Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

Embed Size (px)

Citation preview

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    1/25

    DI RECT APPROACH THROUGH HALL PLOT EVALUATION

    IMPROVES THE ACCURACY OF FORMATION DAMAGE

    CALCULATIONS AND ELIMNATES PRESSURE

    , FALL-OFF TESTI NG

    . .

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    2/25

    TABLE OF CONTENTS

    1s

    II

    111

    Iv

    v.

    LIST OF ILLUS7RATTONS

    ABSTRACT e ,

    INTRODUCTION

    BACKGROUNDOF

    PROCEDURE e

    FIELD

    .,.

    EXAMPLE

    Step 1

    Step 2

    Step 3

    Step 4

    step 5

    Step 6

    Step 7

    step 8

    s

     

     

    .

    .

    9

    s

     

    b

    *

    ?

    ?

    w

    9

    *

    P

     

     

    Pege

    *

    1

    *

    2

    3

    . 5

    . 6

    .<

    . 9

    9

    9

    11

    11

    .

    11

    11

    12

    . 12

    . . . ..:

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    3/25

    Figure 1 .

    Figure2 .

    Figure 3 .

    Figure4 .

    Figure 5 .

    )

    Figure 6 .

    . . .

    .

    .

    .

    9

    e

    LIST OF ILLUSTRATIONS

    b

    *

    b

    *

    b

    s

     

    s

     

    9

    .

    9

    9

    .

    o

     

    4

    4

    7

    10

    22

    23

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    4/25

    1. ABSTRACT

    In the operationof a waterfloodprogram, it becomes necessaryto deter-

    .

    mine injectivecapacitythroughthe evaluationof individualinjectionwell

    performance. With the occurrenceof a decreasein a particularwell’s injec-

    tivity,the need arises for a direct calculationof capacityloss or well-

    bore damage,

    I& the courseof norinaloperationsthen, a

    test is usuallyrun on the problemwell to determinethe

    of damage. These tests are lengthy,time consuming,and

    pressure fall-off

    .

    existenceand extent

    costly.

    The proposedmethod of evaluationcan yield indicationsofthe extent

    and natureof injectivityloss without the use of fall-offtests, The method

    presentedinvolvesthe interpretationof routinemonthly injectiondata for

    all requiredcalculations and effectivelyeliminatesconventionaltesting

    procedure in a normal waterfloodprogram.

    . . . .

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    5/25

    11. INTRODUCTION

    In 1963,Hall(1) ptesenteda systemof analyzingthe performanceof in-

    .

    jectionwells using what are,known as

    Hall

    Plots.” The paper presentsa system

    of analyzingthe performanceof injectionwells througha method in which

    monthlypressureand injectionvolumes are recordedand plotted.asa summa-

    tion of pressur~multipliedby time versus cumulativeinjectionvolume.

    . .

    Accord-

    .’

    ing to this article,

    the examinationof the ltHalllJlot (see Figure 1) before

    or

    and after any well stimulation‘ortreatmentcan give indicationsof success

    failureof such workovers.

    Since that time, various articleshave been published

    on

    this subject

    showinghow this systemhas been used in a particularfield2 or in comparison

    with some other method of treatmentevaluation. However, in most cases,

    its

    only use is for recognizingany formationdamage as evident by the accompany-

    ing drop in injectivity.v:hi.chs seen a~ a rise in the slope (see Figure 2).

    There is an equationfor the slope of the line

    on

    the Hall Plot (1) which

    . . . .

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    6/25

    .

    WHP x time,

    psi-months

    ,,

    CUMULATIVEINJECTION,bbls

    Figure 1. NormalHall Plot, no apparentdamage.

    ..,

    .. .. .. . . . . . . . . .:

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    7/25

    It is, therefore,the intentionof this paper to show that rather than

    using the Hall Plots only as a means to identifya loss of injectivity,it

    can be used as a method of determiningtreatmentor workoverprocedures,

    .

    The conventionalprocedure,once the problem

    Plot, is to run a pressure fall-offtest4 to

    skin effect. This methodwill eliminatethe

    P

    allowingdirect calculationof these values.

    has been recognizedon the Hall

    determineformationdamage or

    need for fall-offtestsby

    111. BACKGROUNDOF PROCEDURE

    In any evaluationof formationdamage, the main purpose is to determine

    a loss of injectivityor productivitydueto an additionalpressuredrop

    across the skin. Therefore,the Van Everdingenslcinfactor is calculatedin >

    order to know

    the skin, and

    gained. With

    the seriousnessof the damage, to find the pressuredrop across

    to arriveat some figureof production(or injection)to be re-

    these indications,a treatmentproceduremay be written.

