164
Differential Dynamic Logic and Differential Invariants for Hybrid Systems Andr´ e Platzer [email protected] Computer Science Department Carnegie Mellon University, Pittsburgh, PA http://symbolaris.com/ 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5 Andr´ e Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 1 / 42

Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic and Differential Invariantsfor Hybrid Systems

Andre Platzer

[email protected]

Computer Science DepartmentCarnegie Mellon University, Pittsburgh, PA

http://symbolaris.com/

0.20.4

0.60.8

1.00.1

0.2

0.3

0.4

0.5

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 1 / 42

Page 2: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

How can we design computers that are

guaranteed to interact correctly with the

physical world?

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 2 / 42

Page 3: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 2 / 42

Page 4: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Hybrid Systems Analysis: Car Control

Challenge (Hybrid Systems)

Fixed rule describing stateevolution with both

Continuous dynamics(differential equations)

Discrete dynamics(control decisions)

1 2 3 4t

-2

-1

1

2a

1 2 3 4t

0.5

1.0

1.5

2.0

2.5

3.0v

1 2 3 4t

1

2

3

4

5

6z

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 3 / 42

Page 5: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Hybrid Systems Analysis is Important for . . .

0.20.4

0.60.8

1.00.1

0.2

0.3

0.4

0.5

x1

x2

y1

y2

d

ω e

ϑ

c

Q Q

QQ

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 4 / 42

Page 6: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 4 / 42

Page 7: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 4 / 42

Page 8: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic for Hybrid Systems

differential dynamic logic

dL = FOLR

+ + HP

∀MA∃SB . . .

∀t≥0 . . .

z

v

MA

v 2 ≤ 2b(MA− z)

v ≤ 1 ∧ v 2 ≤ 2b(MA− z)

v ≤ 1 ∨ v 2 ≤ 2b(MA− z)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 5 / 42

Page 9: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic for Hybrid Systems

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

C → [ if(z > SB) a :=−b; z ′′ = a︸ ︷︷ ︸hybrid program

] v 2 ≤ 2b

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 5 / 42

Page 10: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic for Hybrid Systems

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

C → [ if(z > SB) a :=−b; z ′′ = a︸ ︷︷ ︸hybrid program

] v 2 ≤ 2b

Initialcondition

Systemdynamics

Postcondition

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 5 / 42

Page 11: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic dL: Syntax

Definition (Hybrid program α)

x := θ | ?H | x ′ = f (x) & H | α ∪ β | α;β | α∗

Definition (dL Formula φ)

θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀x φ | ∃x φ | [α]φ | 〈α〉φ

DiscreteAssign

TestCondition

DifferentialEquation

Nondet.Choice

Seq.Compose

Nondet.Repeat

AllReals

SomeReals

AllRuns

SomeRuns

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 6 / 42

Page 12: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic dL: Syntax

Definition (Hybrid program α)

x := θ | ?H | x ′ = f (x) & H | α ∪ β | α;β | α∗

Definition (dL Formula φ)

θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀x φ | ∃x φ | [α]φ | 〈α〉φ

DiscreteAssign

TestCondition

DifferentialEquation

Nondet.Choice

Seq.Compose

Nondet.Repeat

AllReals

SomeReals

AllRuns

SomeRuns

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 6 / 42

Page 13: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic dL: Semantics

Definition (Hybrid program α)

ρ(x := θ) = {(v ,w) : w = v except [[x ]]w = [[θ]]v}ρ(?H) = {(v , v) : v |= H}

ρ(x ′ = f (x)) = {(ϕ(0), ϕ(r)) : ϕ |= x ′ = f (x) for some duration r}ρ(α ∪ β) = ρ(α) ∪ ρ(β)ρ(α;β) = ρ(β) ◦ ρ(α)

ρ(α∗) =⋃n∈N

ρ(αn)

Definition (dL Formula φ)

v |= θ1 ≥ θ2 iff [[θ1]]v ≥ [[θ2]]vv |= [α]φ iff w |= φ for all w with (v ,w) ∈ ρ(α)v |= 〈α〉φ iff w |= φ for some w with (v ,w) ∈ ρ(α)v |= ∀x φ iff w |= φ for all w that agree with v except for xv |= ∃x φ iff w |= φ for some w that agrees with v except for xv |= φ ∧ ψ iff v |= φ and v |= ψv |= ¬φ iff v |= φ does not hold

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 7 / 42

Page 14: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic dL: Axiomatization

([:=]) [x := θ][(x)]φx ↔ [(x)]φθ

([?]) [?H]φ↔ (H → φ)

([′]) [x ′ = f (x)]φ↔ ∀t≥0 [x := y(t)]φ (y ′(t) = f (y))

([∪]) [α ∪ β]φ↔ [α]φ ∧ [β]φ

([;]) [α;β]φ↔ [α][β]φ

([∗]) [α∗]φ↔ φ ∧ [α][α∗]φ

(K) [α](φ→ ψ)→ ([α]φ→ [α]ψ)

(I) [α∗](φ→ [α]φ)→ (φ→ [α∗]φ)

(C) [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 8 / 42

Page 15: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic dL: Axiomatization

(G)φ

[α]φ

(MP)φ→ ψ φ

ψ

(∀)φ

∀x φ

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 8 / 42

Page 16: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic dL: Axiomatization

(G)φ

[α]φ

(MP)φ→ ψ φ

ψ

(∀)φ

∀x φ

(B) ∀x [α]φ→ [α]∀x φ (x 6∈ α)

(V) φ→ [α]φ (FV (φ) ∩ BV (α) = ∅)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 8 / 42

Page 17: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Soundness

Theorem (Soundness)

dL calculus is sound, i.e., all provable dL formulas are valid:

` φ implies � φ

What about the converse?

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 9 / 42

Page 18: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Complete Proof Theory of Hybrid Systems

Theorem (Relative Completeness) (J.Autom.Reas. 2008)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to differential equations. Proof 15p

Theorem (Discrete Relative Completeness) (LICS’12)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to discrete dynamics. Proof +10p

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 10 / 42

Page 19: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Complete Proof Theory of Hybrid Systems

Theorem (Continuous Relative Completeness) (J.Autom.Reas. 2008)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to differential equations. Proof 15p

Theorem (Discrete Relative Completeness) (LICS’12)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to discrete dynamics. Proof +10p

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 10 / 42

Page 20: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Complete Proof Theory of Hybrid Systems

Theorem (Continuous Relative Completeness) (J.Autom.Reas. 2008)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to differential equations. Proof 15p

Theorem (Discrete Relative Completeness) (LICS’12)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to discrete dynamics. Proof +10p

System

Continuous Discrete

Hybrid

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 10 / 42

Page 21: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Complete Proof Theory of Hybrid Systems

Theorem (Continuous Relative Completeness) (J.Autom.Reas. 2008)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to differential equations. Proof 15p

Theorem (Discrete Relative Completeness) (LICS’12)

dL calculus is a sound & complete axiomatization of hybrid systemsrelative to discrete dynamics. Proof +10p

System

Continuous Discrete

Hybrid

HybridTheory

DiscreteTheory

Contin.Theory

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 10 / 42

Page 22: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 10 / 42

Page 23: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Air Traffic Control

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 11 / 42

Page 24: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Air Traffic Control

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 11 / 42

Page 25: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Air Traffic Control

Verification?

looks correct

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 11 / 42

Page 26: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Air Traffic Control

Verification?

looks correct NO!

