46
Dispersion relation of surface plasmons “Metal Optics” Prof. Vlad Shalaev, Purdue Univ., ECE Department, http://shay.ecn.purdue.edu/~ece695s/ “Surface plasmons on smooth and rough surfaces and on gratings” Heinz Raether(Univ Hamburg), 1988, Springer-Verlag “Surface-plasmon-polariton waveguides” Hyongsik Won, Ph.D Thesis, Hanyang Univ, 2005.

Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Embed Size (px)

Citation preview

Page 1: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Dispersion relation of surface plasmons

“Metal Optics”Prof. Vlad Shalaev, Purdue Univ., ECE Department, http://shay.ecn.purdue.edu/~ece695s/

“Surface plasmons on smooth and rough surfaces and on gratings”Heinz Raether(Univ Hamburg), 1988, Springer-Verlag

“Surface-plasmon-polariton waveguides”Hyongsik Won, Ph.D Thesis, Hanyang Univ, 2005.

Page 2: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Metal Optics: An introduction

Photonic functionality based on metals?!

Page 3: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Note: SP is a TM wave!

What is a plasmon?

Page 4: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Plasmon-Polaritons

Plasmons in the bulk oscillate at ωp determined by the free electron density and effective mass

Plasmons confined to surfaces that can interact with light to form propagating “surface plasmon polaritons (SPP)”

Confinement effects result in resonant SPP modes

in nanoparticles (localized plasmons)

+ + +

- - -

+ - +

k

Plasma oscillation = density fluctuation of free electrons

0

2

εω

mNedrude

p =

0

2

31

εω

mNedrude

particle =

22

22

)1()(

pd

dpspx c

kkωωεεωωω

−+

−==

Page 5: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Local field intensity depends on wavelength

(small propagation constant, k) (large propagation constant, k)

Page 6: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Ekmel Ozbay, Science, vol.311, pp.189-193 (13 Jan. 2006).

Some of the challenges that face plasmonics research in the coming years are

(i) demonstrate optical frequency subwavelength metallic wired circuitswith a propagation loss that is comparable to conventional optical waveguides;

(ii) develop highly efficient plasmonic organic and inorganic LEDs with tunable radiation properties;

(iii) achieve active control of plasmonic signals by implementing electro-optic, all-optical, and piezoelectric modulation and gain mechanisms to plasmonic structures;

(iv) demonstrate 2D plasmonic optical components, including lenses and grating couplers,that can couple single mode fiber directly to plasmonic circuits;

(v) develop deep subwavelength plasmonic nanolithography over large surfaces;

(vi) develop highly sensitive plasmonic sensors that can couple to conventional waveguides;

(vii) demonstrate quantum information processing by mesoscopic plasmonics.

Page 7: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

To derive the Dispersion Relation

of Surface Plasmons,

let’s start from the Drude Model

of dielectric constant of metals.

Page 8: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Dielectric constant of metal

Drude model : Lorenz model (Harmonic oscillator model) without restoration force(that is, free electrons which are not bound to a particular nucleus)

Linear Dielectric Response of Matter

Page 9: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

The equation of motion of a free electron (not bound to a particular nucleus; ),

( : relaxation time )

The conduction current density

2

2

14

0

1 10

C

d r m dr dv mm Cr eE m v eEdt dtdt

s

J

τ τ

τγ

=

= − − − ⇒ + = −

= ≈

=

{ }{ }

.

For a harmonic wave ( ) Re ( ) ,

the current desity varies at the same rate ( ) Re ( )

( ) ( ) ( )

( / )( ) (( / )

2

2

2

1

1

1

i to

i to

Nev

d J NeJ Edt m

E t E e

J t J e

Nei J Em

ne mJ Ei

ω

ω

τ

ω

ω

ω ω ωτ

ω ωτ ω

⎛ ⎞+ = ⎜ ⎟

⎝ ⎠

=

=

⎛ ⎞− + = ⎜ ⎟

⎝ ⎠

=−

)

Lorentz model(Harmonic oscillator model)

If C = 0, it is called Drude model

Drude model: Metals

Local approximation to the current-field relation

Page 10: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

those localized in interband(modified Drude model)

Maxwell Equations( )( ) o B E tD tH J Jt t

ε ε∂∂∇× = + = +

∂ ∂

( ) ( )( ) ( ) ( ) ( ) ( ) ( )o Bo B o B

o

E tH J i E E i Et i

ε ε σ ωωε ε ω ω σ ω ω ωε ε ω ωωε

⎡ ⎤∂∇× = + = − + = − −⎢ ⎥∂ ⎣ ⎦

: Static (ω =0) conductivity

Page 11: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

2 2

2 2 2 2

2 2 3 3

( )( )