    Upon examinationof the slope equation,it is seen that the slope of the

    line is inverselyproportionalto transmissibility(Tin).Where:

    .,

    . .

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    8/25

    Equation (5)

    ~= 4.844 Bwln(re/rw)

    m

    Therefore,when the Hall Plot is examined,and an increasein slope is

    evide.lt,it can be assumed”that there is some degree of wellboredamage present.

    The slopes

    damage (ml

    slope (ml)

    are then found for the conditiontiefore and after‘theappearanceof

    and m2). The value of transmissibility(l hq)found from the first

    is that of the undamagedportionof the reservoir (seeFigure 3).

    This is evidentsince the slope is occurringduring that period of time when

    there is no damage.

    The value found from the second slope (m2) is the average

    of both the damagedand the undamagedzones (see Figure 3). With these two

    values (Tml and Tm2), all of the formation,damagecharacteristicsrequired

    for treatmentdesign can be found.

    The assumptionsthus far include:

    ‘l’mlfoundfrom ml) = ~

    Th2 (foundfromm2) = I’mavg

    ,.”.

    Where:

     “

    Transmissibilityof undamagedzone

    .,

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    9/25

    .

    . . .

    ,.

    R=

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    10/25

    This becomes:

    Equation (7)

    TinaTml In (re/rw)

    I Mlavg ‘IW2“

    Tmaln(re/ra)+ Tmlln(ra/rw)

    Which is solved for Tma

    .

    into

    .

    With

    l’hisvalue of ‘lha,along with the assumedvalue of ra, is then substituted

    Van Everdingen’soriginalequationfor skin effect, symbolS.5

    Equation48)

    .

    S = {ke-ka)

    ka

    In (ra/rw)

    or

    ~=(Tml- ‘Jhla)n (ra/r~)

    Equation (9)

    lhla

    this value of S, the pressuredrop across the zone of damaged transmissi-

    bility can be found from:

    Equation (10) AP = qSC2BW5 “

    a

    0.00707 Tm~

    After calculationof these importantparameters,the engineermay want to know:

    DamageRatio,Flow Efficiency,Damage Factor, and Minimum InjectionIncrease

    (uponskin removal).

    To find these,however,the assumptionmust be made of

    -,

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    11/25

    This exampledeals with a

    North DakotaProducingRegion.

    field as a part,of.the Newburg

    V. EXAMPLE

    well operatedby AmeradaHess Corporation’s

    It is an injectionwell located in the Newburg

    PressureMaintenanceSystem in Bottineau

    County,,NorthDakota. Pertinentdata is given below:

    Table 1

    Data for D-716i6

    .’

    Perforationdepth

    3423-3440ft.

    Effectivepay thickness

    14 ft.

    Mid-pay at

    3432 ft.

    Porosity (FieldAverage) ‘

    14%

    Radius of well bore, rw

    7-7/8”hole:

    0.328 ft.

    Spacing

    80 acres

    InjectionRate before damage

    395 BWPD

    InjectionRate after damage 60 B’WPD

    re, (radius,ofinvestigation) .. . . ., ... ,. . 910 ft ,,.

    :\

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    12/25

    -.

    I

    .. . . . . ,., .

    ,, .. . . . .,.

     -

    ......

    .....

    I

    ----...........

    1 :’ :.” : . :

    ‘ “:..

    ., .0...

    l;. . .: ’”’”

    —. ___ — . ... ..

    . , . , . . . . . . .

    . . . . . . , . . . . .

    . . . . , . , . . . . . . . .

    :, . . . . .

    . . . . .

    -+. . . . .. . .. .. . .

    .“

    .. . . . . .,

    ,, ... . . .. . . .

    .: :,.,. . ... .

    . . .. .. .

    --- -.. .—.

    +

    ,., . . ..,. . ..

     .. ’

    . , . . . , . . . , . . ,

    . . . . . . . . . .

    . ... . . . . . . . . . ... . .

    . . . . . . .

    . . . . .

    . . . . . . . . . . . . . .

    , . . . . , . , . . . .

    . , , . . . .

    , , . . . .

    .-

    . . .