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 11 / 42

Page 27: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Air Traffic Control

x1

x2

y1

y2

d

ω e

ς

x ′1 = −v1+v2 cosϑ+ ωx2

x ′2 = v2 sinϑ− ωx1

ϑ′ = $ − ω

Verification?

looks correct NO!

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 11 / 42

Page 28: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Air Traffic Control

x1

x2

y1

y2

d

ω e

ς

x ′1 = −v1+v2 cosϑ+ ωx2

x ′2 = v2 sinϑ− ωx1

ϑ′ = $ − ω

Example (“Solving” differential equations)

x1(t) =1

ω$

(x1ω$ cos tω − v2ω cos tω sinϑ+ v2ω cos tω cos t$ sinϑ− v1$ sin tω

+ x2ω$ sin tω − v2ω cosϑ cos t$ sin tω − v2ω√

1− sinϑ2 sin tω

+ v2ω cosϑ cos tω sin t$ + v2ω sinϑ sin tω sin t$). . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 11 / 42

Page 29: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Air Traffic Control

x1

x2

y1

y2

d

ω e

ς

x ′1 = −v1+v2 cosϑ+ ωx2

x ′2 = v2 sinϑ− ωx1

ϑ′ = $ − ω

Example (“Solving” differential equations)

∀t≥0

=

1

ω$

(x1ω$ cos tω − v2ω cos tω sinϑ+ v2ω cos tω cos t$ sinϑ− v1$ sin tω

+ x2ω$ sin tω − v2ω cosϑ cos t$ sin tω − v2ω√

1− sinϑ2 sin tω

+ v2ω cosϑ cos tω sin t$ + v2ω sinϑ sin tω sin t$). . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 11 / 42

Page 30: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

\forall R ts2.

( 0 <= ts2 & ts2 <= t2_0

-> ( (om_1)^-1

* (omb_1)^-1

* ( om_1 * omb_1 * x1 * Cos(om_1 * ts2)

+ om_1 * v2 * Cos(om_1 * ts2) * (1 + -1 * (Cos(u))^2)^(1 / 2)

+ -1 * omb_1 * v1 * Sin(om_1 * ts2)

+ om_1 * omb_1 * x2 * Sin(om_1 * ts2)

+ om_1 * v2 * Cos(u) * Sin(om_1 * ts2)

+ -1 * om_1 * v2 * Cos(omb_1 * ts2) * Cos(u) * Sin(om_1 * ts2)

+ om_1 * v2 * Cos(om_1 * ts2) * Cos(u) * Sin(omb_1 * ts2)

+ om_1 * v2 * Cos(om_1 * ts2) * Cos(omb_1 * ts2) * Sin(u)

+ om_1 * v2 * Sin(om_1 * ts2) * Sin(omb_1 * ts2) * Sin(u)))

^2

+ ( (om_1)^-1

* (omb_1)^-1

* ( -1 * omb_1 * v1 * Cos(om_1 * ts2)

+ om_1 * omb_1 * x2 * Cos(om_1 * ts2)

+ omb_1 * v1 * (Cos(om_1 * ts2))^2

+ om_1 * v2 * Cos(om_1 * ts2) * Cos(u)

+ -1 * om_1 * v2 * Cos(om_1 * ts2) * Cos(omb_1 * ts2) * Cos(u)

+ -1 * om_1 * omb_1 * x1 * Sin(om_1 * ts2)

+ -1

* om_1

* v2

* (1 + -1 * (Cos(u))^2)^(1 / 2)

* Sin(om_1 * ts2)

+ omb_1 * v1 * (Sin(om_1 * ts2))^2

+ -1 * om_1 * v2 * Cos(u) * Sin(om_1 * ts2) * Sin(omb_1 * ts2)

+ -1 * om_1 * v2 * Cos(omb_1 * ts2) * Sin(om_1 * ts2) * Sin(u)

+ om_1 * v2 * Cos(om_1 * ts2) * Sin(omb_1 * ts2) * Sin(u)))

^2

>= (p)^2),

t2_0 >= 0,

x1^2 + x2^2 >= (p)^2

==>Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 12 / 42

Page 31: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

\forall R t7.

( t7 >= 0

-> ( (om_3)^-1

* ( om_3

* ( (om_1)^-1

* (omb_1)^-1

* ( om_1 * omb_1 * x1 * Cos(om_1 * t2_0)

+ om_1

* v2

* Cos(om_1 * t2_0)

* (1 + -1 * (Cos(u))^2)^(1 / 2)

+ -1 * omb_1 * v1 * Sin(om_1 * t2_0)

+ om_1 * omb_1 * x2 * Sin(om_1 * t2_0)

+ om_1 * v2 * Cos(u) * Sin(om_1 * t2_0)

+ -1

* om_1

* v2

* Cos(omb_1 * t2_0)

* Cos(u)

* Sin(om_1 * t2_0)

+ om_1

* v2

* Cos(om_1 * t2_0)

* Cos(u)

* Sin(omb_1 * t2_0)

+ om_1

* v2

* Cos(om_1 * t2_0)

* Cos(omb_1 * t2_0)

* Sin(u)

+ om_1

* v2

* Sin(om_1 * t2_0)

* Sin(omb_1 * t2_0)

* Sin(u)))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 12 / 42

Page 32: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

* Cos(om_3 * t5)

+ v2

* Cos(om_3 * t5)

* ( 1

+ -1

* (Cos(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4))^2)

^(1 / 2)

+ -1 * v1 * Sin(om_3 * t5)

+ om_3

* ( (om_1)^-1

* (omb_1)^-1

* ( -1 * omb_1 * v1 * Cos(om_1 * t2_0)

+ om_1 * omb_1 * x2 * Cos(om_1 * t2_0)

+ omb_1 * v1 * (Cos(om_1 * t2_0))^2

+ om_1 * v2 * Cos(om_1 * t2_0) * Cos(u)

+ -1

* om_1

* v2

* Cos(om_1 * t2_0)

* Cos(omb_1 * t2_0)

* Cos(u)

+ -1 * om_1 * omb_1 * x1 * Sin(om_1 * t2_0)

+ -1

* om_1

* v2

* (1 + -1 * (Cos(u))^2)^(1 / 2)

* Sin(om_1 * t2_0)

+ omb_1 * v1 * (Sin(om_1 * t2_0))^2

+ -1

* om_1

* v2

* Cos(u)

* Sin(om_1 * t2_0)

* Sin(omb_1 * t2_0)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 12 / 42

Page 33: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

+ -1

* om_1

* v2

* Cos(omb_1 * t2_0)

* Sin(om_1 * t2_0)

* Sin(u)

+ om_1

* v2

* Cos(om_1 * t2_0)

* Sin(omb_1 * t2_0)

* Sin(u)))

* Sin(om_3 * t5)

+ v2

* Cos(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4)

* Sin(om_3 * t5)

+ v2

* (Cos(om_3 * t5))^2

* Sin(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4)

+ v2

* (Sin(om_3 * t5))^2

* Sin(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4)))

^2

+ ( (om_3)^-1

* ( -1 * v1 * Cos(om_3 * t5)

