Mass.),  vol.  19,  no.  

Page 79: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

58  

 

C.,  Sharifi,  R.,  Blank,  W.,  Pandya,  P.,  Andriole,  G.L.,  Culkin,  D.,  Wheeler,  T.  &  Prostate  Cancer  Intervention  versus  Observation  Trial  (PIVOT)  Study  Group  2012,  "ʺRadical  prostatectomy  versus  observation  for  localized  prostate  cancer"ʺ,  The  New  England  journal  of  medicine,  vol.  367,  no.  3,  pp.  203-­‐‑213.  

Wiseman,  H.  &  Halliwell,  B.  1996,  "ʺDamage  to  DNA  by  reactive  oxygen  and  nitrogen  species:  role  in  inflammatory  disease  and  progression  to  cancer"ʺ,  The  Biochemical  journal,  vol.  313  (  Pt  1),  no.  Pt  1,  pp.  17-­‐‑29.  

 Woo,  H.A.,  Jeong,  W.,  Chang,  T.S.,  Park,  K.J.,  Park,  S.J.,  Yang,  J.S.  &  Rhee,  S.G.  2005,  

"ʺReduction  of  cysteine  sulfinic  acid  by  sulfiredoxin  is  specific  to  2-­‐‑cys  peroxiredoxins"ʺ,  The  Journal  of  biological  chemistry,  vol.  280,  no.  5,  pp.  3125-­‐‑3128.  

 Xu,  Y.,  Fang,  F.,  Miriyala,  S.,  Crooks,  P.A.,  Oberley,  T.D.,  Chaiswing,  L.,  Noel,  T.,  Holley,  

A.K.,  Zhao,  Y.,  Kiningham,  K.K.,  Clair,  D.K.  &  Clair,  W.H.  2013,  "ʺKEAP1  is  a  redox  sensitive  target  that  arbitrates  the  opposing  radiosensitive  effects  of  parthenolide  in  normal  and  cancer  cells"ʺ,  Cancer  research,  vol.  73,  no.  14,  pp.  4406-­‐‑4417.  

 Yang,  G.,  Timme,  T.L.,  Frolov,  A.,  Wheeler,  T.M.  &  Thompson,  T.C.  2005,  "ʺCombined  c-­‐‑Myc  

and  caveolin-­‐‑1  expression  in  human  prostate  carcinoma  predicts  prostate  carcinoma  progression"ʺ,  Cancer,  vol.  103,  no.  6,  pp.  1186-­‐‑1194.  

 Yang,  J.,  Mani,  S.A.,  Donaher,  J.L.,  Ramaswamy,  S.,  Itzykson,  R.A.,  Come,  C.,  Savagner,  P.,  

Gitelman,  I.,  Richardson,  A.  &  Weinberg,  R.A.  2004,  "ʺTwist,  a  master  regulator  of  morphogenesis,  plays  an  essential  role  in  tumor  metastasis"ʺ,  Cell,  vol.  117,  no.  7,  pp.  927-­‐‑939.  

Yossepowitch,  O.,  Bjartell,  A.,  Eastham,  J.A.,  Graefen,  M.,  Guillonneau,  B.D.,  Karakiewicz,  P.I.,  Montironi,  R.  &  Montorsi,  F.  2009,  "ʺPositive  surgical  margins  in  radical  prostatectomy:  outlining  the  problem  and  its  long-­‐‑term  consequences"ʺ,  European  urology,  vol.  55,  no.  1,  pp.  87-­‐‑99.  

 Yu,  S.,  Khor,  T.O.,  Cheung,  K.L.,  Li,  W.,  Wu,  T.Y.,  Huang,  Y.,  Foster,  B.A.,  Kan,  Y.W.  &  

Kong,  A.N.  2010,  "ʺNrf2  expression  is  regulated  by  epigenetic  mechanisms  in  prostate  cancer  of  TRAMP  mice"ʺ,  PloS  one,  vol.  5,  no.  1,  pp.  e8579.  

 Yuen,  H.F.,  Chua,  C.W.,  Chan,  Y.P.,  Wong,  Y.C.,  Wang,  X.  &  Chan,  K.W.  2007,  "ʺSignificance  

of  TWIST  and  E-­‐‑cadherin  expression  in  the  metastatic  progression  of  prostatic  cancer"ʺ,  Histopathology,  vol.  50,  no.  5,  pp.  648-­‐‑658.  

