183

design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 2: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 3: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 4: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 5: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 6: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 7: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 8: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 9: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING
Page 10: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 1

Table 7-1- Addendum No 2

Upset Limit Cost Breakdown for

Detailed Design, Contract Administration, Site Inspection and

Post Construction Services for 2017-2023 Sewer Rehabilitation

Program Project 2

(Price Form must be inserted into the sealed Cost of Services

Envelope)

Table 7.1.1

TOTAL UPSET LIMIT COST

All Project Components 1 to 6

Humber STS, Sunrise STM, Bermondsey STS, Dorset Park STS, Massey Creek STS

No. Professional Services Cost ($)

1

Base Scope of Services and Provisional Allowances (table 7.1.2) - TOTAL TENDER 1

$

2

Base Scope of Services and Provisional Allowances (table 7.1.3) - TOTAL TENDER 2

$

3 Unit Price Items (table 7.1.4) - TOTAL FOR TENDERS 1&2

$

4 TOTAL UPSET LIMIT PRICE (1+2+3) (Excl. HST)

$

5 HST 13%

$

6 TOTAL UPSET LIMIT PRICE (4+5) (Incl. HST)

$

Page 11: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 2

Table 7.1.2 - Addendum No 2

Upset Limit Cost Breakdown for TENDER 1

Project Components 1 and 2

Humber STS and Sunrise STM

Professional Services and Deliverables Cost ($)

A PRELIMINARY DESIGN - TENDER 1

A1 Project Management and Reporting $

A2 Stakeholders Engagement (public notifications, all permits and approvals, legal search, easements and utility coordination)

$

A3 Geotechnical and hydrogeological investigations per section 3.8 $

A4 Arborist and archaeological assessments $

A5 Site Investigations (all SUE field work, as-built drawings update, data digitization and reports)

$

A6 Technical Memoranda (3 memoranda) for Project Component 1 (Humber STS)

$

A7 Preliminary Design Engineering for Project Component 1 (Humber STS) (Report and Drawings)

$

A8 Technical Memoranda (3 memoranda) for Project Component 2 (Sunrise STM)

$

A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM)

$

A10 Disbursements (5%) $

Sub-Total (A)

$

B DESIGN AND TENDERING SUPPORT – TENDER 1

B1 Project Management, Project Integration and Coordination $

B2 Stakeholders Engagement (all public notifications, permits, approvals and utility coordination)

$

B3 Detailed Design Engineering Labour for Project Component 1 (Humber STS) (all 50%,70%,95% stages)

$

B4 100% Detailed Design & Tender Documents for Project Component 1 (Humber STS)

$

B5 Detailed Design Engineering Labour for Project Component 2 (Sunrise STM) (all 50%,70%,95% stages)

$

B6 100% Detailed Design & Tender Documents for Project Component 2 (Sunrise STM)

$

Page 12: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 3

Professional Services and Deliverables Cost ($)

B8 PO Close-Out (lessons learned workshop, financial audit, drawings and project documentation update and archiving, project close-out report)

$

B9 Disbursements (5%) $

Sub-Total (B)

$

C PROVISIONAL AND ALLOWANCE ITEMS FOR DESIGN TENDER 1

C1 CCTV Inspection of sewers and maintenance holes including digitization and reporting per TW's requirements

$ 35,000

C2 Sub-Surface Utility Engineering Investigation Level A and Report (refer to clause 3.8, provisional item) for Tender 1

$ 15,000

C3 Designated Substances & Asbestos Surveys and Report for all construction area for Tender 1 and as per scope in this RFP

$ 10,000

C4 Allowance for asbestos abatement specifications, monitoring and clearance by a qualified consultant/sub-consultant staff

$ 7,000

C5 H&S equipment allowance as per item 7.3.2 above $ 8,000

C6 Utility relocation coordination and incorporation into design and tender package

$ 15,000

C7 geomorphological and biological assessment $ 10,000

Sub-Total (C)

$

D SERVICES DURING CONSTRUCTION TENDER 1

D1 Project Management and Reporting (min. 390 hours) $

D2 Shop drawing review, engineering support including structural, traffic control, mechanical, civil, geotechnical, geomorphologist, landscaping architect, environmental, health and safety, arborist etc (min.655 hours)

$

D3 Site Inspection Services for Project Component 1 (Humber STS) (60 work weeks, max 10 hours per day for Site Inspector #1)

$

D4 Site Inspection Services Labour for Project Component 2 (Sunrise STM) (50 work weeks, max 10 hours per day for Site Inspector #2)

$

D5 Contract Administration for all project components (100 working weeks, min. 3 hours per day)

$

D6 Allowance for Level A subsurface investigation by consultant during construction

$ 10,000

D7 Allowance for Health & Safety equipment $ 8,000

D8 PO Close-Out (lessons learned workshop, PO closure, as-built drawings and project documentation update and archiving, project construction close-out report)

$

D9 Disbursements (5%) $

Sub-total (D)

$

E POST CONSTRUCTION SERVICES TENDER 1 (24 months)

E1 Post-Construction Labour for Project Component 1 (Humber STS) $

Page 13: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 4

Professional Services and Deliverables Cost ($)

E2 Post-Construction Disbursements for Project Component 1 (Humber STS) $

E3 Post-Construction Labour for Project Component 2 (Sunrise STM) $

E4 Post-Construction Disbursements for Project Component 2 (Sunrise STM) $

E5 PO Close-Out (lessons learned workshop, PO closure, post warranty as-built drawings and project documentation update and archiving, project warranty close-out report)

$

Sub-total (E)

$

Carry forward to Table 7.1.1--- TOTAL (A+B+C+D+E) $

Page 14: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 5

Table 7.1.3 - Addendum No 2

Upset Limit Cost Breakdown for TENDER 2

Project Components 3 to 6

Bermondsey STS, Dorset Park STS, Massey Creek STS

Professional Services and Deliverables Cost ($)

A PRELIMINARY DESIGN-TENDER 2

A1 Project Management and Reporting $

A2 Stakeholders Engagement (public notifications, all permits and approvals, legal search, easements and utility coordination)

$

A3 Geotechnical and hydrogeological investigations per section 3.8 $

A4 Arborist and archaeological assessments $

A5 Site Investigations (all SUE field work, as-built drawings update, data digitization and reports)

$

A7 Technical Memoranda (3 memoranda) for Project Component 3 (Bermondsey STS)

$

A8 Preliminary Design Engineering (Report and Drawings) for Project Component 3 (Bermondsey STS)

$

A10 Technical Memoranda (3 memoranda) for Project Component 4 (Dorset Park STS)

$

A11 Preliminary Design Engineering (Report and Drawings) for Project Component 4 (Dorset Park STS)

$

A13 Technical Memoranda (3 memoranda) for Project Component 5 (Massey Creek STS)

$

A14 Preliminary Design Engineering (Report and Drawings) for Project Component 5 (Massey Creek STS)

$

A17 Technical Memoranda (3 memoranda) for Project Component 6 (Massey Creek STS)

$

A18 Preliminary Design Engineering (Report and Drawings) for Project Component 6 (Massey Creek STS)

$

A19 Disbursements (5%) $

Sub-total (A)

$

B DESIGN AND TENDERING SUPPORT–TENDER 2

B1 Project Management, Project Integration and Coordination $

Page 15: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 6

Professional Services and Deliverables Cost ($)

B2 Stakeholders Engagement (all public notifications, permits, approvals and utilities)

$

B3 50% Detailed Design Engineering Labour for Project Component 3 (Bermondsey STS) (all 50%,70%,95% stages)

$

B6 100% Detailed Design & Tender Documents for Project Component 3 (Bermondsey STS)

$

B7 Detailed Design Engineering Labour for Project Component 4 (Dorset Park STS) (all 50%,70%,95% stages)

$

B8 100% Detailed Design & Tender Documents for Project Component 4 (Dorset Park STS)

$

B9 Detailed Design Engineering Labour for Project Component 5 (Massey Creek STS) (all 50%,70%,95% stages)

$

B10 100% Detailed Design & Tender Documents for Project Component 5 (Massey Creek STS)

$

B11 Detailed Design Engineering Labour for Project Component 6 (Massey Creek STS) (all 50%,70%,95% stages)

$

B12 100% Detailed Design & Tender Documents for Project Component 6 (Massey Creek STS)

$

B12 PO Close-Out (lessons learned workshop, PO closure, drawings and project documentation update and archiving, project phase close-out report)

$

B13 Disbursements (5%) $

Sub-Total (B) $

C PROVISIONAL AND ALLOWANCE ITEMS FOR DESIGN - TENDER 2

C1 CCTV Inspection of sewers and maintenance holes including digitization and reporting per TW's requirements

$ 40,000

C2 Sub-Surface Utility Engineering Investigation Level A and Report (refer to clause 3.8, provisional item) for Tender 2

$ 25,000

C3 Designated Substances & Asbestos Surveys and Report for all construction area for Tender 2 and as per scope in this RFP

$ 15,000

C4 Allowance for asbestos abatement specifications, monitoring and clearance by a qualified consultant/sub-consultant staff

$ 10,000

C5 H&S equipment allowance as per item 7.3.2 above $ 8,000

C6 Utility relocation coordination and incorporation into design and tender package

$ 25,000

C7 Geomorphological and biological assessment $ 10,000

Sub-Total (C)

$

D SERVICES DURING CONSTRUCTION TENDER 2

D1 Project Management and Reporting (390 hours) $

Page 16: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 7

Professional Services and Deliverables Cost ($)

D2 Shop drawing review, engineering support including structural, traffic control, mechanical, civil, geotechnical, geomorphologist, landscaping architect, environmental, health and safety, arborist etc (655 hours)

$

D3 Site Inspection Services for Project Component 3 ( Bermondsey STS) and Project Component 4 (Dorset Park STS)– 60 weeks, max 10 hrs per day for Site Inspector #3

$

D4 Site Inspection Services Labour for Project Components 5 and 6 (Massey Creek) – 60 work weeks, max 10 hrs per day for Site Inspector #4

$

D5 Contract Administration Services Labour for all four project components (100 weeks, min. 3 hours per day)

$

D7 Allowance for Level A subsurface investigation by consultant during construction

$ 10,000

D8 Allowance for Health & Safety equipment $ 8,000

D9 PO Close-Out (lessons learned workshop, PO closure, as-built drawings, geodatabase and project documentation update and archiving, project close-out report)

$

D10 Disbursements (5%) $

$

Sub-total (D)

$

E POST CONSTRUCTION SERVICES TENDER 2 (24 months)

E1 Post-Construction Labour for Project Component 3 (Bermondsey STS) and Project Component 4 (Dorset Park STS)

$

E2 Post-Construction Disbursements for Project Component 3 (Bermondsey STS) and Project Component 4 (Dorset Park STS)

$

E3 Post-Construction Labour for Project Components 5 and 6 (two sections of Massey Creek STS)

$

E4 Post-Construction Disbursements for Project Components 5 and 6 (two sections of Massey Creek STS)

$

E5 PO Close-Out (lessons learned workshop, PO closure, post-construction as-built drawings, geodatabase and project documentation update and archiving, project close-out report)

$

Sub-total (E)

$

Carry forward to Table 7.1.1 --- TOTAL (A+B+C+D+E)

$

Page 17: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 8

Table 7.1.4 - Addendum No 2

(F) – Schedule of Prices for Unit Price Items

No. Item Qty Unit Price ($) Cost

1. Unit Cost for Weekly Rate – For adjustment to the upset limit of Services during Construction for Tender 1 or Tender 2 (Note i)

12

$ $

2. Unit Cost for detailed design of additional maintenance access chambers and including in Tender 1 or Tender 2 (Note ii)

6 $ $

3. Unit Cost for detailed condition assessment of additional chamber as per WRc guidelines. This item applies for a chamber which is not previously inspected or which has missing information and including all permits; H&S, and traffic control (360 degree inspection required per City's guidelines) (Note ii)

6 $ $

4. Cost for legal survey and preparation of easement documentation (one per project component) (Note ii)

6 $ $

5. Financial Audit Report as per City's standard engineering agreement (Note iv)

5

$ $

6. Unit cost for additional Level A SUE of additional chamber (Note ii)

16 $ $

7. Unit cost for additional soil analysis report to determine toxicity and disposal requirements (per composite sample) (Note ii)

6 $ $

$ $

8. Unit Cost for excavation and subsurface utility location 0-2 metres depth including hiring services, acquiring permits, disposal, inspection, restoration and residents notification (note ii)

6 $ $

9. Unit Cost for excavation and subsurface utility location 2-3 metres depth including hiring services, acquiring permits, disposal, inspection, restoration and residents notification (note ii)

6 $ $

10. Unit Cost for excavation and subsurface utility location 3-4 metres depth including hiring services, acquiring permits,

6 $ $

Page 18: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 9

No. Item Qty Unit Price ($) Cost

disposal, inspection, restoration and residents notification (note ii)

11. Unit Cost for additional excavation and subsurface utility location for each additional metre beyond 4 metres depth including hiring services, acquiring permits, disposal, inspection, restoration and residents notification (note ii)

6 $ $

12. Unit Cost per square metre restoration, consisting of asphalt and unshrinkable fill required for each test hole

6 $ $

13. Daily cost for geomorphological assessment inclusive of all labour, site visits, meetings and reporting at any of the project sites (Note ii)

6 $ $

14. Daily cost for biological assessment inclusive of all labour, site visits, meetings and reporting

4 $ $

15. Unit cost for additional scenario of hydraulic modelling for any of project components (Note ii)

6 $ $

16. Unit cost for flow monitoring at one chamber/maintenance hole for any of project components. The unit price shall include, cost to install a flow meter with overall accuracy of 5% or better, including confined space entry, maintenance, data collection, data interpretation and data crunching, and removal of the flow monitor. Allow for a duration of 3 months per flow monitor. City will provide rainfall data information from nearest location to analyze the impact of rain event.

3 $ $

17. Unit cost for one day of arborist assessment work including site visit, reporting and verification of tree removals work and reports update (assume 100 trees per day) for any of project components (Note ii)

4 $ $

18. Unit cost for preparing one additional PTTW application for any of project components (Note ii)

2 $ $

Page 19: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 9117-17-7006 Addendum No.2 – Attachment 1 Page 10

No. Item Qty Unit Price ($) Cost

19. Unit cost for road surface removal to allow for access to buried maintenance holes (1m x 1m, 50 cm thickness) (Note ii)

2 $ $

20. Carry forward to Table 7.1 - Unit Price Item Total - Excluding HST (F)

Notes:

(i) Provide a Weekly Rate for adjustment to the Services during Construction upset limit, as per clause 7.3.6. The Weekly rate shall be included in the TOTAL UPSET LIMIT PRICE for establishing the Cost of Services.

(ii) The Unit Costs provided herein will be used only for either adding or deleting from

the Upset Limit Total price provided.

(iii) The Provisional Items (C) will be included in the Cost of Services calculation for

the Proposal evaluation. They will be used for either adding or deleting from the

Base Scope of Work in (A) and (B) where determined critical to inform the design

and upon approval by the City.

(iv) As per the standard agreement clause 3(6), the proponent shall provide for the cost of a financial report performed by an external auditor duly licensed under the Public Accounting Act, 2004 (as amended) to the effect that in his/her opinion the charges set forth in such final statement are properly chargeable under the associated engineering agreement. The report shall be in the form prescribed by the Canadian Institute of Chartered Accountants (CICA) guidelines and be considered part of the base scope of this assignment.

(v) The City reserves the right to limit payment for items A2 to A9 and B2 to B7 to a

maximum of 80% of the total task value until the receipt and approval of the draft

submissions of the respective deliverables under that task.

(vi) The payment will be made based on invoice received on monthly basis for work

complete for each tender and project component. The Vendor is advised to

maintain a budget tracking form that will allow for a traceable cost breakdown as

indicated in the cost proposal.

(vii) For unforeseen utility relocations coordination there is a provisional allowance

included in the Section (C). This allowance will be used only for coordination and

other effort related to utility relocations.

Page 20: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

City of Toronto InfoWorks CS Basement Flooding Model Studies

Guideline

Version 1.02 – October 2014

Page 21: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

Table of Contents

VERSION CONTROL .................................................................................................................. V

ABBREVIATIONS ....................................................................................................................... VI

GLOSSARY OF COMMON TERMS ........................................................................................... VII

1.0 INTRODUCTION ...........................................................................................................1.1 1.1 PURPOSE AND INTENT .................................................................................................... 1.1

2.0 DATA COLLECTION .....................................................................................................2.1 2.1 DESKTOP COLLECTION .................................................................................................. 2.1

2.1.1 Base GIS Layers ............................................................................................ 2.1 2.1.2 Sewer Asset Geodatabase ........................................................................ 2.1 2.1.3 Operations and Maintenance Data ........................................................ 2.2 2.1.4 Flow Monitoring Information ...................................................................... 2.2 2.1.5 Other Supporting Data ............................................................................... 2.2

2.2 FIELD SURVEY .................................................................................................................. 2.3 2.2.1 Address Survey ............................................................................................. 2.3 2.2.2 Catchbasin Survey ...................................................................................... 2.3 2.2.3 Maintenance Hole Cover Survey .............................................................. 2.4 2.2.4 Low Point Survey .......................................................................................... 2.4 2.2.5 Outfall/Surface Drainage Structure Survey .............................................. 2.4 2.2.6 Resident Questionnaire ............................................................................... 2.5 2.2.7 Field Chamber/Facility Inspections ........................................................... 2.5

3.0 DATA ASSESSMENT AND GAP ANALYSIS ...................................................................3.1 3.1 DATA QUALITY ASSESSMENT .......................................................................................... 3.1

3.1.1 Asset Data Coverage ................................................................................. 3.1 3.1.2 Asset Data Gaps .......................................................................................... 3.2 3.1.3 Flow Monitoring and Rainfall Data............................................................ 3.2

3.2 ENGINEERING VALIDATION ........................................................................................... 3.2 3.3 DATA RECTIFICATION PROCEDURE AND DOCUMENTATION .................................... 3.4

3.3.1 Initial Asset Data Import into InfoWorks CS .............................................. 3.4 3.3.2 Data Rectification Procedure ................................................................... 3.5

4.0 INFOWORKS FILE MANAGEMENT AND SET-UP ...........................................................4.1 4.1 VERSIONING ................................................................................................................... 4.1 4.2 CATCHMENT GROUP HIERARCHY ................................................................................ 4.1 4.3 NETWORK MANAGEMENT ............................................................................................. 4.2 4.4 MODEL GROUP MANAGEMENT ................................................................................... 4.2 4.5 NAMING CONVENTIONS ............................................................................................... 4.4

4.5.1 EA Stage - Model Build ............................................................................... 4.5 4.5.2 Detailed Design Stage ................................................................................ 4.7 4.5.3 Development Application Review............................................................ 4.8

i

Page 22: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

4.6 DATA FLAGGING ........................................................................................................... 4.9 4.7 SIMULATION PARAMETERS ........................................................................................... 4.10

4.7.1 Time Step Selection ................................................................................... 4.10 4.7.2 Simulation Parameter Defaults ................................................................ 4.10

4.8 ELEMENT DOCUMENTATION ....................................................................................... 4.11 4.9 MODEL VISUALIZATION STANDARDS .......................................................................... 4.12

4.9.1 Coordinate System .................................................................................... 4.12 4.9.2 Network Objects ........................................................................................ 4.14 4.9.3 Results Themes ........................................................................................... 4.14 4.9.4 Profile “Long-Section” View ..................................................................... 4.15

5.0 HYDRAULICS (CONVEYANCE MODELLING) ..............................................................5.1 5.1.1 Dual Drainage Principle .............................................................................. 5.1 5.1.2 Overland Flow Paths ................................................................................... 5.2 5.2.1 Node Definition ............................................................................................ 5.4 5.2.2 Manhole Flood Type ................................................................................... 5.5 5.3.1 Solution Model ........................................................................................... 5.18 5.3.2 Underground Pipe Cross-Sections ........................................................... 5.18 5.3.3 Minor Losses ................................................................................................ 5.19

5.4 OVERLAND MAJOR SYSTEM CONDUITS .................................................................... 5.20 5.4.2 Overland Spills at Low Points .................................................................... 5.22

5.5 ROOFS ........................................................................................................................... 5.23 5.5.1 Modelling Roofs- Physical Representation ............................................. 5.23 5.5.2 Modelling Large Parking Lots (ICI) ........................................................... 5.27 5.5.3 Modelling Reverse Driveways .................................................................. 5.28 5.5.4 Modelling Rear Yards ................................................................................ 5.28

5.6 SPECIAL HYDRAULIC STRUCTURES .............................................................................. 5.28 5.6.1 Weirs ............................................................................................................ 5.28 5.6.2 Orifices ........................................................................................................ 5.29 5.6.3 Sluice Gates ............................................................................................... 5.29 5.6.4 User-Control ................................................................................................ 5.30 5.6.5 Pumps .......................................................................................................... 5.30 5.6.6 Culverts ....................................................................................................... 5.31 5.6.7 Real Time Control ...................................................................................... 5.32

5.7 BOUNDARY CONDITIONS ............................................................................................ 5.32 5.7.1 Level Based ................................................................................................ 5.32 5.7.2 Flow Based .................................................................................................. 5.33

6.0 HYDROLOGY (SEWAGE AND RUNOFF MODELLING) .................................................6.1 6.1 OVERVIEW ....................................................................................................................... 6.1 6.2 SUBCATCHMENT SET-UP ................................................................................................. 6.2

6.2.1 Sanitary System ............................................................................................ 6.5 6.2.2 Storm/Combined System ........................................................................... 6.6 6.2.3 Roof Areas .................................................................................................... 6.8 6.2.4 Large Parking Lots, Reverse Driveways & Rear Yards ............................. 6.8

ii

Page 23: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

6.3 DRY WEATHER FLOW ...................................................................................................... 6.9 6.3.1 EA Modelling ................................................................................................ 6.9 6.3.2 Development Reviews ................................................................................ 6.9

6.4 WET WEATHER FLOW ...................................................................................................... 6.9 6.4.1 Storm Runoff Surfaces ................................................................................. 6.9 6.4.2 Sanitary Infiltration and Inflow .................................................................. 6.12

7.0 CALIBRATION, VALIDATION AND PERFORMANCE ANALYSIS .................................7.13 7.1 CALIBRATIONS .............................................................................................................. 7.13

7.1.1 Dry Weather Flow ...................................................................................... 7.13 7.1.2 Sanitary Wet Weather Flow ...................................................................... 7.14 7.1.3 Storm Flow................................................................................................... 7.15

7.2 EXTREME STORM VALIDATION .................................................................................... 7.15 7.2.1 Historic Rainfall Events ............................................................................... 7.15 7.2.2 Long-Term Historic Data ........................................................................... 7.16

7.3 PERFORMANCE ANALYSIS ........................................................................................... 7.16 7.3.1 Model Stability ............................................................................................ 7.18

8.0 FLOODING IMPROVEMENT WORKS DEFINITION ........................................................8.1 8.1 CONVEYANCE IMPROVEMENTS ................................................................................... 8.1

8.1.1 Catchbasins ................................................................................................. 8.1 8.1.2 Underground Pipes ...................................................................................... 8.1

8.2 STORAGE IMPROVEMENTS ............................................................................................ 8.2 8.2.1 Underground - In-line Storage ................................................................... 8.2 8.2.2 Underground - Off-line Storage ................................................................. 8.3 8.2.3 Surface Storage Pond ................................................................................. 8.3 8.2.4 Design Sensitivity Analysis ........................................................................... 8.4

9.0 COMPLETED MODEL APPLICATIONS ...........................................................................9.1 9.1 DESIGN AND CONSTRUCTION ...................................................................................... 9.1 9.2 DEVELOPMENT REVIEWS ................................................................................................ 9.1

10.0 FINAL DELIVERABLES .................................................................................................10.1 10.1 MODEL SUBMISSIONS ................................................................................................... 10.1 10.2 MODEL RESULTS DOCUMENTATION ........................................................................... 10.2

10.2.1 Sewer Flow Model Results ......................................................................... 10.2 10.2.2 Overland Depth Model Results ................................................................ 10.3

10.3 MODEL DOCUMENTATION FOR FUTURE USERS ......................................................... 10.3 10.4 GEODATABASE SUBMISSION ....................................................................................... 10.3

iii

Page 24: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

LIST OF APPENDICES

PROJECT SIGN-OFF SHEETS ...................................................................... A.1 APPENDIX A

HYDROLOGIC AND HYDRAULIC REFERENCES ......................................... B.1 APPENDIX BB.1 Hydrology ....................................................................................................................... B.1

B.1.1 Manning’s Roughness - Surface Flow ....................................................... B.1 B.1.2 Initial Abstraction ......................................................................................... B.1 B.1.3 Infiltration Parameters ................................................................................. B.2 B.1.4 Design Storm Events .................................................................................... B.2

B.2 Hydraulics ....................................................................................................................... B.6 B.2.1 Manning’s Roughness - Closed Conduit .................................................. B.6 B.2.2 Manning’s Roughness - Open Channel Conduits .................................. B.6 B.2.3 Weir Coefficients .......................................................................................... B.7 B.2.4 Minor Losses .................................................................................................. B.7 B.2.5 Culvert Parameters ...................................................................................... B.7

FLOW MONITORING ANALYTICAL PROCESSING ..................................... C.1 APPENDIX CC.1 Rain Gauge Network ................................................................................................... C.1 C.2 Data Analysis Approach ............................................................................................. C.2 C.3 Flow Monitoring Data Reporting ................................................................................ C.3

METADATA STRUCTURE ............................................................................. D.1 APPENDIX DD.1 Data Provided by the City ........................................................................................... D.1 D.2 Project Deliverables .................................................................................................... D.20

EXTERNAL RESOURCES ............................................................................... E.1 APPENDIX E

iv

Page 25: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

Version Control

This is a living document that will evolve over time to keep up with advances and lessons-learned in the industry. Please confirm you have the most up-to-date version as referenced in the City’s Request For Proposals or direction upon award of a modelling assignment.

Version Date Description

1.0 July 10, 2014 Initial Draft for Working Group Review

1.01 August 8, 2014 Second Draft for Working Group Review

1.02 October 23, 2014 Final of First Edition

de rpt_model-guidelines_final_141023.docx v

Page 26: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

Abbreviations

CB Catch Basin

CSO Combined Sewer Overflow

DM Depth Monitor

DS Downstream

DWF Dry Weather Flow

EA Environmental Assessment

EOP End-of-Pipe

FM Flow Monitor

HGL Hydraulic Grade Line

I/I Infiltration and Inflow

ICD Inlet Control Device

MH Maintenance Hole

PS Pumping Station

RFP Request For Proposal

RG Rain Gauge

RTC Real Time Control

SWM Stormwater Management

US Upstream

WaPUG Wastewater Planning User Group

WIM Water Infrastructure Management, City of Toronto

WWF Wet Weather Flow

WWFMP Toronto’s Wet Weather Flow Master Plan

WWTP Wastewater Treatment Plant

de rpt_model-guidelines_final_141023.docx vi

Page 27: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

Glossary of Common Terms

Dry Weather Flow (DWF) Sewage flow resulting from both sanitary wastewater (residential, industrial, commercial, institutional) and infiltration from foundation drains or cracks that occur during periods absent of rainfall or snowmelt.

Wet Weather Flow (WWF) The combination of dry weather sewage/infiltration flows with precipitation-derived (rainfall and/or snowmelt) infiltration and inflow, and stormwater runoff that enter the wastewater collection system.

Urban Drainage System Characterized by road ways with curb and gutter, primarily utilizing catchbasins to collect stormwater runoff to an underground sewer system that typically conveys flow by gravity to a receiving watercourse.

Rural Drainage System Characterized by road ways without curbs and instead convey stormwater by open channel roadside ditches and culverts. Storm runoff may or may not drain to a storm sewer system.

Unimproved Drainage System

Characterized by roads without curbs or ditches, and have no defined surface drainage system. Storm runoff follows surface topography and may not have a continuous flow path to a receiving watercourse/waterbody.

Infiltration and Inflow (I&I) The components of sanitary sewer flow that derive from non-sewage sources including groundwater or stormwater that enters from deficiencies in the pipe network (cracks, loose joints, leaky manholes), connections from private property (downspouts, foundation drains, other drains), and/or cross-connections from the storm drainage system.

Separated Sewer System Two distinct wastewater collection systems designed to convey sanitary dry weather flow independently from all other forms of storm flow, to the greatest extent possible. Depending on time of construction and the Sewer Use By-Law in effect at that time, foundation drains could be connected to either the sanitary or storm sewers in a separated system, or discharge to the surface via sump pump.

de rpt_model-guidelines_final_141023.docx vii

Page 28: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE Version 1.02 - October 2014

Combined Sewer System A wastewater collection system designed to convey both sanitary wastewater and stormwater runoff through a single conveyance pipe to the wastewater treatment plant.

Partially-Separated Sewer System

Consists of a combined sewer where the road and surface storm drainage have been removed to a dedicated storm sewer, however still receives municipal sewage as well as foundation drains and some driveway drains. These systems typically are found in older subdivisions prior to the introduction of fully separated systems.

Stormwater Outfall The discharge point of a stormwater collection system, typically to a surface drainage feature, watercourse or water body such as a stormwater management pond or Lake Ontario.

Flow Diversion / Regulator A flow control structure such as a weir, orifice or gate, that diverts, overflows or bypasses flows from a sewer system to relieve an overloaded sewer and protect against basement flooding. Often associated with a Combined Sewer Overflow.

Combined Sewer Overflow (CSO)

A discharge to the environment from a combined sewer system that usually occurs as a result of a precipitation event (rainfall and/or snowmelt) when the capacity of the interceptor sewer at a regulator or treatment plant is exceeded. It consists of a mixture of wastewater and stormwater runoff.

Sanitary Sewer Overflow (SSO)

A discharge to the environment from a sanitary sewer system that usually occurs as a result of a blockage or precipitation event (rainfall and/or snowmelt), or power/back-up power failure at a pump station, when the capacity of a sanitary sewer or wastewater pump station is exceeded.

de rpt_model-guidelines_final_141023.docx viii

Page 29: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Introduction Version 1.02 - October 2014

1.0 INTRODUCTION

The City of Toronto drainage system is expansive and complex. Toronto Water is tasked with managing and maintaining the underground assets in response to aging infrastructure, development pressures, and the impact of wet weather flow extremes. In response, the City has selected the InfoWorks CS modelling platform by Innovyze to assist in the evaluation and assessment of the drainage collection systems, including the interaction with the surface drainage network. As a result, the City through internal and third party consultants, routinely undertakes hydrologic/hydraulic modelling assignments for portions of the City. Therefore, a consistent approach and application of “Common Modelling Principles” is needed to facilitate seamless review by all parties, and to help potential integration of developed sub-models.

1.1 PURPOSE AND INTENT

This purpose of this document is to serve as an InfoWorks CS modelling guideline for Basement Flooding projects in the City of Toronto. It is intended that all practitioners performing InfoWorks modeling for the City of Toronto do so in a consistent manner in terms of study approach, general methodology, model set-up/structure, and documentation. This Guideline therefore provides a detailed InfoWorks CS model development approach and methodology for basement flooding studies at the Environmental Assessment (EA) and Detailed Design/Implementation stages, which are focused on local sewer and surface drainage systems. This will help to ensure there is a common approach to all future modeling activities, a consistent means of documentation both internally and external to the model, and a minimum set of modeling principles universally applied such that future users can easily interpret and use any basement flooding model developed for the City.

This is meant to be a minimum standard, but not to stifle innovation or improvements on methodology and approaches from City staff or consultants undertaking Basement Flooding projects. Practitioners must discuss any recommended changes to the methodologies presented herein with Toronto Water staff at the on-set of their assignments, to explore potential implementation and possible adoption into the evolving guidelines.

It is acknowledged that this document is not currently exhaustive, and future versions are expected to provide further coverage beyond the current Basement Flooding scope. Topics such as lumped Trunk Sewer Modelling, for example, will be adapted as required in future versions of this document.

de rpt_model-guidelines_final_141023.docx 1.1

Page 30: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Collection Version 1.02 - October 2014

2.0 DATA COLLECTION

Data collection and management provide the foundation for the modelling process and all subsequent system assessments. The required data is collected via both desktop and physically in the field. The practitioner shall geospatially record all collected field data and photographs, which shall be returned to the City as a geodatabase with the metadata structure outlined in Appendix D. The purpose of the data collection phase is to determine if a suitable amount of data already exists for proper model development and calibration, or whether additional information is required.

The user should be aware that any data collected may be shared with the public under the Municipal Freedom of Information Act.

2.1 DESKTOP COLLECTION

Much of the data necessary to describe the physical characteristics of the Study Area is available in a format suitable for viewing in GIS. The following outlines the standard available data, depending on study scope. It should be acknowledged that the quality and accuracy of any provided data must be confirmed by the proponent for use in the study. See Appendix A-1 for a check-list to be submitted alongside project documentation.

2.1.1 Base GIS Layers

Study Area specific ArcGIS layers shall be provided by WIM, and may include, but not be limited to the following:

• Parcel Fabric with Land Use Designation • Address Points with Water Billing Records • Population (current and projected) • Orthoimagery • Digital Elevation Model (DEM) • Topographic Contours (0.5m) • Building Footprint Polygon • Road Centreline Polyline • Reported Flooding Locations for Assessment, Design or other storm events • Watercourse, TRCA Floodplain • Other

2.1.2 Sewer Asset Geodatabase

WIM maintains a digital inventory of physical storm, sanitary and combined sewer network assets, which includes:

de rpt_model-guidelines_final_141023.docx 2.1

Page 31: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Collection Version 1.02 - October 2014

• Manholes and Junctions • Sewers • Catchbasins and Leads (where available) • Outfalls • Special Structures (orifice, weir, sluice gate, etc., where available) • Pump Stations

It is acknowledged that GIS asset data for Special Structures and Pump Stations is not always well defined, and that additional drawing review, operator interview and/or field investigation may be required to supplement missing/uncertain information.

