73
Development and Advancement of the Stetter Reaction Christopher D. Hupp Michigan State University December 8, 2004

Development and Advancement of the Stetter Reaction

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Development and Advancement of the Stetter Reaction

Development and Advancement of the Stetter Reaction

Christopher D. HuppMichigan State University

December 8, 2004

Page 2: Development and Advancement of the Stetter Reaction

Path of PresentationDevelopment of Stetter reaction

•Umpolung reactivity•Methods of umpolungreactivity

•Heteroatom exchange•Benzoin condensation•Stetter reaction

ConclusionsAcknowledgements

Advances in Stetter reaction•Intramolecular reactions•Enantioselective reactions•Stetter reactions withacylimine acceptors•Sila-Stetter reactions•Stetter reactions usingROMPgel

Page 3: Development and Advancement of the Stetter Reaction

Michael Addition

O+

OCH3

O

Nucleophile

Electrophile

OCH3

O OM

R1 H

O

R2 R3

O+

?

Electrophile

Electrophile

R1 R3O

OR2

How do we couple two centers of identical polarity or affinity?

Page 4: Development and Advancement of the Stetter Reaction

Definition of SynthonSynthons are “structural units within a molecule which are related to

possible synthetic operations”E. J. Corey

+

Synthon 2Synthon 1

O+

OCH3

O

OCH3

O OM

Donor Synthon Acceptor Synthon

Corey, E. J. Pure Appl. Chem. 1967, 14, 19Seebach, D. Angew. Chem. Int. Ed. 1979, 18, 239

Page 5: Development and Advancement of the Stetter Reaction

Nomenclature for Synthonsan = Acceptor Synthon

dn = Donor Synthon

O+

OCH3

O

Nucleophile

Electrophile

OCH3

O OM

R1 H

O

R2 R3

O+

?

Electrophile

Electrophile

R1 R3O

OR2

d2

a1

a3

a3

Seebach, D. Angew. Chem. Int. Ed. 1979, 18, 239

Page 6: Development and Advancement of the Stetter Reaction

Nature Gives an Example

+CO2

OCO2

O

OHPyruvate Acetolactate

Acetolactate SynthaseEnzyme-Bound

ThDP2 + Enzyme-Bound

ThDPa1

AcetolactateSynthase

N

N

NH2N

S

3-O6P2O

ThDP = Thiamine (Vitamin B1) Diphosphate

Pang, S. S.; Duggleby, R. G.; Schowen, R. L.; Guddat, L.. W. J. Biol. Chem. 2004, 279, 2242

Page 7: Development and Advancement of the Stetter Reaction

Acetolactate Synthase

S

NR2

R1

CO2

O

a1Base

S

NR2

R1S

NR2

R1 S

NR2

R1OH

OO

S

NR2

R1 OHd1

S

NR2

O

HOCO2

HCO2

O

OHR1 CO2

O

a1

+ Enzyme-Bound ThDP

CO2B

Pang, S. S.; Duggleby, R. G.; Schowen, R. L.; Guddat, L.. W. J. Biol. Chem. 2004, 279, 2242

Page 8: Development and Advancement of the Stetter Reaction

Umpolung Reactivity

R1 H

O

R2 R3

O+

?

a1

a3

R1 R3O

OR2

Umpolung reactivity is present in a reagent in which an a or d center is reversed.

R1 H

O

R2 R3

O+

R1 R3O

OR2d1

a3

Seebach, D. Angew. Chem. Int. Ed. 1979, 18, 239

Page 9: Development and Advancement of the Stetter Reaction

Methods of Umpolung Reactivity

• Heteroatom exchange• Homologation

Page 10: Development and Advancement of the Stetter Reaction

Heteroatom Exchange• Use of a 1,3-dithiol

OMe

O

O

SH SHTsOH (cat.), Benzenereflux 12 h

1 eq. OMe

O

S S

LDA, -78°CTHF

OMe

O

S S

-78°C to R.T., 15 h

Ph

O

Ph 1 eq., THF

70%S S

CO2MePh

O

PhS S

Ph

Ph

OOH

H H Lia1 d1

Griera, R.; Rigat, L.; Alvarez, M.; Joule, J. A. J. Chem. Soc., Perkin Trans 1, 1992, 10, 1223Wadi, A.; Calahorra, F. L. Tetrahedron Lett. 1992, 33, 3679