    . . . . . :. : , , , . .

    , . . , . , . , , . .

    . , . . , , . . .

    . . . . . . .. - . . . .. . . ..

    , . , . . , . . .

    , , , . . . . . . . .

    , , , . . . . . . . . . . .

    . . . . . . . . . . . . . .

    1

    —-

    ..........,

    ...’ ,.. . . .

    . .. . . . .. . . . .

    i:;--+2;;ij

    -

    J

    - - ;-

    ..-...-...

    : ; ; i . : :

     : ..’

    , :, . , . , ,

    . . .

    . , , :::: ‘“”

    .,. , . .

    ..’. .,, , ..:: ::.

    . ,. i., . . . . . .,. .

    ,.. .:, . .,, ,,

    .- — -...-.

    . . . . .

     ::i :.:: ::;, ‘..’

    i ::  :::

    ,.0. .,

    . . .

    —:

    .,. l,.

      . . . .

    . . . . . . .

    : i . .

    1,, . :, . . . ,

    ,,, . ... ,

    . ---

    --- --- . .

    . . . . . . . . . .

    ,., , ~i: . . .

    ,,, . . .

    ... . ..; .

    —:. —.

    . . . . ,. . . .,

    1..8

    ;: . .:; .:: .“

    , . .

    --- .... . . .... . .

    ,., , ;.. , ..1

    ,,. .

    .,

    ... . :.:: ,.. . ::.

    ,.. .,. . ... .

    ---

    :Ji: ... ,:, ,,

    ., .

    ,1. . . ,.

    ,, :.:. .

    . : .. . -- . . . - ---

     . . . .,. .

    l..

    , 1. , . , , , , . . , ,

    , , . . . . . . .

    . . . . , . , .

    . -

    , , . . , . . . . .

    , . . . . , ,

    . - .

    ..,,...,.

    ...,.......

    ,:.

    ..-

    .

    ..-....

    ,.

    .

    ; :1 , : :::”

    :“:

    ;1 ’ i : :~j~ :. :-

    ,: .

    ,,

    I

    :1 . ” , . ,

    :;”

    b .+- .. . . .. ----- .. . ...

    .*, , . , . . . . . .

    .—.

    .~

    [“

    ....------—.-

    .

    I

    .. .... ..... .... ...

    I ‘,

    --- --=. ..:. i-. -:.

    I

    .;: ... .

    . .

    J.:, .;.

    ~“1

    _.....,, ..:-~....-+

    . . .... ....... ..

    T

    g,+i+;

    --...

    04.. : .;;

    L

    ~ a.-i----::

    T

    .

    .. .

    ::..’

    .

    . : . . :: . . ..

    ;:

    . . . . -::

    1+:- ..+ --

    1“

    ~

    . . .

    . . . . . . .

    .-. . . . ..

    . . . . .

    .,. ,

    ~,, .

    ,,

    i. :

     .

    ... . .,....

    ,.

    . . .. .

    ..

    -1

    ......

    ,:.

    “’.. -----

    {

    . . . .

    ... . . . .

    . . .

    ,.

    r

    -

    . . . .

    . .

    . . . . ... ..

    . ,

    ‘T-

    ,..

    ....

    ....

    “.. .

    . .

    --

    : . ’- .

    .. .

    .,

    ----

    . .

    . . .

    . .

    ..-

    .“

    . . .

    . “

    . . ? . ,

    . ,

    . .

    . .. .

    . -

    .. .

    . .

    . - .

    , .

    , .

    . -

    . ..- . .

    .-

    .— —

    . .

    ,.

    .;

    .

    . ..... ... &

    . . .

    ..:

    ,-. .

    -..”.

    .. . -.

    .

    .,,.. .. ....-.

    . . .

    . ,

    . ,., ....

    . . .. .—

    .. .

    .:

    .-... -...

    . .

    .

    ,.

    .....

    :“. .

    .

    ,.. . ...

    .

    .,:

    .— —-

    .

    ,,,

    4,

    .. .. .

    -.

    .,

    . . .

    .,.

    .,

    ,.-.

    . . .

    ,.

    ..-

    ,.

    . . .

    . .-

    -

    ,,

    ;-

    . .

    ,.

    ,.

    -.~

    .;

    ,.

    --

    ..

    .-

    .-..

    -d

    ,.

    . . .

    :-q-...

    I

    . . . . .

    . . . . .

    : ~.