+ om_3

* ( (om_1)^-1

* (omb_1)^-1

* ( -1 * omb_1 * v1 * Cos(om_1 * t2_0)

+ om_1 * omb_1 * x2 * Cos(om_1 * t2_0)

+ omb_1 * v1 * (Cos(om_1 * t2_0))^2

+ om_1 * v2 * Cos(om_1 * t2_0) * Cos(u)

+ -1

* om_1

* v2

* Cos(om_1 * t2_0)

* Cos(omb_1 * t2_0)

* Cos(u)Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 12 / 42

Page 34: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

+ -1 * om_1 * omb_1 * x1 * Sin(om_1 * t2_0)

+ -1

* om_1

* v2

* (1 + -1 * (Cos(u))^2)^(1 / 2)

* Sin(om_1 * t2_0)

+ omb_1 * v1 * (Sin(om_1 * t2_0))^2

+ -1

* om_1

* v2

* Cos(u)

* Sin(om_1 * t2_0)

* Sin(omb_1 * t2_0)

+ -1

* om_1

* v2

* Cos(omb_1 * t2_0)

* Sin(om_1 * t2_0)

* Sin(u)

+ om_1

* v2

* Cos(om_1 * t2_0)

* Sin(omb_1 * t2_0)

* Sin(u)))

* Cos(om_3 * t5)

+ v1 * (Cos(om_3 * t5))^2

+ v2

* Cos(om_3 * t5)

* Cos(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4)

+ -1

* v2

* (Cos(om_3 * t5))^2

* Cos(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 12 / 42

Page 35: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

+ -1

* om_3

* ( (om_1)^-1

* (omb_1)^-1

* ( om_1 * omb_1 * x1 * Cos(om_1 * t2_0)

+ om_1

* v2

* Cos(om_1 * t2_0)

* (1 + -1 * (Cos(u))^2)^(1 / 2)

+ -1 * omb_1 * v1 * Sin(om_1 * t2_0)

+ om_1 * omb_1 * x2 * Sin(om_1 * t2_0)

+ om_1 * v2 * Cos(u) * Sin(om_1 * t2_0)

+ -1

* om_1

* v2

* Cos(omb_1 * t2_0)

* Cos(u)

* Sin(om_1 * t2_0)

+ om_1

* v2

* Cos(om_1 * t2_0)

* Cos(u)

* Sin(omb_1 * t2_0)

+ om_1

* v2

* Cos(om_1 * t2_0)

* Cos(omb_1 * t2_0)

* Sin(u)

+ om_1

* v2

* Sin(om_1 * t2_0)

* Sin(omb_1 * t2_0)

* Sin(u)))

* Sin(om_3 * t5)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 12 / 42

Page 36: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

+ -1

* v2

* ( 1

+ -1

* (Cos(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4))^2)

^(1 / 2)

* Sin(om_3 * t5)

+ v1 * (Sin(om_3 * t5))^2

+ -1

* v2

* Cos(-1 * om_1 * t2_0 + omb_1 * t2_0 + u + Pi / 4)

* (Sin(om_3 * t5))^2))

^2

>= (p)^2)

This is just one branch to prove

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 12 / 42

Page 37: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Invariants for Differential Equations

“Definition” (Differential Invariant)

“Formula that remains true in the direction of the dynamics”

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 13 / 42

Page 38: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Invariants for Differential Equations

“Definition” (Differential Invariant)

“Formula that remains true in the direction of the dynamics”

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 13 / 42

Page 39: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Invariants for Differential Equations

“Definition” (Differential Invariant)

“Formula that remains true in the direction of the dynamics”

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 13 / 42

Page 40: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant) (J.Log.Comput. 2010)

F closed under total differentiation with respect to differential constraints

¬ ¬FF F χ

F

(χ→ F ′)

χ→ F

→[x ′ = θ&χ]F

(¬F ∧ χ→ F ′�)

[x ′ = θ&¬F ]χ

→〈x ′ = θ&χ〉F

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d′2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 14 / 42

Page 41: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant) (J.Log.Comput. 2010)

F closed under total differentiation with respect to differential constraints

¬ ¬FF F

χ

F

(χ→ F ′)

χ→ F→[x ′ = θ&χ]F

(¬F ∧ χ→ F ′�)

[x ′ = θ&¬F ]χ

→〈x ′ = θ&χ〉F

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d′2 = ωd1

] d1 ≥ d2

F → [α]F

F → [α∗]F

quantified nondeterminism/disturbance

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 14 / 42

Page 42: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant) (J.Log.Comput. 2010)

F closed under total differentiation with respect to differential constraints

¬ ¬FF F χ

F

(χ→ F ′)

χ→ F→[x ′ = θ&χ]F

(¬F ∧ χ→ F ′�)

[x ′ = θ&¬F ]χ

→〈x ′ = θ&χ〉F

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d′2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 14 / 42

Page 43: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant) (J.Log.Comput. 2010)

F closed under total differentiation with respect to differential constraints

¬ ¬FF F χ

F

(χ→ F ′)

χ→ F→[x ′ = θ&χ]F

(¬F ∧ χ→ F ′�)

[x ′ = θ&¬F ]χ→〈x ′ = θ&χ〉F

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d′2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 14 / 42

Page 44: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Induction: Local Dynamics w/o Solutions

Definition (Differential Invariant) (J.Log.Comput. 2010)

F closed under total differentiation with respect to differential constraints

¬ ¬FF F χ

F

(χ→ F ′)

χ→ F→[x ′ = θ&χ]F

(¬F ∧ χ→ F ′�)

[x ′ = θ&¬F ]χ→〈x ′ = θ&χ〉F

Total differential F ′ of formulas?

d1 ≥ d2 → [x := a2 + 1;

d ′1 = −ωd2, d′2 = ωd1

] d1 ≥ d2

quantified nondeterminism/disturbance

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 14 / 42

Page 45: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)

→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 46: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)

→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 47: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 48: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 49: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 50: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 51: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)

equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(

p = c → [x ′ = f (x) & H]p = c

)Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 52: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

) equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

)

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 53: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

) equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

)

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 54: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

) equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

)Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 15 / 42

Page 55: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with

3 prove ∀x (H→p′ = 0)

34 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 56: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with

3 prove ∀x (H→p′ = 0)

34 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 57: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with a2 = 4, a1 = −1, a0 = 5

3 prove ∀x (H→p′ = 0)

34 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 58: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with a2 = 4, a1 = −1, a0 = 6

3 prove ∀x (H→p′ = 0)

34 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 59: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with a2 = 4, a1 = −1, a0 = 7

3 prove ∀x (H→p′ = 0)

34 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 60: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with a2 = 4, a1 = −2, a0 = 5

3 prove ∀x (H→p′ = 0)

34 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 61: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with a2 = −4, a1 = 2, a0 = 8

3 prove ∀x (H→p′ = 0)

3 Problem: enumerating all polynomials takes a while . . .

4 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 62: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with a2 = −4, a1 = 2, a0 = 8

3 prove ∀x (H→p′ = 0)

3 Instead: ∃a ∀x (H→p′ = 0)

4 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 63: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Lie Generates Invariants

Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Corollary (Invariant polynomials with R ∩Q coefficients r.e.)

