1
Development of Problem Solving Skills in Medical Sciences Alison M. Jack, Derek A. Scott, Stephen N. Davies and Mary A. Cotter School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD Introduction An ability to problem solve is a critical skill graduates should possess It is a transferable, life long skill which students can utilise to solve logistical problems of any nature, not just in their chosen degree discipline Problem exercises are however taught with a discipline specific theme to increase engagement of students This specificity illustrates the practical applications of the theory taught in lectures Problem solving exercises change in nature over the degree programme with increased data handling content in the third and fourth years. Examples of exercises Outcomes Student feedback on these exercises is very positive. At Honours level there is a direct correlation between students who perform well in problem solving exercises and who perform well in their overall degree. What we do Discipline specific problem solving exercises are delivered by the School of Medical Sciences from second year to honours level for students studying biomedical science subjects in the BSc (Hons) programme and to students in Phase I of the MBChB programme. At levels 1 and 2 these exercises have a clinical and sports orientation and aim to illustrate the practical relevance of the academic material taught in lectures. Data handling is minimal at this level although some basic calculations are required. At levels 3 and 4 (BSc Hons programme) data interpretation and critical analysis becomes the focus of the exercises. Students are provided with an abbreviated scientific paper and asked questions based on the information provided. At level 3 students are also provided with case study exercises where they are given clinical or sports related scenarios and asked questions which examine their knowledge of the physiological basis of the scenario in question. At the higher levels these questions should be formulated in such a way that students cannot find the answer directly out of a text book. At levels 3 and 4 these exercises form part of the continuous assessment and must therefore be written up independently and submitted as an individual assignment . In all cases students have the opportunity to work with their peers in the preparation of the material. Time between distribution of the exercise and submission of answers varies between levels and courses. Level 2 science students receive and work through the exercise in class, third and fourth year students have between one and six weeks from receiving the exercise to submission Submission of answers can be done under exam conditions An unseen problem solving exercise forms an exam paper in the final diet of Honours exams. Aims We want the student asking “what do I need to know in order to answer this question” and then have the motivation to go and find that information and use it to answer to question posed. We want the students to work together with their peers to “brain storm” and discuss all possible answers. This builds relationships between students and develops interpersonal skills. At years 1 and 2 where the problem solving sessions are staff led and not assessed we want to promote an atmosphere where students feel comfortable engaging with staff, can explore points of personal interest in more detail and can receive onetoone attention where required. We want to build a level of problem solving skills in our students that will enable them to perform well in the problem based paper in the final diet of honours exams. This paper is a reliable discriminator between strong and weaker students. Phase I MBChB Urinary/Acid/Base Problem Solving Prof Cotter Q.1. A patient with renal insufficiency has a blood sample taken and the following values are obtained (normal values are shown in parentheses) Serum [Na+] 135 mmoles/l (140145 mmoles/l) Serum [glucose] 5.5 mmoles/l (55.5mmoles/l) Serum [urea] 100 mg/dl (520mg/dl) Posm 310 mOsm/kg H2O (285295 mOsm/kg H2O) a)Can you suggest why the value for Na+ was outwith the normal range? b) Can you suggest why the urea concentration was outwith the normal range? c) Would you expect the plasma ADH levels in this individual to be elevated or suppressed? Q.2. A 35 year old man develops an acute episode of vomiting and diarrhoea and loses 3kg in body weight over a 24hour period. A blood sample shows that the plasma [Na+] is normal at 145 mM/l. Indicate whether the following parameters would be increased, decreased or unchanged from what they were before his illness. Plasma osmolality .......................... Effective circulating volume .......................... Plasma ADH levels .......................... Urine osmolality .......................... Sensation of thirst .......................... Q.3. A patient is found to have the following laboratory values: