87
Digital Beam Synthesis (DBS) for a High Capability Opto-Electronic Radar (HICAPOR) Study Leaders: Alvin Despain John Vesecky JSR-97-230 September 1997 Approved for public release; distribution unlimited. JASON The MITRE Corporation 1820 Dolley Madison Boulevard McLean, Virginia 22102-3481 (703) 883-6997 , ! .... 'T.C

Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Embed Size (px)

Citation preview

Page 1: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------~-----

Digital Beam Synthesis (DBS) for a High Capability Opto-Electronic Radar (HICAPOR)

Study Leaders: Alvin Despain John Vesecky

JSR-97-230

September 1997

Approved for public release; distribution unlimited.

JASON The MITRE Corporation

1820 Dolley Madison Boulevard McLean, Virginia 22102-3481

(703) 883-6997

, D:f~Tiiili"tf~{5f.T :J'rl~i~~·:}~J1E:l:·~:::f-:{i-"·r" ---.-.---~. ~~-.~--,~.

App;rO~H;1 ! .... 'T.C x~J.t''';;;~~·~:~

Dlmrt'i:IUI,i1'~m\ Un"~~~1

Page 2: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I I I I I I

I I I I I I I I I I I

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of Information estimated to average 1 hour per response, Including the time for review Instructions, searc hing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704·0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) \2. REPORT DATE r' REPORT TYPE AND DATES COVERED September 25,1997

4. TITLE AND SUBTITLE 5. RJNDING NUMBERS

Digital Beam Synthesis (DBS) For A High Capability Opto-Electronic Radar (IDCAPOR)

6. AUTHOR{S) 13-988534-04

A. Despain, J. Vesecky

7. PERFORMING ORGANIZATION NAME{S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

The MITRE Corporation REPORT NUMBER

JASON Program Office JSR-97-230 1820 Dolley Madison Blvd

Mclean, Virginia 22102

9. SPONSORINGIMONITORING AGENCY NAME{S) AND ADDRESS{ES) 10. SPONSORINGIMONITORING

Office of Naval Research AGENCY REPORT NUMBER

Code 111 800 North Quincy Street JSR-97-230 Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONIAVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

3. ABSTRACT (Maximum 200 words)

Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John F. Vesecky. This JASON study investigates the capabilities of HICAPOR by calculating the antenna beam patterns formed by typical implementations of this concept. A wide variety of para-meter choices are investigated and antenna patterns for HICAPOR are compared with conventional phased array and true time delay techniques of beam formation. The presentation begins with an introduction of the HICAPOR concept and how it fits within a high capability, very wide band radar. This is followed by presentation of a computer simulation of the beam and pulse forming capabilities of HICAPOR over a range of radar parameters. HICAPOR beamforming performance is then compared with the performance of other radar types. Finally conclusions are drawn and recommendations made.

~4. SUBJECT TERMS

7. SECURITY CLASSIFICATION 18. SECURITY CLASSIACATION OF REPORT OF THIS PAGE

Unclassified Unclassified NSN 7540.(J1-28~500

19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

O. LIMITATION OF ABSTRACt

SAR Standard Form 298 (Rev. 2·89) P,eocribed by ANSI Std. Z39-18 288·102

Page 3: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

------------~----~-

Outline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John F .. Vesecky. This JASON study investigates the capabilities of HICAPOR by calculating the antenna beam patterns formed by typical implementations of this concept. A wide variety of para­meter choices are investigated and antenna patterns for HICAPOR are compared with conventional phased array and true time delay techniques of beam formation. The presen­tation begins with an introduction of the HICAPOR concept and how it fits within a high capability, very wide band radar. This is followed by presentation of a computer simulation of the beam and pulse forming capabilities of HICAPOR over a range of radar parameters. HICAPOR beamforming performance is then compared with the performance of other radar types. Finally conclusions are drawn and recommendations made.

I JASON HICAPOR I 1

Page 4: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

This page left blank intentionally.

I JASON HICAPOR I _____ ..... __________ 2_\ _

Page 5: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~--------------~-

HICAPOR

3

Page 6: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

- --------------------------------------,

Opto-Electronic Control • Conventional Low-Performance Phased Array

Radar - Simple control of a single transmit beam - Moderate bandwidth, complex waveforms available - Large changes in frequency cause squint of beam for angles off

boresight - Single receive beam only - No null steering capability

• High-Performance, True Time Delay (TTD) Steering Phased Array Radar

- Use of optical delay devices allows large changes in frequency with no beam squint

- Use of optical fibers makes signal transmission easier and more immune to interference

• High-Capability Opto-Electronic Radar (HICAPOR) - Combines optical signal transmission with direct digital

synthesis of transmit signal at array element I JASON HICAPORI

__ .. __ . ____________ 4 _; _

Page 7: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~~---------------

Optc-Electronic Control

Conventional low-performance phased array radar suffers from a variety of short comings. In particular phase shift is used to control beam angle and this leads to degradation of the beam shape when frequency is shifted a large amount from the nominal operating frequency. This problem is called beam squint. One way to correct the squint problem for very large bandwidths or large changes in operating frequency is to use time delay to steer the antenna beam rather than phase shift. Time delay beam steering can be implemented electronically, but the size of waveguides and other electronic devices makes the implementation awkward. Optical fibers are very effective in the transmission of very wide bandwidth and time delay devices, such as the bifodal (a switched, binary tree of fiber optic delay lines), can be used to steer phased array antenna beams. However, there are drawbacks to optical delay lines, including stability, sensitivity to severe environments and production of long delays. Further, improvement can be made by using optical fibers to transmit microwave signals around the radar, but doing the time delay (along with waveform generation) by direct digital synthesis at each array transmit element.

5

Page 8: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

The HICAPOR Strawman

• 'N' Transmit Beams - Transmit waveform synthesis at each array element

• 'N' Receive Beams - AID conversion at each antenna element

• Optical Fiber used for: - RF-Clock distribution - Synchronization - AID data link to computer - Computer link to waveform generator

• Employ D/A waveform generator for both pulse forming and beam forming

• Optical Fiber/Devices are NOT used for beamforming!

I JASON HICAPOR I ___ , '. __ . _________ .. _ 6 __

Page 9: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

------------~------

The HICAPOR Strawman

To illustrate the HICAPOR concept we construct a strawman design and then compute the beam formation capability of HICAPOR for a variety of parameters. We also compare the HICAPOR capability with a variety of other options including conventional phased array radar and true time delay beam steering. In the HICAPOR strawman design optical fiber is used extensively for RF clock distribution, synchronization, NO data link to computer and computer link to waveform generator. This is illustrated on the following viewgraphs. However, optical fiber/devices are NOT used for beamforming. Instead a electronic digital O/A is used for both waveform generation and beam formation. This means that the waveform timing must be at the 0.1 ns level to accomplish the beam forming function. The HICAPOR concept and how it fits into a high capability array antenna radar is illustrated in the following viewgraphs.

I JASON HICAPOR I 7

Page 10: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

HICAPOR Architecture Array Module

L..-------. /

Array Module

.I " I )'[fJ //" /- :===~

~-------f~---"7/~ HTSC STALO

Amp Optical Splitter

J / Array /,l~ I' ~---t /". Module

~. ,."'/ // .rf?'

,/

Pulse ~ ///~ Gen. ~\/~,//

I' .f' i~ ..f'/

A // / &1' / / /

.---_~---------------_. kJ / bY /'

Computer System

'" ,/

,/0<

• • •

Array Module

JASON HICAPOR

8

------~------------

Page 11: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

- - - - .. '- -' - - -' .. ' _ .. - - - - --HICAPOR Architecture

This viewgraph illustrates the radar concept of HICAPOR. Much of the radar is conventional, but advanced components are used in several places. To decrease phase noise for better Doppler discrimination of low cross section targets, a high­temperature superconducting stable local oscillator (HTSC STALO) is used. Communication of RF and digital signals around the radar is done by fiber optics. This includes the master RF carrier signal for radar transmissions, time synchroni­zation signals as well as the digital information needed by the array modules for beam formation, waveform generation and other radar functions. The received radar echo signal is digitized at the array module level and this information is transmitted by optical fiber to the radar's computer system for receive beam formation, Doppler proceSSing and other data analysis functions.

I JASON HICAPOR I 9

Page 12: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Optical Fiber RF & Sync

Optical Fiber Data Link

--

--

Array Module

Waveform Generator

Jl

- - AID --.. - -~

" T/R /

~ Antenna Element

~-------------------------------------------------------------4 JASONHICAPOR ____ .. , __ , ___ , _, _______ 1 __

Page 13: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

1- _ ________ .. ; __ ' __ , ___ _ !

Array Module

Each array module contains devices for generation of the radar transmit signal as well as the AID conversion of the received echo signal. The waveform generator receives RF carrier, synchronization and waveform and beam forming instructions by optical fiber links to the radar computer system. The synchronization pulse begins each pulse forming process. This generator then manufactures the output signal to be transmitted by the particular array module at say 10 GHz. This generator is the heart of the HICAPOR concept and is described in more detail on the following viewgraphs. On receive, the received signal is down converted to baseband and then digitized with 15 bit accuracy at a typical bandwidth of say 10 MHz. Although the individual echo signals at each array module are digitized at only 15 bit accuracy, the aggregate accuracy of the combination of many array module signals in the beamforming process increases the accuracy significantly for a large array. For a large array this increased accuracy by combination can result in 20 significant bits and a dynamic range of say 120 dB in the Doppler-processed signal.