2.1.3 Operations and Maintenance Data

District Operations records may include:

• Historic Basement Flooding Records • Historic Hansen Work Order Logs • CCTV Records from the Past 10 Years • Smoke/Dye Testing Reports/Results • Recent Sewer Improvement Works • Rain and Sewer Monitoring Data • Pump Station records • Wastewater Treatment Plant Operational Data • Miscellaneous Investigations

2.1.4 Flow Monitoring Information

Information on past rain or sewer flow monitoring programs, which may include:

• Rain Gauge Locations layer • Rain Gauge depth time series • Flow Monitor Locations Information • Flow Monitoring flow, depth and velocity time series (where available) • Additional flow monitoring documentation (which pipe, field notes, service area delineation,

additional reporting) • CSO Records

2.1.5 Other Supporting Data

Supplemental background documentation, which may include:

• Previous Studies (pdf or hard copy) • Geotechnical Reports or Data, including the historic Golder Borehole Database • Planning Reports/Information for New Development and/or Redevelopment

de rpt_model-guidelines_final_141023.docx 2.2

Page 32: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Collection Version 1.02 - October 2014

• Drain card information to determine foundation drain connection status • Planned or recently constructed pipe upgrades • EA Projects and Assignments

2.2 FIELD SURVEY

A critical component is collection of physical field data to support and ground-truth the desktop analysis. Inspect the entire Study Area to confirm characteristics that will assist with modelling and record photographs of various points of interest for future reference. Data must be submitted in a geodatabase format, as per the requirements outlined in Appendix D. Typically, the field program should consist of at least the items outlined in the following sections. At the onset of any EA assignment, discussion with the City on the extent of field work shall be documented with Form A-2 in Appendix A, which shall also be used to track receipt of the corresponding geodatabase feature classes for the digitized field results.

2.2.1 Address Survey

Purpose: To view each residential property from the curb to document:

• Downspout connectivity • Possibility of downspout disconnection • Downspout discharge location • Reverse driveway • Poor lot grading • Flat roof • Road ditch drainage

This information supports the storm drainage subcatchment and overland network definition.

2.2.2 Catchbasin Survey

Purpose: To confirm how it corresponds with the number, location and type of catchbasins in the City’s Asset Database, and to characterize:

• Type (single/twin/sag) • Grate Style

See Section 5.2.2.1 for typical catchbasin grate styles.

The information will be used to support the modelling parameterization of the storm drainage network, including the number of inlets (i.e. gullies) and the corresponding head-discharge table to be used. The information will also be reported back to the City in geodatabase format to update the catchbasin asset data (see Appendix D).

de rpt_model-guidelines_final_141023.docx 2.3

Page 33: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Collection Version 1.02 - October 2014

2.2.3 Maintenance Hole Cover Survey

Purpose: To check for perforated covers with an emphasis on locations within overland flow paths (particularly at low points), and confirm correspondence with the asset database. These cover types may be included in the model where critical to an assessment as necessary in discussion with the City, with the corresponding gully inlet head-discharge table (see Section 5.2.2.1), and will be reported back to the City in the geodatabase format outlined in Appendix D. These maintenance hole covers are typically found in combined sewer areas and can be found in areas with partially separated sewers and in some sanitary sewer areas.

2.2.4 Low Point Survey

Purpose: To confirm location, potential ponding depth, and direction of overflow of critical low-lying areas subject to water accumulation. This data is used to support the development of the overland network and understanding.

2.2.5 Outfall/Surface Drainage Structure Survey

Purpose: To document physical attributes and field conditions of each sewer outfall and associated surface drainage infrastructure such as culverts, headwalls, drainage ditches. Information to be inventoried includes:

• Inlets/Headwalls − Type (Endwall/Headwall/Free Outlet) − Shape and Measured Dimensions − Culvert Material and Number of Barrels − Structural Condition and Blockage/Submergence

• Downstream Channel Conditions (Material/Lining, signs of erosion) • Parks/Open Areas (dry ponds, trapped low areas, overland routes, etc.) • Parking Lot Potential Storage, and New Development (to be considered in consultation with

the City as necessary) • Extent of overland drainage feature - Identify where and if it outlets into the collection

system • Extent of ditch network and outlet location

The information will be used to confirm the asset geodatabase and to establish the boundary conditions of the combined and storm drainage outfalls. It will also support the proper coding of surface drainage infrastructure interaction with the minor system (e.g. culverts, inlets). The outfall survey will be returned to the City in both a geodatabase format and summary table with photographs.

de rpt_model-guidelines_final_141023.docx 2.4

Page 34: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Collection Version 1.02 - October 2014

2.2.6 Resident Questionnaire

Purpose: To gather additional information regarding downspout and sump pump connectivity, history of flooding, source or nature of past flood waters, and other notable observations related to surface and basement flooding. This data shall be georeferenced to the Address point feature class and Hansen records. Refer to the specific requirements of the RFP regarding the preparation of the Questionnaire, which shall be undertaken in consultation with WIM and the City’s Public Consultation Unit.

2.2.7 Field Chamber/Facility Inspections

Purpose: To collect field information and measurements on chambers identified to contain special structures, chambers identified through the network engineering validation process to be of interest, or pump station facilities. Field survey of chambers would typically require confined space entry to collect measurements, photos and field inspection sheet. Chambers/facilities inspected should be clearly identified (geodatabase) and a summary of notes, photos, etc. provided to the City.

de rpt_model-guidelines_final_141023.docx 2.5

Page 35: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Assessment and Gap Analysis Version 1.02 - October 2014

3.0 DATA ASSESSMENT AND GAP ANALYSIS

3.1 DATA QUALITY ASSESSMENT

Determine the completeness of the modelling data sets, both in terms of physical node-link development, and availability/suitability of flow monitoring data for model calibration and validation.

The model is based on the node and link representations of the sewer systems. Initial data quality checks shall include completeness of coverage, and identification of data gaps, based on the provided asset geodatabase from the City.

3.1.1 Asset Data Coverage

The definition of the project study area is critical, and should be established early in the data collection phase. There are four (4) contributing drainage area definitions to be considered:

1. Sanitary Sewer Collection System

2. Storm (Minor) System

3. Combined Sewer Collection System

4. Overland (Major) System

Digitally define the study area drainage boundaries and the extent of the sewer systems to be modelled considering all bifurcation potential, overflow locations, topographic relief, pump stations, and special hydraulic structures. For the overland network, consideration must be given to the contributions from adjacent collection systems where the major system does not coincide with its minor system. These ‘external’ areas can be modelled at a lower level of detail (i.e. lumped macro-level subcatchments) with sufficient detail provided to represent the impact of theoretical contribution to the Study Area in question. See Section 6.1.2 for additional information.

Review the provided data in GIS, InfoNet, or InfoWorks CS to determine the spatial extent of the provided dataset to confirm all tributary pipes for each system type are present, or to determine gaps in the coverage. A GIS map of the required coverage shall be prepared and submitted to the City alongside a detailed request outlining the system type and justification should additional asset data coverage be required for the Study Area.

de rpt_model-guidelines_final_141023.docx 3.1

Page 36: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Assessment and Gap Analysis Version 1.02 - October 2014

3.1.2 Asset Data Gaps

Attribute data of the provided asset geodatabase shall be reviewed for missing or zero entries of critical model-building fields. A summary table must be prepared identifying the percentage of zero or missing data entries for each system type as follows:

Parameter Structure Type

Number of Records

Number of Missing or Zero Values % Missing

Upstream ID

Sewer Line

Downstream ID

Diameter

Pipe Cross-Section Shape

Upstream Invert

Downstream Invert

Ground Elevation Manhole

The result of this initial review will help determine the extent to which additional engineering validation will be required (see Section 3.2).

3.1.3 Flow Monitoring and Rainfall Data

Flow monitoring and rainfall data provides the basis for model calibration and validation exercises, and therefore the suitability of coverage and data quality are paramount to the successful development of a hydrologic/hydraulic model for basement flooding.

Level, velocity and flow data along with rain gauge data received from the City shall be reviewed in detail, and the initial analytical processing of the data shall be documented for each monitor and rain gauge. Refer to Appendix C for a detailed description of the flow monitoring data analytical requirements expected by the City. The result of the evaluation will determine the suitability of the provided data in terms of data quality (inconsistent data, poor scatterplot, significance of gaps/drop-outs, etc.), and identify any gaps in the coverage per system type. The practitioner is responsible for assessing the reasonableness of the available data for model calibration, and shall identify and justify in writing to the City, any need for additional monitoring coverage.

3.2 ENGINEERING VALIDATION

Engineering Validation is the process of identifying and resolving network asset data errors, inconsistencies and gaps, including missing or erroneous data and pipe connectivity issues. InfoWorks CS has a built-in Engineering Validation tool to assist with the establishment of data gaps/inconsistencies, which can be used to document and flag gaps to be reviewed. These data assessments may be conducted outside the modelling environment (such as GIS or

de rpt_model-guidelines_final_141023.docx 3.2

Page 37: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Assessment and Gap Analysis Version 1.02 - October 2014

InfoNet), however as part of the Baseline Condition model submitted to the City, an Engineering Validation field (User-Defined Text Field 4) shall be populated with an indicator of the validation error(s). See Section 4.0 for Model Documentation requirements, and Section 3.3 for the data rectification procedure and documentation. The following provides a sample InfoWorks CS Engineering Validation check.

In addition, user-defined queries can be used in InfoWorks CS or GIS to supplement this engineering validation, as demonstrated at right for identifying and selecting inconsistent profiles.

At a minimum, the following issues shall be identified:

• Connectivity errors (missing pipes, maintenance holes, incorrect ID references, reversed pipe direction, dead-end pipes)

• Blind sewer connection (where sewers connect to sewers without a corresponding node asset structure)

• Adverse/flat/steep slope • Inconsistent profile (i.e. incorrect inverts or

diameter) • Pipe invert or obvert (soffit) above ground • Flow type (combined vs. sanitary vs. storm) • Bifurcation or ‘Split’ pipes to confirm elevations • Status (active vs. abandoned)

Tracing tools and 3-D viewing in InfoWorks should be used to confirm the presence of pipe connectivity issues.

de rpt_model-guidelines_final_141023.docx 3.3

Page 38: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Assessment and Gap Analysis Version 1.02 - October 2014

3.3 DATA RECTIFICATION PROCEDURE AND DOCUMENTATION

3.3.1 Initial Asset Data Import into InfoWorks CS

To maintain consistency in the model environment, asset data shall initially be imported into InfoWorks CS with the field mapping identified below. Each geodatabase feature class shall be imported as necessary into the model, and may be preprocessed in GIS prior to importation.

Parameter City Asset Field Name InfoWorks CS Object Field Units

Nodes (manholes, junctions, catchbasins, outfalls, large chambers, etc.).

Node ID ASSET_ID Node ID & Asset ID -

Ground Elevation TOP_ELEV Ground Level m

Year of Construction CONST_YR User Number 1 -

Depth of MH DEPTH User Number 2 m

Structure Type STRUC_TYPE User Text 1 -

Drawing Reference SOURCE_ENG User Text 3 -

City Asset Comments COMMENTS Notes -

Sewer Pipes (sewers, special structures, trunk sewers, etc.)

Pipe ID ASSET_ID Asset ID -

Upstream Node Asset ID UP_ASSET_I US Node ID m

Downstream Node Asset ID DN_ASSET_I DS Node ID m

Pipe Width* WIDTH Width mm

Pipe Height* HEIGHT Height mm

Pipe Material MATERIAL Conduit Material -

Pipe Shape PIPE_SHAPE Shape ID -

Upstream Invert INVERT_UP US Invert Level m

Downstream Invert INVERT_DN DS Invert Level m

Year of Construction CONST_YR User Number 1 -

Pipe Length LENGTH User Number 2 m

Pipe Slope SLOPE_PERC User Number 3 m/m

Drop Pipe Invert DROP_INVER User Number 4 m

Street Reference ADDR_QUAL User Text 1 -

Drawing Reference SOURCE_ENG User Text 2 -

Engineering Validation Check Blank Field User Text 3 -

Engineering Validation Fix Blank Field User Text 4 -

City Asset Comments COMMENTS Notes -

* Review values for non-circular dimensions and re-orient to appropriate height and width fields as needed.

de rpt_model-guidelines_final_141023.docx 3.4

Page 39: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Assessment and Gap Analysis Version 1.02 - October 2014

The User Fields shall be used as a reference for the engineering validation process, and once documented can be re-designated for the next stages of the GeoPlan development/use.

It is recommended that each system type be imported and validated separately. In the case of combined systems, the validated models should be merged into a common GeoPlan for further validation. For each importation, the following should be completed:

• Confirm the number of records imported.

• Record any Importation Errors which should be reviewed to confirm the nature of the errors and any issues with the importation process that need to be rectified.

• Ensure imported units and field formats match those of InfoWorks, and Group Edit as required (e.g. Shape ID format or diameter units).

3.3.1.1 Blind Connections

The City’s geodatabase now has a feature class called “Connection_Node”, that identifies the location and ID of most blind connections, denoted with a “CN” prefix. The sewer’s downstream ID field will reference this “CN” ID to complete the sewer network creation.

3.3.2 Data Rectification Procedure

1. Once the data has been successfully imported into InfoWorks, conduct the

model “validate” routine to create a list of model connectivity errors/issues. These shall be resolved before advancing to the Engineering Validation process (if not already completed outside the model).

2. Use the Tracing Tools - Connectivity option to identify isolated or disconnected networks

3. Based on review of tributary areas (Section 3.1.1), if not already completed outside the model environment, simplify by removing network objects that are outside the modeled study area.

4. Engineering Validation routines presented in Section 3.2 should be run, with the results of the errors/issues documented in User Text 3: Engineering Validation Check. If validation has been completed external to the model, import into User Text 3. Practitioners are encouraged to use a standardized input into User Text 3 (group edit) to aid in sorting

de rpt_model-guidelines_final_141023.docx 3.5

Page 40: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Assessment and Gap Analysis Version 1.02 - October 2014

data, however it is understood that some assets will have multiple issues. Therefore record the primary issue and supplement as necessary in the element Notes Field. A basic standardized list includes:

• Missing Invert(s) • Missing Diameter • Missing Inverts and Diameter • Inconsistent Profile - Inverts (downstream higher than downstream) • Inconsistent Profile - Diameter (downstream smaller than upstream) • Pipe Above Ground • Disconnected - Node / Pipe • Slope - Adverse (<0%) • Slope - Flat (0%) • Slope - Steep (>5%) • Inconsistent System Type • Missing Ground Elevation • Bifurcation Node

5. Visually examine each longitudinal profile to further identify suspicious drops/slopes.

6. Develop a data rectification priority ranking based on severity of the error and proximity or potential hydraulic impact relative to recorded flooding complaints. The practitioner is responsible for identifying the appropriate means for rectifying data errors and issues, and shall develop a list for each element and the recommended source for closure, which will be made available to the City upon request. The preferred priority of data rectification sources is presented below, where As-Built drawings are considered the first source of data checks. Should discrepancies exist in multiple As-Built drawings, the more recent year shall take precedence unless other information suggests otherwise. Field Investigation recommendations shall be confirmed with the City.

7. User Text 4 (Engineering Validation Fix) and the Notes tab shall be used to record the method of data correction, or to identify major assumptions/warnings for the input.

8. Data flags shall be used to identify both Engineering Validation checks and sources of data fixes following the convention outlined in Section 4.6.

9. The Drawing Reference (User Text 2) shall be updated, and flagged As-built or As-Designed as appropriate.

de rpt_model-guidelines_final_141023.docx 3.6

Page 41: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Data Assessment and Gap Analysis Version 1.02 - October 2014

The following graphics demonstrate the procedure.

de rpt_model-guidelines_final_141023.docx 3.7

Page 42: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

4.0 INFOWORKS FILE MANAGEMENT AND SET-UP

Standards of practice for acceptable modelling include good file management and documentation. This section outlines specific IW model management practices for versioning, GeoPlan development, internal naming conventions, data flagging, and element documentation.

4.1 VERSIONING

1. InfoWorks CS is periodically updated and from time-to-time new releases are made available. Versions greater than or equal to 15.0 shall be used for all Toronto Flooding Modelling activities, and the proponent shall confirm with the City at the on-set of each project which version is to be used.

2. It is preferred that the InfoWorks CS version used to generate the calibrated model and subsequent Baseline Condition simulations be maintained throughout the duration of the assignment, at the discretion of City staff.

3. Unless otherwise directed, older models received for Detailed Design implementation assignments shall be updated to the latest version.

4.2 CATCHMENT GROUP HIERARCHY

The Catchment Group is a collection of all model elements including networks (GeoPlans) and all supporting Groups used in the simulation and analysis of the collection system. The following outlines the preferred Catchment hierarchy, which apply to the final model returned to the City.

Catchment Group Description

EA Stage

Import/Validation The initial model build per network type

Calibration Calibration and validation changes to the network

Baseline Conditions Baseline Existing and Future Growth Conditions

Alternatives EA Alternative Solutions Model

Preferred Solution Final EA Preferred Solution Model

Detailed Design Stage

Preliminary Design Design modifications at the preliminary design phase

Final Design Final Design modification

A “Master Group” shall be set-up for each Modelling Assignment, with each Catchment Group as a subset, as demonstrated in the screen capture below.

de rpt_model-guidelines_final_141023.docx 4.1

Page 43: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

Within each parent Catchment Group, a collection of specific Networks and Groups can be maintained specific to each major task, described in the next sections. The returned InfoWorks Compact Transportable Database model shall have all associated Catchments and Groups, along with supporting Description fields populated, required to reproduce the model results. Due to file size, model results will not be submitted directly to the City.

4.3 NETWORK MANAGEMENT

As models are developed, several GeoPlan networks result from the Checking-In and Checking-Out process. It is recommended that a modelling hierarchy be enacted to provide a basic level of consistency at the “Parent” scales for models developed for the City, acknowledging that there will be several “Child” versions of models as they are developed and checked-in to the Master Database. Only final versions of the GeoPlans are required for submission to the City for the key model milestones as identified in Section 4.2.

For models with multiple systems as separate GeoPlans, it is preferred that certain common model groups (see Section 4.4) be maintained within the Master Catchment Group, to avoid duplication of elements. This primarily applies to Ground Model Groups, Rainfall Groups and Theme Groups.

Networks shall be documented within the Description Field, identifying specific components of the GeoPlan, including any noteworthy changes/additions/omissions that may assist the future user in understanding from within the model environment, the contents and/or development of the network.

4.4 MODEL GROUP MANAGEMENT

IW has several “Groups” which are required for data input. A list of standard groups and their purpose is provided below. To aid in network management, common Groups such as Ground Model, Rainfall, and Theme, should be maintained under the Master Catchment Group to avoid unnecessary duplication and references within the Run Groups.

de rpt_model-guidelines_final_141023.docx 4.2

Page 44: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

Group Description Use Sample Set-Up

Engineering Validation

A series of queries used to help evaluate the model connectivity, data completeness, and fit within standard thresholds.

Use as part of the Data Rectification process

Flow Survey Recorded flow monitoring rainfall, flow, depth, and velocity data.

Use in calibration comparison plots of observed versus modelled data

Graph Graphs model results at

desired locations Use to quickly display model results at selected nodes, links or subcatchments

Graph Template

Templates for connecting observed versus simulated runs

Use in model calibration, in connection with observed Flow Survey Groups and modelled Simulation Runs.

Ground Infiltration

Calculates water volume changes in the soil storage, and applies water to the subcatchments once the soil storage has reached the specified threshold.

Use to apply rainfall-dependent slow response infiltration and inflow hydrographs. Useful for varying antecedent moisture conditions.

Ground Model Grid

Terrain 3-D grid surface elevation model

Visualize surface topography and use to infer elevations.

Inference Infers data for conduit head

losses and invert elevations, and node ground elevations

Use to estimate values when no other data sources are available. Flag appropriately to indicate inferred data.

Inflow A time-varying flow data set

applied to designated nodes Used in place of sewage or runoff hydrograph input if data exist, or to provide pipe boundary conditions.

Label List Saves unique label parameterization.

Use to quickly apply pre-defined labels to network elements.

Layer List Series of unique background layer lists.

Background visualization of various layers.

Level Time-varying water level data

set applied to designated nodes.

Use to represent starting water levels or boundary conditions.

de rpt_model-guidelines_final_141023.docx 4.3

Page 45: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

Group Description Use Sample Set-Up

Rainfall Collection of time-based rainfall hyetographs in mm/hr.

Use to apply rainfall during model runs. Save

RTC Allows the change of state of

regulator structures such as pumps, sluice gates, orifices and weirs.

Use to apply real time control logic to regulator structures based on flow or level data from elsewhere in the system.

Run Collection of model simulations, comprised of links to other Groups

Use to control simulation input and model results files.

Selection List

A saved selection of various model objects

Allows the quick selection or de-selection of network objects. Particularly useful in defining long-section profiles.

Statistics Template

A saved selection of statistical analysis for model run results

Useful for continuous simulation results analysis, identifying CSO spill frequency, duration, etc.

Stored Query

Selects and manipulates model objects according to defined criteria.

Use to create specific selection sets or use SQL syntax to adjust object field data.

Theme User defined plan view

thematics to represent input or model results.

Powerful visualization tool for use in Engineering Validation, Alternative Development, and Model Results review.

Trade Waste

Source of diurnal patterns applied to ICI usage in dry weather flow simulations.

Use for applying a diurnal pattern to large trade waste generators, that do not derive their flow from population data.

Waste Water

Source of diurnal patterns and per capita rates for sanitary dry weather flow simulations.

Use for applying population derived diurnal patterns and per capita flow rates.

4.5 NAMING CONVENTIONS

There are several model elements that are suited for standard naming conventions, which will reduce uncertainty in interpretation by future users. These include nodes, conduits, and subcatchments. In addition, network naming conventions will assist the City in managing files. The following section outlines recommended conventions to be applied for the different phases of model development/use.

de rpt_model-guidelines_final_141023.docx 4.4

Page 46: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

4.5.1 EA Stage - Model Build

4.5.1.1 Networks

Format for submitted EA GeoPlan networks shall be as demonstrated below, where:

• A## = Basement Flooding EA Study Area Number • EA = Environmental Assessment • SYS = where separate models are created, this shall be STM or SAN

A##_EA_SYS_EngValidation Engineering Validation

A##_EA_SYS_Calibration Calibration/Validations

A##_EA_SYS_BaselineConditions Baseline Conditions used for System Evaluation

A##_EA_ SYS_FuturePopulation_20## Baseline with Future Growth Horizon Population

A##_EA_ SYS_Alternative1 Alternative 1 Final Solutions

A##_EA_ SYS_Alternative2 Alternative 2 Final Solutions

A##_EA_ SYS_PreferredSolution Final Preferred EA Solutions

A##_EA_SYS_PreferredSolution_20## Final Preferred Solutions with Future Growth Horizon

Should additional clarification of the submitted networks be required in the name, this can be added as a suffix separated by an underscore and kept to a minimum length. The Description field of the network MUST provide complete details of the network composition and assumptions, as outlined in Section 10.1.

4.5.1.2 Conduits

• Minor system: Suffix shall be the default *.1, and where multiple pipes leave a common node, each subsequent Suffix ID shall increase from 1.

• Overland System: Suffix shall be alphabetic starting at *.O, with each subsequent Suffix ID increasing from O (e.g. P, Q, R, S) for multiple conduits with common upstream node.

4.5.1.3 New Dummy Nodes (non-roofs)

Where fictitious “Dummy” nodes are required for representing overland high/low points, culvert inlets/outlets, etc., the following shall be used: “D”+“First 5 digits of X-coordinate”+”First 5 digits of Y-coordinate”. The accuracy of the x-y is not critical, but the above guarantees no duplicate ID’s will be created or conflict if multiple study are models are merged.

de rpt_model-guidelines_final_141023.docx 4.5

Page 47: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

4.5.1.4 Subcatchments

• Subcatchment IDs shall default to the name of their receiving node.

• Where multiple subcatchments drain to the same node, a “_#” suffix shall be applied, increasing numerically from 1.

• Where a lumped subcatchment has been used for external contributions, a “EXT_” prefix shall be used.

• Sanitary subcatchment representing future growth population alone shall use a “FUT_” prefix.

• For subcatchments devoted to Roof drainage, see Section 4.5.1.5.

4.5.1.5 Roof Subcatchments, Nodes and Links

Roof nodes are described in Section 5.5.1 while subcatchments are presented in Section 6.1. Roof elements shall be named to reference their connectivity status (connected vs. disconnected), and their type (sloped vs. flat) as follows:

• Roof nodes shall have the same ID as the receiving node of the parent subcatchment, with an identifying prefix:

o Directly-connected Sloped Roofs = “Rc_”

o Directly-connected Flat Roofs = “FRc_”

o Disconnected Flat Roofs = “FRd_”

• Roof subcatchments shall have the same name as the roof node.

• Roof lateral links shall use an “L” suffix.

4.5.1.6 New Nodes and Conduits for EA Alternative Solutions

New conduits that have been added to reflect proposed solutions shall use the following:

• Node ID for each new or relocated node shall be established using the built-in Node Name Generation routine in InfoWorks, with the custom pattern “ALT-A##-{C4321}”, where ALT = alternative, A## = the study area number, and {C4321} generates an automatic sequential number, as demonstrated below:

de rpt_model-guidelines_final_141023.docx 4.6

Page 48: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

• Node and Conduit Asset ID to be left blank.

• Conduit Link Suffix shall be alphabetic starting at *.A, with each subsequent Suffix ID increasing from A (e.g. B, C, D) for multiple conduits with common upstream node.

• As per Section 4.8, the User Text 3 field shall indicate the Type of Alternative Solution (e.g. Minor System Upgrade, Major System Conveyance, Major System Storage, Sanitary Upgrade, etc.), and all new data fields shall be flagged with the AA (Alternative) flag (see Section 4.6).

• Final EA Alternatives shall be flagged as “EA” in all edited data fields, with the corresponding EA Project ID input into User Text Field 4 (see Section 4.8).

4.5.2 Detailed Design Stage

4.5.2.1 Networks

Format for submitted Design GeoPlan networks shall be as demonstrated below, where:

• A## = Basement Flooding EA Study Area Number

• AssignmentID = Implementation Assignment ID Reference

• SYS = where separate models are created, this shall be STM or SAN

de rpt_model-guidelines_final_141023.docx 4.7

Page 49: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

A##-AssignmentID_SYS_Design_EABaseline EA Baseline Model Verification

A##-AssignmentID_SYS_Design_EAVerification EA Preferred Solution Verification

A##-AssignmentID_SYS_Design_ProposedDesign Preliminary Design Modification

A##-AssignmentID_SYS_Design_FinalMOE Final Design Modification

Should additional clarification of the submitted networks be required in the name, this can be added as a suffix separated by an underscore and kept to a minimum length. The Description field MUST provide complete details of the network composition and assumptions, as outlined in Section 10.1.

4.5.2.2 New Nodes and Conduits for Design

New conduits that have been added to reflect the final solutions shall use the following:

• Node ID for each new or relocated MH structure shall have the following form during design:

o “Assignment ID”_”SystemType”-”Number” (e.g. A29-09_ST-01; A32-16B_SA-01)

o The key is to prevent duplicate ID’s from occurring when models are merged.

• The Final Design model Asset ID should match the final design drawing ID, while the Node ID reference shall remain unique.

• Conduit Asset ID to be populated with “NEW” to indicate an Asset ID will need to be created in the future for this link, once constructed.

• Conduit Link Suffix shall be numeric starting at *.1, with each subsequent Suffix ID increasing from 1 for multiple conduits with common upstream node.

• As per Section 4.8, User Text 3 field shall indicate Type of Solution (e.g. Minor System Upgrade, Major System Conveyance, Major System Storage, Sanitary Upgrade, etc.), and all new or modified data fields shall be flagged with the FD (Final Design) flag.

• Implementation Assignment and Project ID shall be input into User Text Field 4.

4.5.3 Development Application Review

4.5.3.1 Networks

It is acknowledged that models will evolve over time in terms of on-going asset renewal in the collection system, and from internal/external use in support of various ‘what-if’ scenarios such as

de rpt_model-guidelines_final_141023.docx 4.8

Page 50: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

development applications). The City is devising an internal naming convention to account for these various future modifications to the EA and design submission models.

4.6 DATA FLAGGING

Data flags are an extremely important tool to record and track the basis of assumptions, changes, and data sources made to all critical modelling fields. The following must be used as part of the model submissions to the City. Other flags must be prior approved by the City.

InfoWorks Standard Data Flags Flag Description Color (RGB)

#A Imported Asset Data from City Geodatabase. Used to represent fields that were brought in directly from the asset geodatabase.

Light green, 200/240/200

#D Model Default Data. To indicate when a value is defined by a default or in the case of Length, is automatically calculated. Light blue, 166/202/240

#G Data from GeoPlan. Used when values are calculated within InfoWorks based on background layers (population, area take-off, etc.)

Bright Green, 80/240/120

#I Model Import – imported from another model Light Orange, 29/206/141

#V CSV Import – imported from an outside data source through CSV Orange, 20/240/120

AB As-Built Archived Drawing Source. Where a historic engineering drawing indicates the information is as-recorded or as-built.

Light Orange, 255/210/165

AD As-Designed Archived Drawing Source. Where a historic engineering drawing is not labelled as as-recorded or as-built.

Light Purple, 150/150/200

AA EA Alternative Additions/Modifications Light Grey, 218/218/218

AS Assumed data - no reference; dummy placeholder in non-critical areas Red, 255/50/50

CA Parameter adjusted during model calibration, not attributed to another source. e.g. Mannings ‘n’, impervious surface adjustments, etc. Yellow, 255/255/0

EA EA Preferred Solution Green, 115/255/115

EV Engineering Validation Error Light Red, 200/175/175

FD Final Design - Implementation Project Drawing Light Purple, 200/150/255

FP Future Population - EA growth scenarios, development review, etc. Purple, 128/0/255

IF Information Only - used to flag notes field Cyan, 187/255/255

IN Inferred or interpolated Data Magenta, 240/135/252

OD Observed Field Data - Not surveyed; Includes orthoimagery, GoogleMaps/StreetView, photographs, site reconnaissance etc. Blue, 100/150/255

OV Overland Flow Green, 10/255/10

PD Preliminary Design Additions/Modifications Light Green, 140/255/140

RF Roof - additions/modifications related to simulating roof runoff Light Yellow, 255/255/128

SD Surveyed Field Data, includes geodetic, laser, tape Turquoise, 0/255/255

de rpt_model-guidelines_final_141023.docx 4.9

Page 51: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

4.7 SIMULATION PARAMETERS

4.7.1 Time Step Selection

The default time step used will be 60 seconds with a 5x multiplier for reporting (i.e. 5 minutes). A more refined time step or reporting multiplier may be required should there be model instabilities for convergence at specific locations. A Timestep Log file (from the Diagnostics button in the Schedule Hydraulic Run dialogue) should be created and reviewed to identify those objects in the model that indicate instability issues.

4.7.2 Simulation Parameter Defaults

For complex integrated dual drainage hydraulic models, the default simulation parameters found under the Network tab may have to be adjusted to provide more stable results. Any changes must be documented and reviewed with the City.

de rpt_model-guidelines_final_141023.docx 4.10

Page 52: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

4.8 ELEMENT DOCUMENTATION

All model elements have five User Text and five User Number Fields to be used to track object documentation and sources of model-build assumptions and status. InfoWorks has the ability to customize the labels of these fields to ensure end-users can easily interpret the content of the field. In addition, each object has a dedicated Notes field available in the form view.

Given the variability of model development activities and uses of the model, the following shall be the minimum standard User Fields to be returned to the City for each main Phase of the model use (Baseline EA, Design). Additionally, the Notes tab shall be used to supplement the User Fields where necessary.

EA BASELINE MODEL USER-DEFINED FIELDS

User Field Node Heading Conduit Heading

User Number 1 No. of Initial Street CBs Year of Construction

User Text 1 Street Reference Street Reference

User Text 2 Drawing Reference Drawing Reference

User Text 3 Engineering Validation Check Engineering Validation Check

User Text 4 Engineering Validation Fix Engineering Validation Fix

User Text 5 Model Notes Model Notes

The EA Baseline model is used to define the characteristics of the system, and the user text helps document the confidence of every data entry for each element. Some of this data is imported from the asset geodatabase, supplemented by User Text 3 to document potential input/profile/continuity errors in the network, and User Text 4 the resolution of that error alongside any additional notes that would be of assistance during the alternative development stage.

For the final EA Preferred Solution and Design Models, the fields change to support documentation of the solution elements including the reference EA Project or Assignment ID and solution type. The node User Numbers document key assumptions related to the change in number of catchbasins assigned through the progression from existing, to conceptual design, to detailed design.

de rpt_model-guidelines_final_141023.docx 4.11

Page 53: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

EA PREFERRED SOLUTION / DESIGN MODEL USER-DEFINED FIELDS

User Field Node Heading Conduit Heading

User Number 1 No. of Initial Street CBs U/S Pipe Cover (m)

User Number 2 EA Change in Street CBs D/S Pipe Cover (m)

User Number 3 Survey No. of Street CBs -

User Number 4 Design Change in Street CBs -

User Number 5 Design Change in Total Inlet Capacity (L/s) -

User Text 1 Street Reference Street Reference

User Text 2 Drawing Reference Drawing Reference

User Text 3 Solution Type Solution Type

User Text 4 EA Project/Assignment ID EA Project/Assignment ID

User Text 5 Model Notes Model Notes

Each user field shall be flagged, according to the guidelines outlined in Section 4.6.

4.9 MODEL VISUALIZATION STANDARDS

In an effort to normalize the model ‘experience’ by all users, the City has adopted the following model visualization standards for the GeoPlan.

