4
Best Practices: gels, blots and images in DMM figures Disease Models & Mechanisms is committed to maintaining the integrity of the scientific record. We therefore screen all digital images in accepted manuscripts for signs of inappropriate manipulation. Any article that does not meet the following requirements will be delayed in the publication process; your paper may be rejected on the basis of non-compliance with these guidelines. Do not add to, alter, enhance, obscure, move or remove a specific feature of an image – the focus should be on the data rather than its presentation (e.g. do not ‘clean up’ backgrounds or remove/obscure imperfections and non-specific bands)

Disease Models & Mechanisms is committed to maintaining the integrity … image... · 2015-09-17 · Best Practices: gels, blots and images in DMM figures Disease Models & Mechanisms

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Disease Models & Mechanisms is committed to maintaining the integrity … image... · 2015-09-17 · Best Practices: gels, blots and images in DMM figures Disease Models & Mechanisms

Best Practices: gels, blots and images in DMM figures

Disease Models & Mechanisms is committed to maintaining the integrity of the scientific record. We therefore screen all digital images in accepted manuscripts for signs of inappropriate manipulation.

Any article that does not meet the following requirements will be delayed in the publication process; your paper may be rejected on the basis of non-compliance with these guidelines.

Do not add to, alter, enhance, obscure, move or remove a specific feature of an image – the focus should be on the data rather than its presentation (e.g. do not ‘clean up’ backgrounds or remove/obscure imperfections and non-specific bands)

Page 2: Disease Models & Mechanisms is committed to maintaining the integrity … image... · 2015-09-17 · Best Practices: gels, blots and images in DMM figures Disease Models & Mechanisms

Adjustments should be applied to the whole image so no specific feature of the original data, including background, is obscured, eliminated or misrepresented as a consequence. Any alterations, such as non-linear adjustments (e.g. changes to gamma settings), must be disclosed in the appropriate figure legends and in the Materials and Methods section.

e.g. Original data Extra bands added data Extra bands detected

Non-linear adjustment Non-linear adjustment detected

The splicing of multiple images to suggest they come from a single micrograph or gel is not allowed.

Any grouping or consolidation of data (e.g. removal of lanes from gels and blots or cropping of images) must be made apparent (i.e. with dividing lines or white spaces) and should be explicitly indicated in the figure legends.

e.g. Submitted figure Corrected figure with splices marked

At least several band widths should be retained above and below cropped bands

A positive and a negative control and a set of molecular weight markers must be indicated on all images of gels and blots. High-contrast gels and blots are unacceptable (i.e. no white backgrounds) – grey backgrounds are expected unless otherwise justified

Not acceptable Acceptable

The same data in whole or part should not be presented in multiple figures (e.g. loading controls; different exposures of the same gel), unless explicitly stated and justified

Previously published data in whole or in part (e.g. loading controls) should not be presented

Page 3: Disease Models & Mechanisms is committed to maintaining the integrity … image... · 2015-09-17 · Best Practices: gels, blots and images in DMM figures Disease Models & Mechanisms

Better �gure layout can help reviewers and readers to appreciate your science

DMM text is spread over two columns (grey boxes) into which �gures �t (yellow boxes)

Legend Legend

Legend

Legend

Legend

1. Consider �gure layout in the context of single or double columns (the yellow boxes above).

2. Within the �gure (yellow box) maximise information (data) and minimise background.

3. Consider that di�erent data work on di�erent scales. Images of cells and western blots shouldbe large enough to see the relevant features. Information in graphs can often be read when smaller (see page 2).

ITSN-1

β-Actin

Control

1-1 1-2

LS

188

49

A

Ex. v

irus

(B5)

/ Ac

tinA

ctin

Control ITSN1 1 ITSN1 2B

0

25

50

75

100

125

No.

act

in ta

ils p

er c

ell

0

50

75

100

125

25

Control

1-1 1-2

******

0

10

20

30

Control

1-1 1-2

% e

x-vi

rus

indu

cing

act

in

0

10

20

30***

***

C

Single column / half-page width

- Data �ts nicely in area- Background minimised- Western and graph size ok- Cell images too small

Ex. v

irus

(B5)