Invariant polynomial function p ∈ (R ∩Q)[x ] of x ′ = f (x) on open H r.e.

Proof (Direct Method).

1 for pdef= a2x2 + a1x + a0

2 with a2 = −4, a1 = 2, a0 = 8

3 prove ∀x (H→p′ = 0)

3 Instead: ∃a ∀x (H→p′ = 0)

4 Still enumerate polynomial degrees . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 16 / 42

Page 64: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (I) Directly

not valid

−2xy + 2ey = 0

(−y)2x + e2y = 0 ∧ −y = −y

−y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

c

x

y

d

e

x−y

ed− e

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 17 / 42

Page 65: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (I) Directly

not valid

−2xy + 2ey = 0

(−y)2x + e2y = 0 ∧ −y = −y

−y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

c

x

y

d

e

x−y

ed− e

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 17 / 42

Page 66: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (I) Directly

not valid

−2xy + 2ey = 0

(−y)2x + e2y = 0 ∧ −y = −y

−y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

c

x

y

d

e

x−y

ed− e

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 17 / 42

Page 67: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (I) Directly

not valid

−2xy + 2ey = 0

(−y)2x + e2y = 0 ∧ −y = −y

−y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

c

x

y

d

e

x−y

ed− e

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 17 / 42

Page 68: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (I) Directly

not valid

−2xy + 2ey = 0

(−y)2x + e2y = 0 ∧ −y = −y

−y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

c

x

y

d

e

x−y

ed− e

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 17 / 42

Page 69: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (I) Directly

not valid

−2xy + 2ey = 0

(−y)2x + e2y = 0 ∧ −y = −y

−y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)Not Provable?

Wait! It’s true. Why not proved?

c

x

y

d

e

x−y

ed− e

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 17 / 42

Page 70: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (I) Directly

not valid

−2xy + 2ey = 0

(−y)2x + e2y = 0 ∧ −y = −y

−y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)Not Provable?

Wait! It’s true. Why not proved?

not single equation

c

x

y

d

e

x−y

ed− e

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 17 / 42

Page 71: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

The Structure of Differential Invariants

Theorem (Closure properties of differential invariants) (LMCS 2012)

Closed under conjunction, differentiation, and propositional equivalences.

Theorem (Differential Invariance Chart) (LMCS 2012)

DI= DI=,∧,∨

DI> DI>,∧,∨

DI≥ DI≥,∧,∨

DI

DI≥,=,∧,∨

DI>,=,∧,∨

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 18 / 42

Page 72: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (II) Atomic

not valid

2(x2 + y 2 − 1)(−2yx + 2ey) = 0

2(x2 + y 2 − 1)(−y2x + e2y) + 2(e − x)(−y − (−y)) = 0

(−y ∂∂x + e ∂

∂y − y ∂∂e )((x2 + y 2 − 1)2 + (e − x)2

)= 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 − 1)2 + (e − x)2 = 0

Reduce to single equation, try again

Could Prove?

If only we could assume invariant Fduring its proof . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 19 / 42

Page 73: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (II) Atomic

not valid

2(x2 + y 2 − 1)(−2yx + 2ey) = 0

2(x2 + y 2 − 1)(−y2x + e2y) + 2(e − x)(−y − (−y)) = 0

(−y ∂∂x + e ∂

∂y − y ∂∂e )((x2 + y 2 − 1)2 + (e − x)2

)= 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 − 1)2 + (e − x)2 = 0

Reduce to single equation, try again

Could Prove?

If only we could assume invariant Fduring its proof . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 19 / 42

Page 74: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (II) Atomic

not valid

2(x2 + y 2 − 1)(−2yx + 2ey) = 0

2(x2 + y 2 − 1)(−y2x + e2y) + 2(e − x)(−y − (−y)) = 0

(−y ∂∂x + e ∂

∂y − y ∂∂e )((x2 + y 2 − 1)2 + (e − x)2

)= 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 − 1)2 + (e − x)2 = 0

Reduce to single equation, try again

Not Provable?

Wait! It’s true. Why not proved?

Could Prove?

If only we could assume invariant Fduring its proof . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 19 / 42

Page 75: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (II) Atomic

not valid

2(x2 + y 2 − 1)(−2yx + 2ey) = 0

2(x2 + y 2 − 1)(−y2x + e2y) + 2(e − x)(−y − (−y)) = 0

(−y ∂∂x + e ∂

∂y − y ∂∂e )((x2 + y 2 − 1)2 + (e − x)2

)= 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 − 1)2 + (e − x)2 = 0

Reduce to single equation, try again

Could Prove?

If only we could assume invariant Fduring its proof . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 19 / 42

Page 76: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions)

x2 − 6x + 9 = 0 →y2x − 6y = 0

x2 − 6x + 9 = 0 →y ∂(x2−6x+9)∂x − x ∂(x2−6x+9)

∂y = 0

x2 − 6x + 9 = 0 →[x ′ = y , y ′ = −x ]x2 − 6x + 9 = 0

0 y

x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 77: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions)

x2 − 6x + 9 = 0 →y2x − 6y = 0

x2 − 6x + 9 = 0 →y ∂(x2−6x+9)∂x − x ∂(x2−6x+9)

∂y = 0

x2 − 6x + 9 = 0 →[x ′ = y , y ′ = −x ]x2 − 6x + 9 = 0

0 y

x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 78: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions)

x2 − 6x + 9 = 0 →y2x − 6y = 0

x2 − 6x + 9 = 0 →y ∂(x2−6x+9)∂x − x ∂(x2−6x+9)

∂y = 0

x2 − 6x + 9 = 0 →[x ′ = y , y ′ = −x ]x2 − 6x + 9 = 0

0 y

x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 79: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions)

x2 − 6x + 9 = 0 →y2x − 6y = 0

x2 − 6x + 9 = 0 →y ∂(x2−6x+9)∂x − x ∂(x2−6x+9)

∂y = 0

x2 − 6x + 9 = 0 →[x ′ = y , y ′ = −x ]x2 − 6x + 9 = 0

0 y

x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 80: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions)

x2 − 6x + 9 = 0 →y2x − 6y = 0

x2 − 6x + 9 = 0 →y ∂(x2−6x+9)∂x − x ∂(x2−6x+9)

∂y = 0

x2 − 6x + 9 = 0 →[x ′ = y , y ′ = −x ]x2 − 6x + 9 = 0

0 y

x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 81: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions are unsound!)

x2 − 6x + 9 = 0 →y2x − 6y = 0

x2 − 6x + 9 = 0 →y ∂(x2−6x+9)∂x − x ∂(x2−6x+9)

∂y = 0

x2 − 6x + 9 = 0 →[x ′ = y , y ′ = −x ]x2 − 6x + 9 = 0

0 y

x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 82: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions)

(x2 ≤ 0→ 2x · 1 ≤ 0)x2 ≤ 0 →[x ′ = 1]x2 ≤ 0

0 t

x x0 + t

x′ = 1

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 83: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Assuming Differential Invariance

¬ ¬FF F ¬ ¬FF F

(H → F ′)

(H → F )→[x ′ = θ& H]F

(F ∧ H → F ′)

(H → F )→[x ′ = θ& H]F

Example (Restrictions are unsound!)

