22
Davis Millimeter Wave Research Center Directors: Professor Anh-Vu Pham Professor Neville Luhmann, Jr. University of California Davis Millimeter Wave Research Center Davis, CA 95616 Phone: 530-752-7472 Email: [email protected] October 30, 2014

Directors: Professor Anh-Vu Pham Professor Neville … Millimeter Wave Research Center Directors: Professor Anh-Vu Pham Professor Neville Luhmann, Jr. University of California Davis

Embed Size (px)

Citation preview

Davis Millimeter Wave Research Center

Directors:Professor Anh-Vu Pham

Professor Neville Luhmann, Jr.

University of CaliforniaDavis Millimeter Wave Research Center

Davis, CA 95616

Phone: 530-752-7472Email: [email protected]

October 30, 2014

Core Team Members• Faculty: 8 core faculty members• Three new faculty hired 2011-2012• Graduate Students: ~50 and Postdocs and Staff: 16

Prof. Branner Prof. Islam Chancellor Katehi

Prof. PhamProf. LuhmannProf. Liu Prof. Momeni

Prof. Gu

DMRC Team

Name of Interns Year CompanyJeffery Curtis 2011-2013 SamsungHuan Liao 2012 BroadcomJiali Lai 2012 CiscoAlexander Stameroff 2012 -2013 Agilent TechnologiesManish Mamidanna 2012-2014 L-3Thuy Nguyen 2013-2014 MACOMAkash Anand 2013 BAEQi Jiang 2014 BroadcomDanqing Fu 2014 GoogleFengqi Hu 2014 SkyworksTrong Pham 2014 Keysight Technologies

Recent Ph.D. Graduates and InternsName of Recent Ph.D. Graduates Year Current Position

John Yan 2012 RambusSam Chieh 2012 SPAWARCheng Chen 2012 L-3Hai Ta 2012 Skyworks SolutionsXiangyu Kong 2013 GoogleHuan Liao 2013 GoogleTianran Liang 2013 GoogleJiali Lai 2013 CiscoAnisullah Baig 2013 Microwave Device Group, Pakistan InstituteAlexander Stameroff 2013 Agilent/Keysight TechnologiesLiubing Yu 2014 BloombergQi Jiang 2014 GoogleJeffery Curtis 2014 Samsung

Facilities• CAD Labs (ADS, Cadence, HFSS, CST, MAGIC3D, Sonnet, etc)

• Antenna and integrated circuit laboratories

• Vacuum electronics, packaging, and microfabrication laboratories

• High power microwave/THz laboratory to 325 GHz

Facilities

Current Sponsors and Collaborators

TEC

UC DAVISPLASMADIAGNOSTICSGROUP

Research Areas• Millimeter-wave systems

-Radars, imaging, sensors, and communications

• RF/microwave/millimeter components and packaging-Integrated passive devices and antennas-MEMS

• RF/microwave/millimeter integrated circuits and modeling-MmW/THz Si CMOS and systems-GaAs and GaN integrated circuit design

• THz microfabricated vacuum electronics-Nano-machining, fabrication, devices and materials

Millimeter Wave/ THz MicrofabricatedVacuum Electron Devices (Prof. Luhmann)

DARPA HiFIVE 220 GHz SBTWT* NSF 263 GHz SBTWT for EPR

* Collaboration with Teledyne and CPI 

DOE/ESA 346 GHz BWOs** for LOs‐ Staggered Vane Sheet Beam and Round Beam 

** Collaboration with Lancaster University

Passive and Active Millimeter Wave Imaging and Visualization Diagnostics for Magnetic Fusion Plasmas

In collaboration with Professors Liu, Gu, and Pham

(Prof. Luhmann)

Leverage both low-loss quasi-optical channels and high speed electronic devices for high energy efficiency and wide bandwidth inter/intra-chip communications:

THz Interconnect (Prof. J. Gu)

• Planar silicon process compatible low loss and compact THz channels

• High power efficiency THz transmitter and high sensitivity THz receiver

Silicon Substrate Silicon Substrate

THz Physical Channels

THz active circuits with planar coupler

Collaborate with Prof. Liu and Prof. Luhmann

Z LPF

(f)

Frequency Discriminator based Phase Noise Filter (PNF)

