40
1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion Applications MACCCR Fuels Research Review Princeton University Princeton, NJ September 22, 2010 Jeffrey A. Manion (NIST) W. Sean McGivern (NIST) Wing Tsang (NIST) NIST Summer Undergraduate Research Fellow Students: Nicholas Heinz (USC) Naoki Nitta (Rice University) Support: AFOSR (Julian Tishkoff)

Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

  • Upload
    ngokhue

  • View
    220

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

1

Direct Measurements of Binary Gas Phase Diffusion 

Coefficients for Combustion Applications 

MACCCR Fuels Research ReviewPrinceton University

Princeton, NJ September 22, 2010

Jeffrey A. Manion (NIST)W. Sean McGivern (NIST)

Wing Tsang (NIST)

NIST Summer Undergraduate Research Fellow Students:Nicholas Heinz (USC)

Naoki Nitta (Rice University)

Support:AFOSR (Julian Tishkoff)

Page 2: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

2

Motivation and Background

Simulations require diffusivities in a variety of situations:

Laminar diffusion flames: - preferential species diffusion affects flame structure & attributes

Laminar premixed H2-air flames: computed flame speed as sensitive to diffusion as kinetics of the primary chain branching reaction

Turbulent flames: small scale structures are affected by diffusion.

Premixed alcohol, n-heptane, and iso-octane/air flames: sensitivity of flame speeds and extinction strain rates to diffusion can be of the same order as to the kinetics.

Takagi; Xu; Komiyama, Comb. & Flame, 1996, 106, 252.Takagi; Xu, Comb. & Flame, 1994. 96, 50.

Harstad, Bellan, Ind. & Eng. Chem.Res., 2004. 43, 645.Okong'o, Harstad, Bellan, AIAA Journal, 2002. 40, 914.Okong'o; Bellan, J. Fluid Mech., 2002. 464, 1.

Holley, Dong; Andac; Egolfopoulos, Comb. & Flame, 2006. 144, 448.

Wang, Chem. Phys. Let., 2000. 325, 661.

Page 3: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

3

TopicsOverview of measurement methods

Review of status – uncertainties and noble gas validation studies

New hydrocarbon data in validated tube – C1 to C4 alkanes in Helium

New hydrocarbon data in validated tube – C1 to C4 alkanes in Nitrogen

Larger alkanes – New Data and Issues

• Substrate Decomposition

• Analytical Assumptions

Summary

Page 4: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

4

Diffusion Measurement Methods ‐ Historical

Watch concentration change as f(time)

Watch width increase as slowly flows through (very) long tube

InjectionFlow

1.  Closed tube

3. Gas Chromatography‐ Peak Broadening

2.  Two‐bulb

Page 5: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

5

Diffusion Measurement ‐ GC Method II

Monitor concentration – time profile at exit of static diffusion column

Katsanos and Karaiskakis (1982). J. of Chromatography 237(1): 1‐14.

Static

Flow

Inject(t0)

Detector Signal

Time

Baseline drift causes systematic errors                Flow Reversal Methods

Separates diffusive and analytical fluxes; no valves at high T

Page 6: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

6

Baseline Correction with Flow Reversal

Timescales of hours

Reversals done every few minutesConstant drift correction

Typical FIDs and TCDs show a small drift over the several hours required for many analyses 

Page 7: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

7

ApparatusSome Details:1. Valve operation, oven T controlled by GC and automated2. Diffusion columns 61 cm or 23 cm 4.6 mm I.D. electropolished 316 SS3. Starting hydrocarbon concentrations (2 to 4)%4. Experimental pressures ca. 2 - 4 bar5. ca. 0.2 ml injection volumes

FIDorTCD

Oven GCAnalytical GC

Diffusion Column

InjectionValve

FlowReversalValve

VacuumSample Loop

Aux Gas (sample injection)

Carrier Gas

Restrictor Valve

Sampling Column

Sample

Page 8: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

8

Mathematical Analysis ‐ I

1. Relate concentration-time profile of substrate along diffusion tube to diffusion coefficient (Fick’s second law)

2. Relate detector signal to concentration-time profile of substrate at exit of diffusion tube

3. Describe effects of flow reversals

FID

Flow

Sta

tic

FID

Flow

Sta

tic

FID

Flow

Sta

tic

SubstrateInjection

Page 9: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

9

Mathematical Analysis ‐ II

2

2

zcD

tc z

ABz

∂∂

=∂∂

t = time measured from injection of the substrate z = distance coordinate along diffusion tubec = concentration of the substrate ADAB = binary diffusion coefficient

