Digital Design Lec1 Introduction

  • Upload
    anh-tan

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

  • 7/30/2019 Digital Design Lec1 Introduction

    1/43

    2009

    Digital Design

    Lecture 1: Course Overview

    Fall 2010

    Xuan-Tu Tran, PhD

    Faculty of Electronics and Telecommunication (FET)

    Key Laboratory on Smart Integrated Systems (SIS)

    UET-VNU Hanoi

    Email: [email protected]

    www.uet.vnu.vn/~tutx

  • 7/30/2019 Digital Design Lec1 Introduction

    2/43

    2

    General Information

    Lecturer Xuan-Tu Tran, PhD

    Office: Room 314, Building G2 (by appointment)

    Tel.: +84-4-3754 9664 (Office) Email: [email protected] (recommended)

    Home page: http://www.uet.vnu.edu.vn/~tutx

    Course Web Page

    BBC system + homepage (please visit my homepage first)

    http://www.bbc.vnu.edu.vn

    Teaching Assistants Van-Huan Tran, Researcher (SIS laboratory)

    Van-Mien Nguyen, Researcher, M.Sc. student (SIS laboratory)

    Duy-Hieu Bui, Researcher, MSc. Student (SIS laboratory)

  • 7/30/2019 Digital Design Lec1 Introduction

    3/43

    3

    Administrative Details

    Grading Take-Home Entry Exam 10%

    Project Exams 40%

    Final Exam (writing) 50%

    Students have to be present:

    at least 80% of the course meetings

  • 7/30/2019 Digital Design Lec1 Introduction

    4/434

    Administrative

    Office: Room 314, G2 building, UET campus

    Office hours

    Tuesday: 13h00-14h00

    Friday: 16h30-17h30

    Other times by appointment

    Sending e-mails is a good way to reach me

  • 7/30/2019 Digital Design Lec1 Introduction

    5/435

    Ressources

    IEEE Standard 1076-1993 Find using search engines on WWW (Google)

    Use my homepages resources, too much digest

    Xilinx FPGA

    EDA/CAD tools: ISE foundation suite, EDK (student edition); ModelSim

    (Mentor Graphics student edition) Development Kit: Spartan-3E development kits (Xilinx), DE2 (Altera), or

    Actel

    Schematic, FSM, VHDL

  • 7/30/2019 Digital Design Lec1 Introduction

    6/436

    Honor

    You are encouraged to collaborate with other students inprojects

    Final VHDL code, project report for each homework should bedone by your self

    Exams are closed book, closed notes (only pen, blank paper,

    and a prepared computer are allowed)

  • 7/30/2019 Digital Design Lec1 Introduction

    7/437

    Administration

    Text books

    Digital Design: Principles and Practices (4th edition), ISBN 0-13-186389-4

    By John F. Wakerly, Prentice Hall, June 2010

    Available at Laboratory on Smart Integrated Systems

    References

    Digital Design Fundamentals

    By Kenneth J. Breeding, 2nd Ed., Prentice Hall, 1992

    Available at Laboratory on Smart Integrated Systems

    VHDL: Programming by Example

    By Douglas L. Perry, McGraw-Hill, ISBN: 0-071-40070-2 Available at the Smart Integrated Systems Laboratory

    Wai-Kai Cheng (Editor). Logic Design. CRC Press, ISBN: 0-8493-1734-7,

    2003.

  • 7/30/2019 Digital Design Lec1 Introduction

    8/438

    Course Objectives

    Students should be able to

    Analyzing digital systems

    Understanding numbering systems, Boolean Algebra (conversion,

    calculation)

    Designing, analyzing combinational circuits (adders, multiplexers)

    Designing, analyzing sequential circuits (flip-flops, registers, counters,

    FSM, ALU, processors)

    Hardware description languages and EDA/CAD tools

    Build their own projects and report related matters

  • 7/30/2019 Digital Design Lec1 Introduction

    9/43

    9

    Course outline

    Introduction

    Numbering Systems and Codes

    Digital Circuits

    Boolean and Switching Algebra

    Combinational logic design principles

    Hardware description languages

    Combinational logic design practices

    Sequential logic design principles Sequential logic design practices

    Memory, CPLD, and FPGAs

  • 7/30/2019 Digital Design Lec1 Introduction

    10/43

    10

    Introduction to Digital Systems

    What is a digital system?

    Why are digital systems so pervasive (to be present

    everywhere)?

  • 7/30/2019 Digital Design Lec1 Introduction

    11/43

    11

    Microelectronics / VLSI Circuits Design

    Why is Microelectronics / VLSI Circuits Design important?