Page 11: Development and Advancement of the Stetter Reaction

Methods of Umpolung Reactivity

• Heteroatom exchange– additional synthetic steps are needed ⇒ more chances

to lose potentially valuable material

• Homologation– aldehyde – aldehyde coupling

• Benzoin condensation

– aldehyde – α, β-unsaturated carbonyl coupling• Stetter reaction

Page 12: Development and Advancement of the Stetter Reaction

Benzoin Condensation

a1

d1

a1

C NHO

CN

H

HO CN-H

HO CNPhCHO

Proton Transfer

- CN

OH

O

HO CN

O CN

H

O CN

H

H H+

O Ocat. CN

O

OHMeOH

Lapworth, A. J. Chem. Soc. 1903, 83, 995

Page 13: Development and Advancement of the Stetter Reaction

Path of Benzoin Condensation

Cyanide catalyzedbenzoin condensation

Proposed mechanism forcyanide catalyzed benzoincondensation

Thiazolium salt catalyzed benzoincondensation

Catalytic activity ofnatural thiamine isbased on thiazolium unit

Ukai et al., 1943Mizuhara et al., 1954

Lapworth, 1903

Proposed mechanism forthiazolium salt catalyzed benzoincondensation

Breslow, 1958

Ukai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 18, 239Mizuhara, S.; Handler, P. J. Am. Chem. Soc. 1954, 76, 571

Page 14: Development and Advancement of the Stetter Reaction

Thiazolium Salt-Catalyzed Benzoin

Breslow Intermediate

S

NR1

R2

H

R

-H

S

NR1

R2

R

S

NR1

R2

R

PhOH

H

PhCHO, H

S

NR1

R2

ROH

Ph

S

NR1

R2

R

PhO

OHPh

PhCHO-H

O

OHS

NR1

R2

RS

NR1

R2

R

S

N R1

R2

R

Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719

Page 15: Development and Advancement of the Stetter Reaction

Alternative Mechanistic Model

S

NR1

R2

R

HBase

S

NR1

R2

R

S

NR1

R2

R

S

N R1

R2

PhCHO

S

NR1

R2

R

S

N R1

R2

R

Ph HO

S

NR1

R2

R

S

N R1

R2

R

PhOH

PhCHOS

NR1

R2

R

S

N R1

R2

R

PhHO

O HPh

S

NR1

R2

R

S

N R1

R2

R

PhOHO H

Ph

O

OH

AA

R

Castells, J.; Lopez-Calahorra, F.; Domingo, L. J. Org. Chem. 1988, 53, 4433

Page 16: Development and Advancement of the Stetter Reaction

Methods of Umpolung Reactivity

• Heteroatom exchange– additional synthetic steps are needed ⇒ more chances

to lose potentially valuable material

• Homologation– aldehyde – aldehyde coupling

• Benzoin condensation

– aldehyde – α, β-unsaturated carbonyl coupling• Stetter reaction

Page 17: Development and Advancement of the Stetter Reaction

Stetter Reaction

R H

O

R = Aromatic or Heterocyclic

R1 R2

O

RR2

O

OR1

CNDMF, 35°C

(10 mol%)

48-98%

(1 eq.)(1 eq.) +

• Reaction does not work with aliphatic aldehydes• Reaction does work with α, β-unsaturated ketones, esters, and nitriles

R H

O

R1 R2

O

RR2

O

OR1

S

NMeBn

HO

Cl

Et3N, DMF, 70°C

(10 mol%)

20-95%

(1 eq.)(1 eq.) +

• Reaction does work with aliphatic, aromatic, and heterocyclic aldehydes• Reaction does work with α, β-unsaturated ketones, esters, and nitriles

Stetter, H. Angew. Chem. Int. Ed. 1976, 15, 639

Page 18: Development and Advancement of the Stetter Reaction

Mechanism of Stetter Reaction

R H

O

S

NR2

R3

R1

S

NR2

R3

R1

O

RH

S

NR2

R3

R1

OH

R

R1 R2

O

S

NR2

R3

R1

R2OHR

R1 OS

NR2

R3

R1

R2OR

R1 O

RR2

O

OR1

S

NR2

R3

R1

Base

X

ProtonTransfer

a1d1

S

NR2

R3

R1

OH

R

Stetter, H. Angew. Chem. Int. Ed. 1976, 15, 639

Page 19: Development and Advancement of the Stetter Reaction

Scope of the Stetter Reaction

Stetter, H. Angew. Chem. Int. Ed. 1976, 15, 639

R H

O

R1 R2

O

RR2

O

OR1

A

BO

R R

O O

O

E

R1 OR2

OR

OR2O

OR1

D

R1 CN

R CN

O

R1

C

R1

OH3CO R1

O

O

O

Page 20: Development and Advancement of the Stetter Reaction

First Application of the Stetter Reaction

CN

H3CO2C OHC

N

S

CH3H3C

HO

Cl

Et3N, i-PrOH, 80°C, 67%

CN

OH3CO2C

OO

CN

HO2C

H

H

O

OH

(±) - Hirsutic Acid C

(2.3 eq.)

