77
DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT PERFORMANCE Robert L. Lytton Houston Foundation Performance Association December 13, 2017

DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

DESIGNING BASES AND SUBGRADES

FOR

BETTER PAVEMENT PERFORMANCE

Robert L. Lytton

Houston Foundation Performance Association

December 13, 2017

Page 2: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

Better Models for Base Course and

Subgrade for Pavement Design

and Performance Prediction

NCHRP 1-53 Project

AASHTO Pavement ME Design Product Task Force

Hilton Savannah Desoto Hotel Savannah, Georgia

April 4-5, 2017

Page 3: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

3

Introduction and Objectives

Problem: performance of flexible and rigid

pavements shows low sensitivity to

subgrade/unbound layer properties

Objective: propose enhancements needed to

better reflect the influence of subgrade/unbound

layers (properties and thickness)

Page 4: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

4

What do we need to emphasize? (1/2)

Unbound layers

Modulus: moisture-sensitive, stress-dependent,

cross-anisotropic

Permanent deformation: moisture-sensitive,

stress-dependent

Shear strength: moisture-sensitive

Erosion

Thickness

Page 5: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

5

What do we need to emphasize? (2/2)

Subgrade

Modulus: moisture-sensitive, stress-dependent

Permanent deformation: moisture-sensitive,

stress-dependent

Shear strength: moisture-sensitive

Foundation

Page 6: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

6

(-) Suction Ground Surface

Wet Season

Equilibrium

Dry Season

Depth

Water Table

Suction of the

Water

Page 7: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

7

Dry Season

(-) Suction Ground Surface

Wet Season

Equilibrium

Depth

Page 8: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

8

Hierarchical Input Level

Level 1:

Laboratory-measured k1, k2, k3

SWCC

Equilibrium suction and its depth

SWCC in Pavement ME Design

Page 9: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

9

A Family of Generated SWCCs

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Su

ctio

n (

pF

)

Volumetric Water Content (Ѳw)

E-02 1-3-4 E-02 2-3-2 E-02 3-1-2

E-03 4-3-10 E-03 6-10-1 E-03 6-10-3

E-05 61-12 E-04 1-3 E-04 2-6

E-06 1-13 E-06 2-6 E-06 3-10

E-09 1-14 E-01 1-3-2-3 E-07 68-2-6

E-07 69-1-14 E-09 2-1-6 E-09 235-1-12

Page 10: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …
Page 11: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …
Page 12: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …
Page 13: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …
Page 14: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

14

Dry Season

(-) Suction Ground Surface

Wet Season

Equilibrium

Depth

Page 15: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

15

Some Characteristic Curves

Soil water characteristic curve

Soil dielectric characteristic curve

Soil conductivity characteristic curve

Soil osmotic suction – evaporable water content

curve

Soil osmotic suction – electrical conductivity

curve

Page 16: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

16

Soil Water Characteristics Curve

(SWCC)

Page 17: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

17

A Family of Generated SWCCs

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Su

ctio

n (

pF

)

Volumetric Water Content (Ѳw)

E-02 1-3-4 E-02 2-3-2 E-02 3-1-2

E-03 4-3-10 E-03 6-10-1 E-03 6-10-3

E-05 61-12 E-04 1-3 E-04 2-6

E-06 1-13 E-06 2-6 E-06 3-10

E-09 1-14 E-01 1-3-2-3 E-07 68-2-6

E-07 69-1-14 E-09 2-1-6 E-09 235-1-12

Page 18: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

18

Filter Paper Suction Test Setup

Page 19: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

19

Soil Water Characteristics Curve (SWCC)

( )

ln exp(1)

cb

sw C h

h

a

6

ln 1

( ) 110

ln 1

r

r

h

hC h

h

Fredlund and Xing Equation (1994)

Four soil parameters Volumetric

water

content

Saturated volumetric

water content

Page 20: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

20

Four Parameters

Correlations for parameters af and bf :

R² = 0.9154

3.4990

3.4995

3.5000

3.5005

3.5010

3.5015

3.5020

0.00 5.00 10.00 15.00 20.00 25.00 30.00

af (p

si)

MBV (mg/g)

R² = 0.7719

1.984

1.988

1.992

1.996

2.000

2.004

2.008

0.00 5.00 10.00 15.00 20.00 25.00 30.00b

f

MBV (mg/g)

0.00023.4994fa MBV 0.0032.0044fb MBV

Page 21: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

21

Four Parameters

Correlations for parameters cf and hr:

R² = 0.859

0.070

0.140

0.210

0.280

0.350

0.420

0.00 5.00 10.00 15.00 20.00 25.00 30.00

cf

MBV (mg/g)

R² = 0.796

19.9998

20.0000

20.0001

20.0003

20.0004

20.0006

0.00 5.00 10.00 15.00 20.00 25.00 30.00h

r

MBV (mg/g)

0.4150.4956fc MBV 9.5 0620.00 E

rh xMBV

Page 22: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

22

Soil Dielectric Characteristics Curve

(SDCC)

Page 23: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

23

Soil Dielectric Characteristics Curve

(SDCC)

Dielectric

constant

Saturated dielectric

constant min 51.45 10

1

sat

r

m

h

x h

h

h h

Minimum dielectric

constant

Suction

Curve fitting parameters

Maximum

Suction

Page 24: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

24

A Standard Percometer Device with

Surface Probe

PER-CO-METER

PERMITTIVITY-

CONDUCTIVITY-

METER

Page 25: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

25

Dielectric Constant Measurements

Process with a Percometer

MaterialDielectric

Constant

Air 1.0

Water 81.0

Asphalt 4.0-6.0

Concrete 8.0-12.0

Clay 4.0-40.0

Page 26: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

26

A Family of Generated SDCCs

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1.00 6.00 11.00 16.00 21.00 26.00 31.00 36.00 41.00

Suct

ion

(pF)

Dielectric Constant (er)

E-01 1-3-2-3 E-02 1-3-4

E-02 3-1-2 E-03 4-3-10

E-03 6-10-1 E-03 6-10-3

E-04 2-6 E-05 61-12

E-06 3-10 E-06 2-6

E-06 1-13 E-07 68-2-6

E-07 69-1-14 E-08 235-1-12

E-08 2-1-6 E-09 1-14

Page 27: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

27

Minimum Dielectric Value

Correlation for minimum dielectric vs MBV

R² = 0.7642

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Min

imum

Die

lect

ric

Cons

tatn

(em

in)

Methylene Blue Value (MBV)

Minimun dielectricconstant points

min 0.1243log 1.0668MBV

Page 28: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

28

Saturated Dielectric Value

Correlation for saturated dielectric vs MBV

R² = 0.9311

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Satu

rate

d D

iele

ctri

c Co

nsta

tn (e

sat)

Methylene Blue Value (MBV)

Saturated dielectricconstant points

2

sat 0.0334 0.1086 12.569MBV MBV

Page 29: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

29

Base Course Aggregate

AASHTO T 330-07 Methylene Blue Scale

Page 30: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

30

Methylene Blue Equipment

Weig

ht

Bala

nce

Hach

DR

Colo

rim

ete

r

Tim

er

Pla

stic

Tube

Mic

rop

ipe

tte

Sm

all

tub

e

Syrin

ge

Syringe

filt

er

Eyedro

pper

Me

thyle

ne

Blu

e

Solu

tion

Page 31: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

31

Grace Methylene Blue Test

Weigh 20g of sample***and 30g MB. Mix them

and shake for 5 min.

Take solution into syringe that has 2 micrometer

filter.

Dilute the 130 mL aliquot with distilled water

to accurately total 45 g.

Fill the glass tube with the diluted solution

and place in the colorimeter.

Place cover over the glass tube and take a

reading. MB Reading will display in couple

seconds.

Replace the plunger and push solution to filter

into a 1 mL plastic tube.

Determine the percent clay based on MB from the

chart.

Page 32: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

32

HORIBA Particle Size Distribution Analyzer

• Particle size distribution curve

of passing No 200 sieve

• Total measurement time is

less than 10 min

• Typical test result of a

soil sample

• Determine size of 2 μm

particle

Page 33: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

33

What is pfc?

Percent Fines Content

2100

#200

mpfc

Percent passing

No.200 sieve

Percent passing

2 micrometer

percent

fines

content

Page 34: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

34

The Relationship Between MBV and pfc

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Met

hy

len

e B

lue

Va

lue

(mg

/g)

Percent Fines Content (%)