 Yuen,  H.F.,  Kwok,  W.K.,  Chan,  K.K.,  Chua,  C.W.,  Chan,  Y.P.,  Chu,  Y.Y.,  Wong,  Y.C.,  Wang,  

X.  &  Chan,  K.W.  2008,  "ʺTWIST  modulates  prostate  cancer  cell-­‐‑mediated  bone  cell  activity  and  is  upregulated  by  osteogenic  induction"ʺ,  Carcinogenesis,  vol.  29,  no.  8,  pp.  1509-­‐‑1518.  

 Zelefsky,  M.J.,  Levin,  E.J.,  Hunt,  M.,  Yamada,  Y.,  Shippy,  A.M.,  Jackson,  A.  &  Amols,  H.I.  

2008,  "ʺIncidence  of  late  rectal  and  urinary  toxicities  after  three-­‐‑dimensional  conformal  

59    

 

radiotherapy  and  intensity-­‐‑modulated  radiotherapy  for  localized  prostate  cancer"ʺ,  International  journal  of  radiation  oncology,  biology,  physics,  vol.  70,  no.  4,  pp.  1124-­‐‑1129.  

 Zhang,  P.,  Singh,  A.,  Yegnasubramanian,  S.,  Esopi,  D.,  Kombairaju,  P.,  Bodas,  M.,  Wu,  H.,  

Bova,  S.G.  &  Biswal,  S.  2010,  "ʺLoss  of  Kelch-­‐‑like  ECH-­‐‑associated  protein  1  function  in  prostate  cancer  cells  causes  chemoresistance  and  radioresistance  and  promotes  tumor  growth"ʺ,  Molecular  cancer  therapeutics,  vol.  9,  no.  2,  pp.  336-­‐‑346.  

 Zhao,  M.,  Xu,  H.,  Zhang,  B.,  Hong,  B.,  Yan,  W.  &  Zhang,  J.  2015,  "ʺImpact  of  nuclear  factor  

erythroid-­‐‑derived  2-­‐‑like  2  and  p62/sequestosome  expression  on  prognosis  of  patients  with  gliomas"ʺ,  Human  pathology,  vol.  46,  no.  6,  pp.  843-­‐‑849.  

 Zheng,  H.  &  Kang,  Y.  2014,  "ʺMultilayer  control  of  the  EMT  master  regulators"ʺ,  Oncogene,  

vol.  33,  no.  14,  pp.  1755-­‐‑1763.    Zielinski,  R.R.,  Eigl,  B.J.  &  Chi,  K.N.  2013,  "ʺTargeting  the  apoptosis  pathway  in  prostate  

cancer"ʺ,  Cancer  journal  (Sudbury,  Mass.),  vol.  19,  no.  

Page 80: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

ORIGINAL  PUBLICATIONS  (I-­‐‑III)      

Page 81: Dissertations in Health Sciences - UEF · Dissertations in Health Sciences ISBN 978-952-61-2069-0 ISSN 1798-5706 Dissertations in Health Sciences PUBLICATIONS OF THE UNIVERSITY OF

DIS

SE

RT

AT

ION

S | S

AM

I RA

AT

IKA

INE

N | T

WIS

T A

ND

OX

IDA

TIV

E S

TR

ES

S R

EL

AT

ED

BIO

MA

RK

ER

S... | N

o 340

uef.fi

PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND

Dissertations in Health Sciences

ISBN 978-952-61-2069-0ISSN 1798-5706

Dissertations in Health Sciences

PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND

SAMI RAATIKAINEN

TWIST AND OXIDATIVE STRESS RELATED BIOMARKERS IN OUTCOME PREDICTION OF PROSTATE CANCER

PATIENTS TREATED WITH RADICAL PROSTATECTOMY

This retrospective study examined the predictive value of the EMT marker TWIST and oxidative stress related biomolecules in prostate cancer patients after radical prostatectomy. Increased expression of TWIST, Nrf-2 and Prx6 was associated

with biochemical recurrence and augmented Nrf-2 expression predicted worse survival

of the patients. These biomarkers could help in developing a more accurate cancer risk

evaluation for prostate cancer patients after radical prostate surgery.

SAMI RAATIKAINEN