4.9.1 Coordinate System

InfoWorks CS has the ability to identify the coordinate system to be used for the geospatial display and export of network objects. To avoid projection issues between the model elements and GIS, and to facilitate new model element creation, the following coordinate system shall be used as the main display for InfoWorks models. Confirmation of the projected coordinate system should be done at the onset of each modelling assignment.

de rpt_model-guidelines_final_141023.docx 4.12

Page 54: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

Older City models and some GIS data may require adjustment to align with the current coordinate system, as the Y-coordinate was often simplified to remove 4,000,000 from the value. Older InfoWorks models defined without the 4 million can be Geographically Adjusted in InfoWorks as follows, to align with newer GIS layers.

de rpt_model-guidelines_final_141023.docx 4.13

Page 55: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

4.9.2 Network Objects

The main network objects shall be colour-coded by each of the 5 system types as follows:

System Type

Colour (R/G/B)

Nodes and Conduits Subcatchments

Storm Green, 0/244/0 Light Green, 200/255/200

Sanitary Red, 255/0/0 Light Red, 255/200/200

Combined Orange, 255/128/0 Light Orange, 255/220/185

Overland Brown, 128/64/0 Light Brown, 200/150/150

Other Olive, 128/128/0 Gold, 210/210/0

4.9.3 Results Themes

Model results within the GeoPlan reveal the overall performance of the system during model simulations. GeoPlan Themes allow colour-coding of various parameters for each model object type, as demonstrated below.

de rpt_model-guidelines_final_141023.docx 4.14

Page 56: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

The following shall be the base template for visualization of common model results.

Model Object Type Description SQL Range Colour

Node HGL Freeboard (m) ground_level - sim.depnod

• -20 • 0 • 1.8

• Red • Yellow • Green

Node Contour Overland Depth (m) sim.ovdepnod - ground_level

• 0 • 0.15 • 0.30

• Green • Yellow • Red

Conduit Surcharge State -

• 0.8 • 1.0 • 2.0

• Green • Yellow • Red

4.9.4 Profile “Long-Section” View

Model Profiles are an excellent means of reviewing data inconsistencies and performance of model simulations. The following base information shall form the template for any profile imagery documentation associated with EA studies.

de rpt_model-guidelines_final_141023.docx 4.15

Page 57: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

Network Object Field Description

Sanitary Nodes • ground_level • depnod • HGL Freeboard SQL

• Ground Level (m) • Sewer Water Level HGL (m) • Depth from Ground to HGL (m)

Additional Storm/ Combined Nodes

• head_discharge_id • n_gullies • Overland Depth SQL • gllyflow

• Head Discharge Table • Number of Gully Inlets • Depth of Overland Flow at Node (m) • Gully Flow (m3/s)

All Conduits • length • Shape • width • height • us inv • ds inv • grad • pfc • ds_flow • surc

• Pipe length (m) • Pipe shape type • Pipe width (mm) • Pipe height (mm) • US invert elevation (m) • DS invert elevation (m) • Pipe gradient (m/m) • Pipe full capacity (m3/s) • Downstream Flow (m3/s) • Surcharge State

Sanitary System Profile

63

4097

0090

63

131

4093

4091

22

206

4095

5091

94

278

4100109009175.560172.6602.899951

4097009063175.118172.5242.594181

4093409122174.758172.3912.367070

4095509194174.411172.2202.191121

4097609263174.920172.064

2.855638

4100109009.162.8CIRC450450

172.284172.1460.002200.134

0.137910.84

4097009063.168.0CIRC450450

172.136171.9130.003280.163

0.134841.00

4093409122.175.2CIRC450450

171.888171.6900.002630.146

0.126531.00

4095509194.171.9CIRC450450

171.680171.4550.003130.159

0.127211.00

Nodeground (m AD)level (m AD)expr:HGL Freeboard

Linklength (m)Shape IDwidth (mm)height (mm)us inv (m AD)ds inv (m AD)grad (m/m)pfc (m3/s)DS Flow (m3/s)surc

m A

D

171.0

176.0

171.5

172.0

172.5

173.0

173.5

174.0

174.5

175.0

175.5

m

de rpt_model-guidelines_final_141023.docx 4.16

Page 58: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

InfoWorks File Management and Set-Up Version 1.02 - October 2014

Minor System Profile

Major System Profile

5141

9490

9308

138

4195409359182.070SAG STORAGE2.000179.1760.213202.8937460.215034

4194909308182.143CB_FLAT

4.000178.0410.082814.1024570.140615

4186909342181.929

MH Cover (2 holes)1.000

176.8740.00101

5.0552360.120332

4195409359.151.2CIRC750750

178.765177.4970.024771.752

0.942430.73

4194909308.187.0CIRC750750

177.497176.2750.014041.319

1.043590.80

Nodeground (m AD)Head Discharge TableNumber of Gullieslevel (m AD)gully flow (m3/s)expr:HGL Freeboardexpr:Overland Depth

Linklength (m)Shape IDwidth (mm)height (mm)us inv (m AD)ds inv (m AD)grad (m/m)pfc (m3/s)DS Flow (m3/s)surc

m A

D

176.0

176.5

177.0

177.5

178.0

178.5

179.0

179.5

180.0

180.5

181.0

181.5

182.0

182.5

m

51

4194

9093

08

138

4195409359182.070SAG STORAGE2.000179.1760.213202.8936540.215049

4194909308182.143CB_FLAT

4.000178.0410.082814.1024120.140615

4186909342181.929

MH Cover (2 holes)1.000

176.8740.00101

5.0550990.120332

4194909308.Q51.2

LOCAL ROADS20000300

182.143182.0700.001432.098

0.100970.72

4194909308.O87.0

LOCAL ROADS20000300

182.143181.9290.002462.755

0.556210.47

Nodeground (m AD)Head Discharge TableNumber of Gullieslevel (m AD)gully flow (m3/s)expr:HGL Freeboardexpr:Overland Depth

Linklength (m)Shape IDwidth (mm)height (mm)us inv (m AD)ds inv (m AD)grad (m/m)pfc (m3/s)DS Flow (m3/s)surc

m A

D

176.0

176.5

177.0

177.5

178.0

178.5

179.0

179.5

180.0

180.5

181.0

181.5

182.0

182.5

m

de rpt_model-guidelines_final_141023.docx 4.17

Page 59: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.0 HYDRAULICS (CONVEYANCE MODELLING)

This section pertains to hydraulic modelling considerations for sanitary, combined, storm and overland systems. The hydraulic principles are the same for the various network types.

This section is divided into the standard concepts, followed by detailed guidance per element.

5.1 STANDARD CONCEPTS

5.1.1 Dual Drainage Principle

The division of the urban drainage system into minor (underground) and major (overland) systems is known as “dual drainage.” The minor system is composed of the underground network of pipes designed to convey flows from typical storm events. The major system is the overland pathway of roads and natural channels that convey runoff to the minor system inlets (gullies) and carry flows beyond what the inlet capacity or minor system can handle. The graphic below demonstrates the concept.

Each sewer system is created independently with a series of links and nodes and the networks are interconnected to the overland via “gully” or inlet nodes that simulate surface water entering the underground systems. Conversely, flow can surcharge from the sewer back to the surface from these nodes. This dual drainage approach accounts for the inlet capacity

de rpt_model-guidelines_final_141023.docx 5.1

Page 60: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

restrictions of catchbasins and maintains continuity of volume when flow surcharges the pipe system.

For all basement flooding modelling, application of the dual drainage system shall be applied unless otherwise directed by the City (for example, rural or unimproved drainage systems). Dual drainage connectivity shall consider the system types (i.e. separated, partially separated, combined, or a mixture of each). The intent shall be to have one single GeoPlan network with all sewer and surface systems represented, and interconnected for combined sewershed modeling. For completely separate sewersheds, these shall be modelled in individual storm and sanitary GeoPlans.

5.1.2 Overland Flow Paths

The overland network shall, as best as possible, be a 1-dimensional representation of the main surface flow conveyance and storage elements found in the drainage system. This shall include flow accumulation at trapped low points, and flow conveyance at overland spill points. A critical factor is the appropriate representation of system continuity. All overland links not terminating at a low point shall be continuous, such that the distribution of flow is determined by the model based on the physical network layout and simulation. The inset graphic demonstrates an example situation of a correct and incorrect depiction of the overland system.

It is recognized that 1-dimensional representation of a complex drainage system requires the application of engineering judgment, supported by topographical, digital elevation, and field survey data. Not every element of the drainage system can be represented. The goal shall be to best represent the major flow path elements that can contribute to surface flooding or impact on the underlying collection systems. The following are key elements to consider in the establishment of the overland system:

de rpt_model-guidelines_final_141023.docx 5.2

Page 61: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

• Curb height (assumed to be 0.15 m), and the influence on flow paths/spills • Presence or absence of curb-cuts at low areas • Channel cross-section shape, dimensions and roughness • Location of intermediary high-points or low points not corresponding with an existing node • Connectivity with underground system nodes, i.e. potential for inflow or surcharge to surface • Elevation of underground system nodes when not in pavement • Ditched drainage systems where no underground sewer system exists

5.2 NODE MODELLING GUIDELINES

The main input for a node is the type, ground elevation, node flood type, manhole parameters, gully parameters, and storage/pond parameters, as demonstrated in the following graphics. These are described in the following sections.

de rpt_model-guidelines_final_141023.docx 5.3

Page 62: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.2.1 Node Definition

Nodes shall be defined by the City’s Asset ID for those elements within the existing geodatabase, and new elements shall subscribe to the naming conventions outlined in Section 4.0.

There are five (5) node types used in basement flooding modelling:

Node Type Description / Application

Manhole • Default standard manhole complete with input to define the physical dimensions of the lower chamber and access shaft (height and area).

• These values affect the storage used in the simulation, and therefore require review.

• Default values for piped systems may be used, which are set based on the maximum connected pipe diameter. These values should be reviewed to confirm actual structures have a minimum 0.8 m2 area.

• Nodes identified for overland networks only (i.e. not connected to an underground sewer system), must have their chamber and shaft inverts set equal to the ground elevation, since no actual maintenance hole exists.

Break • Break nodes have no internal area and should only be used to model changes in gradient or direction within pressurized conduits (i.e. forcemains).

Storage • User-defined volume definition by stage-area relationship.

Pond • Similar to a Storage Node, except with additional fields to account for infiltration.

• Used in long-term simulations only, not in sizing of stormwater management facilities.

Outfall • Represent locations where water is lost from the simulation. Outfalls are placed at locations where water is known to exit the system such as storm outfalls, CSO outfalls, boundaries to another model or discharge to a WWTP.

• Default assumption is free discharge from an outfall. Where this does not exist, a level file must be created to simulate time-varying boundary conditions. See Section 5.7.

The ground elevation defines the top of the manhole, and will become the relative reference for basement flooding potential, therefore must be scrutinized for suitability. In addition, the node

de rpt_model-guidelines_final_141023.docx 5.4

Page 63: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

ground elevation forms the basis of the overland flow network’s inverts. Caution must be applied when MHs connected to road overland flow paths are within the boulevard and therefore sit “above” the main roadway flow path. Here, the ground elevation may require adjustment to maintain the overland flow path, or disconnect the MH from the overland flow path. If the MH is subject to surcharge, a connection to the overland path is required.

It is acknowledged that source data for elevations at the EA stage comes from various high-level sources and therefore may not always accurately reflect real-world conditions. It is up to the modeler to satisfy themselves on the suitability of the elevation data for the modeling task. Caution should be applied at locations where road grade separation exists, such as railway underpasses, highway ramps, and other bridges.

5.2.2 Manhole Flood Type

There are 5 main flood types, as described below.

Flood Type Description / Application

Stored • For nodes that flood from elevated sewer HGL, water is retained on the surface until such time the system regains capacity. Volume is conserved.

• By default, the dimensions of the surface volume are defined by an assumed ‘flood cone’ based on the Floodable Area and Flood Depth. If this type is used, these assumptions must be checked for suitability.

• Stored nodes cannot be used if an overland conduit is connected (see Gully flood type). In this scenario, a gully node must be applied to simulate the potential for water to enter the underground sewer system (see head discharge).

Gully • A Gully node represents a flow restriction (defined by a Head Discharge Table) in or out of the node. See Section 5.2.2.1 for more detail.

• Used in the definition of dual drainage systems to restrict inflow to the underground sewer from connected Overland type conduits.

Sealed • Where no overland system is connected to the node, flood water that surcharges does not leave the system and the hydraulic grade line rises indefinitely without flooding.

• Cannot be used when connected to overland flow conduits as this type only restricts flow out of the node, not in to the node. In this scenario, a gully node with 0 gullies can simulate a sealed maintenance hole.

Lost • Flood water to the surface is lost from the system; volume is not conserved. • This flood type should not normally be used in basement flooding models.

Inlet • Similar to a gully but utilizes standard inlet relationships of the Federal Highway Administration HEC 22 Urban Drainage Manual for various inlet types. The Gully flood type shall be used for City of Toronto modeling.

de rpt_model-guidelines_final_141023.docx 5.5

Page 64: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.2.2.1 Gully

A Gully represents a catchbasin where surface runoff enters the collection system. By defining a manhole’s flood type as Gully, flow accumulated on the overland surface is subject to a user-defined Head-Discharge table; conversely, water in the collection system can surcharge to the overland network, also subject to a Head-Discharge relationship. The relationship is dependent on a specified number of gullies (e.g. catchbasins or roof drains), which multiplies the potential inflow/outflow.

NOTE: Links with a system type of “overland” apply to the above-ground element and are therefore subject to the restrictions applied by the gully inlet. Links of type storm, sanitary, combined or other will bypass the gully inlet and discharge without restriction into the underground pipe. See InfoWorks CS Help file for further information.

InfoWorks can save a series of Head-Discharge relationships, and for basement flooding modelling several typical Head-Discharge relationships have been derived based on the type of inlet grating and location within the road network. Appropriate for the scale of basement flooding analyses, only characteristic relationships are required to represent catchbasins on flat roads (assumed as less than 0.5%), average slope (0.5-4%), versus steep roads (greater than or equal to 4%), versus low points (sags). Three characteristics grating types have also been devised for standard catchbasins: honeycomb, horizontal bar/fishbone, and grid style. In addition, ditch-inlets, inlet-control devices, and perforated manhole covers. These rating curves have been derived for the City based on Ministry of Transportation (MTO) Drainage Manual Design Charts (Marsalek, J., 1982) and research conducted by Townsend, Wisner and Moss (1980). The laboratory testing was limited to heads up to 0.11 m, therefore extrapolation assumed a maximum of 110% of the lab measured value and assigned to the 0.5 m stage.

The Head-Discharge relationships account for the discharge from the sewer out of the structures during surcharge with an assumed increase in capacity to 500 L/s to simulate the displacement of manhole lids once the HGL exceeds 0.5 m above the ground surface. Guidance on the application of inlet-control devices is provided in Section 8.1.1. Should additional grating types, curb-inlets, and/or road gradients be considered, the head-discharge tables shall be documented and submitted for review and approval by Toronto Water staff before application.

It is the intent to distribute the catchbasin types appropriately to each node location within the model. Low points (sags) are critical areas in the establishment of overland ponding and contributions to the sewer systems, therefore all efforts should be made to accurately represent their actual location/elevation, and only apply sag inlets to this node if aggregating catchbasins along the pipe length. Similarly, where differing catchbasin types exist as part of the same node, it is the proponents discretion to determine the need to adjust the gully type, number, or to add dummy nodes to represent the various grating type, or single vs. twin.

The following are typical Head-Discharge tables to be applied in all basement flooding modelling exercises.

de rpt_model-guidelines_final_141023.docx 5.6

Page 65: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Single Catchbasin -Horizontal Bars/Fishbone Head (m)

Discharge (m3/s) per Longitudinal Road Profile Slope

<=0.5% 0.5-3.99% >=4%

-0.500 -0.500 -0.500 -0.500

-0.110 -0.042 -0.061 -0.057

-0.104 -0.036 -0.056 -0.052

-0.100 -0.034 -0.052 -0.049

-0.090 -0.023 -0.040 -0.041

-0.080 -0.013 -0.029 -0.032

-0.070 -0.010 -0.018 -0.022

-0.065 -0.008 -0.014 -0.017

-0.060 -0.005 -0.010 -0.012

0.000 0 0 0

0.060 0.005 0.010 0.012

0.065 0.008 0.014 0.017

0.070 0.010 0.018 0.022

0.080 0.013 0.029 0.032

0.090 0.023 0.040 0.041

0.100 0.034 0.052 0.049

0.104 0.036 0.056 0.052

0.110 0.042 0.061 0.057

0.500 0.046 0.067 0.063

de rpt_model-guidelines_final_141023.docx 5.7

Page 66: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Single Catchbasin - Grid Head (m)

Discharge (m3/s) per Longitudinal Road Profile Slope

<=0.5% 0.5-3.99% >=4%

-0.500 -0.500 -0.500 -0.500

-0.110 -0.039 -0.051 -0.040

-0.104 -0.033 -0.044 -0.036

-0.100 -0.027 -0.039 -0.032

-0.090 -0.019 -0.030 -0.027

-0.080 -0.012 -0.021 -0.017

-0.070 -0.008 -0.015 -0.011

-0.065 -0.006 -0.012 -0.007

-0.060 -0.003 -0.009 -0.005

0.000 0 0 0

0.060 0.003 0.009 0.005

0.065 0.006 0.012 0.007

0.070 0.008 0.015 0.011

0.080 0.012 0.021 0.017

0.090 0.019 0.030 0.027

0.100 0.027 0.039 0.032

0.104 0.033 0.044 0.036

0.110 0.039 0.051 0.040

0.500 0.043 0.056 0.044

de rpt_model-guidelines_final_141023.docx 5.8

Page 67: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Single Catchbasin - Honeycomb Head (m)

Discharge (m3/s) per Longitudinal Road Profile Slope

<=0.5% 0.5-3.99% >=4%

-0.500 -0.500 -0.500 -0.500

-0.110 -0.044 -0.085 -0.029

-0.104 -0.037 -0.074 -0.025

-0.100 -0.033 -0.067 -0.023

-0.090 -0.025 -0.050 -0.006

-0.080 -0.018 -0.034 0.000

-0.070 -0.012 -0.016 0.000

-0.065 -0.006 -0.005 0.000

0.000 0 0 0

0.065 0.010 0.005 0.000

0.070 0.012 0.016 0.000

0.080 0.018 0.034 0.000

0.090 0.025 0.050 0.006

0.100 0.033 0.067 0.023

0.104 0.037 0.074 0.025

0.110 0.044 0.085 0.029

0.500 0.048 0.093 0.032

de rpt_model-guidelines_final_141023.docx 5.9

Page 68: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Twin Catchbasin -Horizontal Bars/Fishbone Head (m)

Discharge (m3/s) per Longitudinal Road Profile Slope

<=0.5% 0.5-3.99% >=4%

-0.500 -0.500 -0.500 -0.500

-0.110 -0.051 -0.080 -0.092

-0.104 -0.045 -0.070 -0.082

-0.100 -0.042 -0.065 -0.075

-0.090 -0.026 -0.049 -0.058

-0.080 -0.016 -0.033 -0.041

-0.070 -0.012 -0.022 -0.026

-0.065 -0.009 -0.017 -0.020

-0.060 -0.006 -0.010 -0.012

0.000 0 0 0

0.060 0.006 0.010 0.012

0.065 0.009 0.017 0.020

0.070 0.012 0.022 0.026

0.080 0.016 0.033 0.041

0.090 0.026 0.049 0.058

0.100 0.042 0.065 0.075

0.104 0.045 0.070 0.082

0.110 0.051 0.080 0.092

0.500 0.056 0.088 0.101

de rpt_model-guidelines_final_141023.docx 5.10

Page 69: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Twin Catchbasin - Grid Head (m)

Discharge (m3/s) per Longitudinal Road Profile Slope

<=0.5% 0.5-3.99% >=4%

-0.500 -0.500 -0.500 -0.500

-0.110 -0.041 -0.058 -0.055

-0.104 -0.034 -0.049 -0.047

-0.100 -0.027 -0.043 -0.040

-0.090 -0.019 -0.032 -0.031

-0.080 -0.012 -0.022 -0.019

-0.070 -0.008 -0.016 -0.011

-0.065 -0.006 -0.013 -0.008

-0.060 -0.003 -0.009 -0.005

0.000 0 0 0

0.060 0.003 0.009 0.005

0.065 0.006 0.013 0.008

0.070 0.008 0.016 0.011

0.080 0.012 0.022 0.019

0.090 0.019 0.032 0.031

0.100 0.027 0.043 0.040

0.104 0.034 0.049 0.047

0.110 0.041 0.058 0.055

0.500 0.045 0.064 0.061

de rpt_model-guidelines_final_141023.docx 5.11

Page 70: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Twin Catchbasin - Honeycomb Head (m)

Discharge (m3/s) per Longitudinal Road Profile Slope

<=0.5% 0.5-3.99% >=4%

-0.500 -0.500 -0.500 -0.500

-0.110 -0.045 -0.093 -0.041

-0.104 -0.038 -0.079 -0.033

-0.100 -0.034 -0.071 -0.029

-0.090 -0.025 -0.051 -0.007

-0.080 -0.018 -0.034 0.000

-0.070 -0.012 -0.017 0.000

-0.065 -0.010 -0.005 0.000

0.000 0 0.0 0.000

0.065 0.010 0.005 0.000

0.070 0.012 0.017 0.000

0.080 0.018 0.034 0.000

0.090 0.025 0.051 0.007

0.100 0.034 0.071 0.029

0.104 0.038 0.079 0.033

0.110 0.045 0.093 0.041

0.500 0.050 0.103 0.045

de rpt_model-guidelines_final_141023.docx 5.12

Page 71: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Catchbasins in Sags (Low Points)

Head (m)

Inlet Capacity (m3/s)

Horizontal Bar Honeycomb Grid Twin Horizontal Twin Honeycomb Twin Grid -0.30 -0.203 -0.484 -0.234 -0.405 -0.967 -0.468 -0.08 -0.035 -0.081 -0.035 -0.053 -0.124 -0.053 -0.07 -0.025 -0.066 -0.025 -0.037 -0.097 -0.037 -0.06 -0.017 -0.053 -0.017 -0.026 -0.079 -0.026 -0.05 -0.011 -0.040 -0.011 -0.016 -0.058 -0.016 -0.04 -0.007 -0.029 -0.007 -0.010 -0.040 -0.010 -0.03 -0.004 -0.019 -0.004 -0.005 -0.023 -0.005 -0.02 -0.002 -0.010 -0.002 -0.003 -0.017 -0.003 -0.01 0.000 -0.004 0.000 -0.001 -0.011 -0.001 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.01 0.000 0.004 0.000 0.001 0.011 0.001 0.02 0.002 0.010 0.002 0.003 0.017 0.003 0.03 0.004 0.019 0.004 0.005 0.023 0.005 0.04 0.007 0.029 0.007 0.010 0.040 0.010 0.50 0.011 0.040 0.011 0.016 0.058 0.016 0.06 0.017 0.053 0.017 0.026 0.079 0.026 0.07 0.025 0.066 0.025 0.037 0.097 0.037 0.08 0.035 0.081 0.035 0.053 0.124 0.053 0.09 0.046 0.097 0.046 0.071 0.148 0.071 0.10 0.060 0.113 0.060 0.091 0.172 0.091 0.11 0.073 0.131 0.073 0.108 0.195 0.108 0.12 0.085 0.149 0.086 0.126 0.220 0.126 0.13 0.097 0.168 0.098 0.142 0.245 0.142 0.14 0.108 0.188 0.109 0.155 0.269 0.156 0.15 0.118 0.208 0.122 0.168 0.296 0.173 0.20 0.157 0.321 0.173 0.244 0.499 0.268 0.25 0.181 0.450 0.208 0.324 0.803 0.372 0.30 0.203 0.484 0.234 0.405 0.967 0.468

de rpt_model-guidelines_final_141023.docx 5.13

Page 72: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Manhole Covers at a Sag (Low Point) Head (m)

Inlet Capacity (m3/s)

Perforated MH Cover

MH (2 pick

holes)

-0.500 -0.050 -0.007

-0.305 -0.047 -0.006

-0.244 -0.042 -0.005

-0.200 -0.038 -0.005

-0.182 -0.037 -0.005

-0.121 -0.030 -0.004

0.000 0.000 0.000

0.121 0.030 0.004

0.182 0.037 0.005

0.200 0.038 0.005

0.244 0.042 0.005

Peforated Cover

0.305 0.047 0.006

0.500 0.050 0.007

Standard Cover (2 holes)

de rpt_model-guidelines_final_141023.docx 5.14

Page 73: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

High Capacity Inlet at Sag Head (m)

Discharge (m3/s)

Honeycomb Frame 1.5x0.9m, ~60x40mm openings

-0.500 -0.500

-0.050 -0.250

-0.020 -0.100

0.000 0.000

0.020 0.100

0.050 0.250

0.100 0.250

0.300 0.250

0.600 0.250

de rpt_model-guidelines_final_141023.docx 5.15

Page 74: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Inlet Control Devices Head (m)

Inlet Capacity (m3/s)

ICD_20L (Vortex)

ICD_40L (Orifice)

0.000 0.000 0.000

0.060 0.010 0.010

0.065 0.014 0.014

0.070 0.015 0.038

0.150 0.016 0.039

0.300 0.017 0.041

0.900 0.020 0.049

Vortex ICD - Q=17L/ at Ponding Depth of 300mm. Maximum inflow of 20 L/s in surface

flooding conditions.

Orifice Plate, 117.4mm opening - Q=40L/s at Ponding Depth of 150mm. Maximum inflow

of 49 L/s in surface flooding conditions.

Note: The gully elevation datum is at the node rim (i.e. surface level), and the head-discharge relationships for these Inlet Control Devices are based on a variable depth to the catchbasin invert. Therefore, the head-discharge relationships have been based on the average grate capture for depths less than 70 mm, with levels greater than 70 mm at the capacity of the ICD.

de rpt_model-guidelines_final_141023.docx 5.16

Page 75: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Within InfoWorks, the Head-Discharge grid shall be as presented below, at minimum. Additional relationships, including slot drains and depressed grates, must be approved by the City before implementation. Roof gullies are discussed in Section 5.5.1.

de rpt_model-guidelines_final_141023.docx 5.17

Page 76: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.3 UNDERGROUND CONDUIT MODELLING GUIDELINES

The main input for an underground conduit is the system type, solution model, and physical pipe dimensions, key elements of which are described in the following sections.

5.3.1 Solution Model

The solution model can be one of four choices: Full, Permeable, ForceMain, or Pressure. For the majority of basement flooding modelling scenarios, the Full solution model which applied the St. Venant equations is appropriate. Only where a pump station forcemain is simulated should the Pressure or ForceMain solutions be explored. See Section 5.6.6 for pump station discussion. For simulating the benefits of low impact development (LID) solutions through link conveyance elements, the Permeable model shall be explored. This enables the simulation of exfiltration from a stormwater conduit to the ground. Sustainable Urban Drainage Systems (SUDS), or LID, are currently beyond the scope of these Basement Flooding Modelling Guidelines. Users are directed to the on-line help or Innovyze support team for more information.

5.3.2 Underground Pipe Cross-Sections

For the City of Toronto, standard pipe shapes are generally circular, rectangular, egg, or arch. These are pre-defined within the InfoWorks defaults. In special cases, non-standard pipe sizes can be created where necessary to represent pipes of unusual or defective shape. The following table presents specific underground shape parameters to be used where applicable.

Channel Type Height (Per unit) Width (Per unit) Conceptual InfoWorks Input

Pipe with dry weather flow channel

0.000000 0.150000 0.200000 0.800000 0.801000 0.990000 1.000000

0.100000 0.150000 1.000000 1.000000 1.000000 1.000000 0.000000

Box Culvert with side flow path

0.000000 0.115400 0.999990 1.000000

Left Right 0.441200 0.911800 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000

de rpt_model-guidelines_final_141023.docx 5.18

Page 77: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Channel Type Height (Per unit) Width (Per unit) Conceptual InfoWorks Input

Box Culvert with chamfered corners

0.000000 0.200000 0.800000 0.999990 1.000000

0.666700 1.000000 1.000000 0.666700 0.000000

Elliptical Pipe

0 0.02 0.04 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.94 0.96 0.98 1.00

0.0000 0.2800 0.3919 0.6000 0.8000 0.9165 0.9798 1.0000 0.9798 0.9165 0.8000 0.6000 0.4750 0.3919 0.2800 0.0000

The modeler must be sure to capture the accurate pipe shape as it will impact the ability of the model to be calibrated for depth. Additional cross-sections as required shall be developed and discussed with the City prior to use in the model. Note: the City’s asset database may have height and width measurements transposed, and should be confirmed for non-circular shapes.

5.3.3 Minor Losses

Minor losses (headlosses in InfoWorks) are used to define the hydraulic instabilities at structures caused by pipe transitions at maintenance holes or within a pipe, by appurtenances in the flow, or inlet/outlet coverage. General up and downstream losses are to be calculated using the

de rpt_model-guidelines_final_141023.docx 5.19

Page 78: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

InfoWorks auto-inference tool, assuming “Normal” Headloss Type.

The headloss values are inferred based on the angle of pipe bends between connecting conduits (see InfoWorks help file for more information). Automated inference should be conducted on the final validated pipe network (excluding the overland system), and should be flagged as “IN” inferred and confirmed for suitability during model calibration. For culverts, headlosses are calculated independently by the Culvert Inlet and Culvert Outlet link types, therefore no headloss coefficients should be applied and the Headloss Type changed to “None”. For special circumstances such as transitions in diameter (large to small) or other special structures, additional analysis and definition of coefficients shall be undertaken and documented; particularly at the detailed design stage.

Headlosses should not be used for Overland conduits, and the Headloss Type should be changed to “None” and flagged “OV”.

5.4 OVERLAND MAJOR SYSTEM CONDUITS

The definition of the major system is extremely important, as it has a great influence on the performance of the collection systems. The following provides guidance on the development of the overland major system conduits:

• A simple way to create the initial overland network within InfoWorks is to copy the minor system network, then convert the system type to “Overland” and change the conduit invert flags to default (#D) which will automatically transfer the connecting manhole ground elevations.

• All overland conduits with negative slopes (i.e. overland flow direction opposite to pipe direction) should have their direction reversed, and any overland flow paths not within the road right-of-ways (i.e. easements, outfalls, etc.) should be deleted. This will result in an initial basic framework of the overland network.

• Manual review of the overland network and comparison against the DEM is required to find high and low points that are not reflected by the minor system layout and add as required.

• All streets should have some form of overland link defined, regardless of the presence of underground storm sewers.

• Special attention should be paid to paths between homes as possible overland flow routes. Similarly where cul-de-sacs exist the overland flow route may include a path through private property under extreme events.

• Ditch Drainage systems are not connected to the underground system and must be simulated with appropriate cross-section, roughness, and definition of overland nodes at representative elevation or cross-section changes.

de rpt_model-guidelines_final_141023.docx 5.20

Page 79: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.4.1 Overland Cross-Sections

Overland flow paths are simulated as open channels in the model which requires the definition of the cross-section shape, dimensions and roughness parameters. In urban areas, the overland system will primarily be made up of the road network. For local and collector roads, use the standard conduit type (i.e. not a ‘river’ type), with a user defined cross-section based on a typical crowned road with curb and slope within the boulevard to the edge of property right-of-ways. This is an equivalent open-area representation to a typical crowned road in the centre to avoid ‘split-flow’ within the conduit. Review the typical road classifications within the study area to determine the distribution of arterial, local and other road types such as highways etc. Measure the road right-of-ways between property boundaries to establish average widths for the typical road types and use judgment to choose an appropriate cross-section for each road.

Overland Channel Type Height (Per unit) Width (Per unit) Conceptual InfoWorks

Input

Local Road

0.000000 0.320755 0.566038 1.000000

0.029126 0.441748 0.441748 1.000000

Width=20,000 mm Height=300 mm

Collector Road (Multiple Lane)

0.000000 0.528302 0.566038 1.000000

0.022989 0.559387 0.559387 1.000000

Width=24-30,000 mm Height=300 mm

For open channel rural road cross-sections with no storm sewer system and ditches, the cross-section should be defined through field topographic survey at various points to generally represent the conveyance system characteristics. In InfoWorks, the overland channel should be coded as a standard conduit with an equivalent cross-section developed by the modeller. Alternatively, each field-measured cross-section should be input as a River link with appropriate sections and roughness defined for each. The modeller must consider the overall flow path and hydraulics of the entry points to the collection system (e.g. ditch-inlet catchbasins), along with relative depth compared to property lines when determining the rural cross-section approach. Simplification of the ditch-culvert system in the model must be justified and documented, and confirmed with City staff.

de rpt_model-guidelines_final_141023.docx 5.21

Page 80: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.4.2 Overland Spills at Low Points

Low Points in roads are areas where water can accumulate. Usually the storage defined by the overland link cross-sections will sufficiently represent the water level at these locations. However, if the flood level exceeds the channel cross-section depth, additional storage information may be required if the flow from this location impacts the overland or collection system downstream. Code critical low points as a stage-area relationship based on data from field surveys. Estimate the spill elevation from field observations (e.g. curb level, or higher spill point) and set the crest width to mimic the limiting constriction of the flow path, such as the space between buildings.

Concept

Location of potential spills to be coordinated with the Overland Flow Path Analysis and Field Survey, verified with input from the Public Questionnaire and other anecdotal information/observations. Model simulations shall determine the need to code a spill point, should water accumulation occur beyond the estimated spill depth.

Considerations

• Low point node • Define elevation based on

lowest location • One or more overland flow

paths to terminate at low point node

• Weir • Weir connected from low point

to receiving node. Note that if the receiving node is of Type Storm with a minor system, the node must have a gully to prevent bypass of the gully.

• Width estimated based on physical opening of spillway at depth of water (e.g. space between buildings).