      . . .

    ..

    . . .

    - ..-. . .

    . .

    1’. . . ..

    ,“1

    .:

    -...

    .. .

    .....

    ..

    . .

    .—....

    ......

    ,,

    “1:

    ‘j

    1-

    . ; . , .

    . .

    . . -. .. .

    . .

    . ,

    . .

    -.”.

    “- .

    .

    4

    :..

    .

    -L-

    :.

    ““l’

    . . ..-

    .

    . . . . .

    j,

    K

    ..

    .,-.: . . .

    .:.

    .

    -. :..

    -. -,-

    . . .

    . ... . . .

    ‘1

    . .

    . i .

    . . . . . . .

    ~

    I

    . .. . ~ . :

    I

    ,i”

    , .: ~.. .:

    , ,

    i’

    .

    -- .—. .

    i

    Iu

    :1”:

    IF

    “.-.,

    “c

    ..

    .1

    I

    ------

     

    .:

    x

     .

    .. .

    ,

    ~

    - +-. . ..

    .~ :

    ... . .

    “i”

    -... . ,

    ‘l-

    i.- :.. ,..

    :. ..

    ---

    .,

    .-.

    . .

    J

    . . .

    . .

    ~

    . - .

    .. .

    ...-

    ...

    . .

    .-

    . .

    ....

    ...

    .. .

    . .

    -..

    . .

    ,. .

    -.

    \

    ,-..

    .:

    . .

    ~. .. . . . . . . . ..

    I

     .

    ,.” .

    I

    ,..,.........

    [ i

    .

    ;.,

    ,

    I

    1’

    ...... ........

    .:.

    I

    .,...,..

    “ ~

    ,1 I

    -q- ... . .. ... . . . . .

    i

    . , . .

    :,

    ~. ~.,.:

    “[

    . .. . ..... . . . ..

    .:.

    . . . .

    ..... - . . .. .

    ... . . . . .

    ,.

    . .... .. .....

    . . :..

    , . .

    . . . . .

    .. .

    ,...

    . .....

     .

    .,

    . ..

    ,’1

    ...

    .j;::”i.:.

    l . ”

    ‘1

    I

    .... .

    “1

    I

    -------

    I .’”

    i

    I

    ..

     ..

    ,.1.

    I

     . .

    ~

    . ,

    I

    , . . . .

    i .

    1,

    ;

    ~

    . . . .

    ~:

    . . .

    I

      .

    I

    . . . . ..

    I

     

    .. .....

    . . . .

    ,.

    .....

    . . . .

    .,.

    . .

    ...-

    , .

    .

    -. . .

    ,.

    . ’ l

    . . .

    . .

    ,k. -

    ---

    . . .

    ....

    . . .

    ..

    .

    . .

    L. .

    ...

    . . . .

    , . .

    . .

    . .. .

    . - .

    . - .

     .

    ,...

    .....

    ..

    .. ..

    ...

    -----

    ....

    . .

    . ,.

    . .

    . ..

    .

    ....

    . ..

    . .

    .. 2

    . “

    . ..

    . ,

    . . . .

    “.,

    -—

    —.-

    . . . . . .

    I

    I

    ..........

    ,..

    ...5.

    ,’/

    ,.

    ,

    ..........:......,..

    —i-

    ..

    [

    ..

    ....

    .

    ..

    ---...

    .

    “. .

    . . - . . , .

    . ..”

    ....

    .

    : . . ’

    . . . .. . ..

    . .

    : .

    . , . .

    . ,

    - . . . . — -

    . , . .

    . . .

    . . .

    . . . . . .. .

    -i

    ,.

    ,

    - -

    :.

    . .

    . . . . . . .

    ,.

    . . —..

    . .

    . .

    ;:.

    . . . . .

    .

    .—

    :l’;’:

    .. ..-

    ~

    ..

    -- “’.

    . .

    . . . . .

    ;. .

    ,,. ,

    . . . .

    .;,

    .-.: .:+

    ,.. .

    ,..

    ;.,

    . . . -.

    .

    . . . .

    ., . .

    +j

    ,;. 1+

    : .1;::,

    :,

    ..... .—

    . . .

    ,.

    I i :

    . , .

    , . ,

    . . . . . . .

    .

    “: ,

    ., .,,,..

    t

    .-

      -

    .. ,0.

    .. ,,.

    ,. ...:.