I JASON HICAPOR I 11

Page 14: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Waveform Generator

Optical Fiber --------- RF Carrier -----I RF & Sync

L.

Optical Fiber Data Link

Shift Clock

Shift Register

Shift Register

Beam 1

, .. ~ .

Beam 2

~------t)~ PIN Switches

To T/R

~ ________________________________ ~ JASONHICAPOR

12 - - - - -- - - - _: .. ' - - ,- -) - - - -

Page 15: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

- - - - - - - - - - - - -- -, - - :- -Waveform Generator

The waveform generator is controlled by a digital data stream providing the successive loads to a large shift register (bottom left). This data stream contains the information necessary to generate the output waveform, complete in both waveform characteristics and location in time so that the desired beam is formed. The upper shift register contains the information for one complete output pulse. Thus, at instant of time, i.e. each 0.1 ns interval, this upper shift register shifts out eight binary numbers to control the eight PIN diodes. Throughout the radar pulse this upper shift register keeps shifting out 8 bit sequences to control the PIN diodes. For a 100 ns pulse length this would amount to 1000 8-bit sequences. When the pulse is finished the lower shift register loads the upper register with the information for the next pulse. This can be done at leisure since there is typically about 1 ms between pulses. The fact that each 8-bit sequence controls the signal phase allows the beam to be steered with high efficiency. The effects of changing the size of the shift register and the number of PIN diode control points is explored in the viewgraphs that follow somewhat further on. In this implementation we show how multiple beam capability is introduced. Namely, a second row of PIN diodes uses the same RF carrier and phase shifts, but with different 8-bit sequences corresponding to another waveform in a different direction. Each additional beam requires a doubling of the size of the upper shift register.

I JASON HICAPOR I 13

Page 16: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Simple Waveforms Carrier waveform

---.~~Time

Sync Pulse (loads SR and begins shift-out)

~O~---------------------------------------~~~ Time

Time Dela~ 'Phase' PIN Control Data Stream out of SR

00000000000000 222212222200000000000000000000000000000 ------------------------------------------~~~ Time

PIN Switch Waveform

-----------~--------+-----------------------------~~~Time

Desired Waveform

-------------------------~.~ Time

~ ________________________________________________________________ ~ JASONHICAPOR

14 -------------------

Page 17: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Simple Waveforms

Here we illustrate the HICAPOR pulse formation scheme with a simple waveform consisting of a single pulse that lasts for eleven shift register clock periods. At the top is the carrier waveform that supplies the signal to the phase shifters. The next time series below shows the sync pulse that loads the upper shift register from the lower one and begins the shift out to form one complete pulse. The third time series from the top shows which PIN diode is turned on. In this case all the PIN diodes are turned off except number two which is turned on for eleven shift out periods. The fourth time series shows the switch waveform for diode number two. The output waveform is shown at the bottom of the viewgraph.

I JASON HICAPOR I 15

Page 18: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Waveforms-Two Beams

Carrier waveform ---.~~Time

I"" Sync Pulse (loads SR and begins shift-out)

~~----------------------------------~~~ Time

Tim~elay 1 /hLTime D~ 'Phase 2' PIN Control Data Stream out of SR

000000111111113333222222200000000000000000000000000000 --------------------------------------~~~ Time

I PIN Switch Waveform

-----------~I-------+----------------------~~~Time

I PIN Switch Waveform

----~I--------~--------------------------~~~Time Desired Waveform

----~~~+H+H~~~+H+H+H+H~-----------------------~~~ Time

I JASON HICAPOR I 16 -------------------

Page 19: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Waveforms-Two Beams

Here we illustrate the H ICAPOR pulse formation scheme for two independent beams. At the top is the carrier waveform that supplies the signal to the phase shifters. The next time series below shows the sync pulse that loads the upper shift register from the lower one and begins the shift out to form one complete pulse. The third time series from the top shows which PIN diodes are turned on. At first only one pulse is specified to be on. Soon codes in the shift register begin to specify both pulses. Later the first pulse ends and finally the output is specified to be zero. The fourth time series shows the switch waveform for the pin diodes. The output waveform is shown at the bottom of the viewgraph.