Overland Spill Weir

(Set to Top of Curb

Elevation)

Low

Point

Receiving Overland

Channel

0.15m

Low

Point

Node

Spill Weir with

Crest Set to

Top of Curb

Elevation

Road

Receiving

Overland

Channel

Spill activated when depth at low point

node reaches weir crest

de rpt_model-guidelines_final_141023.docx 5.22

Page 81: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.5 ROOFS

Roof flow contributions to the underground or the surface must be reflected in the hydraulic model. Information on downspout disconnection status is obtained from the field survey and resident questionnaire, and direct sewer connections can be estimated based on historic dye-test records, operator knowledge, field testing, or previous reports.

Theoretically, there are four components that make up roof runoff:

1. Runoff hydrograph generated from the roof surface.

2. Conveyance restriction of roof hydrograph through the eaves, downspout and lateral.

3. Routing of disconnected discharge over a pervious surface to the overland inlet.

4. Overflow of roof runoff beyond the eaves/downspout/lateral capacity to the surface.

Previous basement flooding modelling assignments for the City have applied different approaches to simulating roof runoff. These lesson’s learned have culminated in a preference for the following approach. The modeler shall confirm any proposed modifications or new approaches at the onset of the project.

5.5.1 Modelling Roofs- Physical Representation

The physical representation of roofs involves the addition of extra model objects to represent the runoff generated by a sloped or flat roof, the capture of flow by downspouts or roof drains, the storage potential of flat roofs, connectivity status to the surface or underground lateral, and the overflow to the surface during extreme events when downspout capacity is exceeded. This is described schematically in the graphic below.

de rpt_model-guidelines_final_141023.docx 5.23

Page 82: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

Modelling Roofs - Physical Representation via Additional Nodes and Links

Assumptions on the following information are required for building the physical roof connectivity:

• Average number of downspouts per home. • Disconnection status and number of downspouts connected per home. • Capacity limitations of roof eavestroughs, downspouts, and storm laterals. • Flat roof storage potential, accounting for open area, overflow scupper depth, number

of roof drains, and potential for roof drain capacity restriction (controlled and uncontrolled).

The following subsections describe the physical model-building procedures.

5.5.1.1 Sloped Connected Roofs

Residential sloped roofs that are known/believed to be directly connected to the storm sewer system shall be connected to the system by way of the number of connected downspouts per subcatchment. A new node must be created for each subcatchment containing directly connected roofs, named after the receiving storm node with the “Rc_” prefix. See Section 6.0 for definition of subcatchment hydrology. The following assumptions are required for this new node:

de rpt_model-guidelines_final_141023.docx 5.24

Page 83: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

• Ground elevation: must be higher than the receiving street node (assume by 0.6m).

• Type “Gully” with rating curve = "Downspout", as presented below for a typical 3 inch diameter downspout dimension with a 25% blockage factor applied.

• Assume a maximum 3 L/s capacity, is independent of head, since not simulating the build-up of water within the eavestroughs.

• Number of sloped roof downspouts to be based on 1 downspout per 65 m2 of roof area. Results from the questionnaire, field survey and historic dye-test mapping shall be used to confirm this assumption and cross-reference connectivity to the collection system.

• Aggregate number of downspouts in subcatchment per partially or directly connected roof (independent of roof area), rounding to the next highest even number.

• The System Type for the subcatchment must be “Storm” in order for the gully relationship to apply.

• The node connects by a dummy pipe (assume 300mm @ 2%, for 30m, or 0.6 m drop) which acts as the storm lateral and can be used as an indicator for excessive roof contributions. Use “L” as link suffix for this lateral. This pipe size should be reviewed to ensure the transfer of aggregated flow from roofs to pipe is without surcharge in the 5 year storm.

• A secondary User Control link of type “Overland” is added to reflect spill from roofs onto the overland network (assume head-discharge table “Unlimited” with invert elevation 0.1 m above new node ground elevation), connecting to receiving node and overland network in the street.

• Downspout disconnection may be simulated by reducing the number of downspouts per roof node (i.e. number of gullies), as the excess will spill on to the overland.

Downspout Discharge Capacity (L/s) Parameters

Downspout Capture1 Adjusted Orifice Parameters

(m) Orifice Weir Control for Clogging Orifice Invert Perimeter

0.00 0.0 0.0 0.0 0.0 0.0 m 0.24 m

0.01 1.2 0.4 0.4 0.3 Dimensions HxW (m) Area

0.02 1.7 1.1 1.1 0.8 0.0762 0.0762 0.005 m2

0.03 2.1 2.1 2.1 1.6 Orifice Centre Orifice Coeff.

0.04 2.4 3.2 2.4 1.8 0 m 0.6

0.05 2.7 4.5 2.7 2.0 Orifice Shape Orientation

0.06 3.0 5.9 3.0 2.2 Circular Horizontal

0.07 3.2 7.4 3.2 2.4 Weir Coeff. 1.670 Max Head (m) 0.127

0.08 3.4 9.0 3.4 2.6 Roof Characteristics

0.09 3.6 10.8 3.6 2.7 Area (m2) 65 # Downspouts 1.0

0.10 3.8 12.6 3.8 2.9 Slope (m/m) 0.330 Blockage Factor 25%

0.11 4.0 14.6 4.0 3.0 Adjusted # of Downspouts per Roof 1.0

0.12 4.2 16.6 4.2 3.1 Gutter Characteristics

0.13 4.4 18.7 4.4 3.3 Width (m) 0.127 Slope (m/m) 0.00521

0.14 4.5 20.9 4.5 3.4 Depth (m) 0.150 Areax (m2) 0.019

0.15 4.7 23.2 4.7 3.5 Mannings 0.013 Capacity (L/s) 13.3

1. Conventional uncontrolled straight drop pipe assumed to act as a sharp crested weir or orifice whichever limits Q

Depth

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Capa

city

(L/s

)

Depth (m)

Downspout CapacityCircular 3" Dia.

Adjusted for Clogging

Orifice

Weir

de rpt_model-guidelines_final_141023.docx 5.25

Page 84: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

• An automated procedure can be set-up within a spreadsheet to define the new nodes and links required for simulating roof control, based on off-sets (in the x, y and z plane) from the existing receiving node. The new nodes, links and subcatchments can then be imported into InfoWorks together to avoid lengthy manual digitization.

5.5.1.2 Flat Roofs

Flat roofs are normally associated with ICI or high-density residential properties, and typically have large areas that drain to internal plumbing. Based on historic dye-testing, these internal drains often discharge directly to the storm sewer. However, given the generally flat surface area and hydraulic limitations of the inflow to these drains, the flow received from the 100% impervious roofs is often attenuated by the resulting water ponding. In some instances, specific roof inlet controls are designed to limit discharges and maximize storage as part of a building’s stormwater management strategy. Data regarding flat roofs should be investigated in areas of large ICI or multi-family building contributions.

To estimate the potential impact of flat roofs on the drainage system, a relationship should be derived as presented in the graphic below, based on a series of assumptions below. Similar to sloped roofs in Section 5.5.1.1, a new node must be created for each subcatchment containing directly connected roofs, named after the receiving storm node with the “FRc_” or “FRd_” prefix, depending on connectivity status (see Section 4.5.1.5. and 6.1).

• One roof drain per 160 m2 of flat roof area, or 62.5 drains/ha.

• Maximum roof storage to a depth of 0.050 m before spill through scuppers to the surface.

• Circular 4” (100 mm) diameter vertical drain (controlled by lesser of orifice or weir flow).

• 50% of roofs have some form of roof control, with limiting control to typical Zurn Control-Flo Single Notch model of 0.68 L/s/drain.

• 80% of the roof area is available for storage to account for ancillary structures.

• No greater than the 2-year storm runoff peak can enter the roof drain.

Storage Discharge (L/s) Assumptions

Flat Roof Roof Drain Capture Adjusted Orifice Parameters

(m) Volume (m3) Orifice Weir Uncontrolled Controlled** Discharge Orifice Invert Perimeter

0.000 0.0 0.00 0.00 0.00 0.00 0.00 0.0 m 0.32 m

0.005 0.6 1.52 0.19 0.19 0.05 0.12 Dimensions HxW (m) Area

0.010 1.3 2.15 0.53 0.53 0.09 0.31 0.1016 0.1016 0.008 m2

0.015 1.9 2.64 0.98 0.98 0.14 0.56 Orifice Centre Orifice Coeff.

0.020 2.6 3.05 1.51 1.51 0.18 0.85 0 m 0.6

0.025 3.2 3.41 2.11 2.11 0.23 1.17 Orifice Shape Orientation

0.030 3.8 3.73 2.77 2.77 0.27 1.52 Circular Horizontal

0.035 4.5 4.03 3.49 3.49 0.32 1.91 Weir Coeff. 1.670 Max Head (m) 0.075

0.040 5.1 4.31 4.26 4.26 0.37 2.32 Roof Characteristics

0.045 5.8 4.57 5.09 4.57 0.42 2.49 Area (m2) 160 # Drain/160m

21

0.050 6.4 4.82 5.96 4.82 0.46 2.64 %Area for Storage 80% # Drain/ha 62.5

0.055 7.0 5.05 6.88 5.05 0.51 2.78 Eff. Area (m2) 128 # Drains 1.0

0.060 7.7 5.28 7.83 5.28 0.55 2.91 Fraction of Roofs with Inlet Controls 50%

0.065 8.3 5.49 8.83 5.49 0.60 3.04 Roof Drain Controlled Capacity (L/s) 0.68

0.070 9.0 5.70 9.87 5.70 0.64 3.17 Sample 100yr Results

0.075 9.6 5.90 10.95 5.90 0.68 3.29 Depth (m) 0.043 Flow (m3/s) 2.42

Volume (m3) 5.5

Depth

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080

Capa

city

(L/s

)

Depth (m)

Flat Roof Drain Capacity per 160m2 Area(Circular 4" Dia., 50% Controlled to Max. 0.68L/s)

UncontrolledControlled**Adjusted Discharge

de rpt_model-guidelines_final_141023.docx 5.26

Page 85: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

• A storage node shall be used with the gully type “FlatRoof” to represent the flat roof stage-storage-discharge curve. The storage volume and number of drains are prorated by flat roof area within the subcatchment, i.e. number of gullies = Flat Roof Area / 160 m2 per drain.

• For connected flat roofs, two new links must be connected from this node to the receiving node: a 300 mm conduit @ 2% representing the lateral flow (“L” suffix), and a User Control link set to 0.050 m above the roof node for accepting spilled overland flow.

• Disconnected flat roofs required another sequence of User Control (“U” suffix) and open channel link (“O” suffix) to convey the roof release to the receiving surface node:

o User Control set to 0.29 m below the flat roof gully node with head-discharge table set to “UNLIMITED” to convey 100% of gully flow representing controlled roof flow to a new dummy roof node “Frd_###!”.

o Overland link connects the dummy node (type Overland, shape OREC, 5m long, 20m wide, 300mm deep @ 6%), to convey the disconnected flow to the surface.

• It is assumed that no flat roof overflow will occur during a 100-year storm, however it should occur during more extreme historic events.

• The roof relationship and assumptions herein should be reviewed as part of the storm calibration exercise, and revised as necessary.

5.5.2 Modelling Large Parking Lots (ICI)

Large parking lots are typically highly impervious and therefore generate a large volume and peak flow of runoff from subcatchments. In addition, parking lots associated with industrial, commercial and/or institutional properties often also are graded such that they do not drain directly to the municipal right-of-way, and instead have purposefully engineered surface and underground storage controls to temporarily detain runoff on-site.

Therefore, large parking lots shall be modelled as a separate subcatchment, storage node, and overland spill connection (if necessary) to the receiving surface flow path. Storage estimates shall be based on observations from the street, and be reflective of realistic ponding depths accounting for grading. The idealized representation will include a single gully-storage node with the number of sag catchbasin in the lot, and a stage-area ‘cone’ with maximum 300 mm ponding/storage depth. Unless provided in engineering drawings or field investigation, the underground sewer size, dimensions and connection to the municipal collection must be assumed.

Ultimately it is the responsibility of the modeller to determine the appropriate representation of a parking lot, considering the actual topography, field conditions, and flow contribution potential to the collection system both above and below ground. In newer ICI redevelopments, the proponent should seek the stormwater management report to reduce the uncertainty in developing the parking lot response.

de rpt_model-guidelines_final_141023.docx 5.27

Page 86: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.5.3 Modelling Reverse Driveways

Reverse driveways are a major contributor to flooding in both the private lot, and potentially indirectly to the sanitary system should flood waters back-up into the house. Therefore, reverse driveways should be considered as individual model elements in drainage areas where flooding is prevalent, overland flow paths are deep, storm sewers are shallow, and density of reverse driveways is high. A separate subcatchment should be created representing the aggregate reverse driveway area in the storm subcatchment. A dummy reverse driveway node (assume elevation below road grade based on field observations) with a “RD_” prefix and gully representing the catchbasin type will connect via dummy storm lateral link to the main sewer assuming 250 mm diameter at 0.5% minimum, unless better information is available.

5.5.4 Modelling Rear Yards

Where significant drainage area is tributary to a rear yard inlet and there is known surface flooding issues, or where several rear yard inlets exist in a subcatchment, it is preferred to separately delineate the drainage area to these structures. Application of rear yard catchbasins to the street node in these situations can over-estimate the storm/combined system inflow, and underestimate surface levels. A dummy rear yard node with a “RY_” prefix shall connect to a representative lead (minimum diameter 250 mm) and be connected to the main sewer system. Assumptions on slope and connectivity shall be documented in the model fields.

5.6 SPECIAL HYDRAULIC STRUCTURES

Represent other structures critical to system operation as accurately as possible in the model. Refer to plan and profile drawings and site photographs for structure details.

5.6.1 Weirs

Weirs can be used for multiple purposes in the modelling environment for basement flooding. As part of the underground piped system, a weir is often used to separate dry weather flow from wet weather flow and controls the discharge of combined sewage to the environment. Weirs can also be used to represent non-physical elements and be used to transfer flow from one node to another, as in spill points for overland flow at low-lying areas. Weirs typically are used as part of a stormwater management facility or underground storage facility outlet structure. The input for weirs is demonstrated in the inset graphic.

de rpt_model-guidelines_final_141023.docx 5.28

Page 87: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

If the weir is in an enclosed pipe system, the roof height is a necessary input to enable appropriate hydraulic calculations should the water level close the roof and the weir begins to function as an orifice.

The configuration of the weir and surrounding setup will affect the parameters of the weir coefficient. These include the shape of the weir and the orientation (transverse weir, side weir). Weirs in InfoWorks CS are transverse, meaning they are perpendicular to the flow. Therefore a lateral or side weir would require modifications to the coefficients. The modeler is referenced to WaPUG User Note 27 for specific cases and advice on coefficient choice.

5.6.2 Orifices

Orifices shall be used to regulate the flow rate and allow volume retention to occur upstream. An orifice can be created through either the use of an orifice plate or a throttle pipe. An orifice plate is a structure placed over the continuation pipe, which restricts flow due to having a smaller diameter than the continuation. A throttle pipe works in a similar fashion, but instead of having a plate, the continuation pipe is sized smaller than the incoming pipe and the flow restriction limits the amount of pass-forward flow and retains water upstream when the pipe full capacity has been reached. This is often used with in-line storage to ensure the storage is fully utilized.

The input for orifices is demonstrated in the inset graphic. If the orifice is known to have a specific design which limits flow above a certain threshold then the limiting discharge is used to reflect this. The modeler is referenced to WaPUG User Note 2 for specific cases and advice on coefficient choice.

5.6.3 Sluice Gates

Sluice gates are used in the model to represent gates in the sewer network which can have variable opening sizes. The user defines the opening size of the sluice gate based on known data and the model calculates the flow capacity based on the diameter of the gate.

The input for sluice gates is demonstrated in the inset graphic. The opening height of the sluice

de rpt_model-guidelines_final_141023.docx 5.29

Page 88: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

can be input to reflect whether the sluice is open or closed and by how much.

5.6.4 User-Control

The user-control link allows the user to apply a head/discharge curve to represent a flow relationship based on a defined invert/crest elevation. This must be applied with caution as the discharge is affected by the differential upstream and downstream head, therefore the user must understand the downstream water level hydraulics and confirm the suitability of using the tool. This link type can be used to represent simplified storage outlet structure rating curves in place of individual orifice, gate, weir, conduit elements. It can also be used as a mechanism to convey 100% of water from one location to another as a dummy link without requiring routing. Certain structures, such as hydraulic control devices, require the use of a user-control link as the discharge is designed to change with variations in the head in a non-linear relationship. Head/discharge curves should be obtained from the supplier. The input for user-control link is demonstrated in the inset graphic.

5.6.5 Pumps

Pumps are applied to the model where non-gravity flow elements are required to convey flow from lower areas to higher areas, such as a sanitary pumping station, or a stormwater tank. The user can define the pump rate and on/off levels, or set known pump/discharge curves according to pump specifications and available information. Pumps require the definition of a storage node upstream to act as either a wet well or an underground storage facility. The outflow from a pump is typically a forcemain, which requires the “Solution Model” type to be “ForceMain”, which assumes the pipe is always full (thereby forcing the pressurized pipe model no matter what the flow conditions) although the hydraulic grade line can drop below the pipe obvert. Negative hydraulic grade lines do not automatically indicate erroneous results. See the InfoWorks help file for more information on the use of pressurized pipes.

de rpt_model-guidelines_final_141023.docx 5.30

Page 89: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.6.6 Culverts

Culverts structures are conveyance structures typically connecting two open channels at a bermed crossing such as a road or railway. They are also sometimes entrances to a closed pipe minor system. The hydraulics of culverts has been investigated through much research, resulting in a series of equations derived to represent the various configurations of the inlet and outlet structures. InfoWorks captures these headloss equations through two distinct link types: the Culvert Inlet, and the Culvert Outlet. The graphic below depicts the input window for these two components. As a result, headlosses should not be input in the conduit(s) representing the culvert.

Appendix B.2.5 provides a reference table of parameters for the above variables, based on the inlet and outlet configuration. A series of Dummy nodes are required to connect the overland channel to the inlet control, to the culvert barrel itself (modelled as a regular conduit), and from the culvert outlet control to the receiving overland channel. Careful definition of the elevation parameters of the culvert inverts and Dummy nodes is required, and the Dummy nodes should not have any associated storage volume. The InfoWorks Help file provides more information on the theory of culvert hydraulics and its model application.

de rpt_model-guidelines_final_141023.docx 5.31

Page 90: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

5.6.7 Real Time Control

RTC parameters are applied when a pump philosophy dictates the functioning of a pump regime. This occurs often in off-line storage where the pump return only operates once the water level at a measured point drops below the set criteria. The RTC uses a logic algorithm to compute the pump philosophy and dictate when the pumps are on or off.

5.7 BOUNDARY CONDITIONS

The operation of a sewer system is often influenced by downstream boundary conditions as backwater effects can impede flow when levels are high. Boundary conditions must be established where the sewer system connects to downstream trunks or where outfalls discharge, and shall consider the time-variability of data.

Boundary conditions vary depending on the model simulation. Therefore, evaluation of the need and extent of boundary conditions must be undertaken for calibration phase, extreme event validation, and design storm simulations. Dates must be appropriately input for each simulation in order for the boundary conditions to apply.

5.7.1 Level Based

Use historic flow monitoring data or other sewer model results, or for outfalls the Toronto & Region Conservation Authority (TRCA) may have water level data simulations (HEC-RAS model) or stage gauges.

For watercourses, the proponent must demonstrate the influence or lack of influence on the outfall, considering the size of the tributary Subwatershed, timing of watercourse stage peak versus collection system peak, and extent of impact on the collection system. Consultation with

de rpt_model-guidelines_final_141023.docx 5.32

Page 91: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydraulics (Conveyance Modelling) Version 1.02 - October 2014

the City is required to determine the appropriate return period from which to assess the watercourse level, which is depending on the watershed and elevation of the existing sewershed relative to the floodplain. Document of all assumptions and justifications.

For sanitary trunk levels, historic level data and/or hydraulic model simulations performed by the City can be used to develop a time series input. Again, the definition of the appropriate return frequency must be derived in consultation with the City, depending on the trunk system, the location within the overall sewershed, and known issues in the downstream system.

Level Groups are time variable, therefore requiring the proper definition of date and time to properly align with each simulation start and end time. All assumptions and sources of data shall be documented within the Level Group Description and within the Profile Properties editor of each profile as demonstrated in the graphic below. Note that the Pipe Level or Datum value is optional, as it is not used in the simulation.

5.7.2 Flow Based

Inflow data is time-varying flow values that can be applied to represent known flow incoming from outside of the study area (e.g. from external model, flow monitoring data, etc.), which will translate into corresponding level and velocity response in the receiving conduit. It can be used to increase run performance by reducing the size of a model through addition of an equivalent inflow hydrograph to a boundary location.

Flow Groups are time variable, therefore requiring the proper definition of date and time to properly align with each simulation start and end time. All assumptions and sources of data shall be documented within the Flow Group Description and within the Profile Properties editor of each profile as demonstrated in the inset graphic.

de rpt_model-guidelines_final_141023.docx 5.33

Page 92: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

6.0 HYDROLOGY (SEWAGE AND RUNOFF MODELLING)

This section discusses the hydrologic modelling principles to be applied for Basement Flooding projects.

6.1 OVERVIEW

The general modeling philosophy demonstrating the interaction of the hydrology with the overland and various underground systems, is presented in the following graphics for separated/partially separated systems, and combined systems.

de rpt_model-guidelines_final_141023.docx 6.1

Page 93: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

The following sections outline the details of the hydrologic components of the storm drainage and wastewater collection systems, and their connectivity to the hydraulic elements described in Section 5.0.

6.2 SUBCATCHMENT SET-UP

Flow is generated within the model from four main sources:

• Dry weather flow from properties connected to the sanitary or combined systems • Wet weather flow from roofs directly connected to storm or combined systems • Wet weather flow from all other surface areas, including non-connected roofs or

overflow from connected roofs • Wet weather Inflow & Infiltration from extraneous sources to sanitary systems

These flows are generated in the model from the Subcatchment layer. InfoWorks CS has a unique model structure that defines a subcatchment by a series of standard “Runoff Surfaces”, grouped together by common “Land Uses”, as demonstrated below.

de rpt_model-guidelines_final_141023.docx 6.2

Page 94: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

Subcatchment Model Schematic in InfoWorks

A subcatchment is made up of a combination of “Runoff Surfaces” by percentage or absolute areas, that can be automated by setting default percentages with various “Land Use” types. Each “Land Use” also can define default wastewater generation parameters, used in concert with the Wastewater Profile editor. Screen captures of the model grid fields demonstrating the interconnectivity between these elements is provided on the following page.

The graphics demonstrate the linkage between the Land Use tab in the Subcatchment grid. For the purposes of Basement Flooding modelling, this tab is used solely to distribute the corresponding Runoff Surfaces IDs to the Runoff Surface Area Numbers in the Subcatchment grid, which applied to the generation of storm runoff only. This is not to be confused with the physical make-up of the land usage within the subcatchment. Section 6.4.1 describes the Runoff Surfaces in more detail.

Subcatchment

Runoff Surface 1

Land Use 1

Runoff Surface 2

Runoff Surface 3

Runoff Surface

12

• Default Runoff Surface % • Wastewater Defaults • Runoff Volume Type (Fixed) • Initial Abstractions (Loss) • Routing Model (SWMM) • Runoff Routing Value (n) • Infiltration Type/Parameters • Runoff Coefficient (1.0)

• Total Area (ha) • Runoff Surface Areas (ha) • Dimension Width (m) • Slope • RTK Hydrograph

de rpt_model-guidelines_final_141023.docx 6.3

Page 95: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

de rpt_model-guidelines_final_141023.docx 6.4

Page 96: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

The Study Area must be discretized into subcatchments for each intended system type (storm, sanitary, combined and overland). For Basement Flooding models, the preference is to use Absolute areas over default percentages, given the detailed nature of these investigations. The subcatchment set-up shall consist of the following base elements:

Subcatchment Description Name Prefix

Sanitary - Population Boundary defined by Lot Fabric and Address Points, to associate population value and land uses only, independent of area.

SP_###

Sanitary - Buffer Area-based boundary defined as a 45 m buffer on either side of all sanitary pipes. Provides a consistent measure of drainage area for dry weather Base Flow and Wet Weather Infiltration/Inflow definition and comparison.

SA_###

Storm/Combined - Topography-Based

Manhole to Manhole, topography -based boundaries, excluding directly-connected roofs.

ST_###

Storm/Combined - Sloped Directly Connected Roofs

Dummy subcatchment to represent the cumulative area of directly-connected sloped-roofs within the topographic subcatchment.

Rc_###

Storm/Combined - Flat Roofs

Dummy subcatchment to represent the cumulative area of directly-connected flat-roofs within the topographic subcatchment.

FRc_###

Storm - Large Parking Lots

Estimate of contributing drainage area in a large parking lot where surface storage and/or stormwater management controls exist. Drains to storage node.

PL_###

Storm - Reverse Driveways

Aggregated drainage area representing the reverse-driveways in a subcatchment. Drains to gully node.

RD_###

Storm - Rear Yard Where significant, drainage area to rear yard catchbasins, draining to gully node.

RY_###

The connectivity of the subcatchments is described further in Section 5.5. Further guidance on each system type is provided in the following section..

6.2.1 Sanitary System

Population subcatchments are to be based on the underlying parcel lot fabric as provided by the City. Manually review and modify the subcatchments as required to confirm appropriate connectivity to the collection system, especially in areas where multiple pipes are located in the same right-of-way. Plumbing drain cards and/or engineering drawings can assist.

de rpt_model-guidelines_final_141023.docx 6.5

Page 97: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

Area-based subcatchments are to be delineated using a 45 m buffer on either side of all sanitary pipes, aggregated such that there are no overlapping boundaries. The buffer approach can be completed in GIS and the resulting polygons can be distributed to nodes within InfoWorks using the “Create from Polygon” routine (Thiessen Polygons). These tributary areas will ultimately define the portion of rainfall that enters the system, therefore manual review and calibration shall be undertaken with any automated delineation approach.

A sample sanitary subcatchment delineation is presented below.

6.2.2 Storm/Combined System

Develop flow paths and drainage boundaries to each maintenance hole using the City’s available Digital Elevation Model (DEM), Enterprise Stereoscopic Model (ESM) and topographic contour information as a base, where suitable data exists. External GIS software tools (e.g. Arc Hydro, Spatial Analyst, Stream Builder, etc.) may be used to help automate the process. The goal is to account for topography and all surface features that may interfere or influence the flow paths, such as curbs, gutters, ditches, fences, buildings, low points, ponds, etc.

Buffer-Based

Parcel-Based

de rpt_model-guidelines_final_141023.docx 6.6

Page 98: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

Utilizing this topographic information, define storm subcatchments on a MH-to-MH basis within the main study area. A lumped modelling approach may be applied to external areas (as defined at the on-set of the project with the City, see Section 3.1.1).

Assume that all front lots are graded towards the street unless topographic/field information demonstrates otherwise. These base topographic subcatchments will be adjusted to remove the connected and/or disconnected roof areas within their boundary. This will be reflected in the Contributing Area field, and each Runoff Surface (see Section 6.3). The conceptual topographic delineation approach is presented below.

Conceptual Storm Subcatchment Delineation

Subcatchment delineation shall account for the physical topography of the overland system, along with the influence of drainage features such as curbs, lot-grading and depressed parking lots. Roof contributions must also be considered where downspouts are directly connected to the minor system via storm lateral, or where flat roofs may provide a level of control and storage. Location of actual catchbasin inlets can be considered in the subcatchment definition, however proper definition of the overland network will primarily influence sewer inflow.

de rpt_model-guidelines_final_141023.docx 6.7

Page 99: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

6.2.3 Roof Areas

As noted in Section 5.5, roofs are simulated as separate model entities to account for the direct connection of pipes to the underground system, and to reflect the proportion of flow that overflows the roof gutters during extreme storm events. Roof areas shall be extracted from the impervious area definition for each Study Area, and shall reflect the actual area within each subcatchment (i.e. default estimates applied globally are discouraged). The conceptual development of the storm delineation for roofs is presented below.

6.2.4 Large Parking Lots, Reverse Driveways & Rear Yards

Large Parking lots are described in Section 5.5.2. Subcatchments shall be estimated where known storage or stormwater management controls exist or are suspected. The proponent is responsible for ensuring an accurate representation of the drainage area is depicted, and should undertake field confirmation of these important elements. The subcatchment shall be names as per the receiving dummy node (with a “PL_” prefix).

Reverse driveways shall be determined by aggregated area extracted from the impervious surface survey. Appropriate slope should be assigned, and will have the “RD_” prefix.

Similarly, where rear yards are simulated they shall be defined with the “RY_” prefix, and represent the tributary area to the specific inlet in question.

de rpt_model-guidelines_final_141023.docx 6.8

Page 100: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

6.3 DRY WEATHER FLOW

6.3.1 EA Modelling

To generate dry weather flow, InfoWorks input includes Baseflow, which represents dry-weather groundwater infiltration, Population, and Trade Flow per subcatchment. These fields work in tandem with the Waste Water Group, where Per Capita Flow Rate and weekday/weekend diurnal patterns are derived from each available flow monitoring area. The flow monitoring analytical processing completed as per Appendix C is the basis for deriving the baseflow, diurnal patterns, and initial per capita rates. If large Industrial-Commercial-Institutional (ICI) usage exists within the Study Area, these flows may be derived from known population data, design equivalent population, water consumption data, or directly as Trade Flows if data exists.

Population data may be provided as address points with defined population per address, or from census-based polygon ‘tracts’, broken up by residential and employment figures. For these studies, distribution of population shall be estimated based on land use and water consumption data. Ultimately, the values assumed must be confirmed through the calibration phase, to provide justification of the resulting population distribution and per capita rates.

Future growth horizon assessment requires adjusted population values to be derived from City Planning data as available. All increased population (that is the difference between future population and baseline) shall be applied to the model as a separate subcatchment with a new associated Waste Water Group profile based on the average 240 L/c/d and the existing flow monitor diurnal pattern. If a new pipe is being sized, 450 L/c/d shall be used as a factor of safety.

6.3.2 Development Reviews

For development application reviews, dry weather flows may be added as a point-source static flow in the field “Additional Foul Flow”, based on the total design-sheet peak flow, only where no storage elements exist in the downstream system. If storage exists, a population approach is required.

6.4 WET WEATHER FLOW

6.4.1 Storm Runoff Surfaces

The storm and combined sewer systems collect overland flow through catchbasins and direct connections from downspouts. This section describes the runoff hydrology approach preferred by the City for basement flooding modelling.

The Runoff Surface defines the basic hydrologic parameters (runoff volume method, hydrologic routing method, initial abstraction or initial loss, surface roughness, and runoff coefficient) for various surface types. In North America, use of the Stormwater Management Model (SWMM)

de rpt_model-guidelines_final_141023.docx 6.9

Page 101: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

routing procedure is most common and has been used for past City flood studies. Normal SWMM surface definitions include:

• Impervious with Depression Storage (i.e. roads, parking lots, etc.) • Impervious without Depression Storage (i.e. roofs) • Pervious (grassed areas with initial abstraction, infiltration, evaporation)

In InfoWorks, these concepts are implemented as types of Runoff Surfaces where parameters are applied and combined by area coverage within each subcatchment to generate a total runoff hydrograph. Subcatchments are defined by a single “Land Use” type, which is made up of varying combinations of Runoff Surface types. The following are the standard Runoff Surface categories to be used in basement flooding models.

The categories represent a set of parameters specific to their Surface Type, and have been set up to allow for variations in the parameter per Type so that calibration can be performed on select subcatchments. For example, the “50” series are devoted to pervious surfaces, where surfaces 50 through 59 can be defined with unique variations of parameters to reflect local conditions. This is demonstrated with surface 50 for poorly-draining soils, and 51 for well-draining soils, which is reflected in modifications to the Horton infiltration parameters. In this way, up to 9 different variations can be simulated in a single model per surface, allowing flexibility in the calibration process.

The proponent will develop an impervious layer in GIS based on the ESM data, orthoimagery, and the building footprint layer, which should include an attribute to identify the type of impervious surface (i.e. roads, sidewalks, parking lots, roofs). For roofs, the downspout connectivity status and receiving sewer are required to help delineate the subcatchments.

The following provides specific guidelines for the runoff hydrology parameters, further described in Appendix B.1.

No. Runoff Surface Type Description

10 Impervious - General Roads, Sidewalks, Parking Lots, Patios

20 Roofs – Disconnected Sloped roof area, not connected to collection system

30 Roofs - Connected Sloped roof area, directly-connected to collection system

40 Flat Roofs Flat roof area

50 Pervious Surface - HSG C-D Pervious area with poorly-draining soils (clays, silts)

51 Pervious Surface - HSG A-B Pervious area with well-draining soils (sandy, loamy)

de rpt_model-guidelines_final_141023.docx 6.10

Page 102: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

InfoWorks Parameter Description Runoff Surface Number

10 20 30 40 50 51

Runoff Routing Value Manning’s Roughness 0.013 0.015 0.015 0.015 0.410 0.410

Runoff Volume Type Runoff Volume Model Fixed Fixed Fixed Fixed Horton Horton

Surface Type Impervious vs. Pervious Imp. Imp. Imp. Imp. Perv. Perv.

Ground Slope Surface Slope (m/m) 0.01 0.33 0.33 0.001 0.01 0.01

Initial Loss Value Initial Abstraction (m) 0.002 0 0 0 0.005 0.005

Fixed Runoff Coefficient Proportion of Surface Area 1.0 1.0 1.0 1.0 - -

Horton Initial Initial Infiltration (mm/hr) 75 200

Horton Limiting Limiting Infiltration (mm/hr) 5 20

Horton Decay Exponential Decay (1/hr) 2.0 2.0

Horton Recovery Dry Recovery (1/hr) 2.0 2.0

Of the above parameters, the most sensitive to affecting the runoff hydrograph is the Fixed Runoff Coefficient. Theoretically, this value should be 1.0 however experience has demonstrated that under extreme events the resulting flow in the system may be over-estimated thus necessitating adjustment to this value to match flood records during the extreme event validation process. This value shall not be lower than 0.75, and should be scrutinized where less than 0.80 to assure appropriate model set-up and connectivity. See Section 7.