Trost, B.M.; Shuey, C. D.; DiNinno Jr., F.; McElvain, S. S. J. Am. Chem. Soc. 1979, 101, 1284

Page 21: Development and Advancement of the Stetter Reaction

Comparison of Benzoin and Stetter Reactions

Benzoin reaction• Reversible reaction• Products only include benzoin adducts

Ph H Ph H+

O O cat. CNPh

PhO

OHMeOH

Stetter reaction• Irreversible reaction• Products include Stetter adducts as well as benzoin adducts• Benzoin products can be used as substrates

Ph H+

O

Ph Ph

OThiazolium cat.

Base, DMF PhPh

O

OPh

Page 22: Development and Advancement of the Stetter Reaction

Path of PresentationDevelopment of Stetter reaction

•Umpolung reactivity•Methods of umpolungreactivity

•Heteroatom exchange•Benzoin condensation•Stetter reaction

ConclusionsAcknowledgements

Advances in Stetter reaction•Intramolecular reactions•Enantioselective reactions•Stetter reactions withacylimine acceptors•Sila-Stetter reactions•Stetter reactions usingROMPgel

Page 23: Development and Advancement of the Stetter Reaction

Intramolecular Stetter Reactions

O

CHO

CO2MeO

O

CO2Me

N

S

H3C Bn

HOCl

DMF, reflux

10 mol%

39%

Ciganek, E. Synthesis 1995, 1311

Page 24: Development and Advancement of the Stetter Reaction

The Problem Using Cyanide

“tandem vicinal difunctionalization”

R1O

CHO

CO2R2NaCN (2 eq.), DMF

25°C O

O

CO2R2

R1

NaCN (2 eq.), DMF25°C, 58%

O

OHCO2CH3

CN

Ciganek, E. Synthesis 1995, 1311

Page 25: Development and Advancement of the Stetter Reaction

Tandem Vicinal Difunctionalization

O OMe

OCHO

CN

OOMe

OO

CN

O

OHCO2Me

CN

Chapdelaine, M. J.; Hulce, M. Org. React. 1990, 38, 225

Page 26: Development and Advancement of the Stetter Reaction

Intramolecular Stetter Reactions

O

CHO

CO2Me

N

S

H3C Bn

HOCl

DMF, reflux

10 mol%

O

O

CO2Me

39%

O

CHO

CO2Me

N

S

H3C Bn

HOCl

DMF, Et3N, 25°C orDMF, 120°C

10 mol%

O

CO2Me

O

86%

Ciganek, E. Synthesis 1995, 1311

Page 27: Development and Advancement of the Stetter Reaction

Importance of Benzopyranones• Potential intermediates for the synthesis of heterocyclic

analogs of steroids• Important building blocks for the preparation of

pterocarpans and isoflavanones ⇒ strong fungicidal activity

O

O

HO

O

O

Pterocarpan

O

O OH

OMe

HOIsoflavanone

O

CO2Me

O

Benzopyranone

Morand, P.; Lyall, J. Chem. Rev. 1968, 68, 85Ozaki, Y.; Mochida, K.; Kim, S. W. J. Chem. Soc., Perkin Trans 1 1989, 1219

Vicario, J. L.; Badia, D.; Carrillo, L. Tetrahedron: Asymm. 2003, 14, 489

Page 28: Development and Advancement of the Stetter Reaction

Path of PresentationDevelopment of Stetter reaction

•Umpolung reactivity•Methods of umpolungreactivity

•Heteroatom exchange•Benzoin condensation•Stetter reaction

ConclusionsAcknowledgements

Advances in Stetter reaction•Intramolecular reactions•Enantioselective reactions•Stetter reactions withacylimine acceptors•Sila-Stetter reactions•Stetter reactions usingROMPgel

Page 29: Development and Advancement of the Stetter Reaction

First Asymmetric Intermolecular Stetter Reaction

H

O O O

O

N

S

MeMe

Me

*+ 20 mol % cat.

