44
Display isplay D evice evice L ab ab Dong-A University • Electrostatic field : stuck charge distribution • E, D field to H, B field • Moving charge (velocity = const) • Bio sarvart’s law and Ampere’s circuital law Magnetostatic Fields

Display Device Lab Dong-A University Electrostatic field : stuck charge distribution E, D field to H, B field Moving charge (velocity = const) Bio sarvart’s

Embed Size (px)

Citation preview

DDisplay isplay DDevice evice LLabab

Dong-A University

• Electrostatic field : stuck charge distribution

• E, D field to H, B field

• Moving charge (velocity = const)

• Bio sarvart’s law and Ampere’s circuital law

Magnetostatic Fields

DDisplay isplay DDevice evice LLabab

Dong-A University

• Bio-Savart’s law

I

dl

H field RandIbtwangle

R

lengthntdisplacemedl

currentI

:

distance:

:

:

32 44 R

RdlI

R

adlIdH r

Experimental eq.

Independent on material property

R

DDisplay isplay DDevice evice LLabab

Dong-A University

• The direction of dH is determined by right-hand rule• Independent on material property• Current is defined by Idl (line current)

Kds (surface current)

Jdv (volume current)Current element

IK

DDisplay isplay DDevice evice LLabab

Dong-A University

• Ampere’s circuital law

I

H

dl

encIdlH

I enc : enclosed by path

By applying the Stoke’s theorem

equationthirdsMaxwellJH

dsJIdsHdlH enc

':

)(

DDisplay isplay DDevice evice LLabab

Dong-A University

• Magnetic flux density

typermeabili

fieldticmagnetostaHB

fieldticelectrostaED

:

)(

)(

0

0

0

From this

)/(

:

)(

:

2mwb

densityfluxmagneticB

wb

fluxmagneticdsB

Magnetic flux line always has same start and end point

DDisplay isplay DDevice evice LLabab

Dong-A University

• Electric flux line always start isolated (+) pole to isolated (-) pole :

• Magnetic flux line always has same start and end point : no isolated poles

QdsD

equationfourthsMaxwellB

fieldticmagnetostaforlawsGaussiandsB

':0

':0

DDisplay isplay DDevice evice LLabab

Dong-A University

• Maxwell’s eq. For static EM field

JH

E

B

D v

0

0

t

DH

t

BE

B

D

0

0

Time varient system

DDisplay isplay DDevice evice LLabab

Dong-A University

• Magnetic scalar and vector potentials

VEfrom

0)(

0

A

V 0)( mVJH

Vm : magnetic scalar potentialIt is defined in the region that J=0

BA 0)(

A : magnetic vector potential

DDisplay isplay DDevice evice LLabab

Dong-A University

• Magnetic force and materials

• Magnetic force

Q EEQFe

Bu

Q

BuQFm

Fm : dependent on charge velocity does not work (Fm dl = 0) only rotation does not make kinetic energy of charges change

DDisplay isplay DDevice evice LLabab

Dong-A University

• Lorentz force

• Magnetic torque and moment

Current loop in the magnetic field H

D.C motor, generator

Loop//H max rotating power

)( BuEQBuQEQFFF me

DDisplay isplay DDevice evice LLabab

Dong-A University

• Slant loop

naISm

NmBmFrT

)(`

an

B

F0

F0

DDisplay isplay DDevice evice LLabab

Dong-A University

• Magnetic dipole

A bar magnet or small current loop

I

m

N

S

m

A bar magnet A small current loop

DDisplay isplay DDevice evice LLabab

Dong-A University

• Magnetization in materialSimilar to polarization in dielectric material

Atom model (electron+nucleus)

Ib

B

Micro viewpointIb : bound current in atomic model

DDisplay isplay DDevice evice LLabab

Dong-A University

• Material in B field

B

typermeabili

HH

H

HHB

r

m

m

:

)1(

)(

0

0

0

DDisplay isplay DDevice evice LLabab

Dong-A University

• Magnetic boundary materials

Two magnetic materials Magnetic and free space boundary

DDisplay isplay DDevice evice LLabab

Dong-A University

• Magnetic energy

dvHEWWW

dvHdvHBW

dvEdvEDW

me

m

e

)(2

1

2

1

2

1

2

1

2

1

22

2

2

DDisplay isplay DDevice evice LLabab

Dong-A University

• Maxwell equations– In the static field, E and H are independent on

each other, but interdependent in the dynamic field– Time-varying EM field : E(x,y,z,t), H(x,y,z,t)– Time-varying EM field or waves : due to accelated

charge or time varying current

Maxwell equations

currentsyingtimefieldneticElectromag

CDcurrentstaticfieldticMagnetosta

echstaticfieldticElectrosta

var

.).(

arg

DDisplay isplay DDevice evice LLabab

Dong-A University

• Faraday’s law– Time-varying magnetic field could produce

electric current

unitinflux

numberN

fieldyingtimeby

forceiveelectromotvoltageinducedV

dt

dN

dt

dV

emf

emf

:

:

var

)(:

Electric field can be shown by emf-produced field

DDisplay isplay DDevice evice LLabab

Dong-A University

• Motional EMFs

dsBdt

ddlEV

dt

dV

emf

emf

E and B are related

B(t):time-varying

IE

Bfieldyingtimeandloopyingtime

fieldBstaticandloopyingtime

Bfieldyingtimeandloopstationary

varvar.3

var.2

var.1

DDisplay isplay DDevice evice LLabab

Dong-A University

• Stationary loop, time-varying B field

fieldyingtimeforequationMaxwellt

BE

dst

BdsEdlE

dst

BdsB

dt

ddlEVemf

var:

)(

DDisplay isplay DDevice evice LLabab

Dong-A University

• Time-varying loop and static B field

loop varying-for timeequation sMaxwell':)(

)()(

theoremsstoke' applyingBy

field electric motional:

chargeaon:

BvE

dsBvdsEdlE

dlBvdlEV

EBvQ

FEm

BvQF

m

mm

memf

mm

m

DDisplay isplay DDevice evice LLabab

Dong-A University

• Time-varying loop and time-varyinjg B field

fieldyingtimetheinloopmotionalforequationMaxwell

Bvt

BE

dsBvdst

BdlEVemf

var:

)(

)(

DDisplay isplay DDevice evice LLabab

Dong-A University

• Displacement current→ Maxwell’s eq. based on Ampere’s

circuital law for time-varying field

In the static field

JHJH 0)(

In the time-varying field : density change is supposed to be changed

d

v

JJ

equationcontinuityJt

H

eq. smaxwell' esatisfy th order toIn

)(0

DDisplay isplay DDevice evice LLabab

Dong-A University

• Therefore,

t

DJH

t

DJ

t

DJ

Dtt

JJ

JJH

dd

vd

d

)(

0)()(

Displacement current density

DDisplay isplay DDevice evice LLabab

Dong-A University

• Maxwell’s Equations in final forms

t

DJH

t

BE

B

D v

0

s

s

v

v

dst

DJdlH

dsBt

dlE

dsB

dvdsD

)(

0

Gaussian’s law

Nonexistence ofIsolated M charge

Faraday’s law

Ampere’s law

Point form Integral form

DDisplay isplay DDevice evice LLabab

Dong-A University

• Time-varying potentials

VE

stationary E field

In the tme-varying field ?

t

AVEV

t

AE

potentialelectricScalarVV

t

AEA

tE

potentialmageneticVectorAB

Att

BE

)(:0)(

0)()(

)(

)(

DDisplay isplay DDevice evice LLabab

Dong-A University

Poisson’s eqation in time-varying field

vV 2

poisson’s eq. in stationary field

poisson’s eq. in time-varying field ?

v

v

At

V

At

Vt

AVE

)(

)()(

2

2

Coupled wave equation

DDisplay isplay DDevice evice LLabab

Dong-A University

• Relationship btn. A and V ?

t

VA

t

A

t

VJAA

AA

AB

t

A

t

VJ

t

AV

tJ

t

EJ

t

DJHB

2

22

2

2

2

)()(

)(

)(

)(

)(

)(

DDisplay isplay DDevice evice LLabab

Dong-A University

→ From coupled wave eq.