/ A

ctin

Act

in

Control ITSN1 1 ITSN1 2

0

25

50

75

100

125

No.

act

in ta

ils p

er c

ell

0

50

75

100

125

25

Control

1-1 1-2

******

0

10

20

30

Control

1-1 1-2

% e

x-vi

rus

indu

cing

act

in

0

10

20

30***

***

ITSN-1

β-Actin

Control

1-1 1-2

LS

188

49

A B

C

Double column / full-page width

- Data �ts nicely in area - Background minimised- Relevant features in images and graphs are visible

Ex. v

irus

(B5)

/ Ac

tinAc

tin

Control ITSN1 1 ITSN1 2

ITSN-1

β-Actin

Control

1-1 1-2

LS

188

49

A B

C

0

25

50

75

100

125

No.

act

in ta

ils p

er c

ell

0

50

75

100

125

25

Control

1-1 1-2

******

0

10

20

30

Control

1-1 1-2

% e

x-vi

rus

indu

cing

act

in

0

10

20

30***

***

1.5 columns / box format

- Data layout not optimal - Background content not minimised- Western blot and cell images too small- Graphs bigger than they need to be

Below we illustrate points 1 to 3 using data from Fig. 5, Humphries et al., Journal of Cell Science (2014), 127, 673–685.

See page two for more layout examples and tips

We prefer single or double column width layouts

Page 4: Disease Models & Mechanisms is committed to maintaining the integrity … image... · 2015-09-17 · Best Practices: gels, blots and images in DMM figures Disease Models & Mechanisms

0 2 4 6 8 10 12 14 16 18 20 22 240.0

0.2

0.4

0.6

0.8

1.0

Time (seconds)N

orm

alis

e in

tens

ity

0 2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1.0

WTH208D

Percentage recovery Half-life (s)

85.1±0.0187.4±0.01

2.72±0.201.18±0.10

ΔNckH208D

88.7±0.01 0.86±0.06

Time (s)

A

Plaq

ue s

ize

(mm

)

0.0

0.5

1.0

1.5

2.0

-/- WT

H208D

H208DΔNck

GFP-N-WASP

CB

N-W

ASP

-ΔN

ck-H

208D

ActinGFP Ex. virus (B5)

N-W

ASP

-ΔN

ck

n.s.

-/-

WT

H208D ΔNck-H208D

GFP-N

-WA

SP

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100

WT

H208D

No.

act

in ta

ils p

er c

ell

0

50

75

100

25

ΔNckΔNck

n.s. **

H208D WT

H208DΔNck

ΔNck

H208D

**

0

20

40

60

*** **n.s.

0

40

60

20

WT

H208DΔNck

ΔNck

H208D

% e

x-vi

rus

with

act

in ta

il

D E

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100n.s.

WT

H208D

**

∆Nck

H208D0

25

50

75

100**

WT

H208D∆Nck

H208D

Num

ber o

f act

in ta

ils p

er c

ell

**

A36-Y132F

ActinGFP Ex. virus (exB5)

N-W

ASP

N-W

ASP

- H20

8DN

-WA

SP-Δ

Nck

-H20

8D

A36-Y132F

0 2 4 6 8 10 12 14 16 18 20 22 240.0

0.2

0.4

0.6

0.8

1.0

Time (seconds)

Nor

mal

ise

inte

nsity

0 2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1.0

WTH208D

Percentage recovery Half-life (s)

85.1±0.0187.4±0.01

2.72±0.201.18±0.10

ΔNckH208D

88.7±0.01 0.86±0.06

Time (s)

A

Plaq

ue s

ize

(mm

)

0.0

0.5

1.0

1.5

2.0

-/- WT

H208D

H208DΔNck

GFP-N-WASP

C

B

N-W

ASP

-ΔN

ck-H

208D

ActinGFP Ex. virus (B5)

N-W

ASP

-ΔN

ck

n.s.

-/-

WT

H208D ΔNck-H208D

GFP-N

-WA

SP

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100

WT

H208D

No.

act

in ta

ils p

er c

ell

0

50

75

100

25

ΔNckΔNck

n.s. **

H208D WT

H208DΔNck

ΔNck

H208D

**

0

20

40

60

*** **n.s.

0

40

60

20

WT

H208DΔNck

ΔNck

H208D

% e

x-vi

rus

with

act

in ta

il

D E

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100n.s.