Catalyst

DMF, HMPA, Et3N,60°C

Cl

Yield = 30% ee = ≤ 40%

Enders, D. Enzymemimetic C-C and C-N Bond Formations. In Stereoselective Synthesis; Ottow, E.;Schoellkopf, K.; Schulz, B. G., Eds.; Springer-Verlag: Berlin-Heidelberg, 1994; pp 63-90.

Page 30: Development and Advancement of the Stetter Reaction

First Asymmetric IntramolecularStetter Reaction

CHOR1

O CO2R2

1 (20 mol%),K2CO3 (10 mol%), THF

O

O

HCO2R2

R1

NN

N

Ph

O O

Ph

CH3H3C

ClO4

1

Yield = 44-73% ee = 41-74%

Enders, D.; Breuer, K.; Runsink, J. Helv. Chim. Acta 1996, 79, 1899

Page 31: Development and Advancement of the Stetter Reaction

Transition State Model• Attack occurs from the si face of

the Breslow intermediate

• Attack to the si face of the α, β-unsaturated carbonylNN

N

Ph

R1

O

CO2R2

OO

CH3

CH3

HO sisi

Enders, D.; Breuer, K.; Runsink, J. Helv. Chim. Acta 1996, 79, 1899

Page 32: Development and Advancement of the Stetter Reaction

Advancement ofEnantioselective Reactions

Substrate Product Cat. Yield(%) ee(%)

O

CO2EtO

O

O CO2Et

1 94 94

X

CO2MeO

X

O CO2Me1 63 96

1 64 82

CO2EtO O CO2Et 1

2

35 94

90 92

X = S

X = NMe

NN

NO

BF4

NNN

BnPh

BF41 2

OMe

CHO

X CO2R1 20 mol % KHMDS, xylenes, 25°C, 24 hX

O

20 mol % catalyst

CO2R1

Kerr, M. S.; de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298

Page 33: Development and Advancement of the Stetter Reaction

Stereochemical Reasoning

• Attack from the si face of the Breslow intermediate, to the si face of the α, β-unsaturated carbonyl

NN

N

Ph

CO2Et

OH

O

re

re

O

H

CO2Et

NN

N

Ph

OH

O

OEt

OH

• Attack from the re face of the Breslow intermediate, to the re face of the α, β-unsaturated carbonyl

What about racemization?

NN

N

Ph

O

CO2Et

HO

Osi

si

O

OHEtO2CNN

N

Ph

O

HO

O

OEt

O

H

Page 34: Development and Advancement of the Stetter Reaction

Racemization with Benzofuranones

O

OCO2CH3 20 mol%

20 mol% KHMDS, xylenes, 25°C, 24 h

NNN

BnPh

BF4

O

O

CO2CH3

90% yield<5% ee

O

O

CO2CH3

O

OCO2CH3

Or

Kerr, M. S.; de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298

Page 35: Development and Advancement of the Stetter Reaction

Effect of Michael Acceptor

Kerr, M. S.; Rovis, T. Synlett, 2003, 12, 1934

CHO

O EWG 20 mol % KHMDS, xylenes, 25°C, 24 h O

O

EWG Time Yield (%) ee (%)

Triazolium catalyst 20 mol %

NN

NO

BF4

Catalyst

24 h

1 h

24 h

24 h

24 h

0

90

78

0

0

--

92

75

--

--

Et

O

H

O

NH2

O

NO2

CN

EWG

Page 36: Development and Advancement of the Stetter Reaction

Aliphatic Enantioselective ReactionsO

CO2Et 20 mol%

20 mol% KHMDS, xylenes, 25°C, 24 h

NNN

BnPh

BF4 OCO2Et

81% yield95% ee

O20 mol%

20 mol% KHMDS, xylenes, 25°C, 24 h

NNN

BnPh

Cl O

CO2Et

CO2Et

O

CO2Et

CO2Et20 mol%

20 mol% KHMDS, xylenes, 25°C, 36 h

NNN

BnPh

Cl O CO2Et

CO2Et

97% Yield82% ee

Kerr, M. S.; Rovis, T. Synlett, 2003, 12, 1934

Page 37: Development and Advancement of the Stetter Reaction

Synthesis of Quaternary Stereocenters

X

OEWG

R1 2 eq. Et3N, PhMe, 25°C, 24 h

20 mol % catalyst

X

OR1

EWG

ON

NN

F F

F

FF

BF4

Catalyst

Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876

Page 38: Development and Advancement of the Stetter Reaction

Aromatic Substrates

O

OCO2Me

Et 2 eq. Et3N, PhMe, 25°C, 24 h

20 mol % cat.