Fick’s Second Law

h = peak height N = constantL = length of diffusion tubeτ = relates peak elution time to the time the

substrate exits diffusion tube

t0 = peak elution time measured from injection of substrate

tM = gas hold-up timetFR = duration of flow reversal

Assumptions:1. Only gas phase diffusive flow (no convection, thermal gradients, wall interactions)2. Initial mass distribution of substrate is a delta function3. No diffusion in sampling column4. High flow rates, reasonable sampling times

Katsanos and Karaiskakis (1982). J. of Chromatography 237(1): 1-14.

where,

( )[ ]( ) 23

2 4expτ

τABDLNh −=

FRM ttt 210 −−=τ

Result:

FID

Sta

ticZ = 0

Page 10: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

10

Example Data Plot

Figure 2.  Plot of equation for an experiment with C2H6 – N2 at 350 K.  

( )τ

τ 14

lnln2

23

ABDLNh −=Laplace Transform Result:

Katsanos and Karaiskakis (1982). J. of Chromatography 237(1): 1‐14.

Page 11: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

11

Laplace Transform Analysis Not Valid at Long Times

Dilute CH4 in He at 599.9 KD (1.013 bar) = (2.146 ± 0.011) cm2 s–1

Page 12: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

12

tnttzizz

n

i

Δ+=Δ+=

0

0

2

2

zcD

tc

∂∂

=∂∂

( ) ⎥⎦

⎤⎢⎣

Δ+−++−

=Δ− +−+++−++

211111111 ),(),(2),(),(),(2),(

2),(),(

ztzctzctzctzctzctzcD

ttzctzc nininininininini

Crank‐Nicholson solution for c(z,t)

Crank‐Nicholson Simulation

0

0

==

==

=⎟⎠⎞

⎜⎝⎛∂∂

=

xxLz

z

xxLxz

vctcD

cc0=z

Lz =

0=xlx =

Except for reversals (not considered here),There is no sample transfer from x<0

Boundary Conditions

Discrete Grid

( )

( )ni

ni

ni

ni

ni

ni

ni

ni

cccKc

cccKc

11

11

111

1

22

22

+−

++

++−

+

+−+

=+−−

( )2ztDK

ΔΔ

=where

is a tridiagonal matrix and may be solved efficiently using LAPACK routines. 

Page 13: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

13

Diffusion Coefficient Determination

Dilute CH4 in He at 599.9 KD (1.013 bar) = (2.146 ± 0.011) cm2 s–1

Page 14: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

14

Uncertainties and Effective Tube Length: Calibration with  Noble Gas (He/Ar) Reference

(60.79 ± 0.01) cm

61.5  cm at calculated midpoint (assuming …) Up to 0.23 cm

DHe‐Ar = (0.7344 ± 0.0042) cm2 s–1 at 1.013 bar and 300 K (2σ uncertainty)[17] W.A. Wakeham, A. Nagashima, J.V. Sengers, Experimental Thermodynamics, Vol. III: Measurement of the Transport Properties of Fluids. Blackwell Scientific: Oxford, 1991; p 459.

Effective L=(61.28±0.01) cm

Page 15: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

15

Argon in Helium

2σ uncertaintiesour points are avg. of 5‐10 runs

]s[cm )K 1/(10)24.034.5()( 12007.0674.1512

−±−×±= TTD

Page 16: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

16

New Hydrocarbon Data

New data in validated tube – C1 to C4 alkanes in Helium

New data in validated tube – C1 to C4 alkanes in Nitrogen

Larger alkanes – New Data and Issues

• Substrate Sticking & Decomposition

• Analytical Assumptions

Page 17: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

17

Methane in Helium

leftright

P. J. Dunlop; C. M. Bignell, J. Chem. Phys. 1990, 93, (4), 2701‐2703. ‐ Two bulb method (“gold standard”)

A. C. Frost. A Method for the Measurement of Binary Gas Diffusivities. Columbia University, 1967. – Modified Stefan cell.Marrero, E. R.; Mason, E. A. Journal Of Physical And Chemical Reference Data 1972, 1, 3.. – Review.

Frost diffusion cell

Page 18: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

18

Ethane in HeliumP. J. Dunlop; C. M. Bignell, J. Chem. Phys. 1990, 93, (4), 2701‐2703. ‐ Two bulb method (“gold standard”)

A. C. Frost. A Method for the Measurement of Binary Gas Diffusivities. Columbia University, 1967. – Modified Stefan cell.