Measured Data Points pfc Modeled Plot MBV=7.0 Critical Point Line

Zone II

Zone I

R2=0.79

Page 35: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

35

“C” Shaped Curve Equation

n

apfc b MBV

MBV

Coefficient parameters

depend on soil type

Methylene Blue

Value

Percent fines

content

a 28.014

b 0.8131

n 0.6288

Typical Values

Page 36: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

36

A Good Quality Base Course

Page 37: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

37

A Poor Quality Base Course

Page 38: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

38

Base Course Aggregate

Grace Methylene Blue Value Scale

Page 39: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

39

Matric Suction and Water Content

Measurements

Page 40: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

40

3

211

3( )

k

km octy a

a a

I fhE k P

P P

Resilient Modulus

1 2 3k ,k ,k Coefficients of resilient

modulus model

M a t r i c

S u c t i o n

O c t a h e d r a l s h e a r

s t r e s s

A t m o s p h e r i c

p r e s s u r e

11 f

S a t u r a t i o n f a c t o r

F i r s t i n v a r i a n t o f

t h e s t r e s s t e n s o r

Vo l u m e t r i c w a t e r

c o n t e n t

Page 41: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

41

Aggregate Properties and k Values

Page 42: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

42

Aggregate Properties and k Values

Aggregate Property k Values

k1 k2

k3

γd (Dry Density)

ω (Water Content)

MBV

pfc

Gradation aG

λG

Angularity aA

λA

Shape aS

λS

Texture aT

λT

Page 43: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

43

Compaction Curve Equation

Three fitting parameters change with soil type

csch csch

dn

d w sat w satd d

w s sat w s sat w

a bG G

Unit weight of

water

Dry unit weight

Specific

gravity

Volumetric

water

content

Saturated

volumetric water

content

Page 44: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

44

Saturated Volumetric Water Content Predicted and calculated saturated volumetric

water contents

R² = 0.9916

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

0.280

0.300

0.100 0.150 0.200 0.250 0.300

Cal

cula

ted

Ѳsa

t

Predicted Ѳsat

Saturated volumetricwater content datapoints

sat sat sat

sat sat sat

sat 1 2 3

1 2 3

= 0.214926485H + 0.27640261H - 0.12511932H + 0.30045553

H ,H ,and H ( and )f MBV pfc

Page 45: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

45

Typical Compaction Curve as Tested in

the Laboratory and as Modeled

Optimum Moisture Content

Page 46: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

46

Optimum Moisture Content

2 11 11 1

2 11 11 1

2 21ln 1 1 4

2

2 21ln 1 1 4

2

d d d

d d

n nn nd d

s sat

d d d d

opt

n nn nd d

sat s

d d d d

b bG

a n a n

b bG

a n a n

Optimum Moisture

Content

Page 47: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

47

A Family of Compaction Curves

Generated compaction density curves

115

120

125

130

135

140

145

150

155

160

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0% 14.0% 16.0% 18.0%

Dry

Un

it W

eig

ht

(p

si)

Gravimetric Water Content

E-01 E-02 E-03

E-04 E-05 E-06

E-07 E-08 E-09

S=10% S=20% S=30% S=40% S=50% S=60% S=70% S=80% S=90% S=100%

Page 48: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

48

Stress-Dependent Mechanistic-Empirical

Permanent Deformation Model

Proposed model (Gu, Zhang, et al. 2015)

Model components

Laboratory test design

Laboratory verification

Numerical verification

Hierarchical input level

0 2 1

m nN

p e J I K

2sin

3 3 sin

6cos

3 3 sin

cK

Page 49: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

49

Repeated Load Permanent Deformation Test

Test Equipment

Test Protocol

Page 50: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

50

Proposed AASHTO Standard for Permanent

Deformation Test

Page 51: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

51

Repeated Load Permanent Deformation

Test Results

Proposed model is

sensitive to cohesion.

Moisture change results in

change of cohesion.

Korkiala-Tanttu (K-T) model (Korkiala-Tanttu 2009)

UIUC model (Chow et al. 2014)

PME

PME

Page 52: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

52

Role of Shear Strength Model

Page 53: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

53

Hamburg Wheel-Tracking Device (HWTD) to

Measure erodibility

Page 54: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

54

HWTD Test Results

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 1000 2000 3000 4000 5000

Def

lect

ion

(mm

)

Number of Passes

Dry Test

#2_SP-SM #4_SM #5_s(CL) #8_CH

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000 3000 4000 5000

Def

lect

ion

(mm

)

Number of Passes

Wet Test

#2_SP-SM #4_SM #5_s(CL) #8_CH

Unbound

Stabilized Unbound Stabilized

Page 55: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

55

Critical Erosion Depth Model

Erosion depth curve: e

e

eDN N e

Critical erosion depth: 1

1

ee

ce e

e

D

Number of load cycles at the point of inflection:

1e

e

PIN N e

Page 56: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

56

Validation of Erosion Model

Model prediction vs. lab

measurements from HWTD

Model prediction vs. observed

performance from 17 LTPP sections

Page 57: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

57

LTPP Pavement Sections with

Faulting Data

Unbound Base Course 351

Stabilized Base Course 359

Total 710

Page 58: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

58

A Case Study: Verification GPR and FWD

Page 59: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

59

Test Location

Delta county in

Texas

Total length 4.5

miles (~24000 ft)

Martin Marietta

Material in

Oklahoma

Page 60: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

60

Ground Penetrating Radar Van

Vehicle-Mounted Four-Antenna Configuration for

Highway Speed Data Acquisition

Page 61: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

61

Return Reflection at Interfaces

Page 62: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

62

Radar Hyper Optics Animation

Page 63: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

63

Falling Weight Deflectometer (FWD)

Page 64: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

64

Information from GRP

0

2

4

6

8

10

12

0 4000 8000 12000 16000 20000 24000

GP

R d

iele

ctr

ic

feet

0

5

10

15

20

25

0 4000 8000 12000 16000 20000 24000

Ba

se

th

ickn

ess (

in)

feet

Dielectric constant

Base course thickness

Page 65: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

65

Information from GRP Matric Suction

Volumetric Water Content

0.0

1.0

2.0

3.0

4.0

5.0

0 4000 8000 12000 16000 20000 24000

Ma

tric

Su

ctio

n (

pF

)

feet

0

0.05

0.1

0.15

0.2

0.25

0 4000 8000 12000 16000 20000 24000

Vo

lum

etr

ic W

C

feet

Page 66: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

66

Information from GRP Dry Density

Resilient Modulus

120

125

130

135

140

145

0 4000 8000 12000 16000 20000 24000Dry

Unit W

eig

ht (lb/f

t3)

Distance (ft)

05

10152025303540

0 475 950 1425 1900 2375 2850 3325 3800

Mo

du

lus (

ksi)

Station

Predicted Resilient

Modulus

FWD Back-calculated

Resilient Modulus

Page 67: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

67

Location of Identified Pavement Sections

Page 68: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

68

Relationship between MBV and pfc

Hunter Material Canyon

Material

Knife River

Page 69: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

69

Identified Pavement Sections from SH 21

Page 70: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

70

Model-Predicted Mr Vs. FWD-Calculated Mr

0

20

40

60

80

100

0 400 800 1200 1600 2000

Re

sil

ien

t M

od

ulu

s o

f In

-sit

u B

as

e

Co

urs

e (

ks

i)

Station (ft)

Hunter Section Backcalculated Knife River Section Backcalculated

Hunter Section Model-Predicted Knife River Section Model-Predicted

Page 71: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

71

Location of Identified Pavement Sections

Page 72: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

72

Water Content Determination from

Conductivity

0

1

2

3

4

5

6

7

8

0510152025

Mat

ric

suct

ion

(p

F)

Electrical Conductivity (μs/cm)

Neat US 259 US 259 + 2% cement

US 259 + 4% cement US 259 + 6% cement

0

1

2

3

4

5

6

7

8

0 0.05 0.1 0.15 0.2

Mat

ric

suct

ion

(p

F)

Evaporable Volumetric water content

Neat US 259 US 259 + 2% cement

US 259 + 4% cement US 259 + 6% cement

Page 73: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

73

Osmotic Suction vs Water Content

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2

Osm

oti

c Su

ctio

n (

pF)

Evaporable Volumetric water content

US 259

US 259 + 2% cement

Page 74: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

74

Osmotic Suction vs Conductivity

3

3.5

4

4.5

0 10 20 30 40 50

Osm

oti

c Su

ctio

n (

pF)

Electrical Conductivity (μs/cm)

US 259

US 259 + 2% cement

US 259 + 4% cement

US 259 + 6% cement

Page 75: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

75

Conductivity vs Water Content

0

10

20

30

40

50

0 0.05 0.1 0.15 0.2

Ele

ctri

cal C

on

du

ctiv

ity

(μs/

cm)

Evaporable Volumetric water content

US 259

US 259 + 2% cement

US 259 + 4% cement

US 259 + 6% cement

Page 76: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

76

Some Characteristic Curves

Soil water characteristic curve

Soil dielectric characteristic curve

Soil conductivity characteristic curve

Soil osmotic suction – evaporable water content

curve

Soil osmotic suction – electrical conductivity

curve

Page 77: DESIGNING BASES AND SUBGRADES FOR BETTER PAVEMENT …

DESIGNING BASES AND

SUBGRADES FOR BETTER

PAVEMENT PERFORMANCE

Robert L. Lytton

Houston Foundation Performance Association

December 13, 2017