I JASON HICAPOR I 17

Page 20: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Waveforms-Phase Encoding [Pulse Compression]

~~~~~~~~~~~ Carrier waveform ---II~~ Time

v V V V ~ V V V V, V

Sync Pulse (loads SR and begins shift-out)

~~----------------------------------------------------------~Time

Time Dela\ 'Phase' PIN Control Data Stream out of SR

o 0 0 0 7 1 4 ~2 3 6 5 0 0 0 0 0 0 0 0 0 0 0 0 --------------------------------------------------------------~~~Time

------------+rl-+~I--~----------------------------------------~~~Time ----------------~ __ ~----------------------------------------~~~Time

--------------~r~l--~~~------------- PIN Switch ~aveforms ----------~~~ Time .. Time -.. Time -.. Time -... Time -I

1

r 1

1...-__________________________________________________________ ---1 JASON HICAPOR

18 -------------------

Page 21: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Waveforms-Phase Encoding

[Pulse Compression]

Here we illustrate the HICAPOR pulse formation scheme for pulse compression. At the top is the carrier waveform that supplies the signal to the phase shifters. The next time series below shows the sync pulse that loads the upper shift register from the lower one and begins the shift out to form one complete pulse. Different codes are used to specify which phase to transmit at each time. The next set of time series from the top shows which PIN diodes are turned on. The output wave-form is shown at the bottom of the viewgraph.

I JASON HICAPOR I 19

Page 22: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Examples for Simple Pulse Radars Antenna Element r Parameters

f=10GHz Classic Phased Array Phase Res. = nIB

16 taps of a delay line A/ (16 Phases)

Problem: Squinting! "TTT'

•••••••• u •••••••••••••••••••••••••••••••••••••••••••••••••••••• ~UL~ED RF (1 OGH~) ...... ~I ........ Delay Line .1~ ~APS ......... 1 ........... .

Time Delay Array / PULSED RF (10 GHz) /

~~ : ~:I~; I;~: taps • ,:-.... T T TT TT T T TT TT TT TT .~.6~~ ~~~s. ~ TT TT TT TT TT TT TT TT problekm: fCf~bmplexltY! I Delay Line I ...................... 1 Delay line ~ Many mOl er

HICAPOR 16 taps & 100 stage shift register 10 GHz Clock

Simple & Solves Squint problem, adds flexibility

r 100 stage shift rer

er ~ - --;;;~TTTTTTT ..t RFCARRIER (10 GHz) --_~~I Delay Line 16 TAPS 1-:

OFF TAP

JASON HICAPOR

?J -------------------

Page 23: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Examples for Simple Pulse Radar

This viewgraph illustrates the important differences between the classic phased array, the true time delay (TTD) array and the HICAPOR concept. In each case we consider an individual array module and show what is required to generate the transmitted signal for some desired antenna beam direction. The classic phased array at the top the antenna can be hooked to any of 16 taps on a delay line. The delay line taps are such that a phase change of 3600 is distributed over the 16 taps. Thus, the delay line acts like a phase shifter, which is what we want for this comparison. The problem for the classic phase array antenna is the squinting problem, discussed above. In the time delay array case the delay line requires enough taps to allow each element to select the correct delay. For a 100 element array this requirement means that the tapped delay line at each element must have some 16 x 100 delays. Such a delay line can be implemented using fiber optic cables and optical switches. Schemes, such as the bifodal which switches in or out a number of optical fibers to construct the correct delay, can reduce the complexity. Still the problem is one of complexity as the optical delay lines are long if the change in time delay is done by changing optical wavelength or many optical

I JASON HICAPOR I 21

Page 24: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Examples for Simple Pulse Radar (concluded)

switches are required if one changes delay by propagating through a different physical set of fibers. The HICAPOR concept uses a 100 stage shift register to digitally control the delay and to digitally control the 16 stage delay line as shown in the viewgraph. Thus, the HICAPOR system uses optical fibers where they can do the most good, i.e. in digital and analog signal communication within the radar. The digital waveform generator can be made very small and thus fit nicely within an array module, whereas current optical delay devices would make this fit much more difficult. We also think that the cost of H ICAPOR modules would be significantly less than their optical counterparts.

I JASON HICAPOR I 22 -------------------

Page 25: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

------------------------

SIMULATION OF THE DIGITAL BEAM SYNTHESIS SYSTEM

23

Page 26: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Digital Beam Synthesis (DBS) • DBS is a component of the HICAPOR system that

forms a RADAR transmitted beam.

• DBS is an invention to greatly reduces cost and size of a true-time delay beamformer.

• DBS separately modulates a carrier for each array antenna element at exactly the right time for that element.

• In DBS delay is provided by a digital circuit under computer control.

• A shift register is one example of such a digital control circuit.

• One form of DBS employs a vernier scheme such that the shift register provides a control character that selects a desired phase of the RF carrier.

I JASON HICAPOR J 24 -------------------

Page 27: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Digital Beam Synthesis (DBS)

The DBS invention greatly reduces the cost and size of RADAR systems by moving the modulation process after the delay process. Thus the delays can be specified in a simple digital shift register or other digital circuit under computer control.

I JASON HICAPOR I 25

Page 28: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Digital Representation • DBS, being digital, employs discrete step

approximations for the radar signals.

• If the steps are too gross, error artifacts will appear in the beam pattern.

• The DBS and six other beam forming systems have been simulated.

• Artifacts unique only to DBS can be determined by comparison to the other systems.

I JASON HICAPOR I 26 -------------------

Page 29: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Digital Representation

The DBS system(as well as other systems) employ discrete approximations for the RADAR signals. If these are too crude, then undesireable artifacts will appear in the transmitted RADAR beam. By simulating DBS and other systems, the source of the artifacts can be determined.

I JASON HICAPOR I 27

Page 30: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Simulation Errors • Simulation method: Direct, time-domain

trapezoidal integration of antenna element signals.

• Time-step resolution is an issue: - If too small, simulation cost is too high - If too large, simulation is not accurate.

• A number of time step sizes were tried. • Result: 0.125 nanoseconds was chosen. • An example at 0.25 ns is shown to validate this

choice.

~-------------------~~ JASON HICAPOR I 28

-----------------~-

Page 31: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Simulation Errors

Computer simulation is employed to study the different beam forming schemes and their parameter settings. To get an accurate simulation the simulation time­step cannot be too big. For the range of parameters of interest, a simulated time step of 0.125 nanoseconds is the right choice. This will be shown in a later plot.

I JASON HICAPOR I 29

Page 32: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern - Antenna Types TCW 90 DCW TTD 120 60 PHA 0

DPA .0

DBS '"0 -10 DOD <J.)

en c 0 -20 30 a.. en <J.)

a: ('lj

-30 c c <J.) .-c « -40

PARAMETERS ------------------STUDY ANTENNA -50 0 MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 210 330 DIR 0.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 TAPER 0.0 240 300 DBLIM -50.0

270 JASON HICAPOR

30 - - - - - - - - - - - - - - - - - - -

Page 33: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Beam Pattern - Antenna Types

This plot shows a nominal beam steered to zero degrees for each of the seven beam forming methods studied. These are:

TCW: True Carrier Wave beam forming.

When an RF carrier is modulated, with a pulse for example, the resulting signal has a wider bandwidth than the original carrier. As a result beams formed on a pulsed modulated carrier have additional artifacts (side-lobes, etc .. ) TCW is thus shown so comparisons can be made.

DCW: Discrete Carrier Wave beam forming.

If the phases of each carrier wave at each antenna element are set in discrete steps, artifacts can appear in the beam. Simulation of the DCW provides a measure of the required number of discrete phases needed for accurate beam forming.

PHA: Phased Array. pulsed RADAR beam forming.

This is the classic phased array RADAR with continuous setting of each phase at each antenna element.

DPA: Discrete Phased Array beam forming.

This is the classic PHA but with discrete settings of each phase angle.

I JASON HICAPOR I 31.