O

OEt

CO2Me

Yield = 96% ee = 97%

OCO2Me

Et 2 eq. Et3N, PhMe, 25°C, 24 h

20 mol % cat.

OEt

CO2Me

Yield = 95% ee = 99%

O

O

2 eq. Et3N, PhMe, 25°C, 24 h

20 mol % cat.Me

PhO O

OPh

Me

O

Yield = 55% ee = 99%

Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876

Page 39: Development and Advancement of the Stetter Reaction

Aliphatic Substrates

Me

O

Ar

O

20 mol% cat.

20 mol% KHMDS, PhMe, 25°C, 24 h

O

Me

Ar

O

Ar = 4-Py Yield = 85% ee = 96%Ar = p-NO2Ph Yield = 90% ee = 84%

Me

O

R

O 20 mol% KHMDS, PhMe, 25°C, 24 h

O

Me

R

O20 mol% cat.

R = Me Yield = 81% ee = 95%

Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876

Page 40: Development and Advancement of the Stetter Reaction

Stereochemical Reasoning

• Attack from the si face of the Breslow intermediate, to the si face of the α, β-unsaturated carbonyl

NN

N

Ph

OH OMe

O

NN

N

Ph

OH OMe

O

O

Me

resi

C(O)Ph

NN

N

Ph

FO

CO2Me

HO

O

sisi

Me

F

F F

O

O

Me

MeO2C

NN

N

Ph

FO

HO

O

Me

F

F F

Me O

• Attack from the re face of the Breslow intermediate, to the si face of the α, β-unsaturated carbonyl

Page 41: Development and Advancement of the Stetter Reaction

Path of PresentationDevelopment of Stetter reaction

•Umpolung reactivity•Methods of umpolungreactivity

•Heteroatom exchange•Benzoin condensation•Stetter reaction

ConclusionsAcknowledgements

Advances in Stetter reaction•Intramolecular reactions•Enantioselective reactions•Stetter reactions withacylimine acceptors•Sila-Stetter reactions•Stetter reactions usingROMPgel

Page 42: Development and Advancement of the Stetter Reaction

Stetter with Acylimine Acceptors

R1 H

O+

R2 NH

R3

OSO2

TolR2 H

N R3

OR1O

N

S

Bn

OHCl

10 mol%

Et3N (5-15 eq.), CH2Cl2, 35°C

R1 R2 R3 Yield (%)

4-pyridyl

4-pyridyl

Ph

CH3

Ph

Ph

Ph

Ph

cyclohexyl

OBn

OtBu

OtBu

98

96

75

62

Murray, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J.J. Am. Chem. Soc. 2001, 123, 9696

Page 43: Development and Advancement of the Stetter Reaction

The Problem with Aliphatic R2

H

O

+ NH

OSO2

Tol

HN

OO

10 mol% Cat

Et3N, CH2Cl2, 35°CNN

H

Et3N

NH

O

very low yields

Murray, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J.J. Am. Chem. Soc. 2001, 123, 9696

Page 44: Development and Advancement of the Stetter Reaction

Proposed Mechanism

R2 NH

R3

R2 N R3

O

O

SO2

Tol

NS

RR

R

X

+R1 H

O

N

S

R

R

R

R1

HO

N

S

R

R

R

R1

HO

+R3 N

HR2

O OHR1

NS R

RR

R1HN R3

O

OR2

A

B

C

D

E F

G

Murray, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J.J. Am. Chem. Soc. 2001, 123, 9696

Page 45: Development and Advancement of the Stetter Reaction

Data to Support Mechanism1. Mimic of intermediate

H NH

O OSO2

Tol

+ 10 mol% 1Et3N, CH2Cl2, 35°C

HN

OO

85%

S

N

OH

I

≡N

S

R

R

R

R1

HO

D

1

Murray, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J.J. Am. Chem. Soc. 2001, 123, 9696

Page 46: Development and Advancement of the Stetter Reaction

Data to Support Mechanism2. Deuterium incorporation experiment

H NH

HN

O O

O

SO2

O

Tol

+

S

N

I10 mol%

Et3N, CH2Cl2, 35°C

>95% with D

OH

D

D

• Consistent with the acylimine operating asan electrophile

Murray, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J.J. Am. Chem. Soc. 2001, 123, 9696

Page 47: Development and Advancement of the Stetter Reaction

Data to Support Mechanism3. Crossover experiment

R1 H

O+

R2 NH

R3

OSO2

Tol

10 mol% catalyst

Et3N, CH2Cl2, 35°C

R5 HN R6

OR4O R2 H

N R3

OR1O

R5 HN R6

OR4O

+

• No crossover products were observed

Murray, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J.J. Am. Chem. Soc. 2001, 123, 9696

Page 48: Development and Advancement of the Stetter Reaction

Stetter vs. Stetter with AcylimineStetter reaction

• Products include Stetter adducts as well as benzoin adducts• Benzoin products can be used as substrates

Ph H+

O

Ph Ph

OThiazolium cat.