(1 )11 (1 )

1

EFF Bo

o oB B

o o

p pB

i

ii ii

i

σ ωε ω εε ω

σ σ ωτε εε ω ωτ ε ω ω τ

ω τ ω τε

ω τ ωτ ω τ

= +

+⎛ ⎞= + = +⎜ ⎟− +⎝ ⎠

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

22where, : bulk plasma frequency ( 10 for metal)op

o o e

ne eVm

σωε τ ε

= = ∼

Dielectric constant of metal : Drude model

Plasma frequency

Page 12: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

From Microscopic origin of ω-response of matter

Al13 : 1S2 2S2 2P6 3S2 3P1

Aluminum

Page 13: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Ag47 : 1s2 … 4s2 4p6 4d10 5s1

Au79 : 1s2 … 5s2 5p6 5d10 6s1

Page 14: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Ag47 : 1s2 … 4s2 4p6 4d10 5s1

The fully occupied 4d band of Ag can influence the dynamical surface response in two distinct ways: • First, the s-d hybridization modifies the single-particle energies and wave functions.

As a result, the nonlocal density-density response function exhibits band structure effects.• Second, the effective time-varying fields are modified due to the mutual polarization of the s and d

electron densities.

Here we focus on the second mechanism for the following reason: At the parallel wave vectors of interest, the frequency of the Ag surface plasmon lies below the region of interband transitions. Thus, the relevant single-particle transitions all occur within the s-p band close to the Fermi energy where it displays excellent nearly-free-electron character.

A. Liebsch, “Surface Plasmon Dispersion of Ag,” PRL 71, 145-148 (1993).

Page 15: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Measured data and model for Ag:

γωω

εωω

ε 3

2

2

2

",1' pp =−=

γωω

εωω

εε 3

2

2

2

",' pp =−= ∞

Drude model:

Modified Drude model:

Contribution of bound electrons

Ag: 4.3=∞ε200 400 600 800 1000 1200 1400 1600 1800

-150

-100

-50

0

50

Measured data: ε' ε"

Drude model: ε' ε"

Modified Drude model: ε'

ε"

ε

Wavelength (nm)

ε'

-εd

Bound SP mode : ε’m < -εd

( )ωε

ε

Wavelength (nm)

Page 16: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Ideal case : metal as a free-electron gas

• no decay (γ 0 : infinite relaxation time)• no interband transitions (εB = 1)

2 2 2 2 2

12 2 3 3 2

( )( )

11 B

EFF Bo

p p pB EFF

i

i τε

σ ωε ω εε ω

ω τ ω τ ωε ε

ω τ ωτ ω τ ω→∞=

= +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + ⎯⎯⎯→ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

21 pr

ωε

ω= − 0

Page 17: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Dispersion relation of surface-plasmon for dielectric-metal boundaries

Page 18: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Dispersion relation for EM waves in electron gas (bulk plasmons)

( )kω ω=

• Dispersion relation:

Page 19: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Dispersion relation for surface plasmons

TM waveεm

εd

xm xdE E= ym ydH H= m zm d zdE Eε ε=• At the boundary (continuity of the tangential Ex, Hy, and the normal Dz):

Z > 0

Z < 0

Page 20: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Dispersion relation for surface plasmon polaritons

zm zd

m d

k kε ε

=

xm xdE E=

ym ydH H=

xmmymzm EHk ωε=

ydd

zdym

m

zm HkHkεε

=

),0,( ziixii EiEi ωεωε −−),0,( yixiyizi HikHik−

xiiyizi EHk ωε=

xddydzd EHk ωε=

Page 21: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Dispersion relation for surface plasmon polaritons

• For any EM wave:2

2 2 2i x zi x xm xdk k k , where k k k

cωε ⎛ ⎞= = + ≡ =⎜ ⎟⎝ ⎠

m dx

m d

kc

ε εωε ε

=+

SP Dispersion Relation

Page 22: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

1/ 2

' " m dx x x

m d

k k ikc

ε εωε ε

⎛ ⎞= + = ⎜ ⎟+⎝ ⎠

x-direction:

For a bound SP mode:

kzi must be imaginary: εm + εd < 0

k’x must be real: εm < 0

So,

1/ 22

' izi zi zi

m d

k k ikc

εωε ε

⎛ ⎞= + = ± ⎜ ⎟+⎝ ⎠

z-direction:2

2 2zi i xk k

cωε ⎛ ⎞= −⎜ ⎟⎝ ⎠

Dispersion relation:Dispersion relation for surface plasmon polaritons

' "m m miε ε ε= +

'm dε ε< −

2 22 2 zi i x x i x ik k i k k

c c cω ω ωε ε ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ± − = ± − ⇒ >⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ for z < 0- for z > 0