Arterial plasma [Na+] = 138 mM/l [K+] = 3.9 mM/l [Cl] = 109 mM/l [HCO3] = 14 mM/l Would it be appropriate to administer [HCO3] to this patient? Justify your answer. Q.4. If the normal rate of H+ secretion is 3.05 mM/min and that of bicarbonate filtration is 3.00 mM/min, how many mM of new HCO3 are generated by the kidneys in a day? Q.5. The following are a set of blood values which may be obtained in different situations: pH HCO3 mmoles/l PCO2 mmHg PCO2 kPa a) 7.56 50 58 7.73 b) 7.34 34 64 8.53 c) 7.53 22 27 3.60 d) 7.4 24 40 5.33 e) 6.96 5 23 3.07 f) 7.48 19 26 3.47 g) 7.34 25 48 6.40 h) 7.35 22 38 5.07 Match the values to the conditions shown below, specifying the acid/ base status in each case: (Note there are more data sets than conditions) 1. Diabetic ketoacidosis .............................................. 2. Prolonged vomiting .............................................. 3. Breathing 7% CO2 ............................................... 4. Emphysema .............................................. 5. Voluntary hyperventilation .............................................. PY3002 Integrative Physiology 20078 Dr D. Scott Case Study 1 – The Man with Chest Pain Please note: completion of this case study forms part of your continuous assessment mark for this course. To answer the questions, you will have to do some extra reading from textbooks, and cannot rely solely on your lecture notes. You have a week to revise the answers to this case, and then you will complete your answers individually under exam conditions. You will then submit your answer sheets, and the correct answers will be given at the next session. If you do not turn up and submit your case study during the scheduled slot without good reason (e.g. illness), then you will not receive a mark for this case study. Case 1: The Man with Chest Pain A collapsed 60 yearold academic was brought into Accident & Emergency complaining of a severe, sustained crushing pain in a band across his chest, spreading into the arms. Previously he had been well, though he smoked 10 cigarettes a day. On examination he was pale, with cold, sweaty skin. His pulse was weak, with occasional extrasystoles (extra and inappropriate ventricular beats). His arterial blood pressure was 95/70 mmHg. Heart sounds were normal. An ECG revealed large Q waves and ST segment elevation. He was admitted with a provisional diagnosis of myocardial infarction due to coronary artery thrombosis. Blood plasma analysis showed raised levels of cardiac enzymes (lactic dehydrogenase, creatine phosphokinase, aspartate aminotransferase). He was given O 2 and morphine. A streptokinase (“clotbuster”) infusion was set up to lyse (degrade) the coronary thrombus, and he was also started on a regular, low dose of aspirin. Questions 1.Name the major coronary arteries, state the regions supplied and define what is meant by “functional endartery”. 2.What is the probable underlying coronary pathology here, and what is the role of endothelium? 3.Which sensory fibres mediate ischaemic cardiac pain? 4.How can the myocardium be ischaemic when the left ventricle contains fully oxygenated blood? 5.If the arterial oxygenation was 190 ml O 2 per litre, the mixed venous content 90 ml O 2 per litre, and the O 2 consumption 300 ml/min, what was the patient’s cardiac output? Name the principle involved. 6.How do you account for the low cardiac output and blood pressure? 7.What makes the skin pale, cold and sweaty (clammy)? What general response is this a characteristic of? 8.Draw a normal ECG and show how it aligns with atrial and ventricular action potentials. What causes the delay between the P wave and the QRS complex? What causes STsegment displacement in myocardial ischaemia? 9.How does lowdose aspirin improve the prognosis? 10.What are the dangers of abruptly restoring blood flow to a tissue after prolonged ischaemia? Positive aspects Student feedback on these exercises, received via Student Course Evaluation Forms, is very positive. Provides directed study for students to carry out independently and with peers. Generates active learning where students need to find the answers, understand the material and appreciate the application of that material. Increases staffstudent contact in early years encouraging students to be comfortable approaching and engaging with staff. Staff get to know students thus creating a better rapport. Allows identification of problems early on, including undiagnosed special needs. Increase the variety of teaching styles to address different learning styles. Negative aspects Setting up exercises is time intensive initially but the problems can be used over and over again so investment early on can reap rewards indefinitely. Where there is no assessment students can have the perception it is not important and therefore participation may fall. Students can hide within a group and show minimal interaction.