Base, DMF PhPh

O

OPh

R1 H

O+

R2 NH

R3

OSO2

TolThiazolium Cat.

Base, DCM R1HN R3

R2

O

O

Stetter with acylimine acceptor reaction• Products include only Stetter adducts • Benzoin products can not be used as substrates

Page 49: Development and Advancement of the Stetter Reaction

One-Pot Synthesis of Substituted Imidazoles

R H R1 NH

R2

OO SO2

N

NR2

R3R

R1

Tol

R1 HN R2

R OO

+ 5-20 mol% Cat.Et3N, DCM,35-60°C

R3NH2AcOH

N

S OHI

Cat.

Frantz, D. E.; Morency, L.; Soheili, A.; Murray, J. A.; Brabowski, E. J. J.;Tillyer, R. D. Organic Letters, 2004, 6, 843

Page 50: Development and Advancement of the Stetter Reaction

One-Pot Synthesis ofDi-substituted Imidazoles

HN

NH

O OSO2

Tol

+

1. 10 mol% catalystEt3N, CH2Cl2, 35°C

2. NH4OAC (15 eq.)reflux 12 h

N

HN

N 76%

H NH

O OSO2

Tol

+

1. 10 mol% catalystEt3N, CH2Cl2, 35°C

2. NH4OAC (15 eq.)reflux 12 h

NH

N

82%F

F

Frantz, D. E.; Morency, L.; Soheili, A.; Murray, J. A.; Brabowski, E. J. J.; Tillyer, R. D. Organic Letters, 2004, 6, 843

Page 51: Development and Advancement of the Stetter Reaction

One-Pot Synthesis of Tri-substituted Imidazoles

HN

NH

O OSO2

Tol

+

1.10 mol% catalystEt3N, CH2Cl2, 35°C

2. NH4OAc (15 eq.)reflux

PhNH

N

N82%

H NH

O OSO2

Tol

+

1.10 mol% catalystEt3N, CH2Cl2, 35°C

2.Phe (5 eq.)Acetic Acid (5 eq.)reflux

Ph N

N

73%>98%ee

Ph

HO2C

Frantz, D. E.; Morency, L.; Soheili, A.; Murray, J. A.; Brabowski, E. J. J.; Tillyer, R. D. Organic Letters, 2004, 6, 843

Page 52: Development and Advancement of the Stetter Reaction

Importance of ChiralTri-substituted Imidazoles

• Implicated as an angiotensin II receptor antagonists

• Syntheses have traditionally involved multistep sequences or resolutions

N

N

Ph

HO2C

Palkowitz, A. D. et al. J. Med. Chem. 1994, 37, 4508

Page 53: Development and Advancement of the Stetter Reaction

One-Pot Synthesis ofTetra-substituted Imidazoles

HN

NH

O OSO2

Tol

+

1. 20 mol% catalystEt3N, CH2Cl2, 35°C

O2. EtOH, Acetic Acid(5 eq.),

H2N Ph

N

NO

N

Ph

76%(5 eq.)

HN

NH

O OSO2

Tol

+

1. 20 mol% catalystEt3N, CH2Cl2, 35°C2. EtOH, Acetic Acid(5 eq.),

H2NOMe

N

N

N

80%OMe

OMe

OMe(5 eq.)

Frantz, D. E.; Morency, L.; Soheili, A.; Murray, J. A.; Brabowski, E. J. J.; Tillyer, R. D. Organic Letters, 2004, 6, 843

Page 54: Development and Advancement of the Stetter Reaction

Importance ofTetra-substituted Imidazoles

N

NO

N

Ph

• Representative of a class of highly potent p38 kinase inhibitors ⇒ helps to suppress a biological pathway that leads to inflammation