6.4.1.1 Width Parameter

In SWMM, Width refers to the characteristic width of the overland flow path for sheet flow. As this parameter is uncertain within an urban environment, it may be appropriate to apply the default which assumes the width is the radius of an equivalent circular drainage area so is independent of subcatchment shape. For the micro-drainage environment this assumption is considered adequate; however, this value may be adjusted to improve fit to measured hydrographs although it is not highly sensitive on small subcatchments. For large lumped subcatchments for external areas, the value shall be calculated with supporting documentation for the suitability of this parameter to represent the actual flow path(s) of the subcatchment. As a guide, the City of Ottawa recommends using 225 m/ha to represent a typical residential subdivision.

6.4.1.2 Subcatchment Slope

The slope default is calculated based on the overland channel that connects downstream of the receiving node. The default is appropriate for small subcatchments, however should be reviewed for consistency and appropriateness in larger subcatchments. Not typically a highly sensitive parameter.

de rpt_model-guidelines_final_141023.docx 6.11

Page 103: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Hydrology (Sewage and Runoff Modelling) Version 1.02 - October 2014

6.4.2 Sanitary Infiltration and Inflow

There are several methods for representing the impacts of wet weather flow on the collection system. Some methods are more suitable than others, depending on availability of data and desired degree of modelling (high-level vs. detailed). The City’s currently preferred method of generating wet weather flow in the sanitary system is the RTK method. Approval and justification is required should the proponent wish to use another approach. RTK parameters shall apply only to the area-based subcatchment.

6.4.2.1 RTK Method

The RTK unit hydrograph method calculates infiltration and inflow entering the sanitary sewers during wet weather events. The RTK method generates a hydrograph based on precipitation data and catchment area. The total I/I in the sanitary sewer system is determined by combining triangular unit hydrographs from three components of flow:

• Rapid inflow (short-term response)

• Moderate infiltration (medium-term response)

• Slow infiltration (long-term response)

The following three parameters describe the shape and volume of runoff that enters the sanitary sewer:

• “R” is the fraction of precipitation that becomes direct inflow

• “T” is the time to peak of the hydrograph

• “K” is the ratio of the recession time to time to peak.

“R” can be equated to the area under the unit hydrograph curve and represents I/I volume per unit area as a fraction of precipitation. The InfoWorks CS model allows for the direct input of RTK parameters on a separate tab, as demonstrated below.

de rpt_model-guidelines_final_141023.docx 6.12

Page 104: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Calibration, Validation and Performance Analysis Version 1.02 - October 2014

7.0 CALIBRATION, VALIDATION AND PERFORMANCE ANALYSIS

The following process should be followed when completing the model calibration and validation.

7.1 CALIBRATIONS

The general process for model calibration is to calibrate the dry weather flow first, followed by wet weather flow sanitary calibration. The final element is the combined and/or storm system calibration. The flow monitoring data review/processing are the main component of calibration.

7.1.1 Dry Weather Flow

Examine the flow monitoring data to find at least two (2) periods of at least three (3) days with minimal precipitation (less than 1mm), and preferably with minimal antecedent moisture conditions. Use these dry periods to compare the model simulation against the observed data for each monitor as input into the Flow Survey Group. The Graph Template is used to map model and monitor locations. Using the Observed and Predicted Graph Report (see graphic), evaluate the resulting graph plots containing peak depth, velocity, flow, and volume metrics.

The hydrographs should be similar in size and shape – if they are not, check to ensure that the correct pipe has been selected for comparison. Document the percent difference of each trial.

Adjust the parameters (baseflow, diurnal patterns, per capita flow rate, population) as considered applicable to obtain a good fit between the simulated and observed flow, making sure to keep the per capita rate within a reasonable range (100 to 450 L/c/d). The goal should be to best represent the higher flow periods of the year should there be seasonal variation, which may result in poorer fits at other part of the year. It is up to the modeler to select the most representative set of parameters given the nature of the study is to replicate flooding during extreme events. Peak flow, volume and depth should match within a range of +/- 10%.

de rpt_model-guidelines_final_141023.docx 7.13

Page 105: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Calibration, Validation and Performance Analysis Version 1.02 - October 2014

Differences will sometimes persist due to field conditions or issues with the monitoring data. Document the final results for each flow monitoring site in terms of tabular/graphic goodness of fit, and Observed vs. Predicted plots.

7.1.2 Sanitary Wet Weather Flow

For calibration and verification of wet weather flow, it is important to select storm events that produce adequate response in the system. A minimum of three (3) storm events are necessary and they should have differing characteristics in terms of intensity and duration. Also, sufficient time must pass between events for flow to return to dry weather conditions. For more details, refer to WaPUG User Note No. 6. The proponent should target events greater than 15 mm where possible, and even greater where feasible to capture the indirect extraneous flow connections to the sanitary system that are only revealed under larger events. Comparison to all nearby rain gauges may be required to confirm event spatial response.

Develop RTK parameters such that the total R of the base three unit hydrographs sum to a reasonable value, as derived from the flow monitoring analysis (hydrograph separation techniques). For the sanitary system alone, the total R should be less than 4% unless significant deficiencies exist in the system and/or roofs and foundation drains are highly connected to the sanitary. The shape of the individual unit hydrographs shall also be reviewed to ensure they are physically representative of the three characteristics responses. Automated curve--fitting techniques must be reviewed and confirmed for suitable, realistic shapes.

For combined systems, a combination of direct runoff surface and RTK may be required to fully represent the system response in terms of shape and volume. See 7.1.3 for more on storm flow.

For the chosen events, compare the model simulation against the observed data. Document Observed vs. Predicted plots and goodness-of-fit metrics (peak depth, velocity, flow and volume), in order to iteratively adjust the RTK parameters to achieve the following criteria:

• Non-instantaneous Peak flow matches within -15% to +25%

• Volume matches within -10% to +20%

• Depth matches within -10% to +20%

• The modelled hydrograph’s shape should closely resemble the shape of the observed hydrograph for the duration of the event

If the calibration criteria cannot be met, the proponent must investigate potential explanations for the discrepancy and provide supporting justification for use of the selected parameters. It is understood that the RTK methodology has its limitations in that by definition the characteristic shape cannot represent all forms of event types. The objective should be to best represent the more intense, high volume storms over long-duration, low intensity events.

de rpt_model-guidelines_final_141023.docx 7.14

Page 106: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Calibration, Validation and Performance Analysis Version 1.02 - October 2014

7.1.3 Storm Flow

Similar to the sanitary wet weather flow calibration, at least three (3) storm events of significant depth and intensity shall be selected for calibrating the storm and/or combined system response. Confirm the sensitivity of the hydrologic parameters to the resulting hydrograph generation, and adjust roughness, width, infiltration and depression storage parameters as necessary. If major discrepancies remain, confirm the model connectivity and all assumptions for roof connectivity and storage, parking lot storage, overland flow paths, and catchbasin distribution/rating curves. Comparison of nearby rain gauges may be required to improve the fit.

Since there is emphasis on the accurate development of actual impervious surface allocation, adjustments to the runoff coefficient should be considered a last resort for small event simulations, defined as those generally less than a 25 year storm. Care should be taken to understand the climatic conditions during the monitoring period, especially near the end of fall/ early spring where snowpack/melt can have a skewing influence on simulation results.

Document the calibration trials and goodness-of-fit, and provide justification for final selection of the calibrated parameters.

7.2 EXTREME STORM VALIDATION

Extreme Storm Validation is the process of checking the calibrated model against historic flood data to determine the ability to replicate these known records of basement and/or surface flooding. This qualitative review provides the supporting evidence that the model is capable of replicating known system deficiencies and can therefore be used to develop remedial solutions.

7.2.1 Historic Rainfall Events

Significant historic rainfall events which were known to cause flooding represent good data for validating the model against low frequency return events. This is an important step in the validation process as it aids in confirming the model's accuracy in predicting flooding against locations with known flooding. Standard historic events are:

• May 12, 2000

• August 19, 2005

• Other storms as defined by the City/Terms of Reference

Local historical rainfall gauge data should be used for the validation of the local area model.

For the sanitary system, adjustments to the RTK parameters may be required if the model results do not indicate elevated hydraulic grade line (HGL) to theoretical basement level. For extreme events, modifications can primarily focus on the first characteristic unit hydrograph parameters,

de rpt_model-guidelines_final_141023.docx 7.15

Page 107: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Calibration, Validation and Performance Analysis Version 1.02 - October 2014

adjusting the R1 value and/or T1 to enhance the volumetric/peak flow response. Results of the extreme event validation must be conducted in concert with the storm/combined system validations, to help interpret potential factors contributing to flooding, and to prevent stressing the system to meet historic records at the expense of over-estimating flooding elsewhere.

For the storm or combined systems, extreme events typically over-estimate peak flow response which may require the adjustment of the Fixed Runoff Coefficient to help reduce the response. This parameter is highly sensitive and should be adjusted with caution, and should strive not to be lower than 0.75 as this is an indication of faulty model set-up.

Justification of the final “Large Event” model parameters shall be documented with maps comparing simulated vs. recorded flood reports, to be submitted and reviewed by the City prior to advancement of alternative definition. See Section 10.1 for model submission requirements.

7.2.2 Long-Term Historic Data

Long term monitoring data is often recorded at important locations, including CSOs, Pump Stations, off-line storage tanks and the treatment plants. The data is recorded for quality control to ensure that the ancillaries are performing as designed. This data provides useful information to validate the model against specific events or long term network conditions including water levels, bypass/overflow frequency, and pump station on/off status and run times.

7.3 PERFORMANCE ANALYSIS

System performance is related to the level of service criteria for each system type. The City’s criteria in the chronic basement flooding areas has been established as the elevated level of service design criteria approved in the City’s 2006 Work Plan as follows:

• Sanitary Sewer System: The maximum hydraulic grade line (HGL) of the sanitary system shall be maintained below basement elevations (approximately 1.8 m below street centreline) during a storm event equivalent to the May 12, 2000 storm as gauged at the City’s Oriole Yard (Station 102) located at Sheppard Avenue and Leslie Street. This design standard provides an enhanced level of protection against basement flooding from sanitary sewer backup for a storm event with a return frequency between 1 in 25 and 1 in 50 years.

• Storm Drainage System: During the 100-year design storm, the maximum HGL in the storm sewer (minor) system shall be maintained at no surcharged conditions, while the overland flow (major) system shall be maintained within the road allowance and no deeper than the recommended standard as outlined in the Wet Weather Flow Management Guidelines, City of Toronto, November 2006. Should it be infeasible to achieve no surcharge conditions, the maximum HGL shall be maintained below basement elevations during the 100-year design storm.

de rpt_model-guidelines_final_141023.docx 7.16

Page 108: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Calibration, Validation and Performance Analysis Version 1.02 - October 2014

• Combined Sewer System: Same as the storm system for the 100 year event. Annually, combined sewer overflows must meet the objectives of MOE Procedure F-5-5 for volumetric capture during April to November in continuous simulations.

• Overland flow depths and velocity must be considered for public safety, as below:

Water Velocity (m/s) Permissible Depth (m)

2.0 0.21

3.0 0.09

Based on a 20-kg child and a concrete-lined channel The figure below demonstrates the targeted level-of-service in a typical separated sewer system.

Typically, risk of basement flooding is considered if:

• Surface water level is above the surface elevation (gutter elevation) by more than 300 mm, or where there are reverse-slope driveways, by more than 150 mm

• Surcharge level in the storm sewer is higher than 1.8 m below the surface elevation, which coincides with the assumed basement elevation for homes with direct or indirect basement connections to the storm sewer.

The performance analysis consists of running a suite of design storms and long term rainfall data, and reviewing how the model performs and identifying locations prone to flooding (called a “ramped analysis”). This demonstrates the model’s response to increasing duration and intensity design storms. Tools are available within InfoWorks to calculate statistics, such as the flow at which the first spill occurs at a CSO or frequency that spills occur through a year-long continuous

de rpt_model-guidelines_final_141023.docx 7.17

Page 109: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Calibration, Validation and Performance Analysis Version 1.02 - October 2014

simulation. CSO’s shall be reported for total flow versus flow captured and sent for treatment to the wastewater treatment plant.

Result presentation shall conform to the guidelines outlined in Section 10.2.

7.3.1 Model Stability

Model stability should be confirmed through several simple checks, including:

• Time Step Log - with this box toggled in the Schedule Hydraulic Run window, a summary of the model stability is presented by way of individual Link and Node summaries of solution convergence failure counts. Elements with high counts should be investigated to determine the need for adjustments to the model set-up.

• Node Simulation Results: confirm % Volume Balance by sorting results in the grid view, and investigating those nodes where the value exceeds 2%.

• Link Simulation Results: confirm reasonable peak velocity results, which may be an indication of model instabilities.

de rpt_model-guidelines_final_141023.docx 7.18

Page 110: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Flooding Improvement Works Definition Version 1.02 - October 2014

8.0 FLOODING IMPROVEMENT WORKS DEFINITION

It is the expectation of all InfoWorks Basement Flooding modelling assignments that full solution improvement works be simulated within the modelling environment. In the EA phase, all proposed alternatives must be coded into the model, independent of its selection as preferred. Similarly in the Detailed Design phase, the model shall be used as the sizing tool to confirm interim functionality of the proposed assignment(s).

The following outline considerations for typical improvement measures to be simulated in the model environment.

8.1 CONVEYANCE IMPROVEMENTS

8.1.1 Catchbasins

The following must be considered when evaluating catchbasin inlet improvements:

• Solutions should minimize the application of inlet-control devices (ICDs) on a system-wide scale due to concerns with their feasibility to implement and susceptibility to vandalism. For guidance, a maximum of 15-20% application of ICDs should be targeted for all CBs in the study area.

• The standard inlet control device is an orifice plate (117.4 mm opening) that limits flow to approximately 40 L/s at the maximum surface ponding depth of 0.30m.

• The impact of inlet control on surface water levels must be considered.

• High capacity inlets should not exceed 250 L/s maximum capture rate unless specifically designed and approved by the City.

• Inlets must be situated within the paved road way and not in the boulevard unless extenuating circumstances permit (in consultation with the City).

• Standard head-discharge relationships are provided in Section 5.2.2.1.

8.1.2 Underground Pipes

Sewers must consider the following when being evaluated and sized as an alternative solution:

• No net increase in receiving sanitary trunk sewer peak flow under wet weather conditions, which can be reviewed collectively from a study area should several connections exist to the trunk.

• The City prefers pipe replacement over pipe twinning.

de rpt_model-guidelines_final_141023.docx 8.1

Page 111: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Flooding Improvement Works Definition Version 1.02 - October 2014

• The impact of reverse-driveways and roof downspouts. All solutions shall assume 75% downspout disconnection.

• At the EA conceptual design phase, the alignment must consider conflicts from the existing and proposed storm and sanitary infrastructure, along with large diameter watermains. At the Detailed Design phase, all additional subsurface and surface constraints (trees, utilities, etc.) must be considered.

• The EA stage should consider normal sewer design practices regarding profile including provisions for drops across manholes when defining the alignment, versus simply upsizing poorly sloped sewers.

• Pipe sizes shall conform to standard circular or box culvert sizes commercially available where feasible.

• In some design cases where crossing utilities or insufficient cover depth prevent the construction of a circular pipe, an elliptical pipe can be turned 90 degrees to a horizontal elliptical pipe. InfoWorks does not allow this configuration, requiring that a circular pipe of equivalent capacity be modelled. As a result, it must be acknowledged that the HGL will be lower than shown in the modelled profiles.

• The Toronto Sewer and Watermain Design Guidelines (see Appendix E) should be consulted as part of all design processes.

• Improvement works in easements shall be avoided where feasible.

• Conveyance improvements to new storm outfalls shall be considered only in consultation with the City and TRCA.

8.2 STORAGE IMPROVEMENTS

8.2.1 Underground - In-line Storage

Underground in-line storage occurs as “super-pipes”, and should consider:

• In-line storage is typically controlled passively via change in diameter, and can be simulated as a pipe with no extra control measures.

• Should additional control be required, an orifice can be used in-line by adding a new node at the downstream end of the in-line pipe. The pipe length may require manual adjustment in order to allow visualization of the orifice in the model GeoPlan.

• Sanitary in-line storage control is discouraged, however it may be considered in consultation with the City should sufficient capacity exist through the control to pass the

de rpt_model-guidelines_final_141023.docx 8.2

Page 112: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Flooding Improvement Works Definition Version 1.02 - October 2014

projected future (e.g. 2031) peak dry weather flow without surcharge. The self-cleansing velocity of greater than 0.6 m/s under dry weather flow conditions must be achieved.

8.2.2 Underground - Off-line Storage

• Off-line storage tanks shall be modelled as a Storage node, with defined stage-area dimensions input including a closed tank roof.

• Control structures shall be simulated as either individual orifices and weirs, or through a clearly-defined and documented User Control with Head-Discharge table. The modeler is cautioned on the use of an aggregated User-Control as the hydraulics are computed based on the effective head across the link which can introduce error if the downstream water level exceeds the User-Control Crest level.

• Consideration to the physical piping needs at the EA stage are required to confirm the physical inlet/outlet configurations are feasible with the available grade of existing pipes.

• Consideration must be given to the drawdown time of the tank, considering the possibility of back-to-back storm events. A 12 to 24-hour drawdown time should be targeted. To minimize operations and maintenance requirements, the facility should be designed for storms greater than the 5-year event if possible.

• If gravity drainage is not feasible, introduction of a pump is required complete with estimate of peak flow and duration.

• Location of an underground tank must consider the available publicly-owned space, and siting requires full consultation with Parks and Forestry early in the design process.

8.2.3 Surface Storage Pond

Surface storage elements should consider:

• Open ponds shall be modelled as a Storage node, with defined stage-area dimensions input reflecting the ponds anticipated grading/foot-print.

• If a permanent water surface is intended in the design and outlet structures connected to the node are below this elevation, then the storage element must provide for the total dead and active storage of the pond in its definition.

• Outlet control from the pond can be simulated as a combination of individual orifices, weirs and pipes, or collectively as a clearly-defined and documented User Control with Head-Discharge table. The modeler is cautioned on the use of an aggregated User-Control as the hydraulics are computed based on the effective head across the link which can introduce error if the downstream water level exceeds the User-Control Crest level.

de rpt_model-guidelines_final_141023.docx 8.3

Page 113: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Flooding Improvement Works Definition Version 1.02 - October 2014

• The Ministry of Environment Stormwater Management Planning Design Manual (2003) shall be referenced for potential integration of water quality enhancement measures where feasible, including permanent pool, forebay, and extended detention.

• Location of a surface storage facility must consider the available publicly-owned space, and siting requires full consultation with Parks and Forestry, and TRCA if applicable, early in the design process.

8.2.4 Design Sensitivity Analysis

The model is typically calibrated to storm events different in nature from the Design Storms applied to define the proposed improvement works. It is therefore good practice to test the sensitivity of various parameters on the preferred solutions model to confirm the potential impact of changes to roughness coefficients, headloss coefficients, and boundary conditions on the proposed solution.

de rpt_model-guidelines_final_141023.docx 8.4

Page 114: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Completed Model Applications Version 1.02 - October 2014

9.0 COMPLETED MODEL APPLICATIONS

As described throughout this guide, a common approach to model development and documentation will facilitate the application of the constructed models for several future needs, as described herein.

9.1 DESIGN AND CONSTRUCTION

A validated hydraulic model provides a good basis for beginning design and construction of solutions recommended by the Basement Flooding EA. Proposed flood mitigation and hydraulic structures can be simulated to determine their effectiveness and provide a basis for making design modifications. The model is a useful tool for determining the sizing necessary to meet design criteria requirements. It also allows for evaluation of system hydraulics in an interim condition where only parts of the solution have been constructed.

Typically, the EA models are provided to the proponent for use in the preliminary design confirmation and final design MOE submissions. The EA solution is refined based on the field and utility survey data collected, and confirmed with revised model simulations in the existing and interim condition state. Final design models are fully documented and returned to the City for future use.

9.2 DEVELOPMENT REVIEWS

Future developments have the potential to increase flooding by removing pervious surfaces and increasing contributions from new population and/or industry. The completed models are to be used to help identify capacity constraints in the system, and to guide development engineers on the extend of impact of their proposals and the criteria for on-site design to mitigate that impact.

de rpt_model-guidelines_final_141023.docx 9.1

Page 115: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Final Deliverables Version 1.02 - October 2014

10.0 FINAL DELIVERABLES

This section outlines the expectation for delivery of final model files and presentation graphics.

10.1 MODEL SUBMISSIONS

All model submissions shall be via InfoWorks CS Compact Transportable Database (*.IWC) without model simulation results or Ground Model Group, to minimize the file size. Therefore all associated Group files required to rerun and analyze the simulations shall be provided as applicable, including:

• Run Group • Rainfall Group (all events/profiles) • Wastewater Group • Trade Flow Group • Level Group (boundary conditions, initial levels) • Inflow Group (boundary conditions, pump inflow, external areas, etc.) • RTC Group • Selection Lists (of EA Projects etc.) • SQL Group • Graph Template Group • Flow Survey Group • Statistics Group

In the InfoWorks CS Database Administrator, by copying the Run file from the Master Database, all associated files needed to run the simulation will automatically be pasted to the Compact Transportable Database. Supporting analysis Groups must be separately selected and pasted.

The proponent and City shall determine the required model files to be generated for the respective project using the forms in Appendix A as a record: Form A-3 for EA models, and Form A-4 for Design Models. This form shall also be used to document receipt and acceptance of the provided hydraulic models and will form part of the final project deliverable.

The submitted InfoWorks files MUST be fully documented in their respective Description Fields, in that they clearly outline the content and pertinent specifics of each Network and model Group. The City will not accept undocumented model submissions. The following provides an example excerpt of a compact transportable database with documentation.

de rpt_model-guidelines_final_141023.docx 10.1

Page 116: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Final Deliverables Version 1.02 - October 2014

10.2 MODEL RESULTS DOCUMENTATION

The following minimum standard for model documentation must be adhered to when presenting modelling results as thematic maps.

10.2.1 Sewer Flow Model Results

The correlation of flooding is estimated based on the surcharge state of the conduits and the HGL at the nodes relative to a theoretical basement elevation of 1.8 m below ground.

The slope of the HGL at each pipe segment can indicate whether the cause of surcharge is from the sewer being under-capacity (i.e. bottleneck) or the result of backwater from another downstream sewer. Therefore, the “surcharge state” of each pipe shall be colour-coded in all ArcGIS figures as follows:

• GREEN (i.e. surcharge state <1): The pipe is not surcharged, meaning water level is below the crown of pipe).

• YELLOW (i.e. “surcharge state =1): The pipe is surcharged and the slope of the HGL is flatter than the pipe slope, meaning the surcharge is due to backup as a result of an over-loaded downstream pipe.

• RED (i.e. surcharge state = 2): The pipe is surcharged and the slope of the HGL is steeper than the pipe slope, meaning the surcharge is caused by the pipe, which is overloaded and is acting as a bottleneck (flow exceeds its capacity).

The nodes depict the maximum water level (HGL), in the storm sewer system. The HGL as defined at model nodes is categorized as follows:

• GREEN: The HGL is below 1.8 m from the surface, the theoretical basement elevation; for shallow sewers that are within 1.8 m from the surface, the level remains in the pipe.

• YELLOW: The HGL is above 1.8 m below surface, but below the ground elevation.

• RED: The HGL is at, or above, the surface with flooding from the sewer to the street.

de rpt_model-guidelines_final_141023.docx 10.2

Page 117: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Final Deliverables Version 1.02 - October 2014

10.2.2 Overland Depth Model Results

The overland flow system depth shall be graphically depicted by colour-coding the water level in the overland flow system (links) in three different categories:

• GREEN: From surface to 150 mm above gutter surface - indicates that the flow is contained within the street curbline

• YELLOW: From 150 mm to 300 mm above gutter surface - indicates the water is above the curb but contained within the street right-of-way (public property)

• RED: More than 300 mm above surface - indicates potential surface flooding of private properties and potential basement flooding from surface runoff.

10.3 MODEL DOCUMENTATION FOR FUTURE USERS

The time and effort spent developing a hydraulic model can be wasted if proper documentation for the long-term operation and maintenance of the tool is not prepared. As the state of the practice evolves, specific assumptions applied to model development may change over time thus emphasizing the need for the documentation of data availability and vintage, methodology applied, and all assumptions made for specific model elements of note.

It is critical for both current and future users of the model to have a thorough understanding of the data and assumptions that form the basis of the model. Therefore, thorough records of all data collection, model building, calibration/verification, modifications and results must be summarized in technical memoranda submitted to the City, for any modelling activity.

As time goes on, multiple manipulations of the model will likely occur stressing the importance of record keeping by the City. It is the intent that all supporting model documentation will be hyperlinked on the City server to the corresponding version of the model-build. This supporting documentation will further clarify internal model notes and descriptions.

10.4 GEODATABASE SUBMISSION

As discussed in Section 2.2 and recorded in Form A-2 in Appendix A, a project geodatabase shall be submitted as part of the EA assignments. Appendix D.2 outlines the specific field metadata requirements to be incorporated into the City’s existing Feature Class data. Form A-2 shall be used to document the receipt

de rpt_model-guidelines_final_141023.docx 10.3

Page 118: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix A Project Sign-off Sheets Version 1.02 - October 2014

PROJECT SIGN-OFF SHEETS Appendix A

The following sheets shall be used for documenting and tracking the sources of information, and will form part of the submission to the City as confirmation of model development activities that have or have not been undertaken.

Note: forms included in these guidelines are provided for information only. Refer to the corresponding RFP for each project/study for the correct forms to be submitted to the City.

de rpt_model-guidelines_final_141023.docx A.1

Page 119: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix A Project Sign-off Sheets Version 1.02 - October 2014

FORM A-1: TYPICAL DATA SOURCES

Sec# Data Received (yy/mm/dd)

Comments

2.2.1 Base Layers

• Parcel Fabric with Land Use Designation ☐ __/__/__

• Address Points with Water Billing Records ☐__/__/__

• Population (current and projected future) ☐__/__/__

• Orthoimagery ☐__/__/__

• Digital Elevation Model (DEM) ☐__/__/__

• Topographic Contours (0.5m) ☐__/__/__

• Building Footprint Polygon ☐__/__/__

• Road Centreline Polyline ☐__/__/__

• Other ☐__/__/__

2.2.2 Sewer Asset Geodatabase • Manholes and Junctions ☐__/__/__ • Sewers ☐__/__/__

• Catchbasins and Leads ☐__/__/__ • Outfalls ☐__/__/__ • Special Structures ☐__/__/__

2.2.3 Operation & Maintenance Data

• Historic Basement Flooding Records (point) ☐__/__/__

• Historic Hansen Work Order Logs (point) ☐__/__/__

• CCTV Records from the Past 10 Years (polyline) ☐__/__/__

• Smoke/Dye Testing Reports/Results ☐__/__/__

• Recent Sewer Improvement Works (polyline) ☐__/__/__

2.2.4 Flow Monitoring Data

• Rain Gauge Locations layer (point) ☐__/__/__

• Rain Gauge depth time series ☐__/__/__

• Flow Monitoring flow, depth and velocity time series (where available)

☐__/__/__

2.2.5 Other Supporting Data

• Previous Studies (pdf or hard copy) ☐__/__/__

• Geotechnical Reports or Data, including the historic Golder Borehole Database

☐__/__/__

• Planning Reports/Information for New Development and/or Redevelopment

☐__/__/__

• InfoWorks Models related to the Study ☐__/__/__

de rpt_model-guidelines_final_141023.docx A.2

Page 120: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix A Project Sign-off Sheets Version 1.02 - October 2014

FORM A-2: FIELD SURVEY

Sec# Task Required1 Submitted

2.2.1 Address Survey Purpose: To view each residential property from the curb to document: 1. Downspout connectivity 2. Possibility of downspout disconnection 3. Downspout discharge location 4. Reverse driveway 5. Poor lot grading 6. Flat roof

1. ☐ 2. ☐ 3. ☐ 4. ☐ 5. ☐ 6. ☐

1. ☐ 2. ☐ 3. ☐ 4. ☐ 5. ☐ 6. ☐

2.2.2 Catchbasin Survey Purpose: To confirm accuracy of the City’s Asset Database, and to characterize: 1. Type (single/twin/sag) 2. Grate Style

1. ☐ 2. ☐

1. ☐ 2. ☐

2.2.3 Manhole Cover Survey Purpose: To check for perforated covers with an emphasis on locations within overland flow paths(particularly at low points), and confirm accuracy of the City's asset database.

• ☐

2.2.4 Low Point Survey Purpose: To confirm location, potential ponding depth, and direction of overflow of critical low-lying areas subject to water accumulation.

• ☐

2.2.5 Outfall/Surface Drainage Structure Survey Purpose: To document physical attributes and field conditions of each storm sewer outfall and associated drainage infrastructure such as culverts. Information to be inventoried include: 1. Type (Endwall/Headwall/Free Outlet) 2. Shape and measured dimensions 3. Material 4. Structural Condition and blockage/submergence 5. Downstream erosion/conditions

1. ☐ 2. ☐ 3. ☐ 4. ☐ 5. ☐

1. ☐ 2. ☐ 3. ☐ 4. ☐ 5. ☐

2.2.6 Field Chamber/Facility Inspection Purpose: To collect field information on chambers identified to contain special structures, those identified through engineering validation, or Pump Stations. Chambers typically require confined space entry. Document measurements, photos and field inspection sheet.

• ☐

• ☐

2.2.7 Resident Questionnaire Purpose: Prepare a questionnaire and distribute through the Public Consultation Unit to all residents in the Study Area to gather additional information regarding downspout and sump pump connectivity, history of flooding, source or nature of past flood water, and other notable observations related to surface and basement flooding.

• ☐

• ☐

1. Required field activities to be determined for each assignment as per the Terms of Reference, in consultation with the City. See Section 2.2.

de rpt_model-guidelines_final_141023.docx A.3

Page 121: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix A Project Sign-off Sheets Version 1.02 - October 2014

INFOWORKS CS BASEMENT FLOODING MODEL SUBMISSION STANDARDS

All model submissions shall be via InfoWorks CS Compact Transportable Database (*.IWC) without model simulation results, to minimize the file size. Therefore all associated Group files required to rerun and analyze the simulations shall be provided as applicable, including:

• Rainfall Group (all events/profiles) • Wastewater Group • Trade Flow Group • Level Group (boundary conditions, initial levels) • Inflow Group (boundary conditions, pump inflow, external areas, etc.) • RTC Group • Selection Lists (of EA Projects etc.) • SQL Group • Graph Template Group • Flow Survey Group • Statistics Group

In the InfoWorks CS Database Administrator, by copying the Run file from the Master Database, all associated files needed to run the simulation will automatically be pasted to the Compact Transportable Database. Supporting analysis Groups need to be selected to be pasted.

de rpt_model-guidelines_final_141023.docx A.4

Page 122: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix A Project Sign-off Sheets Version 1.02 - October 2014

FORM A-3: EA MODEL SUBMISSIONS*

Req’d MODEL Submitted Accepted

Existing Condition - Wastewater Calibration

☐ • Wastewater Dry Weather Calibration Period 1 ☐

☐ • Wastewater Dry Weather Validation Period 2 ☐

☐ • Wastewater Dry Weather Validation Period 3 ☐

☐ • Wastewater Wet Weather Calibration Event 1 ☐

☐ • Wastewater Wet Weather Validation Event 2 ☐

☐ • Wastewater Wet Weather Validation Event 3 ☐

☐ • Wastewater Extreme Event Validation 1 ☐

☐ • Wastewater Extreme Event Validation 2 ☐

☐ • Wastewater Extreme Event Validation 3 ☐

Existing Conditions - Storm Calibration

☐ • Storm Wet Weather Calibration Event 1 ☐

☐ • Storm Wet Weather Validation Event 2 ☐

☐ • Storm Wet Weather Validation Event 3 ☐

☐ • Storm Extreme Event Validation 1 ☐

☐ • Storm Extreme Event Validation 2 ☐

☐ • Storm Extreme Event Validation 3 ☐

Design Event Existing Conditions

☐ • Wastewater Dry Weather ☐

☐ • Wastewater Dry Weather Future Horizon ☐

☐ • 5 Year Storm ☐

☐ • 100 Year Storm ☐

☐ • May 12, 2000 at Gauge 102 ☐

☐ • May 12, 2000 at Gauge 102 (Future Horizon) ☐

EA Preferred Solutions

☐ • Wastewater Dry Weather ☐

☐ • Wastewater Dry Weather Future Horizon ☐

☐ • 100 Year Storm ☐

☐ • May 12, 2000 at Gauge 102 ☐

☐ • May 12, 2000 at Gauge 102 (Future Horizon) ☐

* See model submission standards on page A.3 and Section 11.1.

de rpt_model-guidelines_final_141023.docx A.5

Page 123: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix A Project Sign-off Sheets Version 1.02 - October 2014

FORM A-4: DESIGN MODEL SUBMISSIONS (PER ASSIGNMENT)

Req’d MODEL Submitted Accepted

EA Verification - Existing Conditions

☐ • Wastewater Dry Weather ☐ ☐

☐ • 5 Year Storm ☐ ☐

☐ • 100 Year Storm ☐ ☐

☐ • May 12, 2000 at Gauge 102 ☐ ☐

EA Verification - Assignment Conceptual Design

☐ • Wastewater Dry Weather ☐ ☐

☐ • 100 Year Storm ☐ ☐

☐ • May 12, 2000 at Gauge 102 ☐ ☐

Preliminary Design - Per Assignment Bundle

☐ • Wastewater Dry Weather ☐ ☐

☐ • 100 Year Storm ☐ ☐

☐ • May 12, 2000 at Gauge 102 ☐ ☐

Final Design MOE Submission

☐ • Wastewater Dry Weather ☐ ☐

☐ • 100 Year Storm ☐ ☐

☐ • May 12, 2000 at Gauge 102 ☐ ☐

* See model submission standards on page A.4 and Section 10.1.

de rpt_model-guidelines_final_141023.docx A.6

Page 124: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

HYDROLOGIC AND HYDRAULIC REFERENCES Appendix B

B.1 HYDROLOGY

Resource tables of common parameters with Source Reference for model input

B.1.1 Manning’s Roughness - Surface Flow

The Manning’s roughness coefficient for surface runoff is also known as the runoff routing value in InfoWorks CS. In some previous City studies, a value of 0.41 was used for pervious areas to represent the variation of lawns, woodlots, gardens, etc. Connected roofs are assumed to be rough shingles or gravel. For a disconnected roof, a value between the roof and pervious value can be selected to account for the dampening effect of the pervious surface over which the downspout will discharge.