Page 34: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-----------------------------------------------,

Beam Pattern - Antenna Types {concluded}

TTD: True Time Delay beam forming.

Beams are formed by first pulse modulating a carrier, then delaying a copy of it for each antenna element. Beam steering is accomplished by providing the correct delay for each element.

DBS: Digital Beam Synthesis beam forming.

This is beam forming by separately modulating an RF carrier at each element. Time delay is controlled by a digital shift register for each element. Hence, time delays are discrete.

DDD: Digital-Carrier and Digital Delay. beam forming.

It may be desirable to employ digitally synthesized carrier waves in RADAR systems. DDD provides various discrete approximations to sine waves to test the DBS system on these types of carriers.

I JASON HICAPOR I 32 -------------------

Page 35: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------

This page left blank intentionally.

I JASON HICAPOR I 33

Page 36: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern -Steered Elevation Beams 0°

90

10° 120 60 20° 0

-~.~~-~ ;-:j(} .c "'0

40° -10 Q) -------" :)0 en

c 60° 0

Q. en -20 30 Q)

a: ct! c c -30 Q) --c «

-40

PARAMETERS .............. _-_ ........................

-50 0 STUDY DIR MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 210 330 DIR 0.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 240 300 TAPER 0.0

270 JASON HICAPOR

34 - - - - - - - - - - - - - - - - - - -

Page 37: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Beam Pattern - Steered Elevation Beams

This antenna response plot illustrates the computer simulation of the base-line case. All the other plots are variants that explore different issues with the OBS scheme.

The legend for the individual plots is shown in the upper left-hand side of the figure. For this figure, the individual plots are for beams steered to point to elevation angles of 0°, 10°, 20°, 30°, 40°, 50°, and 60°.

The parameter settings for this base- line case are shown on the lower left-hand side of the figure.

For this base-line case, a simple pulse is modeled. The carrier frequency is 1 GHz, the antenna is a 1-0 linear array of 100 elements spaced at /",/2 (0.5 ns), there is no tapering, and the OBS employs shift registers of length 50 and 8 phase angles.

I JASON HICAPOR I 35

Page 38: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern -Steered Elevation Beams [ Time Resolution: 0.25 ]

0° 90

10° 20° 0

120 60

_.~~.w. ___ . ., :::\0'

40° ..c "'0

50 -10

-----~ <D (f)

60° c 0 Q.. -20 30 (f) <D a:: co c -30 c <D .... c «

-40

PARAMETERS ------------------ -50 0 STUDY DIR MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 210 330 CODE 1 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 240 300 ANGINC 0.2 TAPER 0.0

270 JASON HICAPOR

36 - - - - - - - - - - - - - - - - - - -

Page 39: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Beam Pattern - Steered Elevation Beams

[Time Resolution: 0.25]

The simulation method employed is direct time-domain trapezoidal integration of all the signals produced by all the antenna elements.

An issue then is the resolution of the numeric integration. This figure shows the results of employing a time-step of 0.25 nanoseconds (ns); that is, twice as long as the step of 0.125 ns employed in all the other studies. It can be seen that very little difference results. If the time-step is increased to 0.5 nsec, noticeable artifacts appear. (This result is not shown.) The conclusion is that 0.125 nsec is the proper time step to employ in the calculations.

I JASON HICAPOR I 37

Page 40: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern -Steered Elevation Beams [2-D] 0°

90

10'0 120 60

20° 0 , ~ I .. '

. )\.)

40' ..Q

) - "'0 -10 'll.) Q)

60° (f)

c 0

-20 30 a. (f) Q)

a: co

-30 c c Q) -+-' C «

-40

PARAMETERS --_ ..... _-_ .......... -........ -

STUDY DIR -50 0 MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 35 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 2 ANGINC 0.2 TAPER 0.0 240 300

270 JASON HICAPOR

38 - - - - - - - - - - - - - - - - - - -

Page 41: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~----------------

Beam Pattern - Steered Elevation Beams [2-D]

This plot is for a two dimensional antenna of 35 by 35 elements spaced at /",/2. This shows beams steered to elevation angles from 0° to 60°. The relatively large side lobes at 300° result from the steered azirmuth angle being set to 45°, and the elevation angle to 60°.

I JASON HICAPOR I 39

Page 42: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern -Steered Elevation Beams [ 2-D, Full Taper] 90

0° 10° 120 60 20° 0

';('l-

40° ..0 -10 "0 - -----_.

())

60° (f)

c 30 0 -20 Cl.. (f) ())

a: co -30 c c ()) +-' C

<C -40

PARAMETERS -50 0 --_ .. - ....... -------.. --STUDY DIR MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 35 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 210 330 CODE 1 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 2 240 300 ANGINC 0.2 TAPER 1.0

JASON H ICAPOR

- - l1li - - - - - - - - - - - - - - 4li - -

Page 43: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Beam Pattern - Steered Elevation Beams

[ 2-D, Full Taper]

This shows what tapering can do for the close-in side lobes. It does suppress them at the cost of a wider main beam. Later the amount of tapering will be varied to better illustrate this. Note that at extreme directions (e.g. 300°) and extreme steering (60°) the side lobes are not suppressed, they are enhanced! Simple amptitude tapering will not suppress these side lobes.

I JASON HICAPOR I 41

Page 44: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern - Steered Azimuth [2-D] 90

0° 10° 120 60 20° 0

,----,-- :30' 40°

..Cl

) "0 -10

!:SU Q) !J)

60° c 0 .f /7 0- -20 30 !J) Q)

.~~ cr: ~ c -30 c Q) --c « I I. '

-40 J'l2..:,~~ (.1/,"-- ~

PARAMETERS f: (.~ : i/

----------------- -50 ri.,' 0

STUDY AZMDIR !:J-' f'//

MXCASES 6 f- /' ANTENNA DBS 'P ' NPHS 8 SRSZ 50 NELS 35 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 2 ANGINC 0.2 240 300 TAPER 0.0

270 JASON HICAPOR

- - - ... - - - - - ... - - - ... .. - - 4_ -

Page 45: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~------------~---

Beam Pattern - Steered Azmiuth [2-D]

This plot is for a two dimensional antenna of 35 to 35 elements spaced at 'A/2. The elevation angle is set to 45°. The beam is then steered through 0° to 60° in azimuth. Note the beam broadening due to both the 45°elevation and various azimuth steerings.

I JASON HICAPOR I 43

Page 46: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

----_._-----------------------------------------,

Beam Pattern - Antenna Taper 0.0 90 0.2

---- 0.3 120 60 0

.-.----

0.7 ..0 -10 ~-----~-. iJ. ~3 "0

1.0 <D (j)

c 30 0 -20 0.. (j)

<D a: ctl -30 c c <D ...... C « -40

PARAMETERS ---_ .. _-------.. _--- -50 0 STUDY TAPER

MXCASES 6 , ANTENNA DBS .((

<!!"!

NPHS 8 (~

SRSZ 50 J NELS 100 TELS 0.5 FREQ 1.0 ~~ PLSWD 5.0 NLEVELS 7 CODE 1 210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 240 300 TAPER 0.0

270 JASON HICAPOR

'14 - - - - - - ... - - - - - - .. - .. - - --~~

Page 47: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~~-~-----~~~-~---

Beam Pattern - Antenna Taper

Tapering the antenna array reduces the antenna side-lobes at the cost of widening the main beam. This figure shows no tapering and six uniform levels of tapering. The full tapering is a 100% raised cosine function.

I JASON HICAPOR I 45

Page 48: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern -Number of Elements/Dimension 14 90 28

--- 43 120 60 ----~~-.- ~) -/ 0

Ll 71 "'0

Q) -10 (fJ

100 c 0 a. (fJ

30 Q) -20 a: ct:I c c -30 Q) +-' C «

-40 PARAMETERS ---_ .... _ ........ _-_ .. __ .. STUDY NELS -50 0 MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM ANGINC 0.2 240 300 TAPER 0.0

270 JASON HICAPOR

46 - - .. ' .. - .. - - - - - -. - .. - .. - - -

Page 49: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern - Number of Elements Dimension

Here the number of antenna elements is varied from 14 to 100 elements in 7 steps. With only 14 elements, the beam is wide and the side lobes are large.

I JASON HICAPOR I 47

Page 50: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

- -----------------------------------------------,

Beam Pattern - Frequencies 0.14GHz

90

0.29 GHz 0.43 GHz

120 60 0

.--~------.-- OS? GH~ 0.71 GHz .0

"'0 -10 ;'), ,36 (~.! ~'-l?:

CD 1.0 GHz (/)

c 0 -20 30 0.. (/)

CD a: co -30 c c Q) +-' C « -40

PARAMETERS j --------------.. ---STUDY FREQ -50 0 MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 TAPER 0.0 240 300

JASON HICAPOR

- .. .. .. - - - - - ... - .. - .. .. .. - 4 .. -

Page 51: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~--~-~--~~~~-~---

Beam Pattern - Frequencies

This illustrates operating the antenna at lower frequencies. The beam broadens and side lobes rise as expected as the frequency decreases.

I JASON HICAPOR I 49

Page 52: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern -Time/Element 0.07 ns 90