Jt

AA

Jt

A

tA

t

VV

t

V

tV

At

V

v

v

v

2

22

2

2

22

2

2

)(

)(

)(

Uncoupled wave eq.

npropagatiowaveofvelocity

v

:

1

DDisplay isplay DDevice evice LLabab

Dong-A University

• Time-harmonic fields Fields are periodic or sinusoidal with time

Time-harmonic solution can be practical because most of waveform can be decomposed with sinusoidal ftn by fourier transform.

tjett ,cos,sin

Im

Re

Explanation of phasor ZZ=x+jy=r

DDisplay isplay DDevice evice LLabab

Dong-A University

• Phasor form

If A(x,y,z,t) is a time-harmonic fieldPhasor form of A is As(x,y,z)

)Re( tjseAA

For example, if yakztAA )cos(0

ytj

s aeAA 0

)1

Re()Re(

)Re()Re(

tjs

tjs

tjs

tjs

eAj

dteAAdt

eAjeAtt

A

DDisplay isplay DDevice evice LLabab

Dong-A University

• Maxwell’s eq. for time-harmonic EM field

DjJH

BjE

B

D v

0

s

s

v

v

dsDjJdlH

dsBjdlE

dsB

dvdsD

)(

0

Point form Integral form

DDisplay isplay DDevice evice LLabab

Dong-A University

EM wave propagation

• Most important application of Maxwell’s equation

→ Electromagnetic wave propagation• First experiment → Henrich Hertz• Solution of Maxwell’s equation, here is

),,,(.4

),,0(.3

),,,0(.2

),,0(.1

00

00

00

00

orconductorgood

dielectriclossy

ordielectriclossless

spacefree

r

rr

rr

General case

DDisplay isplay DDevice evice LLabab

Dong-A University

• Waves in general form

t

DH

t

BE

B

D

0

0

Sourceless

EEE

t

E

t

E

t

Htt

BE

2

2

2

)(

)(

)()(

0

02

22

2

2

z

Eu

t

Eu : Wave velocity

DDisplay isplay DDevice evice LLabab

Dong-A University

• Solution of general Maxwell’s equation

)(),(cos),(sin,:

)()(

utzjkeutzkutzkutzsolution

utzgutzfE

Special case : time-harmonic

u

Ez

Es

s

022

2

ss EEjt

E 222

2

)(

DDisplay isplay DDevice evice LLabab

Dong-A University

• Solution of general Maxwell’s equation

)(

)(

ztj

ztj

BeE

AeE

)()( ztjztj BeAeEEE

A, B : Amplitudet - z : phase of the wave : angular frequency : phase constant or wave number

DDisplay isplay DDevice evice LLabab

Dong-A University

• Plot of the wave

E

z

t

0

0

/2 3/2

T/2 T 3T/2

A

A

uf

fT

fuT

)21

(

2,

numberwaveu

:2

DDisplay isplay DDevice evice LLabab

Dong-A University

• EM wave in Lossy dielectric material),,0( 00 rr

Time-harmonic field

ss

ss

s

s

EjH

HjE

B

D

)(

0

0

s

sss

Ejj

EEE

)(

)( 2

0

tconsnpropagatio

jj

EE ss

tan:

)(

02

22

DDisplay isplay DDevice evice LLabab

Dong-A University

• Propagation constant and E field

)1)(1(2

)1)(1(2

2

2

jIf z-propagation and only x component of Es

formtcons

azteEtzE

or

formphasor

EeEzE

xz

zezxs

tan:

)cos(),(

:

')(

0

00

DDisplay isplay DDevice evice LLabab

Dong-A University

• Propagation constant and H field

formconstant:

)Re(),(

:

')(

)(0

00

yztjz

zezxs

aeeHtzH

or

formphasor

HeHzH

impedenceintrinsic:

00

jej

j

EH

yz

yztjz

azteE

aeeHtzH

)cos(

)Re(),(

0

)(0

DDisplay isplay DDevice evice LLabab

Dong-A University

• E field plot of example

x

z

t=t0

t=t0+t

DDisplay isplay DDevice evice LLabab

Dong-A University

• EM wave in free space),,0( 00

377120

2,

1

,0

0

00

00

00

cu

cy

x

aztE

tzH

aztEtzE

)cos(),(

)cos(),(

0

0

0

kHEHEk aaaaaa

HEk

t

BE

DDisplay isplay DDevice evice LLabab

Dong-A University

• E field plot in free space

y

x

z

ak

aEaH

TEM wave(Transverse EM)

Uniform plane wave

Polarization : the direction of E field

DDisplay isplay DDevice evice LLabab

Dong-A University

Reference

• Matthew N. O. Sadiku, “Elements of electromagnetic” Oxford University Press,1993

• Magdy F. Iskander, “Electromagnetic Field & Waves”, prentice hall