    Integrated Circuits (ICs) can be found in any applications

    High income 33 973M US$

    20 137M US$

    8 137M US$

    [LaPedus - EETimes]

  • 7/30/2019 Digital Design Lec1 Introduction

    12/43

    12

    Examples

    WiFi routers(Communication)

    VLSI Systems

    (Systems-on-Chip)

    Digital TVs(Multimedia)

    MP3 Players(Multimedia)

    Mobile phone(Telecoms, Multimedia)

    Washing machine(Customer Electronics)

    Automobile applications

  • 7/30/2019 Digital Design Lec1 Introduction

    13/43

    13

    IC products

    Processors

    CPU, DSP, Controllers

    Memory chips

    RAM, ROM, EEPROM

    Analog

    Mobile communication,

    audio/video processing

    Programmable

    PLA, FPGA

    Embedded systems

    Used in cars, factories

    Network cards

    System-on-chip (SoC)

  • 7/30/2019 Digital Design Lec1 Introduction

    14/43

    14

    - What is a digital system?

    A system that processes discrete information

    Discrete entities may represent anything

    from simple arithmetic integers, letters of the alphabet, or other abstract

    symbols to values for a voltage, a pressure, or any other physical

    quantities.

    What these entities represent is not important in processing of the

    information.

  • 7/30/2019 Digital Design Lec1 Introduction

    15/43

    15

    - What is a digital system?

    A digital system is one that accepts as input digital information

    representing numbers, symbols, or physical quantities,

    processes this input information in some specific manner,

    and produces a digital output.

    Digital SystemDigital SystemDigitalinputs

    Digitaloutputs

    ?

  • 7/30/2019 Digital Design Lec1 Introduction

    16/43

    16

    - What is a digital system? (cont.)

    Computer applications The computer is required to process information related to physical

    quantities (pressure or temperature).

    Physical quantities & computer

    Computer Nature: physical quantities

    Discrete (digital) quantities Continuous variables (analog quantities)

    Nature(analog)

    Nature(analog)??? ???

    Computer (digital)

    Physical quantities must be converted to a digital form !!!

    Wh i di i l ? ( )

  • 7/30/2019 Digital Design Lec1 Introduction

    17/43

    17

    - What is a digital system? (cont.)

    Thermocouple in an analog system

    How does this thermocouple be used in a digital system?

    Wh t i di it l t ?

  • 7/30/2019 Digital Design Lec1 Introduction

    18/43

    18

    - What is a digital system?

    Converting a physical quantity to a digital form Physical quantity voltage/current (by a transducer)

    (coming energy in one form to going energy in another form)

    Ex.: thermocouple(temperature transducer)

    Output voltage is proportional to the temperature

    Voltage/Current Digital form (by an analog-to-digital converter)

    ADCADC ComputerComputer DACDAC

    Analog

    quantities(voltage, current)

    Analog

    quantities(voltage, current)

    (0 & 1)

    P ll l t ADC t

  • 7/30/2019 Digital Design Lec1 Introduction

    19/43

    19

    Parallel-comparator ADC converter

    2-bit parallel-comparator ADC use 3 parallel

    comparators

    Use resistors to divide voltage in order to

    provide reference voltages to comparators

    Full-scale voltage equals VMax (the voltage

    at the top resistor)

    Incoming voltage is provided to non-invert

    input of comparators

    Outgoing value at the output of acomparator gets high when its incoming

    voltage is higher than its reference voltage

    Ex.: VIN = 2.6 Volt

    A3: Low

    A2: HighA1: High

    E l

  • 7/30/2019 Digital Design Lec1 Introduction

    20/43

    20

    Examples

    Monitoring the environment for the developer used on aphotographic processing lab

    We must to measure the temperature of the developer

    Then, use the results to turn on/off a heating element

    Photographicprocessing

    Lab

    Photographicprocessing

    Lab

    H2

    H1

    SS

    SSMonitoring & Control

    System

    SensorsHeater

    Heater

    Examples (cont )

  • 7/30/2019 Digital Design Lec1 Introduction

    21/43

    21

    Examples (cont .)

    ATM (Automatic Teller Machine) We must to measure the temperature of the environment surrounding

    ATMs

    Then, use the results to turn on/off air-conditioners

    Why are digital systems so pervasive?

  • 7/30/2019 Digital Design Lec1 Introduction

    22/43

    22

    - Why are digital systems so pervasive?

    Flexibility

    Reliability

    Cost

    Design and fabricating ICs

  • 7/30/2019 Digital Design Lec1 Introduction

    23/43

    23

    Design and fabricating ICs

    Design: history and jobs

  • 7/30/2019 Digital Design Lec1 Introduction

    24/43

    24

    Design: history and jobs

    Moore law

  • 7/30/2019 Digital Design Lec1 Introduction

    25/43

    25

    Moore law

    - Feature sizes are getting smaller :

    - 0.25 m, 0.18 m, 0.12m, 90nm, 65nm, 45nm, 32nm

    - Gates counts and memory sizes are increasing :

    - 10M, 20M, 100M, 1 G!- Clock speeds are increasing :

    - 100Mhz, 400Mhz, 1 GHz, 3 GHz,

    - Power cannot increase at the same pace :

    - 10W, 20W, 50W, 100W,

    - Design time cannot increase :- 3m, 6m, 12m !!!