N

N

NOMe

OMe

Liverton, N. J. et al. J. Med. Chem. 1999, 42, 2180

Page 55: Development and Advancement of the Stetter Reaction

One-Pot Synthesis ofTri-substituted Oxazole and Thiazole

HN

NH

O OSO2

Tol

+

1. 5 mol% catalystEt3N, PhMe, 35°C

2. Ph3P, I2O

N

N77%

HN

NH

O OSO2

Tol

+

1. 5 mol% catalystEt3N, PhMe, 35°C

2. Lawesson's reagent(1.5 eq.)

S

N

N

50%

Frantz, D. E.; Morency, L.; Soheili, A.; Murray, J. A.; Brabowski, E. J. J.; Tillyer, R. D. Organic Letters, 2004, 6, 843

Page 56: Development and Advancement of the Stetter Reaction

Path of PresentationDevelopment of Stetter reaction

•Umpolung reactivity•Methods of umpolungreactivity

•Heteroatom exchange•Benzoin condensation•Stetter reaction

ConclusionsAcknowledgements

Advances in Stetter reaction•Intramolecular reactions•Enantioselective reactions•Stetter reactions withacylimine acceptors•Sila-Stetter reactions•Stetter reactions usingROMPgel

Page 57: Development and Advancement of the Stetter Reaction

Sila-Stetter Reaction

R1 SiX3

O+

R2 R3

O

R1 R3O

OR2

1. cat. A, DBU2. THF, i-PrOH

SN Et

CH3

H

HO

Br

Cat. A

Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 2314

Page 58: Development and Advancement of the Stetter Reaction

Proposed Mechanism

S N R

H

DBUBr

S N R

R1 SiX3

O

S

NR

R1

OSiX3

ROH S

NR

R1

OH

ROSiX3

R1 SiX3

OR2 R3

O

R2 R3

OOH

R1N

S

R

R1 R3O

OR2

Brook rearrangement

Benzoin Product

S N R

Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 2314

Page 59: Development and Advancement of the Stetter Reaction

Scope of Sila-Stetter Reaction

Ph SiMe3Ph

OO

PhPh

O

O

+

30 mol% cat., DBU (30 mol%)

84%

i-PrOH, THF

H3C Si Ph Ph

OO

H3CPh

O

OPh

+Me

Me Ph

70%

30 mol% cat., DBU (30 mol%)

i-PrOH, THF

Ph SiMe3 H3CO2C OCH3

OOPh

OCH3

O

O

+

72%H3CO O

30 mol% cat., DBU (30 mol%)

i-PrOH, THF

Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 2314

Page 60: Development and Advancement of the Stetter Reaction

Stetter vs. Sila-Stetter Reaction

Ph H+

O

Ph Ph

OThiazolium cat.

Base, DMF PhPh

O

OPh

Stetter reaction• Products include Stetter adducts as well as benzoin adducts

Sila-Stetter reaction• Products include only Stetter adducts

R1 SiX3

O+

R2 R3

O

R1 R3O

OR2

Thiazolium cat., Base THF, i-PrOH

Page 61: Development and Advancement of the Stetter Reaction

One-Pot Synthesis of Pyrroles

R1 SiX3 R2 R4

O

R3

O+ 20 mol% cat.

DBU, THFi-PrOH

R2 R4

R1 OO

R3

R5NH2TsOH4Å sieves

NR5

R1

R2 R3

R4

N

S

Et

HOBr

Catalyst

Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465

Page 62: Development and Advancement of the Stetter Reaction

One-Pot Synthesis of Pyrroles

SiPhMe2 Ph Ph

OO+

1. 20 mol% cat.DBU, THF,i-PrOH2.TsOH,4Å sieves,PhNH2

NPh

Ph

Ph

71%

Ph SiMe3Ph

OO

+1. 20 mol% cat.DBU, THF,i-PrOH2.TsOH,4Å sieves,PhNH2

NPh

Ph Ph

70%

Ph SiMe3

Ph

OO

+

1. 20 mol% cat.DBU, THF,i-PrOH2.TsOH,4Å sieves,PhNH2

NPh

Ph

PhCl

Cl

80%

Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465

Page 63: Development and Advancement of the Stetter Reaction

One-Pot Synthesis of Pyrroles

Ph SiMe3 Ph Ph

OO+

1. 20 mol% cat.DBU, THF,i-PrOH2.TsOH,4Å sieves,

NR

Ph

Ph

Ph

Amine

Br NH2

CH3(CH2)2NH2

H3CCH3

NH2

Amine Yield(%)

71

82

56

NH4 OAc 62

Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465

Page 64: Development and Advancement of the Stetter Reaction

Importance of Chiral Pyrrole Compounds

NMe

• Related chiral pyrroles have been identified as highly selective potential treatments for diabetes