Page 23: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

( )( )

( )( )

( )

21

2"42

2"21

2"2'

"

21

2"4221

2"2'

'

2)(

2)(

⎥⎥⎥⎥

⎢⎢⎢⎢

⎭⎬⎫

⎩⎨⎧ ++⎥

⎥⎦

⎢⎢⎣

++=

⎥⎥

⎢⎢

⎡ ++

⎥⎥⎦

⎢⎢⎣

++=

dmee

dm

mdm

dx

dmee

mdm

dx

ck

ck

εεεε

εεεεε

εω

εεεε

εεεεω

( ) ( ) '2"2'2 , mdmmewhere εεεεε ++=

1/ 2' " m d

x x xm d

k k ikc

ε εωε ε

⎛ ⎞= + = ⎜ ⎟+⎝ ⎠

metals, ofmost in and , ,0 "'''mmdmm εεεεε >>><

,

( )2'

"2/3

'

'"

2/1

'

''

2 m

m

dd

dmx

dm

dmx

ck

ck

εε

εεεεω

εεεεω

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+

' "m m miε ε ε= +

Page 24: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Plot of the dispersion relation

2

2

1)(ωω

ωε pm −=

m dx

m d

kc

ε εωε ε

=+

• Plot of the dielectric constants:

• Plot of the dispersion relation:

d

psp

dm

ωωε

ωεε

+=≡∞→⇒

−→•

1 ,k

, When

x

22

22

)1()(

pd

dpspx c

kkωωεεωωω

−+

−==

Page 25: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Surface plasmon dispersion relation:

2/1

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=dm

dmx c

kεεεεω

ω

ωp

d

p

ε

ω

+1

Re kx

real kx real kz

imaginary kx real kz

real kx imaginary kz

d

xckε

Bound modes

Radiative modes

Quasi-bound modes

Dielectric: εd

Metal: εm = εm' +

εm"

xz

(ε'm > 0)

(−εd < ε'm < 0)

(ε'm < −εd)

2 2 2 2p xc kω ω= +

Surface plasmon dispersion relation 1/ 22

izi

m d

kc

εωε ε

⎛ ⎞= ⎜ ⎟+⎝ ⎠

Page 26: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Very small SP wavelength

λvac=360 nm

X-ray wavelengths at optical frequencies

AgSiO2

Page 27: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

2/1

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=dm

dmx c

kεεεεω

2 2 2 2

2 2 3 311

p pm i

ω τ ω τε

ω τ ωτ ω τ⎛ ⎞ ⎛ ⎞

= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

Dispersion relation for bulk and surface plasmons

d

psp

d

pdpd

pm ωωω

εω

εω

εωεωω

ε+

=⇒+

=⇒−=−−=−=11

, 1When 2

2222

2

Cut-off frequency of SP

Page 28: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Measured data and model for Ag:

γω

ωε

ω

ωε 2

2

2

2

",1' pp =−=

γω

ωε

ω

ωεε 2

2

2

2

",' pp =−= ∞

Drude model:

Modified Drude model:

Contribution of bound electrons

Ag: 4.3=∞ε200 400 600 800 1000 1200 1400 1600 1800

-150

-100

-50

0

50

Measured data: ε' ε"

Drude model: ε' ε"

Modified Drude model: ε'

ε"

ε

Wavelength (nm)

ε'

-εd

Bound SP mode : ε’m < -εd

( )ωε

ε

Wavelength (nm)

Page 29: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

( )3/ 2' "

1" " 1 2 1' ' 21 2 1

The length after which the intensity decreases to 1/e :

2 , where 2( )i x xL k k

cε ε εωε ε ε

− ⎛ ⎞= = ⎜ ⎟+⎝ ⎠

Propagation length

Page 30: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

2 2 2 2' "

2 2 3 31p p

m m m Bi iω τ ω τ

ε ε ε εω τ ωτ ω τ

⎛ ⎞ ⎛ ⎞= + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

Propagation length : Ag/air, Ag/glass

Page 31: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Penetration depth

'1 2

1At large ( ), z .ixx

kk

ε ε→ − ≈ Strong concentration near the surface in both media.

'1At low ( 1),xk ε >> Larger Ez component'

1 in air :z

x

Ei

Eε= −

( : , : - )z xE iE air i metal i= ± +

Smaller Ez component'1

1 in metal :z

x

Ei

E ε=

Gooood waveguide!