Surface Manning’s n

Published Values Previous City Studies

Concrete/Asphalt 0.010 – 0.013 0.013

Pervious (Bermuda Grass) 0.30 – 0.48 0.410

Connected Roofs - 0.015

Disconnected Roofs - 0.300

From: Water Resources Engineering by Chin (2000), Table 6.15 Hydrology and Floodplain Analysis (2nd Ed.) by Bedient and Huber (1992), Table 4.2

B.1.2 Initial Abstraction

The initial abstraction, also known as initial loss or depression storage in InfoWorks CS, is the theoretical depth of rainfall that will accumulate on a surface before runoff begins. This is the initial component of a rainstorm that is ‘lost’ to wetting the ground and forming small puddles in minor depressions and irregularities in the ground surface. A conservative approach assumes no depression storage for roofs. The following parameters shall guide the input of suitable initial abstraction values for Basement Flooding projects.

Surface Initial Abstraction

Published Values Previous City Studies

Impervious 0.2 – 2.5 mm 2 mm

Pervious 2.5 – 7.6 mm 5 mm

From: SWMHYMO User’s Manual by J.F. Sabourin & Associates Inc. (2000), Table A7 Stormwater Conveyance Modeling and Design (1st Ed.) by Haestad Methods Inc. (2003), pg 110

de rpt_model-guidelines_final_141023.docx B.1

Page 125: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

B.1.3 Infiltration Parameters

Past City InfoWorks flooding studies have used the Horton infiltration methodology to determine the ‘loss’ of precipitation to groundwater or vegetative transpiration. The proponent is welcome to recommend alternative infiltration loss methods for consideration and approval by the City in advance of application within the model.

The Horton parameters are based on soil type and published values are often classified by the USDA Natural Resources Conservation Service Hydrologic Soil Group (HSG). These groups are based on the soil’s runoff potential where “A” has the smallest runoff potential (sand) and “D” the greatest (clay). These parameters are not highly sensitive in an urban model where the peaky impervious response dominates. The following table provides guidance for the selection of suitable parameters.

Infiltration Parameter MTO Design Chart 1.13* InfoWorks Help File

HSG “C” HSG “D” HSG “C” HSG “D”

Initial (mm/hr) 125 75 125 76

Limiting (mm/hr) 5.0 5.0 6.3 2.5

Decay Rate (hr-1) 2 2 2

*From MTO Drainage Management Manual (1997), Table 1.13

B.1.4 Design Storm Events

The City of Toronto harmonized Intensity-Duration-Frequency (IDF) curves (2006) are used to define the design storm hyetographs to be used for the system assessment of level-of-service. For the purposes of the design storm analyses, the 6-hour Chicago storm distribution with 10 minute time steps and ratio to peak r=0.38 shall be applied to all future flooding projects. This synthetic rainfall distribution is representative of typical summer rain storms over urban areas, is suitable for simulating realistic peak flows, and has sufficient volume for assessing storage elements. The following graphics present the City’s IDF parameters and 100 year design storm hyetograph, followed by the May 12, 2000 Design hyetograph.

The City of Toronto will provide the design storms in InfoWorks format as part of a Compact Transportable Database file.

de rpt_model-guidelines_final_141023.docx B.2

Page 126: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

RainfallMin (mm/hr)

Synthetic Design Storms>100yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>50yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>25yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>10yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>5yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>2yr6hr10minChicago(r=0_38), 1

Max (mm/hr)Synthetic Design Storms>100yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>50yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>25yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>10yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>5yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>2yr6hr10minChicago(r=0_38), 1

Rainfall depth (mm)Synthetic Design Storms>100yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>50yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>25yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>10yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>5yr6hr10minChicago(r=0_38), 1Synthetic Design Storms>2yr6hr10minChicago(r=0_38), 1

0.000 242.831 85.1850.000 217.613 76.3380.000 183.851 64.4950.000 157.413 55.2200.000 127.705 46.4780.000 85.420 32.253

Produced by deadie (10/4/2014 1:58:20 PM) Page 1 of 1 Rainfall Event: >City of Toronto Standard Data>Rainfall Group - Toronto BF Studies>Synthetic Design Storms>100yr6hr10minChicago(r=0_38) (9/12/2014 1:59:55 PM) Rainfall Event: >City of Toronto Standard Data>Rainfall Group - Toronto BF Studies>Synthetic Design Storms>50yr6hr10minChicago(r=0_38) (9/12/2014 3:00:53 PM) Rainfall Event: >City of Toronto Standard Data>Rainfall Group - Toronto BF Studies>Synthetic Design Storms>25yr6hr10minChicago(r=0_38) (9/12/2014 1:59:24 PM) Rainfall Event: >City of Toronto Standard Data>Rainfall Group - Toronto BF Studies>Synthetic Design Storms>10yr6hr10minChicago(r=0_38) (9/12/2014 1:59:07 PM) Rainfall Event: >City of Toronto Standard Data>Rainfall Group - Toronto BF Studies>Synthetic Design Storms>5yr6hr10minChicago(r=0_38) (9/12/2014 1:58:51 PM) Rainfall Event: >City of Toronto Standard Data>Rainfall Group - Toronto BF Studies>Synthetic Design Storms>2yr6hr10minChicago(r=0_38) (9/12/2014 12:35:28 PM)

de rpt_model-guidelines_final_141023.docx B.3

Page 127: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

6-Hour Chicago Design Storms (Time Step =10min, R=0.38) Time Intensity (mm/hr)

2-Year 5-Year 10-Year 25-Year 50-Year 100-Year 0:00 1.222 1.681 1.902 2.222 2.630 2.935 0:10 1.299 1.789 2.027 2.367 2.802 3.126 0:20 1.389 1.915 2.170 2.535 3.000 3.348 0:30 1.495 2.062 2.340 2.733 3.234 3.609 0:40 1.620 2.238 2.542 2.969 3.514 3.921 0:50 1.773 2.452 2.788 3.256 3.854 4.301 1:00 1.963 2.718 3.095 3.615 4.279 4.775 1:10 2.209 3.061 3.491 4.078 4.826 5.386 1:20 2.536 3.522 4.023 4.699 5.562 6.207 1:30 3.001 4.177 4.782 5.586 6.611 7.378 1:40 3.724 5.197 5.967 6.969 8.249 9.205 1:50 5.031 7.051 8.127 9.492 11.235 12.537 2:00 8.392 11.837 13.736 16.043 18.989 21.189 2:10 85.42 127.705 157.413 183.851 217.613 242.831 2:20 17.300 24.648 28.880 33.730 39.924 44.551 2:30 8.534 12.040 13.971 16.318 19.315 21.553 2:40 6.001 8.427 9.734 11.369 13.457 15.016 2:50 4.720 6.607 7.609 8.887 10.519 11.738 3:00 3.931 5.490 6.308 7.367 8.720 9.730 3:10 3.391 4.727 5.420 6.330 7.493 8.361 3:20 2.995 4.168 4.772 5.574 6.597 7.362 3:30 2.691 3.740 4.276 4.994 5.911 6.596 3:40 2.450 3.400 3.883 4.535 5.368 5.990 3:50 2.253 3.123 3.563 4.161 4.925 5.496 4:00 2.089 2.893 3.296 3.850 4.557 5.085 4:10 1.948 2.697 3.071 3.587 4.245 4.737 4:20 1.829 2.529 2.878 3.361 3.978 4.439 4:30 1.725 2.384 2.710 3.165 3.746 4.180 4:40 1.633 2.255 2.562 2.993 3.542 3.953 4:50 1.552 2.142 2.432 2.840 3.362 3.751 5:00 1.480 2.041 2.315 2.704 3.201 3.572 5:10 1.414 1.950 2.211 2.582 3.056 3.410 5:20 1.355 1.867 2.116 2.472 2.925 3.264 5:30 1.302 1.792 2.030 2.371 2.807 3.132 5:40 1.253 1.724 1.952 2.280 2.698 3.011 5:50 1.208 1.661 1.880 2.196 2.599 2.900

de rpt_model-guidelines_final_141023.docx B.4

Page 128: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

May 12, 2000 Historic Event - Measured @ Gauge 102 (Oriole) Time mm/hr Time mm/hr 05-12-2000 at 00:45 7.2 05-12-2000 at 22:00 12 05-12-2000 at 00:50 2.4 05-12-2000 at 22:05 2.4 05-12-2000 at 01:10 2.4 05-12-2000 at 22:10 2.4 05-12-2000 at 02:40 2.4 05-12-2000 at 22:20 2.4 05-12-2000 at 02:45 9.6 05-12-2000 at 22:25 2.4 05-12-2000 at 02:50 4.8 05-12-2000 at 22:30 4.8 05-12-2000 at 02:55 2.4 05-12-2000 at 22:35 16.8 05-12-2000 at 03:00 2.4 05-12-2000 at 22:40 4.8 05-12-2000 at 03:05 2.4 05-12-2000 at 22:45 2.4 05-12-2000 at 03:15 2.4 05-12-2000 at 22:50 7.2 05-12-2000 at 03:30 7.2 05-12-2000 at 22:55 12 05-12-2000 at 03:35 4.8 05-12-2000 at 23:00 33.6 05-12-2000 at 03:40 12 05-12-2000 at 23:05 7.2 05-12-2000 at 03:45 2.4 05-12-2000 at 23:10 21.6 05-12-2000 at 03:50 4.8 05-12-2000 at 23:15 9.6 05-12-2000 at 03:55 2.4 05-12-2000 at 23:20 2.4 05-12-2000 at 04:05 4.8 05-12-2000 at 23:25 2.4 05-12-2000 at 04:10 2.4 05-12-2000 at 23:30 24 05-12-2000 at 04:30 2.4 05-12-2000 at 23:35 96 05-12-2000 at 10:55 2.4 05-12-2000 at 23:40 72 05-12-2000 at 11:00 14.4 05-12-2000 at 23:45 14.4 05-12-2000 at 11:05 50.4 05-12-2000 at 23:50 2.4 05-12-2000 at 11:10 38.4 05-12-2000 at 23:55 2.4 05-12-2000 at 11:15 14.4 05-13-2000 at 00:00 4.8 05-12-2000 at 11:20 9.6 05-13-2000 at 00:05 2.4 05-12-2000 at 11:25 14.4 05-13-2000 at 00:10 2.4 05-12-2000 at 11:30 19.2 05-13-2000 at 00:15 2.4 05-12-2000 at 11:35 2.4 05-13-2000 at 00:20 4.8 05-12-2000 at 11:45 2.4 05-13-2000 at 00:25 4.8 05-12-2000 at 11:50 2.4 05-13-2000 at 00:30 2.4 05-12-2000 at 11:55 2.4 05-13-2000 at 00:35 2.4 05-12-2000 at 12:10 2.4 05-13-2000 at 00:40 2.4 05-12-2000 at 20:15 19.2 05-13-2000 at 00:45 2.4 05-12-2000 at 20:20 14.4 05-13-2000 at 00:50 05-12-2000 at 20:25 2.4 05-13-2000 at 00:55 05-12-2000 at 20:40 16.8 05-13-2000 at 01:00 05-12-2000 at 20:45 14.4 05-12-2000 at 20:50 2.4 05-12-2000 at 21:25 4.8 05-12-2000 at 21:30 7.2 05-12-2000 at 21:35 36 05-12-2000 at 21:40 52.8 05-12-2000 at 21:45 72 05-12-2000 at 21:50 160.8 05-12-2000 at 21:55 40.8

de rpt_model-guidelines_final_141023.docx B.5

Page 129: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

B.2 HYDRAULICS

B.2.1 Manning’s Roughness - Closed Conduit

Refer to the City of Toronto Sewer Design Manual for application of appropriate design parameters for closed conduits. For existing sewer systems, the following table provides guidance on the typical Manning’s ‘n’ parameters for sewers and culverts.

Pipe Material Minimum n Average n Maximum n

Brickwork 0.011 0.014 0.017 Clay, vitrified 0.011 0.014 0.017 Concrete, finished 0.011 0.012 0.014 Concrete, unfinished 0.012 0.014 0.020 Corrugated metal 0.021 0.024 0.030

From: Stormwater Conveyance Modeling and Design (1st Ed.) by Haestad Methods Inc. (2003), pg 227

B.2.2 Manning’s Roughness - Open Channel Conduits

For simulating open channels, composite roughness parameters shall be applied, since there is no ‘top’. The following table outlines the typical value range for Manning’s ‘n’ roughness.

Channel Description Minimum n Average n Maximum n

Lined or Built-up Channels Asphalt 0.013 0.016 - Concrete, troweled 0.011 0.013 0.015 Concrete, unfinished 0.014 0.017 0.020 Corrugated metal 0.021 0.025 0.030 Rubble masonry 0.017 0.029 0.035 Steel, smooth 0.011 0.013 0.017 Excavated or Dredged Channels Earth, straight and uniform 0.016 0.022 0.033 Earth, winding and sluggish 0.023 0.035 0.050 Overgrown with vegetation 0.040 0.080 0.140 Rock cuts, smooth and uniform 0.025 0.035 0.040 Rock cuts, jagged and irregular 0.035 0.040 0.050

Natural Streams Floodplains, pasture 0.025 0.033 0.050 Floodplains, cultivated 0.020 0.035 0.160 Floodplains, trees 0.050 0.080 0.200

From: Stormwater Conveyance Modeling and Design (1st Ed.) by Haestad Methods Inc. (2003), pg 227

de rpt_model-guidelines_final_141023.docx B.6

Page 130: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

B.2.3 Weir Coefficients

See WaPUG User Note 27 for details regarding weir coefficient calculation. A typical value for a standard sharp-crested weir in collection system or stormwater management applications is 1.67.

B.2.4 Minor Losses

Minor losses (headlosses in InfoWorks) are used to define the hydraulic instabilities at structures caused by pipe transitions at maintenance holes or within a pipe, by appurtenances in the flow, or inlet/outlet coverage. General up and downstream losses can be calculated using the InfoWorks auto-inference tool. The headlosses are calculated based on the angle of pipe bends between connecting conduits. Type “Normal” shall be used unless otherwise noted by the practitioner.

B.2.5 Culvert Parameters

The following is taken from Table 9.1 and 9.2 of Normann, Houghtalen, and Johnston, 2001.

Entrance Loss Coefficients for Pipes and Culverts Operating Under Outlet Control Structure Type and Entrance Condition ki

Concrete Pipe Projecting from fill, socket or groove end 0.2 Projecting from fill, square edge 0.5 Headwall or headwall and wingwalls 0.2 Socket or groove end

Square edge 0.5 Rounded (radius = D/12) 0.2 Mitered to conform to fill slope 0.7 End section conforming to fill slope 0.5 Beveled edges (33.7 o r 45 b e ve ls) 0.2 Side- or slope-tapered inlet 0.2

Corrugated Metal Pipe or Pipe-Arch Projecting from fill (no headwall) 0.9 Headwall or headwall and wingwalls (square edge) 0.5 Mitered to conform to fill slope 0.7 End section conforming to fill slope 0.5 Beveled edges (33.7 o r 45 b e ve ls) 0.2 Side- or slope-tapered inlet 0.2

de rpt_model-guidelines_final_141023.docx B.7

Page 131: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

Entrance Loss Coefficients for Pipes and Culverts Operating Under Outlet Control (continued) Structure Type and Entrance Condition ki

Reinforced Concrete Box Headwall parallel to embankment (no wingwalls) Square-edged on 3 sides 0.5 Rounded or beveled on 3 sides 0.2 Wingwalls at 30o to 75o fro m b a rre l

Square-edged at crown 0.4 Crown edge rounded or beveled 0.2 Wingwalls at 10 to 25 fro m b a rre l

Square-edged at crown 0.5 Wingwalls parallel (extensions of box sides) Square-edged at crown 0.7 Side- or slope-tapered inlet 0.2

de rpt_model-guidelines_final_141023.docx B.8

Page 132: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

Constants for Inlet Control Equations

Culvert Shape and/or

Material

Inlet Edge Description

Unsubmerged (Weir Flow) Submerged (Orifice Flow)

Equation K M c Y

Circular, concrete

Square edge with headwall

A 0.0098 2 0.0398 0.67

Groove end with headwall 0.0018 2 0.0292 0.74 Groove end projecting 0.0045 2 0.0317 0.69

Circular, CMP Headwall

A 0.0078 2 0.0379 0.69

Mitered to slope 0.021 1.33 0.0463 0.75 Projecting° 0.034 1.5 0.0553 0.54

Circular Beveled ring, 45 bevels A 0.0018 2.5 0.03 0.74 Beveled ring, 33.7° bevels 0.0018 2.5 0.0243 0.83

Rectangular box

30° to 75 wingwall flares

A

0.026 1 0.0347 0.81 90° and 15° wingwall flares 0.061 0.75 0.04 0.8 0° wingwall flares 0.061 0.75 0.0423 0.82

Rectangular box

45° wingwall flares, d = 0.043D B 0.51 0.667 0.0309 0.8 18° to 33.7° wingwall flares, d = 0.083D 0.486 0.667 0.0249 0.83

Rectangular box

90° headwall with ¾-in. chamfers

B 0.515 0.667 0.0375 0.79

90° headwall with 45° bevels 0.495 0.667 0.0314 0.82 90° headwall with 33.7 bevels 0.486 0.667 0.0252 0.865

Rectangular box

45° skewed headwall; ¾-in. chamfers

B

0.545 0.667 0.0505 0.73 30° skewed headwall; ¾-in. chamfers 0.533 0.667 0.0425 0.705 15° skewed headwall; ¾-in. chamfers 0.522 0.667 0.0402 0.68 10-45° skewed headwall; 45° bevels 0.498 0.667 0.0327 0.75

Rectangular box

45° nonoffset wingwall flares

B

0.497 0.667 0.0339 0.803 with ¾-in. chamfers

18.4° nonoffset wingwall flares 0.493 0.667 0.0361 0.806

18.4° nonoffset wingwall flares; 30° skewed barrel 0.495 0.667 0.0386 0.71

Rectangular box 45° wingwall flares, offset

B

0.497 0.667 0.0302 0.835

w/ top bevels 33.7° wingwall flares, offset 0.495 0.667 0.0252 0.881

18.4° wingwall flares, offset 0.493 0.667 0.0227 0.887

de rpt_model-guidelines_final_141023.docx B.9

Page 133: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix B Hydrologic and Hydraulic References Version 1.02 - October 2014

Constants for Inlet Control Equations (continued)

Culvert Shape and/or Material

Inlet Edge Description

Unsubmerged (Weir Flow) Submerged (Orifice Flow)

Equation K M c Y

Corrugated metal 90° headwall

A 0.0083 2 0.0379 0.69

boxes Thick wall projecting 0.0145 1.75 0.0419 0.64

Thin wall projecting 0.034 1.5 0.0496 0.57 Horizontal ellipse,

Square edge w/ headwall

A 0.01 2 0.0398 0.67

concrete Groove end w/ headwall 0.0018 2.5 0.0292 0.74

Groove end projecting 0.0045 2 0.0317 0.69

Vertical ellipse, Square edge w/ headwall

A 0.01 2 0.0398 0.67

concrete Groove end w/ headwall 0.0018 2.5 0.0292 0.74

Groove end projecting 0.0095 2 0.0317 0.69 Pipe arch, CM, 90° headwall

A

0.0083 2 0.0379 0.69 18-in. corner radius Mitered to slope 0.03 1 0.0463 0.75

Projecting 0.034 1.5 0.0496 0.57 Pipe arch, CM, Projecting

A

0.03 1.5 0.0496 0.57 18-in. corner radius No bevels 0.0088 2 0.0368 0.68

33.7° bevels 0.003 2 0.0269 0.77 Pipe arch, CM, Projecting

A

0.03 1.5 0.0496 0.57 31-in. corner radius No bevels 0.0088 2 0.0368 0.68

33.7° bevels 0.003 2 0.0269 0.77

Arch, CM 90° headwall

A 0.0083 2 0.0379 0.69

Mitered to slope 0.03 1 0.0463 0.75 Thin wall projecting 0.034 1.5 0.0496 0.57

de rpt_model-guidelines_final_141023.docx B.10

Page 134: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix C Flow Monitoring Analytical Processing Version 1.02 - October 2014

FLOW MONITORING ANALYTICAL PROCESSING Appendix C

The following provides some recommended guidance for the expected level of analytical processing to be completed for sewer flow monitoring in support of hydraulic model calibration.

C.1 RAIN GAUGE NETWORK

The City maintains a Rain Gauge Network that changes over time, and historic rainfall records.

Rain Gauge Network (c. 2013/2014)

Historic Rain Gauge Network (c. 2010)

de rpt_model-guidelines_final_141023.docx C.1

Page 135: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix C Flow Monitoring Analytical Processing Version 1.02 - October 2014

C.2 DATA ANALYSIS APPROACH

Complete the analysis for each flow monitor using available population and sewershed area information, precipitation data, and depth-velocity monitoring results per monitored drainage area. Consider the following items and document in Technical Memorandum No. 1 when assessing the data:

• Drainage Area: To normalize results per flow monitor, the tributary drainage area shall be reviewed to reflect the realistic contributing area given the ground topography and relative location of the sewers. Drainage areas cannot be based solely on Parcel/Lot Fabric.

• Scatterplot: A scatterplot shall be used to assess the data quality of the flow monitor by plotting each individual depth and velocity measurement independent of time on a single graph. Information about equipment and/or system performance can often be revealed based on the observations. The results of this review shall determine the usability of the provided/collected data-sets.

• Average Dry Weather Flow: The observed average dry weather flow diurnal pattern shall be determined, and initial estimates of per capita flow developed based on estimated tributary population and appropriate contributing area.

• Groundwater Infiltration (GWI): GWI must be calculated based on an appropriate method (percentage of minimum overnight flow, Stevens-Schutzbach base flow separation method, etc.) and an average value computed based on a suitable range of dry days, defined as a day where at least the preceding 24 hours contains less than 1mm of precipitation. The rates shall be normalized per hectare of contributing drainage area to allow relative comparison between monitored sewersheds.

• Rainfall Events: The methodology for identifying and selecting rainfall events shall be documented. Each event shall be summarized in terms of start/end time, duration, total accumulated depth and peak intensity, and categorized relative to the City’s design storm IDF curves (e.g. 2 to 5yr event, >100yr). Multiple rain gauges are to be reviewed and compared where appropriate, including cumulative rainfall plots to ascertain differences in gauge operation per recorded event.

• Infiltration and Inflow (I/I): Each rainfall event greater than 15 mm shall be analyzed and separated into I/I and dry weather flow components where data quality is suitable. Any data manipulation to correct perceived errors shall be documented accordingly.

• Peak I/I Rates: The average and peak I/I rate for each monitoring station shall be determined and normalized per hectare of contributing area.

de rpt_model-guidelines_final_141023.docx C.2

Page 136: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix C Flow Monitoring Analytical Processing Version 1.02 - October 2014

• Volumetric Runoff Coefficient (R-Factor): The volumetric runoff coefficient represents the fraction of precipitation volume that enters the wastewater collection system. The precipitation depths are applied across the estimated contributing drainage area to calculate a total rainfall volume which is then compared against the total area under the separated I/I curve per station.

• Storm Runoff Coefficient: The storm runoff coefficient represents the fraction of precipitation volume over a storm sewershed that generates stormwater runoff.

• Flow Monitors in Series: Monitors in series with corresponding time-lines shall be subtracted to evaluate the intermediary response between meters, where data quality allows.

C.3 FLOW MONITORING DATA REPORTING

For each flow monitoring site, produce flow/velocity/depth/rainfall vs. time graphs which illustrate system response to storm events. Summarize the data analysis for each site for dry and wet weather flow including tributary area, population, average dry weather flow, I/I rates, and runoff coefficients.

de rpt_model-guidelines_final_141023.docx C.3

Page 137: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

METADATA STRUCTURE Appendix D

This Appendix summarizes the metadata structure for related geodatabase files typically associated with Basement Flooding studies for the City of Toronto. The intent is to provide a minimum basis of standardization for major deliverables exchanged between the City and modelling proponent. Metadata provides a description of the geodatabase fields for help in both interpreting the base fields provided by the City, and standardizing the digital deliverables to be returned and incorporated into the City’s GIS system.

This section is divided into two sections: Data Provided by the City; and Project Deliverables. It is noted that the City currently uses ESRI ArcMap 10.1 as its GIS platform. The proponent to refer to the RFP and consult with the City of Toronto at the onset of each assignment to confirm the platform and any refinements to the Metadata Structure.

D.1 DATA PROVIDED BY THE CITY

As part of the EA modelling assignments, the City will provide a geodatabase of sewer infrastructure asset data. The following outlines the key fields in each of the File Geodatabase Feature Classes typically provided by the City of Toronto.

G1_1_land_use_class (Polygon Feature Class) Parcels with land use, zoning

Field Name Data Type Description

OBJECTID Object ID GIS generated ID

AROLL Text A-Roll Number (planning)

AREA Double Parcel area, m2

PERIMETER Double Parcel perimeter, m

PBLOCK Text

PRIME Text

ZROLL Text Z-Roll Number (planning)

SROLL Text S-Roll Number (planning)

PPTY_CODE Short Integer Property code

CODE_DESC Text Description of the property code

ZONING Text Zoning code

Group Text Simplified land use category

de rpt_model-guidelines_final_141023.docx D.1

Page 138: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_2_water_consumption (Point Feature Class) Address points with water-billing annual consumption records

Field Name Data Type Description

OBJECTID Object ID GIS generated ID

address_GE Long Integer

EASTING Double Easting coordinate

NORTHING Double Northing coordinate

LOCATION_N Double

SERVICE_DI Text

LOCATION_A Text Address of water meter

SERVICE_ST Text Status of the water meter service connection

ACCOUNT_TY Text Water billing account type

SITE_LOCAT Text Address of water meter

SumOfREADI Double … units?

SumOfCONSU Double … units?

DEDUCTIVE_ Text

ATTENTION_ Text

_water_d Double

Avg_daily_ Double … units?

de rpt_model-guidelines_final_141023.docx D.2

Page 139: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_3_Population_ICI_Projection_2011_2031 (Polygon Feature Class) Polygons with current & projected Employment population

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

EMPPROJ201 Long Integer

EMPPROJ203 Long Integer

LU_TZ_Inte Double

Proj_Emp_P Double

LU_Group Text Land Use (ICI)

Area_LU_TZ Double

POP_EMP_20 Double Employment population 2011

POP_EMP_21 Double Employment population 2031

G1_3_Population_RES_Projection_2011_2031 (Polygon Feature Class) Polygons with current & projected Residential population

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

FID_Dissem Long Integer

DBUID Text

DBpop2011 Double

LU_DB_Inte Double

FID_Genera Long Integer

LU_Group Text Land Use (RES)

Area_LU_DB Double

POP_2011_P Double Residential population 2011

POP_2031_P Double Residential population 2031

Pop_projec Double

de rpt_model-guidelines_final_141023.docx D.3

Page 140: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_pond (Point Feature Class) Locations of wet and dry ponds

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier

ASSET_TYPE Text Description of facility (wet or dry pond)

ADDR_KEY Long Integer

ADDR_QUAL Text Address description (ie. north side of xxx St.)

POND_NAME Text Name of Pond

TRCA_ID Text TRCA unique identifier

OTHER_ID Text Former municipality unique identifier

STATUS Text Active or Abandoned

OWNERSHIP Text Ownership

MAINTAINED Text Maintained by

DISTRICT Text City District number

DRNGE_AREA Text

SOURCE_ENG Text Drawing number

DESIGN_OBJ Text Pond for storage &/or water quality

CONSTRUCTI Text Construction status

ASSUMED_Y_ Text City ownership, Y or N

PARK_Y_N Text Within a park, Y or N

FENCED_Y_N Text With a fence, Y or N

WARNING_SI Text Warning sign posted

SITE_ALARM Text Site alarmed, Y or N

COA_AVAILA Text

O_M_MANUAL Text Operations manual available, Yes or No

STORAGE_CA Double

MAX_INFLOW Double

MAX_OUTFLO Double

OUTFLOW_TY Text Type of outflow structure

TOTAL_STOR Double

de rpt_model-guidelines_final_141023.docx D.4

Page 141: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_pond (Point Feature Class) Locations of wet and dry ponds

Field Name Data Type Description

PERMA_STOR Double

PERMA_WATE Double

MAX_ACTIVE Double

MAX_ACTI_1 Double

BOTTOM_ELE Double Pond bottom elevation, geodetic m

POND_SURFA Double

CONST_YR Short Integer Year constructed

SWM_REPORT Text Report title

COMMENTS Text

CREATED_BY Text

CREATED_DA Date

LAST_UPDAT Text

LAST_UPD_1 Date

LINK1 Text

LINK2 Text

LINK3 Text

METADATA Text

de rpt_model-guidelines_final_141023.docx D.5

Page 142: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_CB (Point Feature Class) Locations of storm catchbasins

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier based on coordinates

ASSET_TYPE Text Type of asset (CB)

STRUC_TYPE Text Type of structure

ADDR_KEY Long Integer

ADDR_QUAL Text Address description

ROAD_GEO_I Long Integer GEO_ID from Road centreline layer

X_ROAD_GEO Long Integer GEO_ID from Road centreline layer for cross-street

STATUS Text Active or Abandoned

OWNERSHIP Text City, private, province

DISTRICT Long Integer City District number

DRNGE_AREA Text

SOURCE_ENG Text Drawing number

CONST_YR Long Integer Year constructed

TOP_ELEV Double elevation

METADATA Text

COMMENTS Text

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

CREATED_DA Date

LINK1 Text

LINK2 Text

LINK3 Text

de rpt_model-guidelines_final_141023.docx D.6

Page 143: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_CB_lead (Line Feature Class) Locations of storm catchbasin leads

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier based on coordinates

ASSET_TYPE Text Type of asset (CL)

STRUC_TYPE Text Type of structure (LED)

UP_ASSET_I Text Upstream asset ID

DN_ASSET_I Text Downstream asset ID

ADDR_KEY Long Integer

ADDR_QUAL Text Address description

ROAD_GEO_I Long Integer GEO_ID from Road centreline layer

X_ROAD_GEO Long Integer GEO_ID from Road centreline layer for cross-street

STATUS Text Active or abandoned

OWNERSHIP Text City, private, province

DISTRICT Long Integer City District number

DIAMETER Long Integer Diameter, mm

LENGTH Double Length, m

MATERIAL Text Pipe material

DRNGE_AREA Text

CONST_YR Long Integer Year constructed

METADATA Text

COMMENTS Text

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

CREATED_DA Date

LINK1 Text

LINK2 Text

LINK3 Text

de rpt_model-guidelines_final_141023.docx D.7

Page 144: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_junction (Point Feature Class) Locations of junction chambers

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier based on coordinates

ASSET_TYPE Text Type of asset (JP)

STRUC_TYPE Text Type of structure

FLOW_TYPE Text STM or SAN

ADDR_KEY Long Integer

ADDR_QUAL Text Address description

ROAD_GEO_I Long Integer GEO_ID from Road centreline layer

X_ROAD_GEO Long Integer GEO_ID from Road centreline layer for cross-street

STATUS Text Active or Abandoned

OWNERSHIP Text City, private

DISTRICT Long Integer City District number

SOURCE_ENG Text Drawing number

COMMENTS Text

OTHER_ID Text

TEMP_ID Text Former municipality ID

HISTORICAL Text

DRNGE_AREA Text Former municipality drainage area ID

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

CREATED_DA Date

LINK1 Text

LINK2 Text

LINK3 Text

de rpt_model-guidelines_final_141023.docx D.8

Page 145: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_large_chamber (Point Feature Class) Locations of large chambers

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier

ASSET_TYPE Text

ASSC_MH Text Asset ID for access Manhole to chamber

ADDR_KEY Long Integer

ADDR_QUAL Text Address description

ROAD_GEO_I Long Integer GEO_ID from Road centreline layer

X_ROAD_GEO Long Integer GEO_ID from Road centreline layer for cross-street

STATUS Text Active or Abandoned

OWNERSHIP Text

DISTRICT Long Integer City District number

SOURCE_ENG Text Drawing number

CONST_YR Long Integer Year constructed

COMMENTS Text

DRNGE_AREA Text Former municipality drainage area ID

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

CREATED_DA Date

LINK1 Text

LINK2 Text

LINK3 Text

de rpt_model-guidelines_final_141023.docx D.9

Page 146: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_line (Line Feature Class) Sewer Lines

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier

ASSET_TYPE Text Type of asset (SL)

STRUC_TYPE Text Type of structure (SL)