(x2 ≤ 0→ 2x · 1 ≤ 0)x2 ≤ 0 →[x ′ = 1]x2 ≤ 0

0 t

x x0 + t

x′ = 1

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 20 / 42

Page 84: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 85: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 86: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 87: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 88: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 89: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 90: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 91: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 92: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

∗e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 93: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

∗e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Successful Proof

Lie & differential cuts separate aircraft

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 21 / 42

Page 94: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV) Smart

−y2e + e2y = 0 ∧ −y = −y

−y ∂(e2+y2)∂e + e ∂(e2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

e2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](e2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 22 / 42

Page 95: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV) Smart

−y2e + e2y = 0 ∧ −y = −y

−y ∂(e2+y2)∂e + e ∂(e2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

e2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](e2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 22 / 42

Page 96: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV) Smart

−y2e + e2y = 0 ∧ −y = −y

−y ∂(e2+y2)∂e + e ∂(e2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

e2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](e2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 22 / 42

Page 97: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV) Smart

∗−y2e + e2y = 0 ∧ −y = −y

−y ∂(e2+y2)∂e + e ∂(e2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

e2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](e2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 22 / 42

Page 98: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV) Smart

∗−y2e + e2y = 0 ∧ −y = −y

−y ∂(e2+y2)∂e + e ∂(e2+y2)

∂y = 0 ∧ −y ∂e∂e = −y ∂x

∂x

e2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](e2 + y 2 = 1 ∧ e = x)

Direct Proof

Smart invariant also separates aircraft?!

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 22 / 42

Page 99: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Cuts

φ→[x ′ = θ& H]C φ→[x ′ = θ& (H ∧ C )]φ

φ→[x ′ = θ& H]φ

Theorem (Gentzen’s Cut Elimination)

A→B ∨ C A ∧ C→B

A→Bcut can be eliminated

Theorem (No Differential Cut Elimination) (LMCS 2012)

Deductive power with differential cut exceeds deductive power without.DCI > DI

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 23 / 42

Page 100: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 101: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 102: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 103: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 104: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 105: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 106: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 107: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 108: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Differential Cuts

y 5 ≥ 0 →2x2((x − 3)4 + y 5) ≥ 0

y 5 ≥ 0 →2x2x ′ ≥ 0

x3 ≥ −1 →[x ′ = (x − 3)4 + y 5, y ′ = y 2 & y 5 ≥ 0]x3 ≥ −1 .

x3 ≥ −1 ∧ y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]x3 ≥ −1

5y 4y 2 ≥ 0

5y 4y ′ ≥ 0

y 5 ≥ 0 →[x ′ = (x − 3)4 + y 5, y ′ = y 2]y 5 ≥ 0

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 24 / 42

Page 109: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Cuts

φ→[x ′ = θ& H]C φ→[x ′ = θ& (H ∧ C )]φ

φ→[x ′ = θ& H]φ

Theorem (Gentzen’s Cut Elimination)

A→B ∨ C A ∧ C→B

A→Bcut can be eliminated

Theorem (No Differential Cut Elimination) (LMCS 2012)

Deductive power with differential cut exceeds deductive power without.DCI > DI

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 25 / 42

Page 110: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Cuts

φ→[x ′ = θ& H]C φ→[x ′ = θ& (H ∧ C )]φ

φ→[x ′ = θ& H]φ

Theorem (Gentzen’s Cut Elimination)

A→B ∨ C A ∧ C→B

A→Bcut can be eliminated

Theorem (No Differential Cut Elimination) (LMCS 2012)

Deductive power with differential cut exceeds deductive power without.DCI > DI

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 25 / 42

Page 111: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Cuts

φ→[x ′ = θ& H]C φ→[x ′ = θ& (H ∧ C )]φ

φ→[x ′ = θ& H]φ

Theorem (Gentzen’s Cut Elimination)

A→B ∨ C A ∧ C→B

A→Bcut can be eliminated

Theorem (No Differential Cut Elimination) (LMCS 2012)

Deductive power with differential cut exceeds deductive power without.DCI > DI

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 25 / 42

Page 112: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Exponentials

Counterexample ()

not valid

−x > 0

x ′ > 0

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 26 / 42

Page 113: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Exponentials

Counterexample ()

not valid

−x > 0

x ′ > 0x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 26 / 42

Page 114: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Exponentials

Counterexample ()

not valid

−x > 0x ′ > 0

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 26 / 42

Page 115: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Exponentials

Counterexample (Cannot prove)

not valid−x > 0x ′ > 0

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 26 / 42

Page 116: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

x > 0↔ ∃y xy 2 = 1

−xy 2 + 2xy y2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 117: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

x > 0↔ ∃y xy 2 = 1

−xy 2 + 2xy y2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 118: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

∗x > 0↔ ∃y xy 2 = 1

−xy 2 + 2xy y2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 119: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

∗x > 0↔ ∃y xy 2 = 1

−xy 2 + 2xy y2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 120: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

∗x > 0↔ ∃y xy 2 = 1

−xy 2 + 2xy y2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 121: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

∗x > 0↔ ∃y xy 2 = 1

∗−xy 2 + 2xy y

2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 122: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

∗x > 0↔ ∃y xy 2 = 1

∗−xy 2 + 2xy y

2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 123: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

Example (Successful proof)

∗x > 0↔ ∃y xy 2 = 1

∗−xy 2 + 2xy y

2 = 0

x ′y 2 + x2yy ′ = 0

xy 2 = 1 →[x ′ = −x , y ′ = y2 ]xy 2 = 1

x > 0 →[x ′ = −x ]x > 0

0 t

xx0

x0e−t

x ′= −x

y′ =

y2

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 27 / 42

Page 124: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Auxiliaries

φ↔ ∃y ψ ψ→[x ′ = θ, y ′ = ϑ& H]ψ

φ→[x ′ = θ& H]φ

if y ′ = ϑ has solution y : [0,∞)→ Rn

Theorem (Auxiliary Differential Variables) (LMCS 2012)

Deductive power with differential auxiliaries exceeds deductive powerwithout.

DCI + DA > DCI

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 28 / 42

Page 125: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 28 / 42

Page 126: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

) equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

)Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 29 / 42

Page 127: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

) equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

)Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 29 / 42

Page 128: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

) equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

)Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 29 / 42

Page 129: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Structure of Invariant Functions

Lemma (Structure of invariant functions)

Invariant functions of x ′ = θ& H form an R-algebra.

Corollary

Only need generating system of algebra.

p invariant,F function ⇒ F (p) invariant

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 30 / 42

Page 130: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Structure of Invariant Functions

Lemma (Structure of invariant functions)

Invariant functions of x ′ = θ& H form an R-algebra.

Corollary

Only need generating system of algebra.

p invariant,F function ⇒ F (p) invariant

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 30 / 42

Page 131: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Structure of Invariant Functions

Lemma (Structure of invariant functions)

Invariant functions of x ′ = θ& H form an R-algebra.

Corollary

Only need generating system of algebra.

p invariant,F function ⇒ F (p) invariant

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 30 / 42

Page 132: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Structure of Invariant Equations

I=(Γ) := {p ∈ R[~x ] : � Γ→ [x ′ = θ& H]p = 0}DCI=(Γ) := {p ∈ R[~x ] : `DI=+DC Γ→ [x ′ = θ& H]p = 0}

Lemma (Structure of invariant equations)

DCI=(Γ) ⊆ I=(Γ) chain of differential ideals ((θ ·∇)p ∈ DCI=(Γ) for allp ∈ DCI=(Γ)). The varieties are generated by a single polynomial.