Development of Problem Solving Skills in Medical Sciences · Development of Problem Solving Skills in Medical Sciences ... • Student feedback on these exercises is very ... myocardial

  • Upload
    vannhan

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Development of Problem Solving Skills in Medical Sciences Alison M. Jack, Derek A. Scott, Stephen N. Davies and Mary A. Cotter School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD 

Introduction 

•  An ability to problem solve is a critical skill graduates should possess 

•  It is a transferable, life long skill  which students can utilise to solve logistical problems of any nature, not just in their chosen degree discipline 

•  Problem exercises are however taught with a discipline specific theme to increase engagement of students 

•  This specificity illustrates the practical applications of the theory taught in lectures 

•  Problem solving exercises change in nature over the degree programme with increased data handling content in the third and fourth years. 

Examples of exercises 

Outcomes 

•  Student feedback on these exercises is very positive. 

•  At Honours level there is a direct correlation between students who perform well in problem solving exercises and who perform well in their overall degree. 

What we do 

•  Discipline specific problem solving exercises are delivered by the School of Medical Sciences  from second year to honours level for students studying biomedical science subjects in the BSc (Hons) programme and to students in Phase I of the MBChB programme. 

•  At levels 1 and 2 these exercises have a clinical and sports orientation and aim to illustrate the practical relevance of the academic material taught in lectures. Data handling is minimal at this level although some basic calculations are required. 

•  At levels 3 and 4  (BSc Hons programme) data interpretation and critical analysis becomes the focus of the exercises. Students are provided with an abbreviated scientific paper and asked questions based on the information provided. 

•  At level 3 students are also provided with case study exercises where they are given clinical or sports related scenarios and asked questions which examine their knowledge of the physiological basis of the scenario in question. 

•  At the higher levels these questions should be formulated in such a way that students cannot find the answer directly out of a text book. 

•  At levels 3 and 4 these exercises form part of the continuous assessment and must therefore be written up independently and submitted as an individual assignment . 

•  In all cases students have the opportunity to work with their peers in the preparation of the material. 

•  Time between distribution of the exercise and submission of answers varies between levels and courses. Level 2 science students receive and work through the exercise in class, third and fourth year students have between one and six weeks from  receiving the exercise to submission 

•  Submission of answers can be done under exam conditions 

•  An unseen problem solving exercise forms an exam paper in the final diet of Honours exams. 

Aims 

•  We want the student asking “what do I need to know in order to answer this question” and then have the motivation to go and find that information and use it to answer to question posed. 

•  We want the students to work together with their peers to “brain storm” and discuss all possible answers. This builds relationships between students and develops interpersonal skills. 

•  At years 1 and 2 where the problem solving sessions are staff led and not assessed we want to promote an atmosphere where students feel comfortable engaging with staff, can explore points of personal interest in more detail and can receive one­to­one attention where required. 

•  We want to build a level of problem solving skills in our students that will enable them to perform well in the problem based paper in the final diet of honours exams. This paper is a reliable discriminator between strong and weaker students. 

Phase I MBChB  Urinary/Acid/Base Problem Solving  Prof Cotter 

Q.1.  A patient with renal insufficiency has a blood sample taken and the following values are obtained (normal values are shown in parentheses) Serum [Na+]  135 mmoles/l  (140­145 mmoles/l) Serum [glucose]  5.5 mmoles/l  (5­5.5mmoles/l) Serum [urea]  100 mg/dl  (5­20mg/dl) Posm  310 mOsm/kg H2O  (285­295 mOsm/kg H2O) a)Can you suggest why the value for Na+ was outwith the normal range? b) Can you suggest why the urea concentration was outwith the normal range? c) Would you expect the plasma ADH levels in this individual to be elevated or suppressed? Q.2.  A 35 year old man develops an acute episode of vomiting and diarrhoea and loses 3kg in body weight over a 24­hour period. A blood sample shows that the plasma [Na+] is normal at 145 mM/l. Indicate whether the following parameters would be increased, decreased or unchanged from what they were before his illness. Plasma osmolality  .......................... Effective circulating volume  .......................... Plasma ADH levels  .......................... Urine osmolality  .......................... Sensation of thirst  .......................... Q.3.  A patient is found to have the following laboratory values: Arterial plasma  [Na+]  = 138 mM/l 

[K+]  = 3.9  mM/l [Cl­]  = 109 mM/l [HCO3­]  = 14  mM/l 

Would it be appropriate to administer [HCO3­] to this patient? Justify your answer. Q.4.  If the normal rate of H+ secretion is 3.05 mM/min and that of bicarbonate filtration is 3.00 mM/min, how many mM of new HCO3­ are generated by the kidneys in a day? 