    Microprocessor Trends (Intel)

  • 7/30/2019 Digital Design Lec1 Introduction

    26/43

    26

    Microprocessor Trends (Intel)

    Source: http://www.intel.com/pressroom/kits/quickreffam.htm, media reports

    Year Chip L transistors

    1971 4004 10m 2.3K

    1974 8080 6m 6.0K

    1976 8088 3m 29K

    1982 80286 1.5m 134K

    1985 80386 1.5m 275K

    1989 80486 0.8m 1.2M

    1993 Pentium 0.8m 3.1M1995 Pentium Pro 0.6m 15.5M

    1999 Mobile PII 0.25m 27.4

    2000 Pentium 4 180nm 42M

    2002 Pentium 4 (N) 130nm 55M2003 Itanium 2 (M) 130nm 410M

    2004 Pentium 4 (P) 90nm 125M

    2006 Core 2 Duo 65nm 291M

    DeepSubmicron

    Microprocessor Trends

  • 7/30/2019 Digital Design Lec1 Introduction

    27/43

    27

    Microprocessor Trends

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1970 1980 1990 2000

    Transistors(Millions)

    Intel

    Motorola

    DEC/Compaq

    Alpha (R.I.P)

    P4

    G4

    Sources: http://www.intel.com/pressroom/kits/quickreffam.htm

    DRAM Memory Trends (Log Scale)

  • 7/30/2019 Digital Design Lec1 Introduction

    28/43

    28

    DRAM Memory Trends (Log Scale)

    Source: Textbook, Industry Reports

    0.0625

    0.25

    1

    4

    16

    64128

    256512

    0.01

    0.1

    1

    10

    100

    1000

    1975 1980 1985 1990 1995 2000 2005

    Size (Mb)

    Processor Performance Trends

  • 7/30/2019 Digital Design Lec1 Introduction

    29/43

    29

    Processor Performance Trends

    Source: Hennesy & Patterson Computer Architecture:A Quantitative Approach, 3rd Ed., Morgan-Kaufmann, 2002.

    Vax 11/780

    Summary - Technology Trends

  • 7/30/2019 Digital Design Lec1 Introduction

    30/43

    30

    Summary Technology Trends

    Processor Logic capacity increases ~ 30% per year

    Clock frequency increases ~ 20% per year

    Cost per function decreases ~20% per year

    Memory

    DRAM capacity: increases ~ 60% per year

    (4x every 3 years)

    Speed: increases ~ 10% per year

    Cost per bit: decreases ~25% per year

    Technology Directions: SIA Roadmap

  • 7/30/2019 Digital Design Lec1 Introduction

    31/43

    31

    Technology Directions: SIA Roadmap

    Year 1999 2002 2005 2008 2011 2014Feature size (nm) 180 130 100 70 50 35

    Logic trans/cm

    2

    6.2M 18M 39M 84M 180M 390MCost/trans (mc) 1.735 .580 .255 .110 .049 .022#pads/chip 1867 2553 3492 4776 6532 8935Clock (MHz) 1250 2100 3500 6000 10000 16900Chip size (mm2) 340 430 520 620 750 900

    Wiring levels 6-7 7 7-8 8-9 9 10

    Power supply (V) 1.8 1.5 1.2 0.9 0.6 0.5

    High-perf pow (W) 90 130 160 170 175 183

    Gallery - Early Processors

  • 7/30/2019 Digital Design Lec1 Introduction

    32/43

    32

    y y

    Mos Technology 6502

    Intel 4004 (1971)First P - 2300 xtors

    L=10m

  • 7/30/2019 Digital Design Lec1 Introduction

    33/43

    Gallery - Current Processors

  • 7/30/2019 Digital Design Lec1 Introduction

    34/43

    34

    y

    Pentium 442M transistors / 1.3-1.8GHz

    49-55W

    L=180nm

    Pentium 4 Northwood55M transistors / 2-2.5GHz

    55W

    L=0.130nm Area=131mm2

    Process Shrinks

    Pentium 4 Prescott125M transistors / 2.8-3.4GHz

    115W

    L=90nm Area=112mm2

    Pentium 4

  • 7/30/2019 Digital Design Lec1 Introduction

    35/43

    35

    0.18-micron process technology

    (2, 1.9, 1.8, 1.7, 1.6, 1.5, and 1.4 GHz)

    Introduction date: August 27, 2001

    (2, 1.9 GHz); ...; November 20, 2000

    (1.5, 1.4 GHz)

