16
New insights into Second sound quench evaluation Yegor Tamashevich DESY/University of Hamburg TTC2014 Tsukuba 1

DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

New insights into Second soundquench evaluation

Yegor TamashevichDESY/University of Hamburg

TTC2014 Tsukuba

1

Page 2: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Second Sound in liquid Helium

Second Sound is a thermal wave in HeI‐HeIImixture which leads to the phases’ concentrations oscillations

No pressure oscillation ‐> no material transfer

1Russell J. Donnelly ‐ The Observed Properties of Liquid Helium at the Saturated Vapor Pressure 

[1]

Could be detected not only by thermometrybut also by Oscillating Superleak Transducer (OST)

Porous membrane

Insert for Vertical Test is equipped with 18 OST

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 2

Page 3: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

After processing of signals (t=tsignal‐tquench)point of quench origin should be found

Second Sound test

Signals

The simplest way – to use trilateration.Was used previously for SecondSound tests at DESY2

2Felix Schlander, 2,3Ricarda Laasch

• Not accurate (few cm from surface )

• Uses only OST ‘in sight’• Needs a lot of OST to cover all surface

[3]

[3]

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 3

Page 4: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Ray tracingThe idea is to use 3D simulation to find the shortest paths of second sound from quench point to each OST.

Results of 3D simulations and path calculations are stored in 2D matrices which allows using of these precalculated results during the second sound tests. 

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 4

Page 5: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

H

r35 r34 r33 r32 r31 r30 r29

r28 r27 r26 r25 r24 r23 r22

r21 r20 r19 r18 r17 r16 r15

r14 r13 r12 r11 r10 r9 r8

r7 r6 r5 r4 r3 r2 r1

0°180° angle

height

0

H

Ray tracing

Distance matrix

Surface coordinates are used to achieve homogeneous coverage of surface along cavities axis 

angle

z alingsurface

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 5

Page 6: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Finding the quenchAll signals are fitted by the Second Sound speed (19.9 m/s at 1.8 K)4

Calculated

 distance

measured time

Repeat for each point of surface

The region with the lowest fitting errorshows the most probable quench position

Heat propagation effect

4Russell J. Donnelly ‐ The Observed Properties of Liquid Helium at the Saturated Vapor Pressure Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 6

Page 7: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

T‐mapping shows:heated zone along cavity axis is much shorter than along equator(due to magnetic field distribution?)

Time deviationOSTs close to quenched equator

show lower detection time (higher speed). Observed in all tests.Could be explained  by heat propagation in Nb.5

5D.Sergatskov et al. ‐ Quench Dynamics in SRF Cavities ‐ SRF2013

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 7

Page 8: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Only in Direct view Only Hidden

Detectors in Line of Sight and in shadow

Even only OSTs in the ‘shadow’ could be used to determine the quench position

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 8

Page 9: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Quench position deviationEach combination of 3 OST leads to different quench positionThis deviation distribution is nicely fitted by normal distribution function

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 9

Page 10: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Comparing with T‐mapping results

Second Sound map T‐map

T‐mapping shows the quench point close to the spot defined by Second Sound test 

Page 11: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

OBACHTThis region on previous optical inspection*

*New EP was done before cold test. Not inspected yet

Y.Tamashevich ‐ New insights into Second sound quench evaluation ‐ TTC2014 Tsukuba 11

Page 12: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Defining the Second Sound velocitylinear fitting of all signals

calculated for every point of cavity surface

Lowest error

v = 19.63 m/sec (±0.17 m/s for 95%) 

=284°, z=144 mmRMSEmin=0.37 m/sec Trilateration:

v = 20.1 m/sec(±5.7 m/s for 95%)

Page 13: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Conclusions

• Information of every OST can  be used for evaluation of quench location (not only in line of sight)

• Significantly lower numbers of OST could be used (4‐6)• No problems with constrain quench position to the surface• Allows simulating of different effects of Second Sound propagation

Under development• Adding the effect of heat propagation in Nb to increase precision

This method allows to perform the SecondSound test of dressed cavitiesunder development 

Acknowledgements:DESY FLA/ILC groupDESY MKS, MVS groups

Page 14: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Thank you!

Page 15: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Second Sound tests of other cavities

Page 16: DESY/University of Hamburg TTC2014 Tsukuba · Y.Tamashevich ‐New insights into Second sound quench evaluation ‐TTC2014 Tsukuba 2. After processing of signals (t=t signal‐t quench)

Temperature mapping