Q.5.  The following are a set of blood values which may be obtained in different situations: pH  HCO3­ mmoles/l  PCO2 mmHg  PCO2 kPa 

a)  7.56  50  58  7.73 b)  7.34  34  64  8.53 c)  7.53  22  27  3.60 d)  7.4  24  40  5.33 e)  6.96  5  23  3.07 f)  7.48  19  26  3.47 g)  7.34  25  48  6.40 h)  7.35  22  38  5.07 Match the values to the conditions shown below, specifying the acid/ base status in each case: (Note there are more data sets than conditions) 1.  Diabetic ketoacidosis  .............................................. 2.  Prolonged vomiting  .............................................. 3.  Breathing 7% CO2  ............................................... 4.  Emphysema  .............................................. 5.  Voluntary hyperventilation  .............................................. 

PY3002 Integrative Physiology 2007­8  Dr D. Scott Case Study 1 – The Man with Chest Pain 

Please note: completion of this case study forms part of your continuous assessment mark for this course. To answer the questions, you will have to do some extra reading from textbooks, and cannot rely solely on your lecture notes. You have a week to revise the answers to this case, and then you will complete your answers individually under exam conditions. You will then submit your answer sheets, and the correct answers will be given at the next session. If you do not turn up and submit your case study during the scheduled slot without good reason (e.g. illness), then you will not receive a mark for this case study. 

Case 1: The Man with Chest Pain A collapsed 60 year­old academic was brought into Accident & Emergency complaining of a severe, sustained crushing pain in a band across his chest, spreading into the arms. Previously he had been well, though he smoked 10 cigarettes a day. On examination he was pale, with cold, sweaty skin. His pulse was weak, with occasional extrasystoles (extra and inappropriate ventricular beats). His arterial blood pressure was 95/70 mmHg. Heart sounds were normal. An ECG revealed large Q waves and ST segment elevation. He was admitted with a provisional diagnosis of myocardial infarction due to coronary artery thrombosis. Blood plasma analysis showed raised levels of cardiac enzymes (lactic dehydrogenase, creatine phosphokinase, aspartate aminotransferase). He was given O 2 and morphine. A streptokinase (“clotbuster”) infusion was set up to lyse (degrade) the coronary thrombus, and he was also started on a regular, low dose of aspirin. 

Questions 1.Name the major coronary arteries, state the regions supplied and define what is meant by “functional end­artery”. 2.What is the probable underlying coronary pathology here, and what is the role of endothelium? 3.Which sensory fibres mediate ischaemic cardiac pain? 4.How can the myocardium be ischaemic when the left ventricle contains fully oxygenated blood? 5.If the arterial oxygenation was 190 ml O 2 per litre, the mixed venous content 90 ml O 2 per litre, and the O 2 consumption 300 ml/min, what was the patient’s cardiac output? Name the principle involved. 6.How do you account for the low cardiac output and blood pressure? 7.What makes the skin pale, cold and sweaty (clammy)? What general response is this a characteristic of? 8.Draw a normal ECG and show how it aligns with atrial and ventricular action potentials. What causes the delay between the P wave and the QRS complex? What causes ST­segment displacement in myocardial ischaemia? 9.How does low­dose aspirin improve the prognosis? 10.What are the dangers of abruptly restoring blood flow to a tissue after prolonged ischaemia? 

Positive aspects 

•  Student feedback on these exercises, received via Student Course Evaluation Forms, is very positive. 

•  Provides directed study for students to carry out independently and with peers. 

•  Generates active learning where students need to find the answers, understand the material and appreciate the application of that material. 

•  Increases staff­student contact in early years encouraging students to be comfortable approaching and engaging with staff. 

•  Staff get to know students thus creating a better rapport. 

•  Allows identification of problems early on, including undiagnosed special needs. 

•  Increase the variety of teaching styles to address different learning styles. 

Negative aspects 

•  Setting up exercises is time intensive initially but the problems can be used over and over again so investment early on can reap rewards indefinitely. 

•  Where there is no assessment students can have the perception it is not important and therefore participation may fall. 

•  Students can hide within a group and show minimal interaction.