    ,,

    -----

    ,:”

     :

    ... .:

    ..,,,.

    ‘ , i

    . .

    . .

    iii;

    . . . *-+...

    ... ,,

    ‘i 1

    :.. ;

    .,,

    ;;

    u.. L&L

    ,. ::1:

    . . . . . .

    ,,:

    .i-—

    .,, .

    .: .11

    . i

    - - - --*

    . . . . .

    ~,

      :;:

    ..:,

    . .. .. . .

    1::;;L

    T

    .’

    . . .

    l{

    -.. .-I-+

    . . . . . .

    . . .

    . ,

    . . . . . .

    . ...0

    1

    ,::

    . . . .

    .,

    : . . . . .. . .

    .,,

    .+LJ

    ;.. .l

    : : l i

    . . . - —

    i :

    ~~i. . ..t

    - i;

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    13/25

    TJ q =

    Tq =

    ~2 1=

    TnQ =

    3.

    The transmissibilityof

    (4.844) (1.002)ln(910/O.328)

    (0.1136)

    339 md - ft/cp

    (4.844)(1.002)ln(910/O.328)

    (0.7385)

    52,1 md-ft/cp

    the damagedzone (Tma) is found from Equation

    (7).

    In this case the assumedra = 2.0 feet,

    Equation(7)

    Tmz =

    52.1 =

    Tllla

    4.

    The Van Everdingenskin

    Equation

    (9)

    s

    =

    s=

    . ’

    TmaTmlln(re/rw)

    ‘iavg =

    lklaln(re/ra)+ Tmlln (ra/rw)

     lha (339) in (910/0.328)

    tia In (910/2.0)+ (339) in (2.0/0.328)

    13.48md-ft/cp

    factor is then calculatedusing Equation (9).

    (Tlq- lhla)in (ra/rw)

    Tma

    (339 - 13.48)

    in (2.0/0.328)

    (13.48)

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    14/25

    Pe =

    zs~()-

    (395) (1.002) in (910/0.328)

    (0.00707(339)

    l?e= 1570 psia

    7.

    Damage ratio is calculatedwith Equation (12). “

    Equation(12)

    DR~ (Pe

    - Pw) / (Pe.-Pw - APa)

    DR= (1570-2880)/ (1510

    -’2880 -(71095))

    DR= 6.09

     

    8.

    Flow efficiencyis calculatedfrom Equation (13).

    Equation(13)

    FE= l/DR

    FE= 1/6.09

    FE= Oa~64

    9. The damage factor is foundwith Equation (14)

    Equation(14)

    DF=l-FE

    DF=l

    - 0.164

    D~s o.836

    10. The

    last characteristicto”be

    :83.5 )

    determinedis the value of minimum

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    15/25

      ,

    examinationof the HornerPlot for

    was not carriedout long enough to

    ditions, This results in improper

    Parameter

    s

    AP

    a, psia

    pe~ Psi.a

    DR

    FE

    DF

    I~r,BWPD

    t

    this fall-offtest, it is seen that the test

    allow proper evaluationof steady state con-

    wellboredamage calculations.

    .

    Table 2

    Value from Hall Plot

    +

    43.66

    - 1095

    1570

    6. 09

    0. 164

    0.836

    365

    Value from Fall-off

    ,+

    6.04

    - 315 “

    ‘ 2006

    1.78

    0.56

    0.44

    107

    In comparingthe skin factorsof the two methods, it is reasoned that the

    value froundfrom the Hall Plot is a much better indicationas to the true seri-

    ousnessof the problem. ‘i’hisssumptionis strengthenedby the fact that the

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    16/25

    Table 3 shows a comparisonof

    ation and throughfall-offtesting

    NewburgField. ‘,

    skin factorscalculatedby Hall Plot evalu-

    for two additionalinjectionwells in the

    .

    In comparingthesevalues,a very close correlationis noted. The fall-off

    tests for these exampleswere very good, allowingdirect and accuratecalcula-

    tionsof skin factors.

    In the previousexample,it was

    testwas inadequateand the values of skin factor found

    parewith those from the Hall Plot evaluation.

    shown that the fall-off

    did not favorablycom-

    .’

    These facts indicatethat the closer the data for a fall-offtest approaches

    a classicor textbookHornerPlot, the closerthe value of skin factor will be

    to that found throughHall Plot evaluation. Therefore,it can be seen in the

    limitedcases studied,that the Hall Piot approachcan consistentlygive accur-

    ate indicationsof formationdamage in water injectionwells.