WT

H208D

**

∆Nck

H208D0

25

50

75

100**

WT

H208D∆Nck

H208D

Num

ber o

f act

in ta

ils p

er c

ell

**

A36-Y132F

ActinGFP Ex. virus (exB5)

N-W

ASP

N-W

ASP

- H20

8DN

-WA

SP-Δ

Nck

-H20

8D

A36-Y132F

Small images, overly big graphs and white gaps between rows. Images too big, graphs too small and odd white gaps.

Odd ordering , large white gaps and ine�ective use of space. Layout as published maximises information in available space.

0 2 4 6 8 10 12 14 16 18 20 22 240.0

0.2

0.4

0.6

0.8

1.0

Time (seconds)

Nor

mal

ise

inte

nsity

0 2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1.0

WTH208D

Percentage recovery Half-life (s)

85.1±0.0187.4±0.01

2.72±0.201.18±0.10

ΔNckH208D

88.7±0.01 0.86±0.06

Time (s)

APl

aque

siz

e (m

m)

0.0

0.5

1.0

1.5

2.0

-/- WT

H208D

H208DΔNck

GFP-N-WASP

C

B

N-W

ASP

-ΔN

ck-H

208D

ActinGFP Ex. virus (B5)

N-W

ASP

-ΔN

ck

n.s.

-/-

WT

H208D ΔNck-H208D

GFP-N

-WA

SP

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100

WT

H208D

No.

act

in ta

ils p

er c

ell

0

50

75

100

25

ΔNckΔNck

n.s. **

H208D WT

H208DΔNck

ΔNck

H208D

**

0

20

40

60

*** **n.s.

0

40

60

20

WT

H208DΔNck

ΔNck

H208D

% e

x-vi

rus

with

act

in ta

il

D

E

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100n.s.

WT

H208D

**

∆Nck

H208D0

25

50

75

100**

WT

H208D∆Nck

H208D

Num

ber o

f act

in ta

ils p

er c

ell

**

A36-Y132FActinGFP Ex. virus (exB5)

N-W

ASP

N-W

ASP

- H20

8DN

-WA

SP-Δ

Nck

-H20

8D

A36-Y132F

Data are from Fig. 2, Humphries et al., Journal of Cell Science (2014), 127, 673–685.

0 2 4 6 8 10 12 14 16 18 20 22 240.0

0.2

0.4

0.6

0.8

1.0

Time (seconds)

Nor

mal

ise

inte

nsity

0 2 4 6 8 10 12 14 16 18 20 22 240

0.2

0.4

0.6

0.8

1.0

WTH208D

Percentage recovery Half-life (s)

85.1±0.0187.4±0.01

2.72±0.201.18±0.10

ΔNckH208D

88.7±0.01 0.86±0.06

Time (s)

A

Plaq

ue s

ize

(mm

)

0.0

0.5

1.0

1.5

2.0

-/- WT

H208D

H208DΔNck

GFP-N-WASP

CB

N-W

ASP

-ΔN

ck-H

208D

ActinGFP Ex. virus (B5)

N-W

ASP

-ΔN

ck

n.s.

-/-

WT

H208D ΔNck-H208D

GFP-N

-WA

SP

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100

WT

H208D

No.

act

in ta

ils p

er c

ell

0

50

75

100

25

ΔNckΔNck

n.s. **

H208D WT

H208DΔNck

ΔNck

H208D

**

0

20

40

60

*** **n.s.

0

40

60

20

WT

H208DΔNck

ΔNck

H208D

% e

x-vi

rus

with

act

in ta

il

D E

0

25

50

75

100

0

25

50

75

100

% c

ells

with

act

in ta

ils

0

25

50

75

100n.s.

WT

H208D

**

∆Nck

H208D0

25

50

75

100**

WT

H208D∆Nck

H208D

Num

ber o

f act

in ta

ils p

er c

ell

**

A36-Y132F

ActinGFP Ex. virus (exB5)

N-W

ASP

N-W

ASP

- H20

8DN

-WA

SP-Δ

Nck

-H20

8D

A36-Y132F