Page 32: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics
Page 33: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Another representation of SP dispersion relation

ck pp

mmm

/

2"'

ωνεεε

=−=+=

Page 34: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Excitation of surface plasmons

Page 35: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

ddm

dmx c

kc

k εωεεεεω

=>⎟⎟⎠

⎞⎜⎜⎝

⎛+

= 2/1

'

''

sinx spp

c kω θε

=od

c kωε

=

'xk

ω

excitation

' sinx p sp spk kcωε θ⎛ ⎞= =⎜ ⎟

⎝ ⎠

1p

spd

ωω

ε=

+

Excitation of surface plasmon by prism

op

c kωε

=

εp

εd

1p

spp

ωω

ε=

+

2 2 2 2p c kω ω= +

Page 36: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Generalization : Surface Electric Polaritons and Surface Magnetic Polaritons

: Energy quanta of surface localized oscillation of electric or magnetic dipoles in coherent manner

Surface Electric Polariton (SEP) Surface Magnetic Polariton (SMP)

+q -q +q -q SNSN

E H

Coupling to TM polarized EM wave Coupling to TE polarized EM wave

Common Features

- Non-radiative modes → scale down of control elements

- Smaller group velocity than light coupling to SP

- Enhancement of field and surface photon DOS

Page 37: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Generalization : Surface Electric Polaritons and Surface Magnetic Polaritons

1 2 2 1 1 202 2

2 1

' ' ( ' ' ' ' ) " ",' ' ' 'SEP k Oε ε ε μ ε μ ε μβ

ε ε ε μ⎛ ⎞−

= + ⎜ ⎟− ⎝ ⎠

,1 ,21 1 2 2, 02 2

2 1 1 2

' ( ' ' ' ' ) " ", ,' ' ' ' ' '

SEP SEPiSEP i k O

γ γε ε μ ε μ ε μγε ε ε μ ε ε

⎛ ⎞−= + =⎜ ⎟− ⎝ ⎠

Dispersion Relation & Decay Constants

( )"/ ' , "/ ' (1,1) ,For ε ε μ μ << {

J. Yoon, et al., Opt Exp 2005.

Page 38: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

In Summary

1/ 2

d mSPP

d m

kc

ε εωε ε

⎛ ⎞= ⎜ ⎟+⎝ ⎠

Dispersion relations

2 2

2 2 2 2

2 2

( ) 1

1 /

p pm

p

iω ω γε ω

ωω γ ω γω ω

⎛ ⎞= − + ⎜ ⎟+ + ⎝ ⎠≈ −

Permittivity of a metal

Page 39: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Type-A

- Low frequency region (IR)

- Weak field-confinement

- Most of energy is guided in clad

- Low propagation loss

► clad sensitive applications

► SPP waveguides applications

Type-A : low k

H. Won, APL 88, 011110 (2006).

Page 40: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Type-B

- Visible-light frequency region

- Coupling of localized fieldand propagation field

- Moderated field enhancement

► Sensors, display applications

► Extraordinary transmission of light

Nano-hole

Type-B : middle k

Page 41: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Type-C

- UV frequency region

- Strong field confinement

- Very-low group velocity

► Nano-focusing, Nano-lithography

► SP-enhanced LEDs

n-GaN

p-GaN (20nm, 120nm)

Ag (20nm)

Λ

Light emission

QW

QW

2

0

1 1 ( )( ) 2

R f i ρ ωτ ω ε

= = ⋅p E

SE Rate :

Electric field strengthof half photon (vacuum fluctuation)

Photon DOS(Density of States)

Type-C : high k

Page 42: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Importance of understanding the dispersion relation :Broadband slow and subwavelength light in air

Page 43: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

Mode conversion: negative group velocity

Re kx

SiO2

Si3N4

21 SiO

p

εω+

431 NSi

p

εω+

SiO2

Si3N4

Al

0=dkdω

0<dkdω

Page 44: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

AppendixAppendix

Page 45: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics
Page 46: Dispersion relation of surface plasmons - Hanyangoptics.hanyang.ac.kr/~shsong/Dispersion relation of surface... · (vii) demonstrate quantum information processing by mesoscopic plasmonics

If the electrons in a plasma are displaced from a uniform background of ions, electric fields will be built up in such a direction as to restore the neutrality of the plasma by pulling the electrons back to their original positions. Because of their inertia, the electrons will overshoot and oscillate around their equilibrium positions with a characteristic frequency known as the plasma frequency.

Plasma frequency

(surface charge density) / ( ) / : electrostatic field by small charge separation

exp( ) : small-amplitude oscillation

( ) ( ) 2 2 2

2 22

s o

o

o p

s p po o

ENe x x

x x i t

d x Ne Nem e E mmdt

εδ ε δ

δ δ ω

δ ω ωε ε

=

=

= −

= − ⇒ − = − ⇒ ∴ =