    VIII.

    SUMMARYAND CONCLUST,ON

    This paper has been written to point out that all formationdamage charac-

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    17/25

    IX.

    NOMENCLATURE

    .

    water viscosity,centipoise

    water formationvolume factor

    .

    ~adfus of injection,feet

    radiusof wellbore,feet

    water permeability,rnillidarcies

    injectionthickness,feet

    .’

    slope of Hall Plot, psi-months/bbl

    transmissibility,md-ft/cp

    injectionrate, bbls/day

    pressuredrop acrom skin, psi

    damage ratio

    flow efficiency

    damage factor

    minimum

    injectionincreaseupon skin removal

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    18/25

    x*

    REFERENCES

    1.

    Hall, H.N.: “How to AnalyzeWaterfloodInjectionWell Perfornu:,we”,

    WORLD

    OIL. (Ott..l963)128-130.

    2.

    DeMarco,M.: “Simplified

    .

    WORLD OIL. (April,1969)

    .

    Method PinpointsInjectionWell Problems”,

    96-100.

    Q

    3.

    ‘sField Comparisonof Methods of EvaluatingRemedialWork”, JPT. (Ott.1964)

    1121*

    1

    ..

    .

    4. Robertson,D, C., Kelm, C. H.:

    “InjectionWell Testing to OptimizeWater-

    flood Performance”,JPT (Nov.1975) 1337-1342.

    5.

    Craft,B. S.,

    Hawkins,M. F.: “AppliedPetroleum

    PrenticeHall Inc. 1959, 322,332.

    ReservoirEngineering”,

    6. Interoffice Memo: Amerada Hess Corp.

    “PressureFall-offon D-716i (NSCU)

    S. J. Hunter, July, 1975.

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    19/25

    xl

    ACKNOWLEDGEMENTS

    I would like to thank Mr. Alex Chaky and the engineeringstaff of AMEWDA

    HESS CORPORATIONin,Williston,North Dakota for their help. I would also like

    to expressmy gratitudeto Mr.

    RobertD. Grace for his assistancethroughout

    the courseof this paper.

    ..>

    ..

    .

    .

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    20/25

    XII. APPENDIX

    PressureFall-offTest on JI-716i

    Perforations- 3423’ - 3440’

    EffectivePay Thickness- 14’

    Mid-pay@ 3432’

    Porosity-

    14% (FieldAverage)

    Yw = (7-7/8’’)/2~0,328’

    Spacing- 80 acres

    InjectionRate = qi

    = 60 BWPD (stable,prior to shut-in)

    Wellheadinjectionpressure= 1220 psig

    At, hrs.

    o

    20.5

    48

    68.5

    214.6

    92.2

    64.9

    ~wS(@ surface)(ps%)

    1220

    680

    540

    513

    Pws (@mid-pay)

    2723 (PV7f)

    2183

    2043

    2016

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    21/25

    (B) Injectionwater density:

    ~w = (11,000ppm) (8.345x 10-6 ppg/ppm)+ 8.345 ppg

    ~w= 8.437ppg

    .

    (C) InjectionWater SpecificGravity:

    VW = 8.437 ppg/8.435ppg

    yw = 1.011

    (D) Water Gr~diant+ (Wellbore):

    (1.011)(0.433psi/ft) = 0.438psi/ft

    (E) Water Compressibility:

    11,000 ppm NaCl

    *

    ~= 2,93 ~ 10-6 Ps

    (F) UndersaturatedResidualOil Compressibility:

    r. (36’’API)

    0.8448 @ STP

    rO (f 60°F and 1924 psia) = 0.8448 + 0.01

    + 0.8548

    ~c = 345 psia

    ~c= 10550.R

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    22/25

    (J)

    Slope of HornerPlot:

    m = (-) 60

    pSi/

    (K) TotalMobilityt

    .

    (K/v)~=

    , i 62. 6/mh~ ~q~~~

    =

    [(162.6);(160)(14% $60) (1.002)}

    = 11.64 md/Cp

    (L)

    Radius of~investigation:

    0.03[(K/P)t (t)/ $ Ct

    $

    0.5

    tin =

    0.03[(11.64) (141)/(0.14)(0.22x 10-6)

    3

    0.5

    =

    .,

    ‘in

    = 1070 feet

    (M) Skin Van Everdingen:

    s= 1.15

    i

    ‘Plhr

    - Pwe)/m -

    log (K/lI)t/$t (rw)*

    3

    3.23

    -.