0.14 ns -,-- 0.21 ns 120 60

0 ns

0.36 ns ..c 'U

,''\. !<~~; itS -10 Q)

0.50 ns (f) c 0 0.. -20 30 (f) Q)

a: ~ c -30 c Q) +-' C «

-40 PARAMETERS ---------------_ ..... STUDY TELS 0 MXCASES 6 -50 ANTENNA DBS NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 DIR 45.0 210 330 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 TAPER 0.0

240 300

270 JASON HICAPOR .. - .. - - - - .. - - - .. - - - .. - 50 - -

Page 53: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~~~-~-----~~-~~~-

Beam Pattern - Time/Element

The spacing of the 100 antenna elements is varied from 0.07 nsec to 0.50 nsec in 7 steps. The 0.50 nsec spacing corresponds to ').)2 spacing. It can be seen that as the antenna gets smaller (smaller spacing), the beam widens and side-lobes increase as expected.

I JASON HICAPOR I 5l

Page 54: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

----------------------------------------------------------~

Beam Pattern -Pulse Widths 90

0.71 ns 1,43ns 120 60 2.14ns 0

-~ '""---'--. /' ..0 "'0

Q) -10 (j) c

5.0ns 0 a... (j) -20 30 Q)

0: co c c -30 Q) ..... c «

-40 PARAMETERS -------_ ..................... STUDY PLSWD -50 0 MXCASES 6 ANTENNA DBS NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 DIR 45.0 210 330 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 TAPER 0.0 240 300

270 JASON HICAPOR

52 .. - - .' - .. .. - .. - - <- ~ - - .. .. '- -

Page 55: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~~~-~~~~---~----~

Beam Pattern - Pulse Widths

In beam forming for pulses, the shorter the pulse the wider the spectrum of the signal. Thus, the more difficult the beam forming problem. This plot shows the beams when the pulse width is shortened in seven steps from 5.0 nsec to 0.7 nsec. Short pulses cause high side lobes.

I JASON HICAPOR I 53

Page 56: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern - Fixed Phases 2

90

·4

8 0 120 60

16 .... ) r ..... ...Q ,.:)c:' "0

-10 --.---.-~.- h~·l. <D

(/)

128 c 0 a. -20 30 (/)

<D a: CCl c -30 c <D ...... C «

-40

PARAMETERS -----------.. ----- -50 0 STUDY NPHS MXCASES 6 ANTENNA DBS NPHS 8 ) SRSZ 50

'j \ NELS 100 TELS 0,5 ~) FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE 1 210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 240 300 TAPER 0.0

270 JASON HICAPOR

54 - - .. - - .. - - .. - - - - - - - - - -

Page 57: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

---~----~-~--~~~---

Beam Pattern - Fixed Phases Because the Digital Beamforming System (DBS) employs discrete steps to set the pulse of each antenna element, the more steps, the better the approximation to the desired phase. If only two steps (of 0° and 180°) are used, the main beam is decreased and the side lobe response is bad. However, with at least eight steps the approximation results in excellent beamforming. More staps offer little improvement.

I JASON HICAPOR I 55

Page 58: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern - Shift Register Sizes 7 90 14 21 120 60

_'_~_~R_ 2(5 0 .c

35 -a

-- .. ---~.-- /;-? CD -10 (/)

50 c 0 0.. (/)

CD -20 30 CC ct1 c c CD -30 ....... c «

-40

PARAMETERS ~

---------------_ .. -

1 0 STUDY SRSZ -50

MXCASES 6 ".~ ANTENNA DBS "'"

.: ! NPHS 8 SRSZ 50 -, J\f NELS 100 \¥

If TELS 0.5 ~ry FREQ 1.0 PLSWD 5.0 ~/ NLEVELS 7 CODE 1 210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2

240 300 TAPER 0.0

270 JASON HICAPOR

- - - - - - - - .. - .. - - .. .. .. - 5 .. -

Page 59: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

------~--~-~-~-~-~-

Beam Pattern - Shift Register Sizes

For the base case, a shift register length of 50 matches the 100 element antenna with A/2 spacing. Fewer (therefore slower) register stages only give an approximation to the desired delay pattern in time. The artifacts of the approximation when the number of shift registration stages is only seven is apparent in the high-level side-lobes it generates.

I JASON HICAPOR I 57

Page 60: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

o o o o o o c:i

Three-Level Digital Carrier

--0.000000 --0.000000

3-levels

1 ;" '7'IS,""" "I 'I j

0.5 ~mllli\mmmmm " """"'m ,~ j~ /1 . :,'1\ ~ 'r-/ ; , 1 " , ' -1 o :=-L .... ,... .. .......... < ................ : ..... i \. : . . I

'-­

i \-

-0.5 t-......... r

t i -1 o

'\ """"""","""""""',rn !'\ : '/'1 :

.. , ........................... :............. ......... ..!. ........................ : .. \~ ................ i....... : t '.-

, '" l!>~[ ,.~ /'i, 1-

50 100 150 200 250 300 350

o

L-____________________________ ~I JASON HICAPOR I

58

------~--~-~-~---~-

Page 61: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

--~----------~---~-

Three-Level Digital Carrier

In all the previous cases studied, the carrier waveform was an analog sine wave. Max Yoder of ONR suggested that this carrier could also be digitally synthesized. Here is a sine wave and its three level approximation.

I JASON HICAPOR I 59

Page 62: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

o o o o o o o

Five-Level Digital Carrier

--0.000000 --0.000000

5-leve~

o 50 100 150 200 250 300

o

350

L..-------------------------------l JASON HICAPOR

60

--~----------~-----

Page 63: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Five-Level Digital Carrier

This is a five-level approximation to a sine wave.

I JASON HICAPOR I 61

Page 64: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Sixty-Three-Level Digital Carrier

o o o o o o o

1.5

1

0.5

-0.5

o 0.000000 -8 - 0.000000

HTest2.out I , t i ,i j i

'.J j ~ ._-.:.;..;. ...................... -........................ -........... . ............................ . ···················-1

. . . .

-, ~ -i -1 ...................................................... _, -i

'" -\ .. · .................... ················ .. ···- .. · .. · ........ · .... l .............. ·~

. j' -I .: ............ / ....... ~ ................ -=]

17.j; -I :/~ .

-1 l-.................... :. ............................................ ;... ..................... l ................... . -1 ]

.. .......................... -1 j Ok

-1.5 ! i I ! 1

.i -1

I I , I ! t ! ,

o 50 100 150 200 250 300 350 400

o

~------------------------------------------------------------------~ JASONHICAPOR 62 -------------------

Page 65: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Sixty-Three-Level Digital Carrier

This is a sixty-three-Ievel approximation to a sine wave.

I JASON HICAPOR I 63

Page 66: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Beam Pattern -Discrete Levels 00

90

:-)

0 120 60 t) 0

9 ..0 l:J -10

---~-~---.--" 'I (j) (f)

13 c 0 -20 30 Q.. (f) (j)

a: C1l

-30 c c (j) ....... c « -40

PARAMETERS ._--_._--------_ ... -50 0 STUDY NLEVELS MXCASES 6 ANTENNA DOD NPHS 8 SRSZ 50 NELS 100 TELS 0.5 FREQ 1.0 PLSWD 5.0 NLEVELS 7 CODE

210 330 DIR 45.0 AZMDIR 45.0 MAXDIR 60.0 AZMPLN 45.0 ELVPLN 45.0 NUMDIM 1 ANGINC 0.2 240 300 TAPER 0.0

270 JASON HiCAPOR

64 - - - - - - - - - - - - - - - - - - -

Page 67: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

,-------------1 __ -----------------

Beam Pattern - Discrete Levels

Here are the beam patterns that result when the carrier is changed from an analog sine wave down to 3,5, 7, 9, 11 and 13 step approximations to a sine wave (see previous plots.) It is interesting that for beam forming purposes, a crude (Le. five level) approximation seems to be good enough.

I JASON HICAPOR I 65

Page 68: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Conclusions and Recommendations

• If the shift register and number of phase parameters are properly chosen, the Digital Beam Synthesis (OBS) scheme performs as well as True Time Delay (TTD) scheme.

• DBS can provide VERY large saving in cost and size over TTO with the SAME performance.

• A vigorous experimental test of DBS should be immediately started.

• OBS could radically impact ship, aircraft and ground­base RADAR systems in terms of lower cost and smaller size.

'----------------------t JASON HICAPOR

66 -------------------

Page 69: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------Conclusions and Recommendations

The simulations carried out for this presentation show that modest approximation does not hurt beam forming. This means that modest cost Digital Beam System (DBS) can lead to large savings in weight and cost in phased array antenna systems, with essentially no loss in performance.

Because of the very large potential weight, size and cost savings, it is recommended that ON R proceed to a vigorous experimental construction and test of a DBS antenna.

67

Page 70: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

This page left blank intentionally.

I JASON HICAPOR I 68 -------------------

Page 71: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

-------------------

APPENDIX SIMULATION PROGRAM

69

Page 72: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Appendix Simulation Program

This simulation program is written in standard C programming language and employs only the standard ANSI libraries. It should compile and run on any computer equipped with a C compiler. There is no input. Various runs result from changing the parameters in the define statements at the top of the program