Page 19: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

19

Propane in HeliumP. J. Dunlop; C. M. Bignell, J. Chem. Phys. 1990, 93, (4), 2701‐2703. ‐ Two bulb method (“gold standard”)

A. C. Frost. A Method for the Measurement of Binary Gas Diffusivities. Columbia University, 1967. – Modified Stefan cell

F.‐T. Tang; S. Hawkes, J. Chem. Eng. Data 1984,29, 124‐125. – GC peak broadening method.+

++

Page 20: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

20

Butane in HeliumP. J. Dunlop; C. M. Bignell, J. Chem. Phys. 1990, 93, (4), 2701‐2703

A. C. Frost. A Method for the Measurement of Binary Gas Diffusivities. Columbia University, 1967.

Page 21: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

21

Ethane in NitrogenW. A. Wakeham; D. H. Slater, J. Phys. B: At. Mol. Opt. Phys. 1973, 6, (5), 886‐896. – GC peak broadening method.N. A. Katsanos; G. Karaiskakis, J. Chromatogr. 1983, 254, (JAN), 15‐25. – Reversed flow GC

Page 22: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

22

Propane in NitrogenW. A. Wakeham; D. H. Slater, J. Phys. B: At. Mol. Opt. Phys. 1973, 6, (5), 886‐896. – GC peak broadening method.N. A. Katsanos; G. Karaiskakis, J. Chromatogr. 1983, 254, (JAN), 15‐25. – Reversed flow GC

Page 23: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

23

Butane in NitrogenW. A. Wakeham; D. H. Slater, J. Phys. B: At. Mol. Opt. Phys. 1973, 6, (5), 886‐896. – GC peak broadening method.

Page 24: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

24

Diffusion Coefficients of Hydrocarbons in He and N2

Page 25: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

25

Temperature Dependence

Expt 106×a(cm2 s–1)

N

C2H6/He 37.353 1.6646C2H6/N2 7.4194 1.7458C3H8/He 34.169 1.6463C3H8/N2 4.9461 1.7733C4H10/He 26.276 1.6612C4H10/N2 5.2626 1.7369

naTTD =)( (T in K)

Page 26: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

26

Pentane‐He

This work: Dn-Pentane-He(300-600 K) = 2.62x10-5 T1.637

At 1000 K, our D is about 50% smaller than the Hargrove/Sawyer value

Page 27: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

27

Pentane in Helium – Transfer Std.

Sticking at 300 K

Sticking

Red – 61.28 cm bent tube (effective L) Blue – 23.00 cm straight tube (as measured)

Page 28: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

28

Octane in Helium

Page 29: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

29

Nonane in Helium

Sticking

?

Page 30: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

30

Octane in Helium

Page 31: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

31

Is decomposition the problem?

Page 32: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

32

Decomposition of Nonane

C6C5C4C2 /C3

Page 33: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

33

“Worst‐Case” (for diffusion) Decomposition

Page 34: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

34

Simulation Modification

kd

Analyte

Decomp.

Total

L

Analyte + 1/n Decomp

Page 35: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

35

Simulation Modification

kd

Analyte

Decomp.

Total

L

Analyte + 1/n Decomp

Page 36: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

36

Simulation Modification

kd

Analyte

Decomp.

Total

L

Analyte + 1/n Decomp

Page 37: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

37

Dependence on Decomposition

Page 38: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

38

Decane in Helium

Page 39: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

39

Extracting D from data – A closer lookIssues with Analysis:

Shrinking “linear” window as

D increases (higher Temps.)

Exacerbated by low Vp 

substrates (detection limits) 

Looking at better methods to 

extract D from data

Short diffusion tube should 

help

Page 40: Direct Measurements of Binary Gas Phase Diffusion ...kinetics.nist.gov/RealFuels/macccr/macccr2010/MACCCR...1 Direct Measurements of Binary Gas Phase Diffusion Coefficients for Combustion

40

Summary & Future DirectionsCurrent Status 

D within 2% accuracy for well‐behaved substrates, 300 – 725 K  

Sticking (low T) & decomposition (high T) are issues

Not fully understood issues for larger species (> C8) at higher T 

Directions:

Complete C1 – Cn matrix for He/N2 (mix of long and short tube data)

Examine geometrical effects (branching, cyclics) for selected Cn 

Relate to theory (Wang, Violi)

Suggestions, requests?