    = Iils

    z

    (2127 -

    2723)/(-60) -

    3

    og (11.64)/(0.14)(9.22 X 10-6 “

    (0.328)2 *3.23

    .f

    1.~5 9.94 - 7.92 + 3.231

    .,

    S = + 6.-4 Formation-damage

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    23/25

     Q)

    (R)

    ..

    (s)

    (T)

    Flow Efficiency:

    FE =

    Damage Factor:

    DF =

    l/DR= 1/1.78 = 0.56

    l-FE = (1-0.56)= 0.44 (or 44%)

    *

    MinimumInjectionIncrease“(Uponskin removal):

    DR (Q) =

    (1.78) (60) = i07 BWpl’)

    Darcy Injqction:

    .’

    Q= 0.00707 (K/p)th AP/B in (re/rw)

    = 0.00707 (11.64) (14) (2723-2006)/in(745/0.328)(1.002)

    = 107 BWPD

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    24/25

    .

    ----- .. . . . .

    8

    ... .

    b} *.,

    . ; ’ .R80i f

    , . 1“4*

    . - -

    ”0

    “. . ,

    ; , C”

    .

    ... .

    . . . . .... . . .... . . *. . -

    ‘1

    .-. .”. . . . . . ...-”... . . . . . . .

    ..=

    b

    .’

    “1

    l.

    ,:”

    ‘“

    .

    “’

    d

     

    .; J179w,’,” , ,

    .

     

    ‘.

    I

    :

    ‘-;

    “u

    ,.

    “m”’”

    . .

    ,“

    e

    &--. —

    v

    d

    /“ 1

    ,. ....

    2.

    0?2s “

    1“‘Sp

    J.e.

    “ , “a.

    $

    \

    .,

    . . .

    *,’;**, .

    ,..

    ,.

    m,. b,

    1

    ,?

    ,,8*t’*” +.9 J. .

    ,., .

    ‘..

      .’ ‘“,*

    d24

    . : : ~ k ““ ‘

    . ’ . .

    . . . . , ; ” ‘ . . , %+ , 1. : ‘ ,

    1

    ; + ‘ . f

    “’ . , , . ”. , “>; . ”’

    v

    . .

     “

     %2

    , ,1 , .

    n322

    4%””’ ’ ”’.

    t

    . s+ ; . -

    ;: 1.”.

    .’, .”,

    ...

    %, ‘

    ;,,:, :8:’;; ;’:. .’1

    ,.. ,

    >

    “ .. . *,””

    :

    ‘ t,”

    S.:

    ,,

    ‘to .,,

    .

    ?

    , i ..

    k

    . .

    . .

    .

    ..

    ‘,

    , w.

    .1~4 ,

    .,

    ,,

    1> , , ,, .

    . . .

    ,~:.

    I...

    .’i

    ifs..?

    ‘i’

    I

    :.”,

    $L . .;

    ,. .

    .*

    0$ ,

    .

    ‘ ;

    Fhoa ‘

    t .

    ,

    ; ~.,: : -

    v

    v

    >“”: b ~q,* , ,

    A’, ”

    .“ ‘ah ‘“”. O;,:i”; “ ‘ ‘“”

    As

    ..

    n%a

    ,,.

    ,,...

    .6

  • 8/18/2019 Direct Approach Through Hall Plot Evaluation Improves The Accuracy of Formation Damage Calculations and Eliminates Pressure Fall-Off Testing

    25/25

    D

    m

    L

    .1 ; :=’

    i

    {-j-- -. ~..:..’ ~..

    :..~..~:~:;~:;

    W,-.+.~-..-..............

    -.1 ..... ----- . d..

    ‘:i :~:,~:,i~~~~,:’.i::

    ..’..

    ~

    11. 1

    I

    _-,,;- ““-l-

    .’_ -- ---- -.; ..

    .: ... -

    i

    .-. . ..

    i... .-L -. + -----

    -1., - –-l_ ~- —q .-

    1

    t

    ,.

    “io,ooo .

    I

    ...-

    .. ....

    .....

    -+-

    ....

    U..

    .- -- .

    --~–

    ...-

    -

    . . . .~_.

    .Pl””fi

    ---”---

    1

    - . . -

    l . -

    \

    “. ,

    . - .; . -

    I

    ....