The output is a tabular file suitable for plotting by any standard plot program. The Kaleidagraph plotting package for the MAC produced the plots shown here.

L---__________________ ~I JASON HICAPOR I 70 -------------------

Page 73: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I I I I I I I I I I I I I I I I I

• Kaye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

Page: 1

/* main.c */

/* -----------------------------------------------------------------------------------#define STUDY "DIR"

#define MXCASES 6 #define ANTENNA #define NPBS #define SRSZ #define NELS #define TELS #define FBEO #define PLSWD tdefine NLEVELS #define CODE #define DIR #define AZMDIR #define MAXDIR #define AZME'LN #define ELWLN #define NtJMDIM #define ANGINC tdefine T~ER 'define DBLIM

"DBS" 8 50 100 0.5 1.0 5.0 7 1 45.0 45.0 60.0 45.0 45.0 1 0.2 0.0 -50.0

/*

0.125

/* Define desired study,i.e. What varies .. in study.Choices: */ /* BASE,DIR,~,NPHS,SRSZ,NELS,TELS,FREQ,PLSWD,NLEVELS, /* CODE,AZMDIR, TAPER /* No. of cases for studies: (O,MXCASES) /* Antenna Type for BASE study: (TCW,DCW,PHA,DPA,TTD,DBS,DDD) /* Number of discrete phases /* Number of shift register stages per antenna element /* Number of ant elements (in each direction if 2-D array) /* Time (ns) between antenna elements /* Frequency of carrier in GHz /* Transmitter Pulsewidth in ns /* No. of levels for discrete sin funct. (= 1 for cont. sin) /* PUlse Compression Code. 114 = Barker 7 bit code /* Steered beam elevation in degrees /* Steered azimuth direction in degrees for 2-D array /* MaXimum Angle to be steered in degrees in DIR study /* Azimuth Angle for observation plane (in degrees) /* Elevation Angle for observation plane (in degrees) /* Number of dimensions for the antenna array . /* Angle Increment of plot data in degrees /* Antenna taper: 0.0 = none; 1.0 - full raised cosine taper. /* dB Limit to minimum of graph plot

/* Time slice calculation resolution in ns */ .define TINC 'define ENO~ fdefine 'IW.)PI

0.5 6.2831853

/* Energy Normalization factor-- Half-wave rectifier */ /* 22t */

'include<stdio.h> 'include <stdlib.h> 'include<math.h>

FILE *fp;

float ff; int ant,dd,study: long code,i,ir,isr,j,jr,k,l,m,n,nels,nl,nlevels,nphs,nsrs; double a, ang, azmdir,azmpln,b,c,d,db,dir,dt,e,elvpln,em,freq,idir,p,pd,pl,plswd; double pn,phir,rd,s,sf,sp,t,ta,taa,tb,taper,td,tels,tdir,tt,tp,tmin,tmax,tx,ty,w,x,y,z; double dirinc, in,nn,nt,nf,np:

char *file name [] -"nul", -"Steered Elev.'s·, "Antenna Types·, "Fixed Phases", "Shft Reg'.. Sizes", "No.Elements/Dim", "Time / Element·, "Frequencies", "Pulse Widths", "Discrete Levels", "Types of Code", "Steered Azimuth", "Antenna Taper" };

*/

*/ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */

Page 74: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

.Caye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

/*

Page: 2

----------------------~.--- */

/* ----------------------------------------------------------------------------- */

void base study(int); void dir Study (int) ; void studies (int, int); void cw(int); long code _ tbl ( long ): long code length (long ); unsigned hash (char "', unsigned, unsigned) ; double rcos (long ); double dsin (double) ; double discrete"phase (long); double discrete delay (long ); double d"phase (double ); double d delay (double ); double pulse ( double ); double coded"pulse( double,long ); double time a(long ); double time -b (long ); double t1me:bb (long ): double cw.JX>WE!r (int); double pulse energy (int) ; double sum eYes (int, double, double, double, double, double) : void initj)arameters (void) : void direction.J>arameters(double,double); void ant file open(char *); void study_file_open(char "'); void inc calc(int): void dbprint (double) : void inc "print (double) : void base header (void) : void header"print(double); void note"print(void); void head"print(int); void line"print(int); void para"print (int) : void note write (void): void studY..paIm_write(char *): void para_write (int);

/* ------------------------------------------------------------------------------ */

/* ------------------------------------------------------------------------- "'/

I I I I I I I I I I I I I I I I I I I

Page 75: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I I I I I I I I I I I I I I I I I I

-~aye's HD:AL.2:Hlcapor7:new7main.c. Wednesday. April 16. 1997 I 5:15 PM

void main (void) {

nphs = Nl?HS: nsrs = SRSZ: nels = NELS: tels = TELS: freq = FREQ: plswd = PLSWD: idir = DIR; nlevels = NLEVELS: code = CODE; azmdir = AZMDIR: taper = TAPER; elvpln = ELVPLN; azmpln = AZMPLN;

/* fixes a compiler bug */

dirinc = MAXDIR/MXCASES; in = «double) SRSZ) / (l+MXCASES) ; nn = «double)NELS) / (l+MXCASES) ; nt = TELS/(l+MXCASES); nf = FREQ/ (l+MXCASES) ; np = PLSWD/ (1 +MXCASES) ;

rd • TWOPI/360.0; taa = tels*sin(rd*idir); jr E (90.0/ANGINC): nl = 1 + (NUMDIM - l)*(nels -I): init-parameters();

i - hash(ANTENNA,2,13); switch (i) /* Hash table for type of antenna */

{ ant = 3; break; ant - 5; break; ant z:: 6; break; ant - 7; break; ant = 4; break; ant·· 1; break;

/* 'rTD */ /* DPA */ /* DBS */ /* DDD */ /* PHA */ /* TCW */ /* DCW */

Page: 3

case 0 case 3 case 6 case 8 case 9 case 11 case 12 : default :

ant = 2; break; printf(" Unknown type antenna specified in main. Antenna = %s\n",ANTENNA);

} /* printf("Type antenna z:: %s; Hashval = %d; Value of ant • %d \n",ANTENNA,i,ant) ; return; .... printf(" \nD); i z:: hash(STUDY,22,27);study = 0; switch (i)

. {

case 0 studies (ant, 6) ; break; /* TELS study */ case 2 studies(ant,7); break; /* FREQ" study */ case 4 studies(ant,2); break; /* ANTENNA study */ case 5 studies (ant, 11) ; break; /* AZMDIR study */ case 7 studies (ant, 8) ; break; /* PLSWD study */ case 13 studies(ant,l); break; /* DIR study */ case 15 studies (ant, 9); break; /* NLEVELS study */ case 17 studies(ant,4); break; /* SRSZ study */ case 19 studies(ant,3); break; /* Nl?HS study */ case 21 studies (ant,S) ; break; /* NELS study */ case 22 base_study (ant) ; break; /* BASE study */ case 23 studies (ant, 12) ; break; /* TAPER study */ case 25 studies (ant, 10) ; break; /* CODE study */

Page 76: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Kaye's HD:AL.2:Hlcapor7:new7maln.c Page: 4 Wednesday, April 16, 1997 I 5:15 PM

default: printf(" Unknown study in main. Study:; \s case = \d\n", STUDY,i):

/* printf("Type study 8 \s; Hashval = %d; Value of study = %d\n",STUDY,i,study);return: */

return;

/ * End of main program * /

/* */

/* ------------------------------------------------------------------------------- */

void base study(int ant) { -long j; direct1on~ameters(DIR,AZMDIR); ant file open (ANTENNA) ; base header () ; for (j = -jr; j <c jr; j++)

{ switch (ant)

{ case case case case case case

1 2 3 4 5 6

case 7

dbprint C CW J>Ower C ant) ) dbpr1nt C cw.J>OWer ( ant) ) dbprint C pulse_energy (ant) dbpr1nt C pulse_energy (ant) dbprint ( pulse_energy (ant) dbprint ( pulse_energy (ant) dbpr1nt ( pulse_energy (ant)

; break; ; break;

) ; break; ) ; break; ) ; break; ) ; break; ) ; break;

default: printfC" Unknown tyPe of ant specified in dir study. \n") ;

} printf (" End of %s Data \n" ,ANTENNA) ; fclose (fp) ;

} /* end of base study */ /* ------------------------------------------------------------------------------....

void studies (1nt ant, int study) {

lonq i, n: studY-PaIm_wr1teCf1le_name[study): study_f1le_open(f1le_name[study]): para write(study): note :J>rint () : head-print(study): for (j .. -jr: j <- jr: j++) /* Steps through each observation angle */

{ ang = (long) (lOOO*j*ANGINC)/lOOO.O: pr1ntf("%4.1f",ang): fpr1ntf(fp,"%4.1f",anq): for (1 = 0: 1 <= MXCASES: 1++)

{ switch (study)

{ case 1: 1dir = 1 *dir1nc: break; /* DIR */

*/

I I I I I I I I I I I I I I I I I I I

Page 77: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I I I I I I I I I I I I I I I I I I

Kaye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

}

case 2 ant i+1: case 3 nphs 2« i: case 4 nsrs = (long) «i+1)*in): case 5 nels = (long) «i+1)*nn): case 6 tels = (i+1)*nt: case 7 freq = (i+1)*nf: case 8 plswd = (i+1)*np: case 9 nlevels = 2*i+1: case 10 : code = code tbl(i): case 11 : azmdir = i*d1rinc: case 12 : taper = «double) i) /MXCASES:: default: printf (" Unknown type of study

break: /* ANT */ break; /* NPHS */ break; /* SRSZ */ break: /* NELS */ break: /* TELS */ break: / * FF.EQ * / break: /* PLSWO */ break: /* NLEVELS */ break; /* CODE */ break; /* AZMDIR */ break: /* TAPER */

specified in studies.\n"):

ta = tels*sin(ang*rd); /* Times for each observed direction j */ tb = tels*sin(azmpln*rd)*cos(ang*rd); if(study == 11) {ta = tels*sin(elvpln*rd);

tb = tels*cos(elvpln*rd)*sin(ang*rd):} /* observations in elevation plane */

init-parameters(); direction-parameters(idir,azmdir); inc calc (ant) :

} /* end of stUdy case loop */ printf("\n"); fprintf(fp,"\nn);

} /* end of angle (j) loop */

Page: 5

printf("------------------------------------------------------------------\n"); printf(" End of %5 Data \n",~); fclose(fp);