Proof.4 p ∈ DCI=(Γ) and r ∈ R[~x ] implies rp ∈ DCI=(Γ), because

(θ ·∇)(rp) = p(θ ·∇)r + r (θ ·∇)p︸ ︷︷ ︸0

= p︸︷︷︸0

(θ ·∇)r = 0

and Γ→ p = 0 implies Γ→ rp = 0

5 p = 0 ∧ q = 0 iff p2 + q2 = 0, differential, Hilbert basis theorem . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 31 / 42

Page 133: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Structure of Invariant Equations

I=(Γ) := {p ∈ R[~x ] : � Γ→ [x ′ = θ& H]p = 0}DCI=(Γ) := {p ∈ R[~x ] : `DI=+DC Γ→ [x ′ = θ& H]p = 0}

Lemma (Structure of invariant equations)

DCI=(Γ) ⊆ I=(Γ) chain of differential ideals ((θ ·∇)p ∈ DCI=(Γ) for allp ∈ DCI=(Γ)). The varieties are generated by a single polynomial.

Proof.4 p ∈ DCI=(Γ) and r ∈ R[~x ] implies rp ∈ DCI=(Γ), because

(θ ·∇)(rp) = p(θ ·∇)r + r (θ ·∇)p︸ ︷︷ ︸0

= p︸︷︷︸0

(θ ·∇)r = 0

and Γ→ p = 0 implies Γ→ rp = 0

5 p = 0 ∧ q = 0 iff p2 + q2 = 0, differential, Hilbert basis theorem . . .

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 31 / 42

Page 134: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 31 / 42

Page 135: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Full Rank Assumptions

Theorem (. . . — sufficient)

(−→DI p)

H→n∧

i=1

(θ ·∇)pi =∑j

Qi ,jpj

n∧i=1

pi = 0→ [x ′ = f (x) & H]n∧

i=1

pi = 0

Theorem (Lie — necessary)

(←−DI p)

n∧i=1

pi = 0→ [x ′ = f (x) & H]n∧

i=1

pi = 0

H ∧n∧

i=1

pi = 0→n∧

i=1

(θ ·∇)pi = 0

Premises, conclusions equivalent if rank ∂pi∂xj

= n on H ∧∧ni=1 pi = 0.

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 32 / 42

Page 136: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Full Rank Assumptions

Theorem (. . . — sufficient)

(−→DI p)

H→n∧

i=1

(θ ·∇)pi =∑j

Qi ,jpj

n∧i=1

pi = 0→ [x ′ = f (x) & H]n∧

i=1

pi = 0

Theorem (Lie — necessary)

(←−DI p)

n∧i=1

pi = 0→ [x ′ = f (x) & H]n∧

i=1

pi = 0

H ∧n∧

i=1

pi = 0→n∧

i=1

(θ ·∇)pi = 0

Premises, conclusions equivalent if rank ∂pi∂xj

= n on H ∧∧ni=1 pi = 0.

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 32 / 42

Page 137: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

∗e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 33 / 42

Page 138: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

∗e = x → − 2yx + 2xy = 0

e = x →(−y)2x + e2y = 0

e = x → − y ∂(x2+y2)∂x + e ∂(x2+y2)

∂y = 0

. . . →[x ′ = −y , y ′ = e, e ′ = −y & e = x ](x2 + y 2 = 1 ∧ e = x)

∗−y = −y

−y ∂e∂e = −y ∂x

∂x

e = x →[x ′ = −y , y ′ = e, e ′ = −y ]e = x .

x2 + y 2 = 1 ∧ e = x →[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1 ∧ e = x)

Successful Proof

Lie & differential cuts separate aircraft

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 33 / 42

Page 139: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (III) Differential Cut

(∂(x2+y2−1)

∂x∂(x2+y2−1)

∂y∂(x2+y2−1)

∂e∂(e−x)

∂x∂(e−x)

∂y∂(e−x)

∂e

)=

(2x 2y 0−1 0 1

)Full rank 2 at invariant x2 + y 2 = 1

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 34 / 42

Page 140: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 34 / 42

Page 141: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Equational Differential Invariants

Theorem (Lie)

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

) equivalence if H open

F¬F

invariantequation

321

0

invariantfunction

H → p′ = 0

(H → p = 0)→[x ′ = θ& H]p = 0

H→p′ = 0

∀c(p = c → [x ′ = f (x) & H]p = c

)Corollary (Decidable invariant polynomials)

Decidable whether polynomial p invariant function of x ′ = f (x) on open H

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 35 / 42

Page 142: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Inverse Characteristic Method

Theorem (Inverse characteristic method)

(Sufficiently smooth) f is invariant function of x ′ = f (x) on H iff f solves

(θ ·∇)f = 0 on H

Proof.

⇐ Lie

If ODE too complicated, consider PDE instead???

Yes, but inverse characteristic PDE is simple (first-order, linear,homogeneous)

Makes rich PDE theory available for differential invariants

Oracle PDE solver sufficient

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 36 / 42

Page 143: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Inverse Characteristic Method

Theorem (Inverse characteristic method)

(Sufficiently smooth) f is invariant function of x ′ = f (x) on H iff f solves

(θ ·∇)f = 0 on H

Proof.

⇐ Lie

If ODE too complicated, consider PDE instead???

Yes, but inverse characteristic PDE is simple (first-order, linear,homogeneous)

Makes rich PDE theory available for differential invariants

Oracle PDE solver sufficient

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 36 / 42

Page 144: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Inverse Characteristic Method

Theorem (Inverse characteristic method)

(Sufficiently smooth) f is invariant function of x ′ = f (x) on H iff f solves

(θ ·∇)f = 0 on H

Proof.

⇐ Lie

If ODE too complicated, consider PDE instead???

Yes, but inverse characteristic PDE is simple (first-order, linear,homogeneous)

Makes rich PDE theory available for differential invariants

Oracle PDE solver sufficient

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 36 / 42

Page 145: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV)

Example (Generate Differential Invariants)

x2 + y 2 = 1 ∧ e = x→[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1︸ ︷︷ ︸(3)

∧ e = x︸ ︷︷ ︸(4)

)

(1) − e + x

(4); 0

(2) − y 2 − 2ex + x2

(3); −2ex + 2x2 − 1

(4); −2e2 + 2e2 − 1 = − 1

; Differential invariants: − e + x = 0, − y 2 − 2ex + x2 = −1

Example (Inverse Characteristic PDE)

; − y∂f

∂x+ e

∂f

∂y− y

∂f

∂e= 0

; f (x , y , e) = g(

x − e︸ ︷︷ ︸(1)

,1

2(x2 − 2ex − y 2︸ ︷︷ ︸

(2)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 37 / 42

Page 146: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV)

Example (Generate Differential Invariants)

x2 + y 2 = 1 ∧ e = x→[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1︸ ︷︷ ︸(3)

∧ e = x︸ ︷︷ ︸(4)

)