FLOW_TYPE Text Sanitary or Storm

UP_ASSET_I Text Upstream asset ID

DN_ASSET_I Text Downstream asset ID

ADDR_QUAL Text Street

ROAD_GEO_I Long Integer GEO_ID from Road centreline layer

X_ROAD_GEO Long Integer GEO_ID from Road centreline layer for cross-street

STATUS Text Active or Abandoned

OWNERSHIP Text City or…

DISTRICT Long Integer City District number

PIPE_SHAPE Text Pipe shape

HEIGHT Double Pipe height (diameter), mm

WIDTH Double Pipe width, mm

LENGTH Double Length, m

DIST_FROM_ Double

MATERIAL Text Pipe material

MATERIAL_C Text

BEDDING Text Bedding material

INVERT_UP Double Upstream invert

INVERT_DN Double Downstream invert

SLOPE_PERC Double Pipe slope, %

DROP_YN Text Pipe ends with drop MH, Yes

DROP_SIZE Double

DROP_INVER Double Invert at drop, geodetic m

SOURCE_ENG Text Drawing number

de rpt_model-guidelines_final_141023.docx D.10

Page 147: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_line (Line Feature Class) Sewer Lines

Field Name Data Type Description

CONST_YR Long Integer Year constructed

METADATA Text

COMMENTS Text Other comments

HISTORICAL Text

OTHER_ID Text

TEMP_ID Text

DRNGE_AREA Text

LINING_YR Long Integer

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

CREATED_DA Date

LINK1 Text

LINK2 Text

LINK3 Text

LINING_MAT Text

LINING_YEA Text

LINING_TYP Text

de rpt_model-guidelines_final_141023.docx D.11

Page 148: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_MH (Point Feature Class) Sewer Maintenance Holes

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier based on coordinates

ASSET_TYPE Text Type of asset (MH)

STRUC_TYPE Text Type of structure (SL)

FLOW_TYPE Text Sanitary or Storm

ADDR_KEY Long Integer

ADDR_QUAL Text Address Description

ROAD_GEO_I Long Integer GEO_ID from Road centreline layer

X_ROAD_GEO Long Integer GEO_ID from Road centreline layer for cross-street

STATUS Text Active or Abandoned

OWNERSHIP Text City or…

DISTRICT Long Integer City District number

TOP_ELEV Double Elevation at top of MH, geodetic m

DEPTH Double

MATERIAL Text

FLOW_RESTR Text

SUMP Text

SOURCE_ENG Text Drawing number

CONST_YR Long Integer Year constructed

METADATA Text

COMMENTS Text

HISTORICAL Text

OTHER_ID Text

TEMP_ID Text Former municipality ID

DRNGE_AREA Text Former municipality drainage area

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

de rpt_model-guidelines_final_141023.docx D.12

Page 149: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_MH (Point Feature Class) Sewer Maintenance Holes

Field Name Data Type Description

CREATED_DA Date

LINK1 Text

LINK2 Text

LINK3 Text

de rpt_model-guidelines_final_141023.docx D.13

Page 150: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_outfall (Point Feature Class) Sewer Outfalls

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Long Integer Unique identifier

ASSET_ID Text Unique asset identifier based on coordinates

ASSET_TYPE Text Type of asset (OF)

STRUC_TYPE Text Type of structure (OF)

FLOW_TYPE Text Sanitary or Storm

ADDR_KEY Long Integer

ADDR_QUAL Text Address Description

ROAD_GEO_I Long Integer GEO_ID from Road centreline layer

X_ROAD_GEO Long Integer GEO_ID from Road centreline layer for cross-street

STATUS Text Active or Abandoned

OWNERSHIP Text City or…

DISTRICT Long Integer City District number

TOP_ELEV Double Elevation at top of structure

SOURCE_ENG Text Drawing number

CONST_YR Long Integer Year constructed

METADATA Text

COMMENTS Text

HISTORICAL Text

OTHER_ID Text

TEMP_ID Text Former municipality identifier

DRNGE_AREA Text Former municipality drainage area

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

CREATED_DA Date

LINK1 Text

LINK2 Text

LINK3 Text

de rpt_model-guidelines_final_141023.docx D.14

Page 151: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_trunk_sewer (Line Feature Class) Trunk Sewers

Field Name Data Type Description

OBJECTID Object ID GIS generated ID

OID_ Long Integer

UP_ASSET_I Text Former municipality upstream ID

DN_ASSET_I Text Former municipality downstream ID

OWNERSHIP Text Former Metro Toronto

STATUS Text Active or Abandoned

JURIS Text Former municipality in which sewer is located

FLOW_TYPE Text Sanitary or Storm

STRUC_TYPE Text Type of structure (SL)

PIPE_SHAPE Text Shape of pipe

WIDTH Double Pipe width, mm

HEIGHT Double Pipe height, mm

DROP_SIZE Double

MATERIAL Text Pipe material

INVERT_UP Double Upstream invert, m

INVERT_DN Double Downstream invert, m

LENGTH Double Pipe length, m

SLOPE Double Pipe slope

CONST_YR Date Year constructed

ASSET_ID Text Unique asset identifier

SOURCE_ENG Text Drawing number

Subtrunk_N Text

geometry_L Double

Don_Studt Text

de rpt_model-guidelines_final_141023.docx D.15

Page 152: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_CCTV (Line Feature Class) Sewers that have been viewed using CCTV

Field Name Data Type Description

OBJECTID_1 Object ID GIS generated ID

OBJECTID Double Unique identifier

ASSET_ID Text Unique asset identifier

ASSET_TYPE Text Type of asset (SL)

STRUC_TYPE Text Type of structure (SL)

FLOW_TYPE Text Sanitary or Storm

UP_ASSET_I Text Upstream asset ID

MH_UP_DEPT Text Upstream MH depth, m

DN_ASSET_I Text Downstream asset ID

MH_DN_DEPT Text Downstream MH depth, m

STREET_NAM Text Street name

ROAD_GEO_I Double GEO_ID from Road centreline layer

STATUS Text Active or Abandoned

OWNERSHIP Text City or…

DISTRICT Double City District number

PIPE_SHAPE Text Pipe shape

HEIGHT Double Pipe height, mm

WIDTH Double Pipe width, mm

SEW_LINE_L Double Pipe length, rounded to nearest decimal, m

MATERIAL Text Pipe material

DROP_YN Text Pipe ends with drop MH, Yes

DROP_SIZE Double

CONST_YR Double Year constructed

HISTORICAL Text

OTHER_ID Text

ASSET_ID_O Text

LF_NAME_OL Text Street

FROM_STREE Text From Street

TO_STREET Text To Street

de rpt_model-guidelines_final_141023.docx D.16

Page 153: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_CCTV (Line Feature Class) Sewers that have been viewed using CCTV

Field Name Data Type Description

CCTV_DATE Date Date CCTV was conducted

CCTV_REVIE Date Date CCTV was reviewed

CCTV_REV_1 Text Reviewer name or Company

CCTV_CONTR Text CCTV contract number

CCTV_VIDEO Text

CCTV_COMME Text Reviewer comments

CCTV_RECOM Text Recommended action (clean, spot repair etc.)

FINAL_RECO Text Final Recommended action (clean, spot repair etc.)

FINAL_RE_1 Text Final reviewer name

DATE_FINAL Date

LATERALS Text Number of laterals in segment

SEWERSTRUC Double

SEWERSERVI Double

SAP_YEAR Text

SAP_PRIORI Double

CWP_YEAR Text

WORK_TYPE_ Text

CONSULTANT Text

CONSULTA_1 Text

CONSULTA_2 Text

RISK_CATEG Text

CONSULTA_3 Text

CWP_SCOPE Text

TRACKING_W Double

TRACKING_C Text

TRACKING_Y Double

TRACKING_1 Text

TRACKING_S Text

CPP_YEAR_J Text

de rpt_model-guidelines_final_141023.docx D.17

Page 154: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

G1_4_sewer_CCTV (Line Feature Class) Sewers that have been viewed using CCTV

Field Name Data Type Description

CCTV_PLANN Text

LAST_UPDAT Text

LAST_UPD_1 Date

CREATED_BY Text

CREATED_DA Date

YEAR Text

de rpt_model-guidelines_final_141023.docx D.18

Page 155: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

Address21_23 (Point Feature Class) Address points

Field Name Data Type Description

FID Object ID Unique identifier

GEO_ID Long Integer GEO_ID from Road centreline layer

EASTING Double Easting coordinate

NORTHING Double Northing coordinate

CREATE_ID Long Integer

ADDRESS Text Address number

NAME Text Extra information about location

LF_NAME Text Street name

FCODE_DESC Text Land Use description

ARC_SIDE Text

DISTANCE Double

FCODE Long Integer Land Use code

ARC_ID Long Integer

LO_NUM Long Integer Lowest number for multiple addresses

LO_NUM_SUF Text

HI_NUM Long Integer Highest number for multiple addresses

HI_NUM_SUF Text

POSTAL_CD Text Postal code

CLASS Text

LINK Long Integer

LFN_ID Long Integer

de rpt_model-guidelines_final_141023.docx D.19

Page 156: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

D.2 PROJECT DELIVERABLES

The project deliverables to be returned to the City in geodatabase format typically include the findings of field survey investigations as described in Section 2.2. The following fields shall be updated or added to the corresponding Feature Class in the submitted geodatabase file.

Field Data to be Added to the Address Point Feature Class Georeference based on the GEO_ID field

Data Fields Description Type

Survey • SURV • Survey completed (YES/NO) • Text

Roof Downspout Connectivity

• DS_STAT • Downspout connection status • Text

• DS_CNCT • Number of Downspouts per house still connected or going underground

• Text

• DS_DCNCT • Number of downspouts per house disconnected

• Double

• DS_OPT • Yes if downspout disconnection appears feasible based on existing lot grading (YES/NO)

• Text

• DS_DSCHR • Drop-down list for location type receiving discharge from majority of downspout

• Text

• DS_CMNTS • Downspout general comments • Text

Reverse Driveways / Poor Lot Grading

• LT_RDWY • Yes if reverse driveway; no if other (YES/NO)

• Text

• LT_PGRD • Yes if poor lot grading; no if good (YES/NO)

• Text

• LT_FR • Yes if flat roof; no if other (YES/NO) • Text

• LT_CMNTS • Open field for comments on lot grading

• Text

Catchbasins

• CB_EXST • Yes if CB exists; no if does not (YES/NO)

• Text

• CB_TYP • Type of CB (single, twin, etc.) • Text

• CB_GRT • Type of CB grate • Text

• CB_CMNTS • Open field for comments on CB • Text

de rpt_model-guidelines_final_141023.docx D.20

Page 157: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

Field Data to be Added to the Sewer_Catchbasin Feature Class Updates/revisions to the physical catchbasin location, georeference based on the ASSET_ID field

Data Fields Description Type

Catchbasin Data

• CB_TYPE • Catchbasin type by reference to City or OPSD standards

• Text

• NEW_CB • Mark YES if this is missing catchbasin; i.e. not reported in the provided geodatabase. Missing catchbasins must be included in the file with an approximate location. (YES/NO)

• Text

• REMOVE_CB • Mark YES if the catchbasin does not exist or was not found during the field inspection (YES/NO)

• Text

Field Data to be Added to the Sewer_Line, Sewer_MH or Trunk_Sewer Feature Classes Updates to the physical asset attributes, georeferenced based on the ASSET_ID field

Data Fields Description Type

Physical Sewer Network Data

• DATA_SRC • It indicates the source of information that led to the modification, e.g. engineering drawing or field survey

• Text

• ASSMPTIONS • Check this field only if the data modified was assumed for modelling purposes and may not represent actual field data

• Text

• COMMENTS • Specify here which fields were corrected

• Text

Field Data to be Created as a Low Point Feature Class Identify features of recorded low points

Data Fields Description Type

Low Point Field Survey

• POND_DEPTH • Depth of ponding occurring at low point, measured in cm

• Double

• OVERFL_TOW • Direction that overflow water flows towards

• Text

• OVERFLO_CMNT • Open field for comments on overflow characteristics

• Text

• OVERFLOW_DIR • Cardinal direction of overflow flow • Text

de rpt_model-guidelines_final_141023.docx D.21

Page 158: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

Field Data to be Created as a Low Point Feature Class Identify features of recorded low points

Data Fields Description Type

Catchbasin Field Survey

• NUM_SNGL_C • The number of single CBs at the low point

• Double

• NUM_TWN_CB • The number of twin CBs at the low point

• Text

• CB_GRT • Type of CB grate • Text

• CB_CMNTS • Open field for comments on CB • Text

Field Data to be Added to the Sewer_Outfall Feature Class Updates to the physical asset attributes, georeferenced based on the ASSET_ID field

Data Fields Description Type

Outfall Field

Survey

• ASSET_ID • Asset ID at outfall • Text

• SUBMRG • Depth of invert submergence at outfall measured in mm

• Double

• DMNS1 • Pipe diameter (if circular) or width (if not circular), measured in mm

• Double

• DMNS2 • Pipe height, measured in mm • Double

• MATRL • Pipe material • Text

• SCREEN • Indicates whether or not outfall is screened, and if is, what direction the grating is

• Text

• CONDIT • Outfall structural and operational condition

• Text

• EROSION • The state of erosion surrounding the outfall

• Text

• BLCKG • The state of blockages at the outfall • Text

• CMNTS • Open field for comments on outfall • Text

• ENDWL • Yes if endwall structure is present; no if not (YES/NO)

• Text

• VERIFD • Yes if outfall inspected in the field; no if not (YES/NO)

• Text

de rpt_model-guidelines_final_141023.docx D.22

Page 159: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix D Metadata Structure Version 1.02 - October 2014

Field Data to be Added to the Sewer_MH Feature Class Additional information on the MH cover type, georeferenced based on the ASSET_ID field

Data Fields Description Type

Perforated MH Cover

• ASSET_ID • Asset ID at outfall • Text

• • •

• • •

• • •

• • •

.

de rpt_model-guidelines_final_141023.docx D.23

Page 160: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

DRAFT CITY OF TORONTO INFOWORKS CS BASEMENT FLOODING MODEL STUDIES GUIDELINE

Appendix E External Resources Version 1.02 - October 2014

EXTERNAL RESOURCES Appendix E

The following links are provided for useful external resources, some of which are referenced in this document. The web addresses are current as of 2014, and may be subject to change.

Urban Drainage Group (formally WaPUG): Modelling User Notes

http://www.ciwem.org/knowledge-networks/groups/urban-drainage.aspx

City of Toronto Sewer and Watermain Design Criteria (2009)

http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=87a9bcbff9502410VgnVCM10000071d60f89RCRD

Ministry of Transportation - Drainage Manual (1997)

http://www.mto.gov.on.ca/english/engineering/drainage/index.shtml

Ministry of the Environment - Design Guidelines for Sewage Works (2008)

http://www.ontario.ca/environment-and-energy/design-guidelines-sewage-works

Ministry of the Environment - Stormwater Management Planning and Design Manual (2003)

http://www.ontario.ca/environment-and-energy/stormwater-management-planning-and-design-manual

de rpt_model-guidelines_final_141023.docx E.1

Page 161: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 1

THIS AGREEMENT made in quadruplicate this ______ day of _____________, 200__

BETWEEN:

CITY OF TORONTO (the “City”)

Of The First Part - and -

[ENTER Consultant’s Full Legal Name] (the “Consultant”)

Of The Second Part

WHEREAS the City issued the RFP in connection with obtaining professional consulting services for [enter

the project name / title] (herein referred to as the "Project"), and the Consultant submitted a Proposal in

response to the RFP; and

WHEREAS the Consultant has agreed to perform Services in connection with the Project, in accordance with the terms and conditions set forth in this Agreement; and

INSERT 1 of the following clauses: [Approval Clause - by GM]

WHEREAS the Consultant was selected in accordance with the provisions of Municipal Code Chapters 71 and 195 to provide the Services in connection with the Project in accordance with all the terms and conditions of the RFP and the Proposal at a total cost not in excess of $[ENTER AMOUNT] inclusive of contingency and applicable taxes, being within the delegated authority and financial authority of the Division Head;

OR [Approval Clause - by Bid Committee]

WHEREAS at its meeting held on [ENTER DATE], the Bid Committee adopted the recommendations in

the Staff Report from the Director of Purchasing and Materials Management dated [ENTER DATE], and

authorized the retention of the Consultant to provide the Services in connection with the Project; OR

[Approval Clause - by Council]

WHEREAS at its meeting held on [ENTER DATE], City Council adopted Item No. __ of Report No. ___ of

the [ENTER appropriate committee name] Committee, thereby authorizing the retention of the Consultant

to provide the Services in connection with the Project;

NOW THEREFORE, in consideration of the mutual covenants contained in this Agreement, the parties agree as follows:

1. INTERPRETATION

(1) The Interpretation provisions of and definitions contained in the RFP are incorporated into and form part of this Agreement.

(2) Definitions

In addition to the foregoing, the following terms shall have the meanings as specified in this section unless

the context otherwise specifies or requires:

(a) “Additional Services” are those services which are not contemplated or provided for in the scope of

Services set out in the RFP and which are expressly authorized by the Division Head in writing and

in advance in accordance with this Agreement.

(b) “Addendum” and “Addenda” means a written addendum or written addenda issued by the City which modify the RFP and include(s) the following:

[INSERT “None.” where no Addenda and DELETE box below]

Addendum No. 1 dated [ENTER DATE]

Page 162: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 2

Addendum No. 2 dated [ENTER DATE]

Addendum No. 3 dated [ENTER DATE]

(c) “Business Day” means any day other than a Saturday, Sunday or a statutory or civic holiday in the

Province of Ontario.

(d) “Claims” or “Claim” means any damages, losses, costs, demands, claims, actions, causes of action,

suits, proceedings, executions, liens or otherwise for, without limitation, compensation, liabilities,

damages or loss of any kind and any nature whatsoever and howsoever caused including property

damage or loss, bodily injury or death, loss of reputation, loss of opportunity, economic loss, royalties,

judgments, fines, penalties, interest, charges, expenses and costs (including legal costs on a

substantial indemnity basis).

(e) “City” means the City of Toronto and where an authority or discretion is conferred upon the City under

this Agreement, means the appropriate official or representative of the City as designated or

appointed under its governing by-laws, resolutions or policies from time to time or under this

Agreement.

(f) “Clarification Letter(s)” means a written document issued by the Consultant clarifying its Proposal.

The Consultant's Proposal has been clarified by the following letter(s) of the Consultant:

Letter(s) of the Consultant dated [ENTER DATE] (the “Clarification Letter(s)”).

Each reference in this Agreement to the Consultant’s Proposal (or individually to the Consultant’s

Technical Proposal or Cost of Services Proposal) shall be taken as a reference to the respective

Proposal as modified by the foregoing Clarification Letter(s).

[INSERT “There has been no clarification made of the Consultant’s Proposal.” where no Clarification Letters

and DELETE box above]

(g) “Confidential Information” means, with respect to the City, all documents, information and material which are identified by the City to the Consultant as confidential or containing confidential information; or which ought by their nature to be considered as confidential or as containing confidential information of the City, which the Consultant and/or its subcontractors receive or are exposed to by reason of this Agreement or performing the Services including: (i) any personal information; (ii) any software code and associated documentation owned or licensed by the City; and (iii) any administrative, commercial, financial, proprietary, technical, commercial labour relations, statistical or regulatory information of the City, or of any third party which may be contained in records of the City and was supplied in confidence to the City and identified as such to the Consultant. Notwithstanding the foregoing, Confidential Information shall not include any document, information or material that is or becomes publicly available through no act or failure of the Consultant from a source other than the Consultant prior to receipt from the City; or becomes independently available to the Consultant as a matter of right.

(h) “Construction Lien Act” means the Construction Lien Act, R.S.O. c. C.30 and regulations thereunder, as amended from time to time.

(i) “Division Head” means the [General Manager, Toronto Water][Executive Director of Technical Services] [ENTER appropriate Division Head for Project] and includes such person’s designate.

(j) “including” means “including but not limited to”.

(k) “Indemnitees” means the City, its elected officials, officers, directors, employees, agents, representatives, successors and assigns.

(l) “Optional Item” means an item which has not been set out in the scope of work of the RFP but has been proposed by the Consultant in its Proposal as an enhancement or additional service which may benefit the Project.

(m) “Personnel” means the Consultant’s personnel and includes:

Page 163: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 3

(i) the Consultant’s officers, directors, partners, employees, agents and subcontractors; (ii) any person employed or engaged by or under the control of the Consultant or its

subcontractors to perform or supply any part of the Services including goods related thereto; and

(iii) any other person for whom the Consultant is responsible at law.

(n) “Project” means [ENTER brief Project description].

(o) “Proposal” means the Consultant’s Technical Proposal dated [ENTER DATE] and Cost of Services Proposal dated [ENTER DATE], including all appendices, exhibits and attachments thereto, submitted in response to the RFP (individually the “Technical Proposal” and the “Cost of Services Proposal”, respectively). Each reference to the Proposal in this Agreement shall be taken as a reference to the Proposal as modified by the Clarification Letter(s), if any.

(p) “Provisional Item” means a Service identified in Schedule A which shall only be undertaken by the Consultant at the request and upon the prior written authorization of the Division Head.

(q) “RFP” means the Request for Proposal No. [ENTER RFP # ], issued by the City on [ENTER DATE], in connection with obtaining professional consulting services for the Project. Each reference to the RFP in this Agreement shall be taken as a reference to the RFP as modified by the Addenda, if any.

(r) “Services” means those services, and goods related thereto, and obligations detailed in this Agreement, including Schedule A, to be provided and undertaken by the Consultant for the City and shall include Provisional Items and Additional Services, unless the context requires otherwise, authorized by the Division Head in accordance with this Agreement.

(s) “Working Day” shall have the same meaning as set out or described in the RFP and, where there is no meaning or description of Working Day set out in the RFP, it shall have the same meaning as Business Day.

(3) Interpretation

(a) For the purposes of this Agreement, any reference to a “subcontractor” of the Consultant shall include a sub-consultant of the Consultant.

(b) Any reference to the Division Head or other officer or representative of the City shall be construed to mean the person holding that office from time to time, and the designate or deputy of that person, and shall be deemed to include a reference to any person holding a successor office or the designate or deputy of that person.

(c) Without restricting or limiting the rights and privileges of the City to any broader interpretation, any breach or default of or in respect of a term, covenant, warranty, condition or provision of the Agreement, or a liability caused, by any of the Consultant’s Personnel shall constitute a breach or default or liability caused by the Consultant.

(d) A reference to any Act, bylaw, rule, policy or regulation or to a provision thereof shall be deemed to include a reference to any Act, bylaw, rule, policy or regulation or provision enacted in substitution thereof or amendment thereof.

(e) This Agreement shall not be construed as or deemed to be an agreement for the benefit of any third parties, and no third party shall have any right of action arising in any way under this Agreement for any cause whatsoever.

(f) Any services, goods or incidentals not explicitly specified in this Agreement but which are necessary to conform to professional or safety standards or codes governing such Services, or which may be fairly implied as “included”, shall be done or supplied by the Consultant as if such services, goods or incidentals had been explicitly specified.

(g) Any words and abbreviations, which have well-known professional, technical or trade meanings, are used in this Agreement in accordance with such recognized meanings, unless expressly provided otherwise.

Page 164: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 4

(h) All amounts are expressed in Canadian dollars and are to be payable in Canadian dollars and all references to time shall be deemed to be references to current time in the City.

(4) Priority of Documents

In the event of any conflict or disagreement between the various documents or any omissions contained

in the documents making up this Agreement, the documents shall govern in the following order of

precedence:

(a) A written amendment to this Agreement in accordance with the terms hereof, the amendment

bearing the later date having priority (if any);

(b) This Agreement including Schedules “A” and “B”;

(c) Addenda, the addendum bearing the later date having priority (if any);

(d) RFP;

(e) Statutory Declaration by the Consultant (Schedule “SD-Final”);

(f) Clarification Letter(s) of the Consultant (if any), the Clarification Letter bearing the later date

having priority; and

(g) Consultant’s Proposal (including the Technical Proposal and Cost of Services Proposal).

The foregoing documents are incorporated into and form part of this Agreement, even if said documents are not physically attached hereto. The Consultant acknowledges receipt of all such documents.

2. PERFORMANCE

(1) The Consultant agrees and covenants, and represents and warrants, to the City and acknowledges

that the City is relying on such representations, warranties and covenants in entering into this

Agreement, as follows:

(a) to supply and perform the Services, more particularly set forth in Schedule "A" attached hereto,

and undertake, perform and complete its undertakings and obligations provided for in this

Agreement to the satisfaction of the Division Head in accordance with all the terms and conditions

of this Agreement;

(b) to supply and provide, at its sole cost, save as otherwise expressly provided in this Agreement, all

necessary equipment, goods, materials, analysis, transportation, accommodation, labour,

personnel, technical assistance and incidentals required in performing or supplying the Services,

and all overhead expenses in connection therewith;

(c) to supply, perform and provide the Services in a careful, professional, skilful, diligent, timely and

workmanlike manner according to the best standards of practice, care, skill and diligence to be

expected of professionals and contractors in the performance of services similar to those called for

under this Agreement including the use of materials and methods as are properly suited to the

function and performance intended;

(d) to make available and employ for the purposes of this Agreement only such persons as are

professionally qualified, careful, skilled and experienced in the duties required of them to perform

the Services properly and in a competent and professional manner and ensure that every such

person is properly and thoroughly trained and instructed;

(e) to ensure that its Personnel, when using any buildings, premises, equipment, hardware or software

owned, leased or licensed by the City shall comply with all security policies, regulations or directives

relating to those buildings, premises, equipment, hardware or software of which the Consultant has

received oral or written notice;

(f) to use, in the performance of the Services, those Personnel specifically named in its Proposal and

to not add to or substitute any such Personnel or engage any other subcontractor without the prior

written approval of the Division Head. The City reserves the right to require the Consultant to

immediately replace any of its Personnel supplying or performing the Services, upon written notice

by the Division Head, where such person in the reasonable opinion of the Division Head has

Page 165: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 5

performed unsatisfactorily or breached an obligation of the Consultant under this Agreement or has

otherwise acted improperly. The City shall not pay any fee or compensation whatsoever in respect

of the time required by the replacement for any such Personnel to gain familiarity with the Project.

(g) to be solely responsible for the payment of all its Personnel employed or engaged for the purpose

of assisting in or undertaking any of its obligations under this Agreement;

(h) to adhere to the Project time schedule and any amendments thereto approved in writing by the

Division Head; and

(i) to comply with and conform to all statutes, laws, by-laws, regulations, requirements, ordinances,

notices, rulings, orders, directives and policies (including the City policies referenced in the RFP)

of the municipal, provincial and federal governments and any other lawful authority and all court

orders, judgments and declarations of a court of competent jurisdiction (collectively referred to as

the “Laws”), applicable to the Services to be provided by, and the undertakings and obligations of,

the Consultant under this Agreement.

(2) The Consultant represents and warrants that its Personnel and, where applicable, the respective

workforce of each are fully qualified to perform the Services and the obligations under this Agreement

and hold all requisite licences, rights and other authorizations required by any Laws with respect thereto

and all powers, capacities and authorities under its governing legislation. Where required by any Laws,

the Personnel shall be duly licensed in performing the Services to the satisfaction of the Division Head.

(3) The Consultant shall ensure that all its Personnel comply with the terms of this Agreement and, in

particular without limiting the foregoing, the responsibilities of the Consultant with respect to matters

concerning safety, compliance with all Laws and the conduct of the Services.

(4) The Consultant shall co-ordinate the services of all its Personnel in a manner acceptable to the Division

Head. The Consultant shall ensure that its Personnel at all times work in a professional, co-operative

and collegial manner with City staff and the City’s other consultants. It shall be the Consultant's

responsibility to control and check the Services of all of its Personnel and to ascertain that all Services

are performed in accordance with this Agreement.

(5) The Consultant, in providing the Services, shall and is deemed to be an independent contractor and

not the agent or employee of the City.

(6) No subcontracting of any part of the Services or this Agreement by the Consultant shall relieve the

Consultant of any responsibility for the full performance of all of its obligations under this Agreement.

Notwithstanding the approval of any of its Personnel by the City, the Consultant shall be fully

responsible for every such Personnel’s activities, works, Services and acts or omissions. Without

limiting the generality of any other provision of this Agreement, the Consultant shall be solely

responsible and liable to the City for all its costs, losses or damages arising from errors or omissions

or non-compliance with this Agreement of or by the Consultant’s Personnel or any of them. The

Consultant’s responsibility and liability as set out in this Agreement shall survive the termination or

expiry of this Agreement.

3. PAYMENT

(1) The City will pay the Consultant for the Services performed by the Consultant pursuant to this Agreement,

in the amounts and manner, and at the times, set forth in Schedule "B" Fees and Expenses hereto

attached.

(2) The Consultant shall, even if the rate of payment set forth in Schedule "B" hereto attached is based on

an hourly, daily or other time-based rate, perform all of the Services notwithstanding that the value of the

time spent by the Consultant in performance thereof exceeds the maximum amount specified in the

Schedule, on the basis that neither such rate nor any provision of this Agreement shall relieve the

Consultant from performing all the Services or all its undertakings and obligations under this Agreement.

(3) The Consultant agrees to keep and maintain accurate and complete records and accounts related to any

costs payable by the City under this Agreement. All such records, including timesheets, correspondence,

Page 166: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 6

receipts and memoranda pertaining to the Services shall be available for inspection by any authorized

employee or agent of the City at all reasonable times for the purpose of auditing the Consultant's costs

and the Consultant shall provide every reasonable assistance for that purpose. Such records shall be

kept for a period of 12 months after completion of all of the Consultant’s services in respect to the Project

or termination of this Agreement, whichever occurs last.

(4) At the request of the Division Head, the Consultant shall submit to the City, when claiming reimbursement

of expenses, except where the RFP does not require disbursements to be itemized and claimed on an

individual basis, detailed expense sheets, copies of receipts, and/or per diem documentation, invoices,

vehicle travel records and all such documents and materials in respect of such expenses.

(5) Upon completion of all Services pursuant to this Agreement, the Consultant shall submit to the Division

Head a statutory declaration attached as Schedule SD-FINAL (Final Payment) to this Agreement,

completed by a senior professional engineer (or, where professional engineering services are not

performed, a senior professional regulated by a professional body in respect to the Services performed),

who is a fully authorized representative of the Consultant, detailing the Services, or part thereof, for which

payment is being claimed, itemizing all disbursements claimed at the time of such submission and

certifying that such Services have been performed and disbursements claimed in accordance with the

provisions of this Agreement. The details of the performance of the Services, or part thereof, to be

contained in the statutory declaration shall be satisfactory to the Division Head.

(6) At the time of submission of the final statement or within a reasonable time thereafter, the Consultant shall

submit to the Division Head the certificate of an auditor duly licensed under the Public Accounting Act,

2004 to the effect that in his/her opinion the charges set forth in such final statement (exclusive of any

Services to be paid on a fixed fee basis) are properly chargeable under this Agreement. Audit reports

must be in the format prescribed by The Canadian Institute of Chartered Accountants (CICA). Reports

which are not in accordance with current CICA guidelines will not be accepted. The City reserves the

right to conduct an audit of the records of the Consultant at the option of the Division Head. In the event

that the Services are scheduled to extend or, while not scheduled to do so, do extend beyond a period of

two years, audit reports satisfactory to the Division Head shall be required at the end of the second year

of Services and on the last day in each subsequent year in which Services are performed; provided,

however, that in the final year of Services, the audit report shall be provided within 60 days of the last day

of performance of the Services.

4. CONSTRUCTION LIEN ACT

(1) For the purposes of this section, “supply of services”, “improvement” and “holdback” shall have the same

meaning, respectively, as defined by the Construction Lien Act.

(2) Where any part of the Services constitutes a supply of services upon or in respect to an improvement,

the City shall retain a holdback as required by the Construction Lien Act from each sum otherwise payable

to the Consultant under this Agreement with respect to those Services. The holdback shall be retained,

held and released by the City in accordance with the Construction Lien Act.

5. RIGHT OF OWNERSHIP/CONFIDENTIAL INFORMATION

(1) Any item, including tangible and intangible property, created, prepared or purchased by the Consultant or

any person on its behalf in connection with the Services or this Agreement and charged to the City’s

account, including all original written materials, programs, card decks, tapes, disks, listings, books,

reports, drawings, maps plans, and all other documents, items, materials and information,

(a) is and shall be deemed and shall remain the sole and absolute property of the City, including all

copyright therein and rights of use and reproduction, without the payment of any additional

compensation by the City to the Consultant; and

(b) shall be delivered to the Division Head upon completion of the Services or other termination of this

Agreement, whichever occurs first, or as otherwise directed by the Division Head.

Page 167: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 7

(2) All proprietary rights in, connected with or arising out of, the ideas, concepts, know-how, techniques,

computer data or programming developed by the Consultant or the Consultant’s Personnel, or by the

Consultant or the Consultant’s Personnel and the City and its personnel jointly, during the course of this

Agreement relating to the Services provided under this Agreement shall be the sole and absolute property

of the City and shall be treated as trade secrets to which the City alone is entitled, with the concomitant

duty of confidentiality and non-disclosure. The Consultant shall obtain all necessary assignments of

copyright and waivers of moral rights in all Services and related goods to be delivered to the City in

accordance with this Agreement and shall provide satisfactory proof thereof to the Division Head upon

request.

(3) The Consultant acknowledges that any item, document or other matter which is the property of the City,

or in which the City has proprietary rights, pursuant to subsections (1), (2) and (3) of this section and the

information contained therein are the property of the City having been developed in confidence for the

City for its own and sole use.

(4) Any documents, data or other information obtained from the City or prepared by the Consultant for the

City shall be disclosed only to those of the Consultant's employees, agents or subcontractors who have

a "need to know" for purposes of assisting the Consultant in the performance of the Services.

(5) The Consultant shall not use, disclose, disseminate or reproduce or in any way making known to third

parties or to the public any Confidential Information of the City communicated to or acquired by the

Consultant in the course of carrying out the Services, except:

(a) as may be strictly required for the purposes of carrying out the Services, or

(b) as expressly permitted in advance by the City in writing, or

(c) as may be required by law to be disclosed pursuant to a court or tribunal order or other legal

compulsion and, if so compelled, the Consultant shall only furnish the portion of the City Confidential

Information that it is legally required to furnish. Where the Consultant is required by law to disclose

any such documents, data or information, the Consultant shall promptly notify the Division Head upon

such legal requirement being imposed to permit the City an opportunity to seek an order or other

remedy to prohibit or restrict such disclosure.