/* end of studies */

/* *1

void inc_calc (int ant)

switch (ant) {

case case case case case case

1 2 3 4 5 6

inc-print( cw...,POwer ( ant) ) inc-print( cw ...,power ( ant) ) inc-print( pulse_energy (ant) inc-print ( pulse_energy (ant) inc -print ( pulse_energy (ant) inc -print ( pulse_energy (ant)

; break; ; break;

) ; break; ) ; break; ) ; break; ) ; break;

case 7 inc-print (pulse_energy(ant) ); break: inc_calc. default: printf(" Unknown ant specified in

return;

double cw...,POwer(int ant) { long k,l;

double ltb,lty,c,s,p,rc,rcl,t; c ,. 0.0; s - 0.0; for (1-0; 1 < nl; 1++)

{ Itb = l*tb; Ity - l*ty; rcl = I; if(NUMD~ >1) rcl - rcos(l); for (k-O; k < nels: k++)

{ t ,. -ltb - k*ta: /* Observation Direction Times */

ant=\n", ant) :

Page 78: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Kaye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

Page: 6

p = lty + k*tx; switch (ant)

/* Steering Direction Times */

{ case 1 case 2 default

p = w*(t + p) break; /* TCW */ p = w*t + d...,phase(p); break; /* DCW */ printf(" Unknown ant = %d in cw...,POwer\n", ant) ; return;

} }

} if( taper> 0.0 )

{ rc = rcl*rcos(k); else { c = c + cos(p);

c ... c + rc*cos(p); s c s + sin(p); }

return ( (c*c + 5*5) / (nl*nl*nels*nels) );

double pulse_energy (int ant) { double r, s, t ;

5=0.0;· for (t=tmin;t<tmax;t=t+TINC)

{ r z sum eles(ant,t,ta,tb,tx,ty); 5 .. S +-r*r;

} return(s/em);

1* end of t loop *1

s = s + rc*sin(p); }

double sum eles (int ant, double tc, double ta, double tb, double tx, double ty) { I*-calculates sum of voltage from array of antenna elements *1

double ltb, lty, p, r, rcl,t,time, z; long k,l; r-O.O; for (1=0; l<nl; l++)

{ ltb ... tc - l*tb; lty - l*ty; rcl - 1; if(NUMDIM >1) rcl - rcos(l); for (k=0; k < nels; k++)

{ t - ltb - k*ta; /* Observation Direction Times *1 p ... lty + k*tx; 1* Steering Direction Times *1 switch (ant) { case 1 printf(" Unknown ant = %d in pulse eval section\n",ant);return; case 2 printf(" Unknown ant ... %d in pulse eval section\n",ant);return;

. 1* TTD *1 case 3 z - sin(w*(t + p»; time - t + p; break; 1* PHA *1 case 4 z - sin(w*(t + p»; time = t; break; 1* DPA *1 case 5 z - sin(w*t + d-phase(p»; time = t;break; 1* DBS *1 case 6 z ... sin (w*t + d-phase (p) ) ; time = t + d delay (p) ; break; 1* DDD *1 case 7 : z -dsin(w*t + d-phase(p»; time - t + d:delay(p); break;

default: printf("Unknown ant - %d in pulse eval section\n",ant) ;return; }

if( taper> 0.0 ) r - r + rcl*rcos(k)*coded...,pulse(time,code)*z; else r - r + coded...,pulse(time,code)*z; .

1* end of k loop *1 } 1* end of 1 loop *1 return(r) ;

1* end of sum_eles function */

/* ------------------------------------------------------------------------------------------------------

/* -------------------------------------------------------------------------------

*/

*/

I I I I I I I I I I I I I I I I I I I

Page 79: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I I I I I I I I I I I I I I I .1 I I

r.aye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

Page: 7

double rcos(long k) {return(1.0+taper*cos«double) (k-nels/2)*TWOPI/nels»;} /*taper function*

double dsin(double phi) { if(nlevels <= 1 ) return(sin(phi»; /* Discrete sin function */ return««double) «long) «sin(phi)+1.0)*O.499999*nlevels»*2.0)/nlevels)-1.0+1.O/nlevels);

double dyhase(double p) {return«TWOPI*«long) (p*nphs*freq+O.5) % nphs»/nphs);}

double d_delay(double p){ return(sp*(long) (O.5+p/sp»;} /* sp = nels*tels/nsrs */

long code_length(long code) { long i; for (i=O;code>O;i++) code = code» 1; return(i);}

double discreteyhase(long k) /* {return«(TWOPI*(long) «long) (k*pl+O.5) % nphs»/nphs»;} * {

double p,x: long i,m: x "" k*p1 + 0.5 m = x: /* nphs = NPHS; */ i = m % nphs; dd = i; p "" «TWOPI*i) /nphs)

/* Selection of element phase index */ /* Set phase for each element.. * /

/* p = k * pd: */ return(p) ;

double discrete delay(long k) { - /* { return (Sp* (long) (0.5+pn*k»:} */

double x: long i:

/* /* /*

k*TELS*sln(dir) c time delay needed to steer array */ y - nsrs: z - NELS: pn"" ( y/z) * sln(dir): */ x = NELS*TELS: sp = x/nsrs: *1 /* Shift clock period */

x "" k*pn + 0.5: i "" x: /* Index into shift register */ if(i > nsrs) {printf("Error in shift register indexing.

/*i - m % nsrs: */

x = l*sp; return (x):

/* pr1ntf("(%dl%d), ",i,dd):

double pulse ( double ttl { double b:

i = %d\n",i):return:}

*/

b-O; if (tt>=O) {if(tt<plswd) b-1.0:} return (b) :

/* Define RADAR Pulse */

double codedyulse ( double tt, long code) { long i,k: /* Define Coded RADAR Pulse */

1 = floor(tt/PLSWD); if(i < 0) return(O.O); k '"" code » i : lfCk <- 0) return(O.O); return(2*(k % 2) -1):

/* Barker-7 Code - 114 ( 1,1,1,0,0,1,0 ) */ /* Code read right to left *1 .

Page 80: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

Kaye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

Page: 8

void init-parameters(void) {

w = !WOP I * freq; em = ENORM*nl*nl*nels*nels*plswd*code length(code)/TINC: x = nels*tels; -sf = nsrs/x; 1* printf(" Shift-clock frequency = tf GHz",sf); *1 sp = x/nsrs; tmin = (1 - nels)*tels; tmax = plswd*code length (code) + (nels -I)*tels; return; -

void direction-parameters (double index_direction, double azmdir) {

1*

double dir, y, z; dir = rd*index direction; tx = tels*sin(d!r): ty - tels*sin(rd*azmdir)*cos(dir); pd = w*tx; pl = nphs*tels*freq*sin(dir);

tdir = tels*sin(dir); y - nsrs; z - nels; pn ~ ( y/z) * sin(dir); return:

*1

1* ------------------------------------------------------------------------------------- *1

1*

unsigned hash (char *s, unsigned mUlt, unsigned size) { unsigned hashval,i; for (hashval=O: *s !~ '\0' ; s++ )

{ hashval = *s + ( (mult * hashval) % size);

*1

i = (hashval % size);/* printf("T: %c , %d , %d , %d, %d \n",*s,i,mult,size,hashval); *1 }

return (hashval % size):

double time a(lonq j) /*{ang-(lonq) (1000*j*ANGINC/1000.0);return(tels*sin(anq*rd»;} *1 { -

long 1; double a, da: 1 - «(lOOO*j)*ANGINC) + 0.0): anq = 1/1000.0: a -= anq*rd: da - tels*sin(a): return (da) :

1* This gets rid of ugly angles ••• *1

double time_belong j){ return(tels*sin(azmpln*rd)*cos(rd*ang»:}

double time_bb(lonq j){ return( tels*sin(rd*ang)*cos(rd*elvpln) ):}

I I I I I I I I I I I I I I I I I I I

Page 81: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I I I I I I I I I I I I I I I I I I

I t.aye's HD:AL.2:Hlcapor7:new7maln.c Page: 9 ¥Vednesday, April 16, 1997 I 5:15 PM

long code tbl( long code index {- -

switch(code index) { -

case 0 return (1) ; 1* 1 *1 case 1 return (2) ; 1* 10 *1 case 2 return (6); 1* 110 *1 case 3 return (114) ; 1* Barker-7 *1 case 4 return(18I0); 1* optimum-11 *1 case 5 return(7989); 1* optimum-13 *1 case 6 return(60622224); 1* UM/ONR-26 *1 default : printf(" Unknown code specified ");

} return(O);

void ant file open(char *s) { - -.

char buffer (256]; sprintf(buffer,"%s(var)-%3.1d Data(%2.1f)",s,nels,ANGINC); fp = fopen(buffer,"w"); printf(" Start of %s Data \n", s ); return;

void study_file_open(char *file_name) {

char buffer (256]; sprintf(buffer,"Beam Pattern - %s",file_name); fp - fopen(buffer,"w"); return;

void base header(void) { -

printf("--------------------------------------------------------------------\n"); printf(" Angle Energy Decibels\n"); printf("-------------------------------------------------------------------\n"); return:

1* ------------------------------------------------------------------------------- *1

1* -------------------------------------------------------------------------------

void dbprint (double e) { double db:

db c lO*loqlO(e); 1* Decibels *1 if (db < DBLIM) db - DBLIM; printf("%f, if, %f\n",ang,e,db); fprintf(fp,"%f, %f, %f\n",ang,e,db): return ;

*1

Page 82: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

.. Kaye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

void inc-print(double e) { double db;

db = lO*log10(e); if (db < DBLlM) db = DBLIM; printf(", %S.2f",db); fprintf(fp,", \S.2f",db); return ;

void header-print(double dirinc) {

double idir;

Page: 10

/* Decibels */

printf("------------------------------------------------------------------\n"); printf(n Antenna Response --- Decibels\n"); printf(n------------------------------------------------------------------\n"); printf{"Obsrv. Steered Angle (degrees)\nn); printf ("Angle") ; for (idir = 0.0; idir <= MAXDIR; idir = idir + dirinc)

( printf(" %3.1f", idir); printf ("\n") ; printf("--------------------------------------------------------~---------\n"); return;

void head-print(int study) {

void . {

printf("-------------------------------------------------------------------\n"); printf(" Antenna Response -- Decibels\n"); printf(n-------------------------------------------------------------------\n"); printf("Obsrv. n); printf ("Anglen) ;

line-print(study); para-print(study); printf("\n");

printf{"------------------------------------------------------------------------------------\n"); return;

line-print{int study)

switch (study) {