(1) − e + x

(4); 0

(2) − y 2 − 2ex + x2

(3); −2ex + 2x2 − 1

(4); −2e2 + 2e2 − 1 = − 1

; Differential invariants: − e + x = 0, − y 2 − 2ex + x2 = −1

Example (Inverse Characteristic PDE)

; − y∂f

∂x+ e

∂f

∂y− y

∂f

∂e= 0

; f (x , y , e) = g(

x − e︸ ︷︷ ︸(1)

,1

2(x2 − 2ex − y 2︸ ︷︷ ︸

(2)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 37 / 42

Page 147: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV)

Example (Generate Differential Invariants)

x2 + y 2 = 1 ∧ e = x→[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1︸ ︷︷ ︸(3)

∧ e = x︸ ︷︷ ︸(4)

)

(1) − e + x

(4); 0

(2) − y 2 − 2ex + x2

(3); −2ex + 2x2 − 1

(4); −2e2 + 2e2 − 1 = − 1

; Differential invariants: − e + x = 0, − y 2 − 2ex + x2 = −1

Example (Inverse Characteristic PDE)

; − y∂f

∂x+ e

∂f

∂y− y

∂f

∂e= 0

; f (x , y , e) = g(

x − e︸ ︷︷ ︸(1)

,1

2(x2 − 2ex − y 2︸ ︷︷ ︸

(2)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 37 / 42

Page 148: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV)

Example (Generate Differential Invariants)

x2 + y 2 = 1 ∧ e = x→[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1︸ ︷︷ ︸(3)

∧ e = x︸ ︷︷ ︸(4)

)

(1) − e + x

(4); 0

(2) − y 2 − 2ex + x2

(3); −2ex + 2x2 − 1

(4); −2e2 + 2e2 − 1 = − 1

; Differential invariants: − e + x = 0, − y 2 − 2ex + x2 = −1

Example (Inverse Characteristic PDE)

; − y∂f

∂x+ e

∂f

∂y− y

∂f

∂e= 0

; f (x , y , e) = g(

x − e︸ ︷︷ ︸(1)

,1

2(x2 − 2ex − y 2︸ ︷︷ ︸

(2)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 37 / 42

Page 149: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV)

Example (Generate Differential Invariants)

x2 + y 2 = 1 ∧ e = x→[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1︸ ︷︷ ︸(3)

∧ e = x︸ ︷︷ ︸(4)

)

(1) − e + x(4); 0

(2) − y 2 − 2ex + x2 (3); −2ex + 2x2 − 1

(4); −2e2 + 2e2 − 1 = − 1

; Differential invariants: − e + x = 0, − y 2 − 2ex + x2 = −1

Example (Inverse Characteristic PDE)

; − y∂f

∂x+ e

∂f

∂y− y

∂f

∂e= 0

; f (x , y , e) = g(

x − e︸ ︷︷ ︸(1)

,1

2(x2 − 2ex − y 2︸ ︷︷ ︸

(2)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 37 / 42

Page 150: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Deconstructed Aircraft (IV)

Example (Generate Differential Invariants)

x2 + y 2 = 1 ∧ e = x→[x ′ = −y , y ′ = e, e ′ = −y ](x2 + y 2 = 1︸ ︷︷ ︸(3)

∧ e = x︸ ︷︷ ︸(4)

)

(1) − e + x(4); 0

(2) − y 2 − 2ex + x2 (3); −2ex + 2x2 − 1

(4); −2e2 + 2e2 − 1 = − 1

; Differential invariants: − e + x = 0, − y 2 − 2ex + x2 = −1

Example (Inverse Characteristic PDE)

; − y∂f

∂x+ e

∂f

∂y− y

∂f

∂e= 0

; f (x , y , e) = g(

x − e︸ ︷︷ ︸(1)

,1

2(x2 − 2ex − y 2︸ ︷︷ ︸

(2)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 37 / 42

Page 151: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Aircraft

Example (Generate Differential Invariants)

F ∧ ω 6= 0→[x ′1 = d1, x′2 = d2, d

′1 = −ωd2, d

′2 = ωd1]F

F ≡ d21 + d2

2 = ω2p2

(4)

∧ d1 = −ωx2

(5)

∧ d2 = ωx1

(6)

d2 − ωx1

(5); 0

d1 + ωx2

(6); 0

d21 + 2ωx1d2 − ω2x2

1

(6); d2

1 + 2d22 − ω2x2

1(5); d2

1 + 2d22 − d2

2(4); ω2p2

Example (Inverse Characteristic PDE)

; d1∂f

∂x1+ d2

∂f

∂x2− ωd2

∂f

∂d1+ ωd1

∂f

∂d2= 0

; f (x1, x2, d1, d2) = g(

d2 − ωx1︸ ︷︷ ︸(1)

,d1 + ωx2

ω︸ ︷︷ ︸(2)

,1

2(d2

1 + 2ωd2x1 − ω2x21︸ ︷︷ ︸

(3)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 38 / 42

Page 152: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Aircraft

Example (Generate Differential Invariants)

F ∧ ω 6= 0→[x ′1 = d1, x′2 = d2, d

′1 = −ωd2, d

′2 = ωd1]F

F ≡ d21 + d2

2 = ω2p2

(4)

∧ d1 = −ωx2

(5)

∧ d2 = ωx1

(6)

d2 − ωx1

(5); 0

d1 + ωx2

(6); 0

d21 + 2ωx1d2 − ω2x2

1

(6); d2

1 + 2d22 − ω2x2

1(5); d2

1 + 2d22 − d2

2(4); ω2p2

Example (Inverse Characteristic PDE)

; d1∂f

∂x1+ d2

∂f

∂x2− ωd2

∂f

∂d1+ ωd1

∂f

∂d2= 0

; f (x1, x2, d1, d2) = g(

d2 − ωx1︸ ︷︷ ︸(1)

,d1 + ωx2

ω︸ ︷︷ ︸(2)

,1

2(d2

1 + 2ωd2x1 − ω2x21︸ ︷︷ ︸

(3)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 38 / 42

Page 153: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Aircraft

Example (Generate Differential Invariants)

F ∧ ω 6= 0→[x ′1 = d1, x′2 = d2, d

′1 = −ωd2, d

′2 = ωd1]F

F ≡ d21 + d2

2 = ω2p2

(4)

∧ d1 = −ωx2

(5)

∧ d2 = ωx1

(6)

d2 − ωx1

(5); 0

d1 + ωx2

(6); 0

d21 + 2ωx1d2 − ω2x2

1

(6); d2

1 + 2d22 − ω2x2

1(5); d2

1 + 2d22 − d2

2(4); ω2p2

Example (Inverse Characteristic PDE)

; d1∂f

∂x1+ d2

∂f

∂x2− ωd2

∂f

∂d1+ ωd1

∂f

∂d2= 0

; f (x1, x2, d1, d2) = g(

d2 − ωx1︸ ︷︷ ︸(1)

,d1 + ωx2

ω︸ ︷︷ ︸(2)

,1

2(d2

1 + 2ωd2x1 − ω2x21︸ ︷︷ ︸

(3)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 38 / 42

Page 154: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Aircraft

Example (Generate Differential Invariants)

F ∧ ω 6= 0→[x ′1 = d1, x′2 = d2, d

′1 = −ωd2, d

′2 = ωd1]F

F ≡ d21 + d2

2 = ω2p2

(4)

∧ d1 = −ωx2

(5)