    Level Two cache: 256 KB AdvancedTransfer Cache (Integrated)

    System Bus Speed: 400 MHz

    SSE2 SIMD Extensions

    Transistors: 42 Million Typical Use: Desktops and entry-

    level workstations

    0.13-micron process technology

    (2.53, 2.2, 2 GHz)

    Introduction date: January 7, 2002

    Level Two cache: 512 KB Advanced

    Transistors: 55 Million

    Gallery - Current Processors

  • 7/30/2019 Digital Design Lec1 Introduction

    36/43

    36

    Intel Core 2 Duo Conroe291M transistors / 2.67GHz / 65W

    L=65nm Area=143mm2 Image courtesy Intel Corporations

    All Rights Reserved

    Gallery - Current Processors

  • 7/30/2019 Digital Design Lec1 Introduction

    37/43

    37

    Multi-core processors Increase performance

    Power consumption

    Challenges

    Complexity

    Tasks management

    On-chip communication

    Chip temperature

    etc.

    Athlon 64 X2 4800+ and 4400+

    Gallery - Current Processors

  • 7/30/2019 Digital Design Lec1 Introduction

    38/43

    38

    Image courtesy International Business Machines

    All Rights Reserved

    IBM Cell Processor234M transistors / 2GHz / ??W

    L=90nm Area=221mm2

    Gallery - Current Processors

  • 7/30/2019 Digital Design Lec1 Introduction

    39/43

    39

    Intel Polaris (80 cores) Trillion operations/second

    Area: 275mm2

    Consumption: 62W IEEE SOC Conference (2006)

    Teraflop ASCI Red at SandiaNational Lab (1996)

    104 cabinets housing 10,000 Pentium

    Processors

    spread out over 2500 square feet

    It consumed a mere 500kw

    Gallery - Current FPGA

  • 7/30/2019 Digital Design Lec1 Introduction

    40/43

    40

    Xilinx Virtex FPGA

    Gallery - Graphics Processor

  • 7/30/2019 Digital Design Lec1 Introduction

    41/43

    41

    nVidia GeForce457M transistors / 300MHz / ??W

    L=0.15m

    FAUST chipFlexible Architecture of a Unified System for Telecoms

  • 7/30/2019 Digital Design Lec1 Introduction

    42/43

    42

    TX Units

    RX Units

    AHB System

    ETH

    DART

    RAC

    ARM

    Year: 2005

    130 nm CMOS (STMicroelectronics)

    20-node asynchronous NoC

    23 NoC units

    AHB subsystem including an ARM946 core

    24 clocks (DFS to save power)

    8 M Gates (including 81 RAM blocks)

    Area: core 70 mm2 - chip 80 mm2 275 functional I/Os - Package : TBGA 420

    Power supplies: core 1.2 V I/Os 3.3 V D. Lattard, et al. ISSCC07

    y

    FAUST Architecture

  • 7/30/2019 Digital Design Lec1 Introduction

    43/43

    43

    RAM IF

    58 Pads

    ETHERNET IF

    17 Pads

    Async/Sync IF

    Async node

    NOC2 IF

    83 Pads

    LIST

    NoC

    HouseKeeping

    LETI

    FT R&D

    MITSUB-ITE

    LETI

    OFDM

    MOD.

    ALAM.

    MOD.

    CDMA

    MOD.

    MAPP.BIT

    INTER.

    TURBO

    CODER

    RAM CPU RAMEXT.RAMCTRL

    AHB

    ROTOR EQUAL.CHAN.EST.

    CONV.DEC.

    ETHERNET

    FRAMESYNC.

    ODFMDEM.

    CDMADEM.

    DE-MAPP.

    DE-INTER.

    DART

    EXP

    SPort

    APort

    NOC1 IF84 Pads

    SPort

    APort

    RAC

    NoCPerf.

    EXP

    CONV.

    CODER

    Clk & Test CTRL

    RAM IF

    58 Pads

    ETHERNET IF

    17 Pads

    Async/Sync IF

    Async node

    NOC2 IF

    83 Pads

    LIST

    NoC

    HouseKeeping

    LETI

    FT R&D

    MITSUB-ITE

    LETI

    OFDM

    MOD.

    ALAM.

    MOD.

    CDMA

    MOD.

    MAPP.BIT

    INTER.

    TURBO

    CODER

    RAM CPU RAMEXT.RAMCTRL

    AHB

    ROTOR EQUAL.CHAN.EST.

    CONV.DEC.

    ETHERNET

    FRAMESYNC.

    ODFMDEM.

    CDMADEM.

    DE-MAPP.

    DE-INTER.

    DART

    EXP

    SPort

    APort

    NOC1 IF84 Pads

    SPort

    APort

    RAC

    NoCPerf.

    EXP

    CONV.

    CODER

    Clk & Test CTRL