This phase noise filtering technique aims to decouple the tradeoffs in clock generation between wide bandwidth and low phase noise to achieve ultra clean clock

CMOS Transmitter for Microwave Imaging Reflectometry (Prof. J. Gu)

CMOS based system-on-chip (SoC) realization can decrease the complexity, size, and power consumption of MIR systems Collaborate with Prof. Luhmann

Gas Spectrometer on a Chip• Provide high sensitivity in-situ

sensing of gas-phase molecules• Complement mass-spectrometry

and provide exquisite specificity• Promise isotopic abundance to

trace the origins of samples

Collaborate with JPL

RF-MEMS Technologies For Microwave/Millimeterwave Frequencies

Hot‐Switching RF‐MEMS Switch• Single‐actuator shunt‐series switch with enhanced hot‐

switching power handling and reliability• Excellent RF performance (@ 20 GHz): < 0.1‐dB insertion 

loss; > 20‐dB isolation; 20x hot‐switching life time

Micromachined millimeter‐wave high‐purity frequency generation• State‐of‐the‐art semiconductor process achieves fmax of ~350 

GHz; On‐wafer wavelength comes down to ~300 µm range• Above‐IC microfabrication can achieve distributed high‐Q 

resonant structures to significantly improve phase noise performance

• Tunable with MEMS varactors

Example micro‐machined structures

1 mm

Micro‐machined evanescent‐mode cavity (copper) achieves resonant frequency of 70 – 200 GHz with Qu of 500 – 1000. * HFSS eigen‐mode simulation

500 µm

400 µm

20 µm

High‐Q Tunable Resonators/Filters/Oscillators High‐Q High‐Tuning‐Range Evanescent‐mode (Coaxial) Cavity Resonator• Octave tuning range (0.5–1 GHz, 1–3 GHz, 2–5 

GHz, etc); • Qu > 1000 (@ 6 GHz) with MEMS tuners• Qu ~ 200 (@ 1 GHz) with Si diode varactors

Frequency and Bandwidth Tunable Filter• Substrate (PCB)‐integrated with Si varactors• Center frequency tuning: 0.5 – 1.2 GHz• BW tuning: 0 – 90 MHz, enabled by mixed‐mode 

(dispersive) coupling• Adjustable band‐edge transmission zeroes (TZ)• Additional TZs by source‐load coupling

Cavity Resonator based Voltage Controlled Oscillator (VCO)• Effective Qu ~ 200 @ 1 GHz• Tunable from 780 MHz to 980 MHz, limited by 

simplistic transistor amplifier design• Phase noise: Better than ‐120 dBc @ 100 kHz 

offset; Better than ‐152 dBc @ 1 MHz offset

MEMS‐based Diode‐based

Track Record of Momeni’s GroupSignal Generation and Synthesis:

In 65 nm bulk CMOS, we have implemented:

• A 482 GHz source with 0.16 mW output power,• A 244 GHz frequency multiplier with 50 GHz tuning

range and 0.22 mW output power,• A 290 GHz source with 0.76 mW output power and 13

GHz bandwidth.

In SiGe, we have implemented:

• A 300GHz Frequency Synthesizer with 7.9% Locking Range in 90 nm SiGe

• A 200 GHz source with 0.2 mW output power and 8 GHz bandwidth in 130 nm SiGe

Signal Amplification:

• A 260 GHz amplifier with 10 dB gain and 0.4 mWsaturated output power in 65 nm CMOS,

• A 107 GHz amplifier with 12.5 dB gain and 1.7 mWsaturated output power in 130 nm CMOS,

482 GHz Source

1.6m

m

Current Projects in Momeni’s Group

• Mm-Wave/Terahertz Scalable Antenna Array/VCO Structures: The scalable standing wave architecture would allow power combining of as many transistors as needed. (~15 dBm (0 dBm) radiated power at 300 GHz (500 GHz) in SiGe process)

• Mm-Wave/Terahertz PLL-Based and Standing wave-based Phased Array for Wideband Systems: Beam steering with no conventional phase shifters.

• Ultra Wide Band VCO: High-power and high tuning range (>50%) VCO at mm-wave and terahertz frequencies.