Liu, K. G.; Lambert, M. H.; Ayscue, A. H.; Henke, B. R.; Leesnitzer, L. M.; Oliver, W. R.; Plunket, K. D.; Xu, H. E.; Sternbach, D. D.; Willson, T. M. Bioorg. Med. Chem. Lett. 2001, 11, 3111

Page 65: Development and Advancement of the Stetter Reaction

Microwave Assisted Synthesis

Ph SiMe3Ph

OO+

20 mol% cat.DBU, THF, i-PrOH

Ar Ph

Ph OO

PhNH2, TsOH, 4Å sievesNPh

Ph Ph

µW (300 W), 160°C

µW (300 W), 160°C

55%

• Using conventional heating, rxn takes 16hr• Using microwave heating, rxn takes 30min

Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465

Page 66: Development and Advancement of the Stetter Reaction

Path of PresentationDevelopment of Stetter reaction

•Umpolung reactivity•Methods of umpolungreactivity

•Heteroatom exchange•Benzoin condensation•Stetter reaction

ConclusionsAcknowledgements

Advances in Stetter reaction•Intramolecular reactions•Enantioselective reactions•Stetter reactions withacylimine acceptors•Sila-Stetter reactions•Stetter reactions usingROMPgel

Page 67: Development and Advancement of the Stetter Reaction

Stetter Reaction Using ROMPgel

R1 H

O

R2 R3

O

R1 R3O

OR2

Phn

S

NMe

Me I+

DMF, Et3N, 80°C

• ROMPgel = Ring Opening Metathesis Polymerization gel, which is a general class of high loading polymer supportedreagents, catalysts, or scavengers

Barrett, A. G. M.; Love, A. C.; Tedeschi, L. Organic Letters, 2004, 6, 3377

Page 68: Development and Advancement of the Stetter Reaction

Preparation of ROMPgel-supported Thiazolium Iodide

N

S

180°C, 53%

N

S

MeI (1.5 eq.)n-BuOH, 80°C,87%

N

S

I

A (0.11 eq.),B (0.8 mol%),ClCH2CH2Cl,50°C, 94%

Phn

S

NMe

Me I

A B

RuPh

PCy3Cl

ClNMesMesN

(10 eq.)

Barrett, A. G. M.; Love, A. C.; Tedeschi, L. Organic Letters, 2004, 6, 3377

Page 69: Development and Advancement of the Stetter Reaction

Stetter Reaction with ROMPgel

Phn

S

NMe

Me I

R2 R3

O

R1 H

O

R1 R3O

OR2

ROMPgel 4x

Page 70: Development and Advancement of the Stetter Reaction

Synthesis of 1,4-Diketonesusing ROMPgel

n-Dec H

OPh

O

+DMF, Et3N, 80°C

Cl

Ph

O n-DecO

Cl99% yield

ROMPgel (16 mol%) Catalyst

O O+

DMF, Et3N, 80°C

ROMPgel (16 mol%) Catalyst

O

86% yieldN

H

OMe4

NMe

4

+Ph H

O

DMF, Et3N, 80°C Ph Ph

O PhO

Ph Ph

O

68% yield

ROMPgel (16 mol%) Catalyst

Barrett, A. G. M.; Love, A. C.; Tedeschi, L. Organic Letters, 2004, 6, 3377

Page 71: Development and Advancement of the Stetter Reaction

Path of PresentationDevelopment of Stetter reaction

•Umpolung reactivity•Methods of umpolungreactivity

•Heteroatom exchange•Benzoin condensation•Stetter reaction

ConclusionsAcknowledgements

Advances in Stetter reaction•Intramolecular reactions•Enantioselective reactions•Stetter reactions withacylimine acceptors•Sila-Stetter reactions•Stetter reactions usingROMPgel

Page 72: Development and Advancement of the Stetter Reaction

Conclusions

• The Stetter reaction is only one way to make 1,4-dicarbonyl compounds

• Utilizes umpolung reactivity to react two synthons of identical polarity

• The Stetter reaction can be used to make various substituted heterocycles

• Although enantioselective intramolecularreactions have been explored, there is still the need to develop the corresponding intermolecularreactions

Page 73: Development and Advancement of the Stetter Reaction

Acknowledgements

• Dr. Babak Borhan• Dr. Jetze Tepe• Dr. Greg Baker• Adam Mosey• Jason Fisk• Mahesh Peddibhotla• Manasi Keni• Sam Frawley• Vasudha Sharma

• Amber Terry• Kyoungsoo Lee• Soong-Hyun Kim