∧ d2 = ωx1

(6)

d2 − ωx1

(5); 0

d1 + ωx2

(6); 0

d21 + 2ωx1d2 − ω2x2

1

(6); d2

1 + 2d22 − ω2x2

1(5); d2

1 + 2d22 − d2

2(4); ω2p2

Example (Inverse Characteristic PDE)

; d1∂f

∂x1+ d2

∂f

∂x2− ωd2

∂f

∂d1+ ωd1

∂f

∂d2= 0

; f (x1, x2, d1, d2) = g(

d2 − ωx1︸ ︷︷ ︸(1)

,d1 + ωx2

ω︸ ︷︷ ︸(2)

,1

2(d2

1 + 2ωd2x1 − ω2x21︸ ︷︷ ︸

(3)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 38 / 42

Page 155: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Aircraft

Example (Generate Differential Invariants)

F ∧ ω 6= 0→[x ′1 = d1, x′2 = d2, d

′1 = −ωd2, d

′2 = ωd1]F

F ≡ d21 + d2

2 = ω2p2 (4) ∧ d1 = −ωx2 (5) ∧ d2 = ωx1 (6)

d2 − ωx1(5); 0

d1 + ωx2(6); 0

d21 + 2ωx1d2 − ω2x2

1(6); d2

1 + 2d22 − ω2x2

1(5); d2

1 + 2d22 − d2

2(4); ω2p2

Example (Inverse Characteristic PDE)

; d1∂f

∂x1+ d2

∂f

∂x2− ωd2

∂f

∂d1+ ωd1

∂f

∂d2= 0

; f (x1, x2, d1, d2) = g(

d2 − ωx1︸ ︷︷ ︸(1)

,d1 + ωx2

ω︸ ︷︷ ︸(2)

,1

2(d2

1 + 2ωd2x1 − ω2x21︸ ︷︷ ︸

(3)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 38 / 42

Page 156: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Ex: Aircraft

Example (Generate Differential Invariants)

F ∧ ω 6= 0→[x ′1 = d1, x′2 = d2, d

′1 = −ωd2, d

′2 = ωd1]F

F ≡ d21 + d2

2 = ω2p2 (4) ∧ d1 = −ωx2 (5) ∧ d2 = ωx1 (6)

d2 − ωx1(5); 0

d1 + ωx2(6); 0

d21 + 2ωx1d2 − ω2x2

1(6); d2

1 + 2d22 − ω2x2

1(5); d2

1 + 2d22 − d2

2(4); ω2p2

Example (Inverse Characteristic PDE)

; d1∂f

∂x1+ d2

∂f

∂x2− ωd2

∂f

∂d1+ ωd1

∂f

∂d2= 0

; f (x1, x2, d1, d2) = g(

d2 − ωx1︸ ︷︷ ︸(1)

,d1 + ωx2

ω︸ ︷︷ ︸(2)

,1

2(d2

1 + 2ωd2x1 − ω2x21︸ ︷︷ ︸

(3)

))

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 38 / 42

Page 157: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 38 / 42

Page 158: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

F¬F

F

c [α]�φ φα

〈α〉Pφ P(φ)

ψ → [α]φ

ψ → [α]φ ψ → [α]φ

ψ → [α]φ ψ → [α]φ

diffsatloopsat

Strategy

Rule Engine Proof

Input File

Rulebase

Mathematica

QEPCAD

Orbital

KeYmaera Prover Solvers

1

2 2

4 4

8 8

1616

16

16

8

4

2

1

cQ

Q

Q

for ∪ , ; ,:= do decompose

}repeat until fixedpoint

Details

for x ′ = . . . do diffsatfor α∗ do loopsat

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 39 / 42

Page 159: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Successful Hybrid Systems Proofs

farneg

cor

recfsa

0 *

1

[SB := ((amax / b + 1) * ep * v + (v ^ 2 - d ^ 2) / (2 * b) + ((amax / b + 1) * amax * ep ^ 2) / 2)]

7

17

6

[?d >= 0 & do ^ 2 - d ^ 2 <= 2 * b * (m - mo) & vdes >= 0]

5

[vdes := *]

4

[d := *]

3

[m := *]

2

[mo := m]

[do := d]

8

[state := brake]

10

[?v <= vdes]

13

[?v >= vdes]

22

31

21

[{z‘ = v, v‘ = a, t‘ = 1, v >= 0 & t <= ep}]

18

28

17

[a := -b]

12

24

11

[?a >= 0 & a <= amax]

[a := *]

15

14

[?a <= 0 & a >= -b]

[a := *]

19

[t := 0]

*[?m - z <= SB | state = brake] [?m - z >= SB & state != brake]

x

y

c

c

Qxentry

exit

Q

y

c

Q Q

QQ

x1

x2

y1

y2

d

ω e

ϑ

cQx

Qy

Q

z

x

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 40 / 42

Page 160: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Successful Hybrid Systems Proofs

ey

fy

xb(lx, ly) ex fx

(rx, ry)

(vx, vy)

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 40 / 42

Page 161: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Outline

1 Motivation2 Differential Dynamic Logic dL

SyntaxSemanticsAxiomatizationSoundness and Completeness

3 Differential InvariantsAir Traffic ControlEquational Differential InvariantsStructure of Differential InvariantsDifferential CutsDifferential Auxiliaries

4 Structure of Invariant Functions / Equations5 Differential Invariants and Assumptions6 Inverse Characteristic Method7 Survey8 Summary

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 40 / 42

Page 162: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

Differential Dynamic Logic and Differential Invariants

discrete

continuous stochastic

differential dynamic logic

dL = DL + HP[α]φ φ

α

Logic for hybrid systems++

Sound & complete / ODE

Differential invariants

No differential cut elimination

Differential auxiliaries

Algebra / differential ideal

Inverse characteristic PDE

KeYmaera

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 41 / 42

Page 163: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

LogicalFoundations

ofCyber-Physical

Systems

Logic

ModelChecking

TheoremProving

ProofTheory

Algebra

ComputerAlgebra Algebraic

Geometry

DifferentialAlgebra

Analysis

DifferentialEquations

DynamicalSystems

Differen-tiation

StochasticsStochasticDifferentialEquations

DynkinGeneratorSuper-

martingales

Numerics

NumericalIntegration

PolynomialInterpo-lation

WeierstraßApprox-imation

Algorithms

DecisionProcedures

ProofSearch

FixedpointLoops

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 42 / 42

Page 164: Differential Dynamic Logic and Differential Invariants for ...aplatzer/pub/diffop-slides.pdf · Complete Proof Theory of Hybrid Systems Theorem (Continuous Relative Completeness)

LogicalFoundations

ofCyber-Physical

Systems

Logic

ModelChecking

TheoremProving

ProofTheory

Algebra

ComputerAlgebra Algebraic

Geometry

DifferentialAlgebra

Analysis

DifferentialEquations

DynamicalSystems

Differen-tiation

StochasticsStochasticDifferentialEquations

DynkinGeneratorSuper-

martingales

Numerics

NumericalIntegration

PolynomialInterpo-lation

WeierstraßApprox-imation

Algorithms

DecisionProcedures

ProofSearch

FixedpointLoops

Andre Platzer (CMU) Differential Dynamic Logic and Differential Invariants ITP’12 42 / 42