• Extremely Wide-Band Amplification: Using gain boosting mechanisms to reach maximum gain and bandwidth at the same time. (50 – 180 GHz operation in SiGe process)

• Mm-Wave High Power Amplification: Transistor stacking and gain boosting maintain the high output power and efficiency at the same time. (140 GHz amplifier with ~1 W output power in SiGe process)

Si

High Power VelocityMatched Distributed Silicon Photodetectors

Coplanar Stripes (CPS)

Photocurrents added in phase through a velocity-matched RF transmission line

Active photodiode

Passive optical

wagevuide

Nano-pillars for photon trapping and efficient photodetection

Si (SOI) SubstrateFiber

Prof. M. Saif Islam

Islam and Wu, IEEE MTT

Suppression of RIN and EDFA-added Noise by Balanced Photodetector & Possible

Applications

OpticalFiber Input

OpticalBeam-FormingNetwork

Beam-Steering Array Using Integrated PD and Antenna

Optical Fiber

Photodiode Optical Waveguide

Antenna CPS

• The RIN and the EDFA-added noise is suppressed by 24 dB

• The signal is enhanced by 6 dB• SNR improves by 30dB

Noise floor at -44dB

Single receiver

Noise floor at -68dB

Balanced distributed receiver

24 dB

Microwave Output

Optical Input

+ - +

- + - +

-

Optical waveguide CPW

Islam and Wu, IEEE MTT

High Efficiency Power Amplifiers (Prof. Pham)• 5G Doherty power amplifier• Envelop Tracking PA

(>100 MHz)

Ka-band GaAs Doherty PA and Measurements

• Fully integrated GaN F-1

Ku-band GaN PA, PAE ~ 50% PAE and POUT~ 8-Watt

• Non-linear Tapered Distributed GaN PA

1-21 GHz, 5-Watt, PAE ~ 20%, OIP3 > 45 dBm

Linearization Techniques for mmW Circuits• Wide bandwidth linearization techniques using 2nd harmonic injection

Second Harmonic Injection at both PA Input and Output IM3 Improvement and

Gain ReductionEfficiency Enhancement

Linearization Techniques for mmW Circuits• Device to circuit techniques to achieve wide bandwidth linearization

Gd3 Cancellation GaAs Devices Circuit Techniques Simulation Results

RF/Millimeter Wave Packaging• 46:1 bandwidth ratio defected

ground phase compensation balun

• >800 W balun

• Ka-band receiver module

• Radar front-end to 220 GHzMmW near hermetic packages

Liquid Crystal Polymer laminated on Si, GaAs, and PCB

W-band antenna

Recent AchievementsProfessor Saif IslamNSF Major Research Instrument Award: “MRI: Acquisition of a Plasma Enhanced Chemical Vapor Deposition (PECVD) Tool with Inductively Coupled Plasma (ICP).”

NSF Partnership for Innovation Award: “Micro and Nanofabricated Semiconductor and Ceramic Blade Arrays for Surgical and Hair Removal Applications.”

Professor Jane GuNSF CAREER Award: “Terahertz Interconnect, the Last Centimeter Data Link.”

ONR Award: “Passive Wideband Interferometer enabled by non-Foster Quasi-Constant Phase Shifter for Error Feedback Transmitter.”

NASA Award: “Spectrometer On a Chip.”

Professor Omeed MoneniNSF Award: “Terahertz PLL-Based Phased Array for Wide Band Radar/Sensing Systems in Silicon.”

Professor Leo LiuNSF Award for Research on Enhancing Access to Radio Spectrum (EARS): “Reconfigurable Bandpass Sampling Receivers for Software-Defined Radio Applications.”

Education ProgramEEC130A - Introductory Electromagnetics

EEC130B – Intro. Electromagnetics II

EEC132A – RF and Microwaves in Wireless Communication

EEC132B – RF and Microwaves inWireless Communication

EEC132C – RF Amplifiers, Oscillatorsand Mixers

EEC133 – Electromagnetic Radiationand Antenna

EEC134 – RF Systems

EEC 230 – Electromagnetics

EEC228 – Advanced Microwave andAntenna Design Techniques

EEC232A – Advanced Applied EM

EEC222 – RF IC Design

EEC233 – High Speed Signal Integrity

EEC289K – ICs for Wireless Communications

EEC289K – THz & mmW IC Design

EEC289K - RF/Microwave Filter Design

EEC 229 RF-MEMS & Adaptive Wireless Systems

EEC234A/B/C – Vacuum Electron Beam Devices