    ---.-

    .-—-.-.

    ..1:.-

    -----

    ..L

    --i---i -– i ---

    k

    ..’. -—. .I_. ---

    . ----

    ---–--4- --~

    .... . .. __,----

    I:t

    .--———-

    —---—.

    —-

    -------

    .—.--—

    -i-”

    -------

    --_ .

    L

    -1

    -4

    ...———

    .-. —

    .-

    ..

    ,l.. i.-l

     

    L.

    +

    . . . . . .

    ~-.~

    ...’....--- ..i .

    “~.:i”:.---:::.’.~:

    :1:.1 ..+.- - ..~..

    I

    ---..----..

    i“:- ’:’i--:,”:”jt

    w...........

    .l -

    . . .. . .._. —. ‘.~

    . . ... ....... ........ .-.-...- ...

    ....... .....

    .J...

    ---- . ----

    .J~~

    1 -:”

    ....... .

    .. . ... ... ...

    .. . ... .

    -. .. . .. ..

    --i:

    --.:]:

    . .. . ..._-

    ..... .. . .

    II

    ..--....-—

    1-

    . -. —.— .-. -. ..

    ---- .. —- ---

    .. ...-–.

    .’..

    1,000

    u

    r ,. .

    ,,, ~ :

    .&S

    :,. .

    I : 8

    ,..‘L

    .- —- ..-.. .1

    ‘ .

    1

    1

    i ‘Iq

    .----—------.

    ,::

    :..J._.-.+.-–. . ~~

    ,.-_. . --

    —- --- --

    L-. — .

    ‘-i-- -- - -–- --~

    ._ -..

    fi.– .. --–

    I j

    ......-------.—— .

    —--—-.

    “---k- ,“: -

    -

    100

    .:=.--, .~.~- ... ,

    1,

    -.. . . . . . .

    :, . , I :

    . . . . ..- —

    - .-. .: - --

    : . , .

    -- .>.

    ----

    “-’ “;: ~ 7

    .

    .- -. - ..- -

    .U. .

    .

    ,

    .

    ~ . :’ . . . .

    Ill

    .........-

    -...A.......

    ~.l”:1[:A

    :-.j...:,

    ...:..

    1 /

    ....:-......-

    -..:--.. -p...-.—

    ...-.

    .-..-.

    I

    .-...-,........

    [;.,

    .-

    ----:.[:.“

    ..

    .,..-.

    . -~..  :

    1

    ‘------j-”“”

    _.,..,.

    .—.—.-----

    ;..1. 1“4””““”l“””

    “:i:~”:”~“~“;

    ..:...--

    .......-.....

    .........

    -: :t-l.”i::[”:-

    ~:-.~:-::~~’.:].:.

    _

    k

    . .

    j.: ~.-

    .;.-1.. : ., ,

    .l.~

    444

    .....+...‘I.“.1.. .:........-.\...1.-

    l—

    ..i....

    .i .

    ““:”’-”: i,-::l”,j , , ~-::

    w

    .1..1. ~ ~. ..j..

    ..-. . . . --- . ,.

    --i -

    .. . ... . . . -j .. ...-.

    .-. . - —- ,.- -.

    I

    ..

    — .- ----~ j.-.j.

    :: j-. j: -.:1”.

    . .. . .. . —.

    —. —

    _ -’”-:,-”. j:

    t

    I

    +

    - - :---

    .- J—-

    .-–.. -__/ .,/:”i:”~::”:j::::: ;“ /--:

      ~~:---.

    -t---—-

    ...+.–

    .----J -----

    .-...,---

      ~

    ,.:”1”,”

    “:

    I:- ~-;LiTJ:. :::: : :–..——”

    -i..

    --’ .. .—

    ,.

    ._~....

    r

    “”””--i---’

    -- -1-. -

    - .. - .- ,_ __

    .

    -. . ~. \ ; j ;-. ~.. :. .-

    L- .

    I-j “[“

    :J::’

    .\,.,;”,__:’/ .;,-:”~”:;:-”--~

    ‘- ---.-.-i-, .

    .. -.:-- ...l ---- +

    ,,

    –_.,, i..,.. .

    ‘Il A6021sAL.L ‘ ““ “ 1 “-- --”-

    .......

    —.~.—

    ,----- — .

    .-— ——

    10

    1. 0

    t.rFAt

    A