case 1 printf(n case 2 printf(n case 3 printf(" case 4 printf(" case 5 printf(n case 6 printf(" case 7 printf(n case 8 printf(" case 9 printf(" case 10 printf(" case 11 printf(n case 12 printf(" default: printf (nUnknown

return;

Steered Elevation Angle (degrees)\n"); bre Type of Antenna System\nn); break;

Number of Discrete Phases\nn); break; Number of Shift Register Stages\nn); break

Number of Antenna Elements/Dimension\nn); bre Time (ns) Between Antenna Elements\n"); brea

carrier Frequency (Ghz) \nn); brea .Pulse Width (ns) \nn); break;

Number of Discrete Levels for CGrrier\n"); bI Type of Code for Pulse Compression\nn); bre

Steered Azimuth Angle (degrees)\nn); brea Amount of Raised Cosine Antenna Taper\n"); bI

study = %d in l1ne-pr~nt\nn,study);

void para-print(int study) {

I I I I I I I I I I I I I I I I I I I

Page 83: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I I I I I I I I I I I I I I I I I I

~ Kaye's HD:AL.2:Hlcapor7:new7maln.c Wednesday, April 16, 1997 I 5:15 PM

long 1; double x; char *ant [] = { "TCW", "DCW", "TTO" , "PHA", "DPA", "DBS", "DOD" }; for (i = 0: i <= MXCASES; 1++)

{ switch (study)

{ case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 case 10 : case 11:

printf(" %3.1f",i *dirinc): printf(" %s",ant[i]); printf(" %d", 2 « i): printf(" %d", (long) «H1) *in» : printf(" %d", (long) «i-4-1) *nn» ; printf(" %4 .2f", (i+1) *nt) ; printf(" %4.2f", (i+1)*nf); printf(" %4.2f", (i+1)*np): printf(" %d",2*1+1); printf(" %d",code tbl(i»: printf(" %3.1f",i*d1r1nc):

break: 1* break; 1* break: /* break; /* break: 1* break: 1* break; 1* break; 1*

break: break;

break; 1* case 12 : printf(" %3.1f", «double)i)/MXCASES);break;

Page: 11

DIR */ ANT */ NPHS */ SRSZ */ NELS */ TELS *1 FREQ */ PLSWD */

1* NLEVELS * 1* CODE *

AZMDIR */ 1* TAPER *

default: printf(" Unknown type of study specified in studies.\n");

return:

void para write(int study) { -long i: double x; char *ant[] = { "T~,"DCW","TTD","PBA","DPA","DBS","DDD" }:

fprintf(fp,"Angle"); for (1 = 0; i <= MXCASES: i++)

{ switch (study)

{ case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 case 10 case 11 case 12

fprintf(fp," fpr1ntf(fp," fpr1ntf(fp," fprintf(fp," fprintf(fp," fprintf (fp," fprintf(fp," fprintf (fp," fprintf (fp, a

fprintf(fp," fprintf(fp," fprintf(fp,"

%3.1f",i *dirinc); break; 1* DIR %s",ant[i1); break; 1* ANT

%d", 2 « i); break; 1* NPHS %d", (long) «i+l) win) ) ; break; /* SRSZ %d", (long) «i+l)*nn»; break; 1* NELS

%4.2f", (i+l)*nt); break; 1* TELS %4.2f", (1+1)*nf); break; 1* FREQ %4.2f", (i+l)*np); break; 1* PLSWD

%d", 2*i+l) : break; 1* NLEVELS %d",code_tbl(1»; break; 1* CODE

%3.1f",i*dirinc); break; 1* AZMDIR %3.1f", «double)i)/MXCASES);break;l* TAPER

default fprintf(fp," Unknown type of study specified in studies.\n"): }

} fprintf(fp,"\n"); return;

void note-print(void) {

*1 *1 *1 *1 *1 *1 *1 *1 *1 *1 *1

*1

printf(" parameters \n -----\nSTUDY %s \nMXCASES \nNPHS %d \nSRSZ %d \nNELS %d\n", \nFREQ %3.1f \nl?LSWD % 3 .1f '.n" ,

%d\n", STUDY, MXCASES); printf("ANTENNA %s printf ("TELS %3.1f

ANTENNA,NPHS, SRSZ ,NELS); TELS, FREQ, PLSWD);

Page 84: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

,...-------------------------

. Kaye's HD:AL.2:Hlcapor7:new7maln.c Page: 12 I Wednesday, April 16, 1997 I 5:15 PM

printf("NLEVELS %d \nCOOE %d \nOIR %3.1£ \n", NLEVELS,COOE, OIR); printf("AZMDIR %3.lf \nMAXDIR %3.1f \nAZMPLN %3.1f \n",AZMDIR, MAXDIR,AZMPLN); printf("ELVPLN %3.lf \nNUMDIM %d \ nANG INC %3.1£ \n", ELVPLN, NOMDIM,ANGINC); printf("TAPER %3.1f \nDBLIM %3.1f \n", TAPER, OBLIM); return;

}

void note write(void) { -fprintf(fp,"\n---------------\n\n"); fprintf (fp'" Parameters \n \nSTUDY %5 \nMXCASES %d\n", STUDY, MXCASE fprintf(fp,"ANrENNA %5 \nNl?HS %d \nSRSZ %d \nNELS %d\n", ANTENNA,NPHS, SRSZ ,NEI fprintf (fp, "TELS %3.1£ \nFBEQ %3.1f \nl?LSWD %3.1f \n", TELS, FREQ, PL5t( fprintf(fp,"NLEVELS %d \nCOOE %d \nDIR %3.1£ \n", NLEVELS,COOE, OIR) fprintf (fp, "AZMDIR %3.1f \nMAXDIR %3.1f \nAZMPLN %3.1£ \n" ,AZMDIR, MAXDIR,AZMPI fprintf(fp,"ELVPLN 153.1f \nNUMDIM %d \nANGINC %3.1f \n", ELVPLN, NUMDIM,ANGIl\ fprintf(fp,"TAPER %3.1f \nDBLIM %3.1f \n", TAPER, OBLIM); fprintf (fp, "\n \n"); return;

}

void study-parm_write(char *fi1e_name) {

/*

char buffer [256]; sprintf(buffer,"Beam Legend - %s",fi1e name); fp = fopen(buffer,"w"); -fprintf(fp,"Beam Legend - %s\n\n",file_name); note write () ; fclose (fp) ; printf("Beam Legend: %s\n",file_name); return;

-------------------------------------------------------------------------------- *1

I I I I I I I I I I I I I I I I I I

Page 85: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I' I DISTRIBUTION LIST

Dr Collier

I Director of Space and SDI Programs Chief Scientist SAF/AQSC US Army Strategic Defense Command

I 1060 Air Force Pentagon PO Box 15280 Washington, DC 20330-1060 Arlington, V A 22215-0280

I CMDR & Program Executive Officer D ARP A Library US Army/CSSD-ZA 3701 North Fairfax Drive

I Strategic Defense Command Arlington, V A 22209-2308 PO Box 15280 Arlington, V A 22215-0150

Dr Victor Demarines, Jr.

I President and Chief Exec Officer Superintendent The MITRE Corporation

I Code 1424 A210 Attn Documents Librarian 202 Burlington Road Naval Postgraduate School Bedford,MA01730-1420

I Monterey, CA93943

Mr Dan Flynn [5] Director OSWR

I Technology Directorate Washington, DC 20505 Office of Naval Research

I Room 407 800 N. Quincy Street Dr Paris Genalis Arlington, V A 20305-1000 Deputy Director

I OUSD(A&T)/S&TS/NW

DTIC [2] The Pentagon, Room 3D1048

8725 John Jay Kingman Road Washington, DC 20301

I Suite 0944 Fort Belvoir, V A 22060-6218 Dr Lawrence K. Gershwin

I NIC/NIO/S&T

Dr Albert Brandenstein 7E47,OHB

Chief Scientist Washington, DC 20505

I Office of Nat'l Drug Control Policy Executive Office of the President Dr Robert G Henderson Washington, DC 20500 Director

I JASON Program Office The MITRE Corporation

Dr H Lee Buchanan, I I I 1820 Dolley Madison Blvd

I Director Mailstop W553 DARPA/DSO McLean, V A 22102 3701 North Fairfax Drive

I Arlington, VA 22203-1714

I

Page 86: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

DISTRIBUTION LIST

Dr William E Howard I I I [2] Director of Advanced Concepts & Systems Design The Pentagon Room 3E480 Washington, DC 20301-0103

J A SON Library [5] The MITRE Corporation Mail Stop W002 1820 Dolley Madison Blvd McLean, VA 22102

Dr Anita Jones Department of Defense DOD,DDR&E The Pentagon, Room 3EI014 Washington, DC 20301

Mr. 0' Dean P. Judd Los Alamos National Laboratory Mailstop F650 Los Alamos, NM 87545

Dr Bobby R Junker Office of Naval Research Code 111 800 North Quincy Street Arlington, VA 22217

Dr Ken Kress Office of Research and Development 809 Ames Building Washington, DC 20505

Lt Gen, Howard W. Leaf, ( Retired) Director, Test and Evaluation HQUSAF/TE 1650 Air Force Pentagon Washington, DC 20330-1650

I I

Mr. Larry Lynn

I Director DARPA/DIRO 3701 North Fairfax Drive

I Arlington, VA 22203-1714

Dr. John Lyons I Director of Corporate Laboratory US Army Laboratory Command

I 2800 Powder Mill Road Adelphi,MD 20783-1145

Col Ed Mahen I

DARPA/DIRO I 3701 North Fairfax Drive Arlington, VA 22203-1714

I Dr. Arthur Manfredi OSWR I Washington, DC 20505

Mr James J Mattice I Deputy Asst Secretary (Research & Engineering) I SAF/AQ Pentagon, Room 4D-977 Washington, DC 20330-1000 I Dr George Mayer I Office of Director of Defense Reserach and Engineering Pentagon, Room 30375 I Washington, DC 20301-3030

Dr Bill Murphy I ORD Washington, DC 20505 I

I I

Page 87: Digital Beam Synthesis (DBS) for a High Capability Opto · PDF fileOutline Digital beam synthesis using a high capability opto-electronic radar (HICAPOR) by Alvin M. Despain and John

I I DISTRIBUTION LIST

I Dr Julian C Nall Institute for Defense Analyses 1801 North Beauregard Street

I Alexandria, V A 22311

I Dr Ari Patrinos Director Environmental Sciences Division

I ER74/GTN US Department of Energy Washington, DC 20585

I Dr Bruce Pierce

I USD(A)D S The Pentagon, Room 3D136 Washington, DC 20301-3090

I Mr John Rausch [2]

I Division Head 06 Department NA VOPINTCEN 4301 Suitland Road

I Washington, DC 20390

I Records Resource

The MITRE Corporation Mailstop W115

I 1820 Dolley Madison Blvd McLean, V A 22102

I Dr Victor H Reis US Department of Energy

I DP-1, Room 4A019 1000 Independence Ave, SW Washington, DC 20585

I Dr Fred E Saalfeld

I Director Office of Naval Research 800 North Quincy Street

I Arlington, VA 22217-5000

I

Dr Dan Schuresko O/DDS&T Washington, DC 20505

Dr John Schuster Technical Director of Submarine and SSBN Security Program

Department of the Navy OP-02T The Pentagon Room 4D534 Washington, DC 20350-2000

Dr Michael A Stroscio US Army Research Office P. O. Box 12211 Research Triangle NC27709-2211

Ambassador James Sweeney Chief Science Advisor USACDA 320 21st Street NW Washington, DC 20451

Dr George W Ullrich [3] Deputy Director Defense Nuclear Agency 6801 Telegraph Road Alexandria, VA 22310

Dr. David Whelan Director DARPA/TIO 3701 North Fairfax Drive Arlington, VA 22203-1714

Dr Edward C Whitman Dep Assistant Secretary of the Navy C3I Electronic Warfare & Space Department of the Navy The Pentagon 4D745 . Washington, DC 20350-5000