(6) The Consultant shall deliver to the Division Head, upon completion of the Services, any computer data or

program used by the Consultant in performing the Services and paid for by the City, subject to any third

party proprietary rights with respect to any computer data or program used by the Consultant but which

was developed by a third party with resources unrelated to this Agreement which may be purchased or

licensed directly by the City, at the City’s option.

(7) The Consultant shall return forthwith and without demand all Confidential Information of the City as may

be in documentary form or recorded electronically or otherwise upon the termination of its Services.

(8) Any reports or other documentation delivered to the City by the Consultant shall become the property of

the City and may be subject to disclosure under the terms of the Municipal Freedom of Information and

Protection of Privacy Act, R.S.O. 1990, c.M.56 (the “MFIPPA”). While the City is not responsible for the

interpretation of any of the provisions of MFIPPA, if the Consultant believes that any part of the reports or

other documentation delivered to the City reveals any trade secret, intellectual property right or any

scientific, technical, commercial, financial or other similar information belonging to the Consultant and the

Consultant wishes the City to attempt to preserve the confidentiality of the trade secret, intellectual

property right or information, the trade secret, intellectual property right or information must be clearly and

specifically designated as confidential.

6. INSURANCE [Note: Specimen Certificate & Policy Coverages to be set out in RFP]

(1) The Consultant agrees to purchase and maintain in force, at its own expense, the policies of insurance and coverages set out in the RFP for the duration of this Agreement, except in the case of professional liability (errors and omissions) insurance which shall be maintained for a period ending no sooner than two (2) years after the termination of this Agreement or the completion of the Project, whichever occurs

Page 168: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 8

last. Such insurance shall be in accordance with the requirements of the RFP and be provided by an insurer licensed to carry on the business of an insurer in Ontario and acceptable to the City. The Consultant shall provide the City with certificates of insurance as proof of such coverage, in a form acceptable to the City in accordance with the RFP, originally signed by the insurer or its authorized agent and delivered to the City prior to the execution of this Agreement and the commencement of the Consultant’s Services.

(2) Prior to the execution of this Agreement and the commencement of the Consultant’s Services, the Consultant shall also provide the City with proof of professional liability insurance maintained by any subcontractor engaged by the Consultant in relation to the Services, where such subcontractor is under a professional obligation to maintain the same, in a form and with an insurer acceptable to the City.

(3) The City reserves the right to require the Consultant to purchase additional insurance coverage or alter existing insurance coverage as the City’s Manager of Insurance & Risk Management may reasonably require. The City agrees to pay the reasonable incremental cost to the Consultant of such additional insurance or any increase in existing coverages, where applicable. Provided, however, the City’s obligation to pay any incremental cost shall not include any costs attributable to risk factors unrelated to the increase of coverage requested by the City, including the Consultant’s claims history, or any costs that exceed generally available market prices for such coverages available to consultants providing like services. The Consultant shall obtain the prices for such coverage changes and provide same to the City.

(4) Any premiums due on any insurance policy under this section but not paid by the Consultant may be paid directly to the insurer(s) or broker(s) by the City, which shall be entitled to deduct the amount of same along with its reasonable costs in so doing from any monies otherwise due to the Consultant by the City either under this Agreement or otherwise.

(5) To ensure there is no gap in coverage, the Consultant shall provide original signed Certificates evidencing renewals or replacements to the City prior to the expiration date of the original policies, without notice or request by the City.

(6) The Consultant agrees that insurance policies may be subject to reasonable deductible amounts, which deductible amounts shall be borne by the Consultant. The certificates of insurance must include details of the insurance coverage, exclusions, deductibles and any conditions of coverage.

(7) The Consultant shall bear all costs, expenses, losses and damages of its own and those of the City which may arise as a result of the Consultant failing to or delaying in promptly complying with this section.

7. WORKPLACE SAFETY AND INSURANCE ACT

The Consultant shall be in good standing with the Workplace Safety and Insurance Board (“WSIB”) throughout the term of this agreement. If requested by the [General Manager/Executive Director/etc.] or his designate, the Consultant shall produce certificates issued by the WSIB to the effect that they have paid in full their assessment based on a true statement of the amount of payrolls. If the Consultant is considered by WSIB to be an independent operator without coverage, the Consultant shall provide a letter to that effect from the WSIB.

8. INDEMNITIES

(1) The Consultant shall indemnify and save harmless the Indemnitees from and against any and all Claims resulting from:

(a) any breach, violation or non-performance by or on behalf of the Consultant of any covenant, obligation or agreement of the Consultant contained in this Agreement, including any express or implied warranty;

(b) any negligent acts, errors or omissions or wilful misconduct by or on behalf of the Consultant relating to the Services to be provided under this Agreement;

(c) any acts performed by or on behalf of the Consultant beyond the authority of the Consultant hereby conferred, whether negligent or otherwise;

Page 169: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 9

(d) any inaccuracy in or breach of any of the representations or warranties of the Consultant contained in this Agreement;

(e) any preserved or perfected lien under the Construction Lien Act filed or made on account of the Services performed under this Agreement, provided that such liens are not the direct result of the default in payment by the City to the Consultant of amounts properly due under this Agreement. The Consultant shall cause any such lien or claim which may be filed or made to be released, vacated or otherwise discharged within 5 days of obtaining notice of the lien or claim or from receipt by the Consultant of written notice from the City. If the Consultant fails to release, vacate or discharge any such lien or claim, then the City may, but is not obligated to, obtain a discharge or release of the lien or claim or otherwise deal with the lien or claim, and the Consultant shall pay all reasonable costs and expenses, including reasonable legal fees, incurred by the City in so doing;

(f) any infringement or alleged infringement of any patent, trade secret, service mark, trade name, copyright, official mark, moral right, trademark, industrial design or other proprietary rights conferred by contract, common law, statute or otherwise in respect to the Services or any matter provided to the City or performed by the Consultant, or anyone else for whom at law it is responsible.

(2) The Consultant shall pay all reasonable costs, expenses and legal fees that may be incurred or paid by the Indemnitees in connection with any Claim with respect to a matter for which the Consultant is obligated to indemnify the Indemnitees pursuant to this section, provided that the indemnity obligations of the Consultant under this section shall not extend to loss or damage attributable to the negligence or wilful misconduct of any Indemnitee to the extent that such Indemnitee’s negligence or wilful misconduct caused the loss or damage.

(3) In the event any Claim is asserted in respect to which an Indemnitee is entitled to indemnification under this section, and without prejudice to any other right or remedy the City may have, the City shall be entitled to deduct or withhold a reasonable sum on account of such Claim, including reasonable legal costs, from monies owed or payable by the City to the Consultant under this Agreement pending the final determination or settlement of any such Claim. In the event (i) the Consultant is, becomes, or is deemed to be bankrupt or an insolvent person pursuant to the Bankruptcy and Insolvency Act (Canada); (ii) the Consultant makes a general assignment for the benefit of creditors; or (iii) a receiver or interim-receiver is appointed with respect to some or all of the Consultant’s business, assets, or property, then the City shall be entitled, without prejudice to any other right or remedy the City may have, to further deduct or withhold a reasonable sum on account of such Claim, including reasonable legal costs, from any monies owed or payable by the City to the Consultant under the Project or any other agreement or account. The provisions of this subsection shall not apply in the event that such Claim is otherwise fully provided for under any insurance provided by the Consultant to or for the benefit of the City.

(4) This section shall survive the expiration or earlier termination of this Agreement.

9. DEFAULT & TERMINATION

(1) The following shall constitute, without limitation, Acts or Events of Default (“Default”) by the Consultant:

(a) where the Consultant fails or neglects to commence the Services within ten (10) Working Days of a formal direction by the Division Head to commence;

(b) where the Consultant fails or neglects to proceed, once commenced, with the provision of Services diligently and at a rate of progress that, in the reasonable opinion of the Division Head, will ensure entire completion of the Services within the time provided for in the Agreement or where the City reasonably determines that the Consultant has abandoned its duties with respect to this Agreement;

(c) where the Consultant fails or neglects to complete the Services within the time limit(s) under this Agreement;

(d) where the Consultant has made any material misrepresentation in respect to this Agreement or any part thereof;

(e) where the Consultant fails to comply with and maintain in good standing any insurance policies and coverages, securities, professional certificates, permits, licences or approvals required by this

Page 170: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 10

Agreement or commits any acts or omissions that, in the opinion of the Division Head, jeopardizes or may jeopardize these policies, securities, certificates, permits, licences or approvals;

(f) where the Consultant fails or refuses to correct, rectify or remedy any unsatisfactory or defective Services, when so ordered by the City in writing, or fails to prosecute the Services with the required skill and diligence;

(g) where the Consultant fails to comply with any Law applicable to the Services;

(h) where the Consultant subcontracts the whole or any part of this Agreement or the Services or makes an assignment of this Agreement or the Services thereunder or any part thereof, without the prior written consent of the City;

(i) where a lien arises with respect to the Services undertaken by the Consultant under the Agreement and remains unpaid by the Consultant after demand to pay therefore, unless vacated or discharged and released by payment into a court of competent jurisdiction or otherwise, within Five (5) Working Days of such demand, save and except a valid and proper lien of the Consultant registered against the property affected by the Agreement;

(j) where any of the goods, chattels or effects of the Consultant shall at any time during the Term be seized or taken in execution of attachment; or if a writ of execution shall be issued against the goods, chattels or effects of the Consultant; or if the Consultant shall make any assignment for the benefit of creditors; or if the Consultant shall be adjudged bankrupt or insolvent, commit any act of bankruptcy or insolvency or make any proposal under or take advantage of any of the provisions of any act or statutes whatsoever that may be in force regarding bankrupt or insolvent debtors or debtors who are not able to or do not pay their debts promptly and in full; or if a receiving order or winding up order shall be made against or in respect of the Consultant; or if any actions or proceedings shall be taken to wind up, dissolve or liquidate the Consultant or its assets by, against or in respect of the Consultant; or where a resolution is passed or any other act undertaken for the winding up of the Consultant; or a receiver, manager or trustee is appointed in respect of the business or assets of the Consultant, or any part of thereof, by a court of competent jurisdiction, or under an agreement;

(k) where the Consultant ceases or threatens to cease to carry on its business, or where the Consultant makes or agrees to make a bulk sale of its assets; or defaults in payment of any indebtedness or liability to a chartered bank or other lending institution, whether secured or not; and

(l) where the Consultant fails to comply with or observe or perform, or breaches or violates, any material provision, term, covenant, warranty, condition and/or obligation of the Agreement.

(2) In the event that the Consultant has committed a Default or a Default has occurred, the Division Head may provide written notice (“Default Notice”) to the Consultant to the effect that if the Consultant does not completely remedy the Default to the satisfaction of the Division Head within Five (5) Working Days of delivery of the Default Notice or otherwise expressly granted in writing by the Division Head in his or her absolute discretion, then the Division Head may, in his/her sole discretion, on the behalf of the City: (a) suspend the performance of the Agreement by the Consultant and either perform the Services on

a temporary basis itself or engage another consultant to perform the Services on a temporary basis; (b) terminate the Agreement and/or the Services of the Consultant immediately by giving notice to that

effect to the Consultant; (c) cease all payments to the Consultant, save for the payment of those Services, if any, that have

been furnished by the Consultant to the satisfaction of the Division Head up to the time of such termination and that have not yet been paid by the City (the Consultant shall have no claim of any kind otherwise against the City), subject to any rights or remedies the City may have against the Consultant;

(d) enforce any performance security provided by the Consultant or deduct or set-off from funds retained under such performance security or otherwise held, but such enforcement shall not preclude the City from recovering any further amounts or damages incurred by the City as a result of the Default by the Consultant;

(e) engage another consultant to complete the Project or may itself complete the Project, without further liability to the Consultant,

(f) where the City performs or engages another consultant to perform the Services, either on a temporary basis or otherwise, the City may employ such means as the Division Head may deem

Page 171: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 11

necessary or advisable to complete the Services to his satisfaction with such changes therein as in the Division Head's opinion are necessary or advisable by reason of the Consultant's Default,

or any combination of the foregoing.

(3) Notwithstanding subsection (2) of this section and without prejudice to or foregoing any other right, privilege or remedy of the City, in the event that any emergency services are necessitated as a result of the Default of the Consultant, such services may be undertaken immediately, without notice, by the City and all reasonable costs incurred by the City arising from such emergency or as a result of such emergency services shall be borne by the Consultant and payable forthwith upon written demand by the City, with particulars of the emergency and services necessitated thereby, and the City shall have no liability to the Consultant for any loss or damage or compensation whatsoever resulting from such action by the City.

(4) In addition to the rights and remedies in subsection (2) and (3) of this section, if the City terminates the Consultant’s Services in whole or part, as a result of a Default by the Consultant, the City may but is not obliged to: (a) take possession of and utilize any items, goods, material and equipment of the Consultant devoted

to that part of the Services terminated, within the Project site, which is intended to be utilized in the Services, subject to the secured rights of third parties;

(b) withhold further payments to the Consultant with respect to the Services or the portion of the Services withdrawn from the Consultant until the Services or portion thereof withdrawn are completed to the satisfaction of the Division Head;

(c) charge the Consultant the additional cost over the Consultant’s Proposal price for completing the Services or portion thereof withdrawn from the Consultant;

(d) charge the Consultant a reasonable allowance, as determined by the Division Head, to cover correction to the Services performed by the Consultant that may be required;

(e) charge the Consultant for any costs and damages the City may have sustained as a result of the Default; and

(f) charge the Consultant the amount by which the cost of corrections to the Services exceeds the allowance provided for such corrections,

or any combination of the foregoing.

(5) The Consultant's obligation under this Agreement as to quality, correction and warranty of the Services, performed prior to the time of termination of this Agreement or termination of the Consultant's right to continue with the Services in whole or in part, shall continue to be in force after such termination.

(6) In addition to the foregoing rights of the City, the Division Head may, at his or her sole option and upon providing not less than ten (10) Working Days’ prior written notice to the Consultant, elect to suspend the Services for up to ninety (90) calendar days or discontinue the Services and terminate this Agreement for any reason. In such an event, the Consultant shall have no claim, including for any loss or damages, against the City except for payment for such of the Services as have been satisfactorily performed by the Consultant to the satisfaction of the Division Head to the date of notice of the suspension or discontinuance of Services, subject to any rights or remedies the City may have against the Consultant. The Consultant shall immediately suspend or discontinue the Services, as the case may be, on the date and to the extent specified in the notice and place no further orders for materials or services for the terminated portion of the Services. In the event of a discontinuance of Services, termination shall become effective on such date as shall be stated in the City's notice.

(7) The rights and remedies provided in this section given to the City are distinct, separate and cumulative, may be exercised at any time and from time to time independently or in combination, are in addition to all other legal, equitable or statutory rights, privileges and remedies to which the City is otherwise entitled, as well as any other rights and remedies stipulated in this Agreement, and the exercising or taking of any one right or remedy shall not preclude the exercising or taking of any other rights or remedies.

10. NON-WAIVER

No condoning, excusing or overlooking by the City or any of its representatives of any Default by the Consultant at any time or times in respect of any provision contained in this Agreement shall operate as a

Page 172: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 12

waiver of the City's rights under this Agreement in respect of any continuing or subsequent Default or so as to defeat or affect in any way the rights of the City under this Agreement in respect of any such continuing or subsequent Default. No waiver shall be inferred from or implied by anything done or omitted by the City or any of its representatives and no waiver of any rights of the City shall be effective unless expressly provided in writing by an authorized representative of the City.

11. SET-OFF

In addition to any other remedies the City may have under this Agreement, the City shall have the right to set-off, withhold, retain or deduct from amounts due or owing by the City to the Consultant under the Project an amount sufficient to cover any monetary Claims or other amount due or owing from time to time, or portions thereof, by the Consultant to the City, including any amount owing to the City pursuant to the Consultant’s indemnification of the City under this Agreement.

12. OCCUPATIONAL HEALTH & SAFETY

(1) The Consultant shall comply with all federal, provincial or municipal occupational health and safety

legislative requirements, including, and without limitation, the Occupational Health and Safety Act, R.S.O., 1990 c.0.1 and all regulations thereunder, as amended from time to time (collectively the "OHSA").

(2) Nothing in this section shall be construed as making the City the "employer" (as defined in the OHSA) of any workers employed or engaged by the Consultant for the Services, either instead of or jointly with the Consultant.

(3) The Consultant agrees that it will ensure that all subcontractors engaged by it are qualified to perform

the Services and that the employees of subcontractors are trained in the health and safety hazards expected to be encountered in the Services.

(4) The Consultant acknowledges and represents that:

(a) The workers employed to carry out the Services have been provided with training in the hazards of the Services to be performed and possess the knowledge and skills to allow them to work safely;

(b) The Consultant has provided, and will provide during the course of this agreement, all

necessary personal protective equipment for the protection of workers;

(c) The Consultant’s supervisory employees are competent, as defined in the OHSA, and will carry out their duties in a diligent and responsible manner with due consideration for the health and safety of workers;

(d) The Consultant has in place an occupational health and safety policy in accordance with the

OHSA; and

(e) The Consultant has a process in place to ensure that health and safety issues are identified and addressed and a process in place for reporting work-related injuries and illnesses.

(5) The Consultant shall provide, at the request of the [General Manager/Executive Director/etc.] or his

designate, the following as proof of the representations made in subsections 4(a) and 4(d) of this section:

(a) documentation regarding the training programs provided or to be provided during the

Services (i.e. types of training, frequency of training and re-training); and (b) the occupational health and safety policy.

Page 173: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 13

(6) The Consultant shall immediately advise the [General Manager/Executive Director/etc.] or his designate in the event of any of the following:

(a) A critical injury that arises out of Services that is the subject of this agreement; (b) An order(s) is issued to the Consultant by the Ministry of Labour arising out of the Services

that is the subject of this agreement; (c) A charge is laid or a conviction is entered arising out of the Services that is the subject of this

agreement, including but not limited to a charge or conviction under the OHSA, the Criminal Code, R.S.C 1985, c. C-46, as amended and the Workplace Safety and Insurance Act, 1997, S.O. 1997, c. 16, Sched. A, as amended.

(7) The Consultant shall be responsible for any delay in the progress of the Services as a result of any

violation or alleged violation of any federal, provincial or municipal health and safety requirement by the Consultant, it being understood that no such delay shall be a force majeure or uncontrollable circumstance for the purposes of extending the time for performance of the Services or entitling the Consultant to additional compensation, and the Consultant shall take all necessary steps to avoid delay in the final completion of the Services without additional cost to the City.

(8) The parties acknowledge and agree that employees of the City, including senior officers, have no authority to direct, and will not direct, how employees, workers or other persons employed or engaged by the Consultant do work or perform a task that is the subject of this agreement.

(9) The Consultant:

(a) must, immediately upon the execution of this Agreement and prior to commencement of the

Services, forward to the Division Head a copy of the Material Safety Data Sheets (the “MSDS”)

for each hazardous material (as defined in the OHSA) to be used in the performance of the

Services;

(b) shall not bring onto the work site any hazardous material, as defined in the OHSA, without first

obtaining the prior written authorization of the Division Head and maintaining at the Project site

a copy of the relevant MSDS readily accessible to all workers, Consultant’s Personnel and City

personnel;

(c) shall not remove or interfere with any "designated substance" as defined by the OHSA, except in

full compliance with the OHSA and after notifying the Division Head; and

(d) shall, following discovery that any designated substance has been removed or interfered with

other than in compliance with subsection (c) of this section, forthwith report same to the Division

Head and ensure that no further non-compliant removal or interference occurs. 13. SCHEDULES

The following Schedules attached to this Agreement shall constitute an integral part of this Agreement and all expressions defined in this Agreement shall have the same meanings in such Schedules, unless expressly provided otherwise in such Schedules:

Schedule "A": Professional Consulting Services

Schedule "B": Fees and Expenses

Schedule “SD-FINAL”: Statutory Declaration

Schedule “C”: Consultant’s Cost of Services Proposal

Schedule “D”: Clarification Letter(s) of the Consultant (if any)

The RFP, the Addenda (where applicable) and the Consultant’s Proposal are incorporated by reference into this Agreement as if they were set out in this Agreement in their entirety and form part of this Agreement, even if said documents are not physically attached hereto. The Consultant acknowledges receipt of such documents.

Page 174: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 14

14. SUCCESSORS AND ASSIGNS

(1) This Agreement and all terms, covenants, conditions and provisions herein shall be binding upon and shall enure to the benefit of the City and the Consultant and their respective permitted assigns, successors and legal representatives.

(2) Except as expressly permitted in this Agreement, the Consultant shall not:

(a) assign, transfer or encumber in any manner or part this Agreement without the prior written consent of the City; or

(b) subcontract any Services under this Agreement or any part thereof to a third party or change any approved subcontractor without the prior written consent of the Division Head.

(3) No assignment or subcontracting shall, in any circumstances, relieve the Consultant of its responsibilities, obligations and liabilities under this Agreement.

15. AGREEMENT IN WRITING

No verbal arrangement or agreement relating to the Services will be of any force or effect unless it is in writing

and signed by duly authorized representative(s) of the City. The City shall not be bound by any oral

communication or representation whatsoever, including but not limited to any instruction, amendment or

clarification of this Agreement or any of the documents comprising this Agreement, or any representation,

information, advice, inference or suggestion, from any person (including but not limited to an elected official,

employee, agent, independent consultant or any other person acting on the behalf of or at the direction of

the City or other representative of the City) concerning this Agreement, any of the documents comprising

this Agreement, or any other matter concerning this Agreement. Where in this Agreement a reference is

made to the express written agreement, approval or consent of the City or the Division Head, it shall be

understood that the City or Division Head shall not be deemed or construed to have agreed to any

stipulation, specification, exclusion, limitation or other term or condition that deviates from a provision set

out in this Agreement, unless that deviation is expressly confirmed in a written and express amendment to

this Agreement.

No officer, employee, representative or agent of the City is authorized to orally alter any portion of this

Agreement. The City shall not be bound by any written representation whatsoever concerning this

Agreement unless executed by the person designated and authorized in accordance with this Agreement

or in accordance with a direction or authorization of City Council. The Consultant releases and waives all

claims whatsoever in negligence, in equity or otherwise with respect to any oral or unauthorized

representations or communications.

16. ENTIRE AGREEMENT

The documents comprising this Agreement are complementary and what is required by any part thereof

shall be considered as being required by the whole. This Agreement, as may be amended from time to time

by the written agreement of the parties in accordance with the terms herein, contains the entire agreement

between the parties hereto with respect to the subject matters hereof. It is agreed that there is no

representation, warranty, collateral contract or condition affecting this Agreement except as expressed in

it. No amendment, modification or supplement to this Agreement shall be valid or binding unless set out in

writing and executed by the parties hereto.

17. GOVERNING LAW

This Agreement shall be governed by, subject to and construed in accordance with the laws of the Province of Ontario and the laws of Canada, as applicable to the matters herein. Any action or other legal proceeding arising under or with respect to this Agreement (including any motion or other interlocutory proceeding) shall be brought in a Court or a tribunal, whichever may be applicable, sitting in Toronto, Ontario. In the event that there is no applicable Court or tribunal sitting in Toronto, the proceeding shall be brought in the court (or other forum) of competent jurisdiction nearest to the City of Toronto within the Province of Ontario. The Consultant and the City each irrevocably submit to the exclusive jurisdiction of the courts of the Province of Ontario in accordance with the foregoing.

Page 175: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 15

18. SURVIVAL

In addition to any obligations set forth in this Agreement that by their nature survive the completion of the

Services or termination of this Agreement, those obligations set out in ss. 2(1)(g) and 2(6) [liability for and

payment of Consultant’s Personnel], ss. 3(3) [retention of records], s. 5 [Rights of Ownership/Confidential

Information], s. 6 [Insurance], ss. 7(2) [Workers’ Compensation Claims], s. 8 [Indemnities], s. 9

[Default/Termination], s. 11 [Set-Off], ss. 12(7) [OHSA indemnity], s. 14 [Successors and Assigns], s. 15

[Agreement in Writing] and s. 17 [Governing Law] or otherwise expressly intended to survive shall continue

to bind the Consultant notwithstanding the completion of all or part of the Services and payment therefore in

accordance with this Agreement or the termination of this Agreement.

19. SEVERANCE WHERE PROVISION ILLEGAL, ETC.

If any provision of this Agreement or the application thereof to any person or circumstances is found to be invalid, unenforceable or void by any court or tribunal of competent jurisdiction, such provision shall be deemed severable and all other provisions of this Agreement shall be deemed to be separate and independent therefrom and continue in full force and effect unless and until similarly found invalid, void or unenforceable. The remaining provisions of this Agreement and its application to any person or circumstances shall not be affected thereby, but this severance provision shall apply only insofar as the effect of that severance is not to change the fundamental nature of the obligations assumed respectively by the City and Consultant.

20. FURTHER ASSURANCES

The Consultant agrees that it will do all such acts and execute all such further documents, conveyances, deeds, assignments, transfers and the like, and will cause the doing of all such acts and the execution of all such further documents (including waivers of moral rights) as are within its power to cause the doing or execution of, as the City may from time to time reasonably request, in writing, and as may be necessary or desirable to give full effect to this Agreement.

21. NOTICES

Any demand or notice to be given pursuant to this Agreement shall be duly and properly made and given if

made in writing and delivered to the party for whom it is intended at the address as set out below, either

personally, by facsimile or by means of prepaid registered mail addressed to such party as follows:

(1) in the case of the City:

City of Toronto

[ENTER Division Head]

[ENTER Division Head’s Address]

Attention: [ENTER contact person]

(2) in the case of the Consultant: [ENTER Consultant’s name and address] Attention: [ENTER contact person]

or to such other addresses as one party may from time to time notify the other party in writing, and any demand

or notice so made or given shall be deemed to have been duly and properly given and received on the day

on which it was personally delivered or, if delivered by facsimile, shall be deemed to be delivered as of the

next Business Day following the date of transmission (provided a confirmation of transmission receipt is

issued) or, if mailed, then, in the absence of any interruption in postal service in the City of Toronto affecting

the delivery or handling thereof, on the day following three (3) full Business Days following the date of mailing.

Page 176: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 16

IN WITNESS WHEREOF the City and the Consultant have hereunto affixed their respective corporate seals attested to by the hands of their proper officers in that behalf duly authorized.

SIGNED, SEALED AND DELIVERED ) CITY OF TORONTO ) in the presence of: ) ) ) ) City Clerk ) City Clerk [delete where not required] ) (c/s) ) ) _____________________________ ) [ENTER - Division Head’s Title] ) )

) [enter Consultant’s Full Legal Name] ) ) ) ______________________________ ) Name: ) Title: ) (c/s) ) ) ______________________________ ) Name: ) Title: ) ) I/We have authority to bind the Corporation.

Approved As To Form

………………………………………… Confirmed by Division Head:

----------------- ----- Alternate Wording #1 -----

Authorized by Division Head pursuant to Municipal Code Chapters 71 and 195.

------ Alternate Wording # 2 ------

Authorized by Minute No. [ENTER #] of the Bid Committee on

the ______ day of ______________.

------ Alternate Wording # 3 ------

Authorized by name of standing Committee, Item No. [ENTER #], as adopted by City of Toronto Council on

the ______ day of ________________________.

Page 177: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 17

SCHEDULE “A”

PROFESSIONAL CONSULTING SERVICES

Subject to the provisions of this Agreement, the Consultant shall provide the Services more particularly

described in this Schedule for the Project, ensuring that the project approach, staffing, organization,

methodology and schedule are in accordance with the RFP and the Consultant's Proposal. Services:

[USE where Services all in one Agreement]

The Consultant shall provide and undertake the following Services for the Project:

[insert Brief Description of Services to be performed under this Agreement – See following examples:]

Preliminary Design and Detailed Design for the Project [DELETE if not applicable]

Services during construction including office and site supervision services, testing and commissioning [DELETE if not applicable]

Post-Construction Services for the Project [DELETE if not applicable]

including those Services identified in:

Sections 2 and 3, Appendix A.1, Appendix A.4 and Appendix A.5 of the RFP; and [INSERT

applicable Appendices for the Services]

the Consultant’s Technical Proposal. For further clarity, Optional Items included in the Consultant’s Proposal shall not be included in the Services unless identified as a Provisional Item in this Schedule.

and, without limiting the foregoing, those related professional services and responsibilities otherwise detailed in the RFP and this Agreement in the nature of a general or specific responsibility of the Consultant related to the Project.

[USE for Preliminary and Detailed Design Services Agreement]

The Consultant shall provide and undertake the following Services for the Project:

Preliminary Design and Detailed Design for the Project

including those Services identified in:

Sections 2, 3.1, 3.2, 3.3, 3.4 and 3.8, Appendix A.1, Appendix A.4 and Appendix A.5 of the RFP; and [INSERT correct Section & Appendix references from RFP]

the Consultant’s Technical Proposal. For further clarity, Optional Items included in the Consultant’s Proposal shall not be included in the Services unless identified as a Provisional Item in this Schedule.

and, without limiting the foregoing, those related professional services and responsibilities

otherwise detailed in the RFP and this Agreement in the nature of a general or specific

responsibility of the Consultant related to the Project, save and except services during construction

(including site supervision services, testing and commissioning) and post-construction service set

out in sections 3.5, 3.6 and 3.7 and Appendix A.6 and Appendix A.7, of the RFP which are subject

to two further separate agreements (which may include a purchase order for post-construction

services). [INSERT correct Section & Appendix references from RFP]

Page 178: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 18

[USE for Services during Construction Agreement]

The Consultant shall provide and undertake the following Services for the Project:

Services during construction including site supervision services, testing and commissioning

including those Services identified in:

Sections 2, 3.1, 3.2, 3.5, 3.6 and 3.8, Appendix A.1, Appendix A.6 and Appendix A.7 of the RFP; and [INSERT correct Section & Appendix references from RFP]

the Consultant’s Technical Proposal. For further clarity, Optional Items included in the Consultant’s Proposal shall not be included in the Services unless identified as a Provisional Item in this Schedule.

and, without limiting the foregoing, those related professional services and responsibilities

otherwise detailed in the RFP and this Agreement in the nature of a general or specific

responsibility of the Consultant related to the Project, save and except preliminary design and

detailed design services and post-construction services set out in sections 3.3, 3.4 and 3.7 and

Appendix A.4 and Appendix A.5 of the RFP which are subject to two separate agreements (which

may include a purchase order for post-construction services). [INSERT correct Section & Appendix

references from RFP]

[Provisional Items clause - DELETE where inapplicable]

Provisional Items:

In addition to the foregoing, the Consultant shall provide the following Provisional Items set out in the Consultant’s Proposal, if and when required by the Division Head:

[INSERT, as applicable]

[INSERT, as applicable]

[INSERT, as applicable]

Throughout the Project, the Consultant shall work collaboratively with the City staff. The Consultant shall ensure that sufficient time and resources are allocated to allow for City’s input into decision-making processes, that the City’s concerns are adequately addressed and that all Services are coordinated with the other active associated projects as required. The Consultant shall provide any Additional Services, if and as may be required by the City, upon the prior written authorization to proceed with such Additional Services from the Division Head. The fees and expenses for any such Additional Services are subject to the approval of the Division Head, in his/her sole discretion, and, if approved, shall be paid under the contingency allowance (where applicable) provided for in Schedule "B" - Fees and Expenses to this Agreement.

Page 179: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 19

SCHEDULE “B”

FEES AND EXPENSES

1. Notwithstanding anything to the contrary in this Agreement, the total fees and disbursements (including overhead and all taxes) for all Services to be provided by the Consultant under this Agreement, including any authorized Provisional Items and Additional Services, shall not exceed a maximum price of $000,000.00 (the “Maximum Agreement Price”).

2. The Consultant’s fees and disbursements are set out in its Cost of Services Proposal attached as Schedule C, as modified by any Clarification Letter(s).

[where the Services to be performed by the Consultant under this Agreement are not separately set out in the Consultant’s Cost of Services Proposal (i.e. separately for design/construction/post-construction) OR where CLARIFICATIONS have altered the amounts in the Consultant’s Cost of Services Proposal or Mathematical ERRORS need to be corrected INSERT revised Cost of Services table below and DELETE above sentence]

2. The Consultant’s fees and disbursements are comprised of the following:

Service Deliverables Cost

A. BASE SERVICE DELIVERABLES :

[INSERT Type of Service – e.g. Preliminary Design] $000,000.00 [INSERT Type of Service – e.g. Detailed Design] $000,000.00

Disbursements $000,000.00

BASE DELIVERABLES SUB-TOTAL: $000,000.00

B. PROVISIONAL ITEMS: (WHERE APPLICABLE AND AUTHORIZED) [INSERT Item] $000,000.00 [INSERT Item] $000,000.00 [INSERT Item] $000,000.00

PROVISIONAL ITEMS SUB-TOTAL: $000,000.00

C. CONTINGENCY ALLOWANCE FOR ADDITIONAL SERVICES: (WHERE APPLICABLE AND AUTHORIZED) $000,000.00

Maximum Agreement Price for Services (exclusive of GST) $000,000.00

GST @ 5% $00,000.00

Maximum Agreement Price for Services (inclusive of GST) $000,000.00

3. An amount of $000,000.00 (inclusive of all fees, disbursements and taxes) is reserved as an allowance

for Provisional Items, where authorized by the Division Head. [DELETE where not applicable]

4. An amount of $000,000.00 (inclusive of all fees, disbursements and taxes) is reserved as a contingency

allowance for Additional Services which may arise during the course of the Project, where authorized by

the Division Head. [DELETE where not applicable]

5. The initial estimated cost of Service deliverables or tasks may be adjusted during the Agreement by

mutual agreement between the City and the Consultant, provided that the total cost of Services under this

Agreement is not greater than the Maximum Agreement Price.

6. Provisional Items and Additional Services shall only be provided on an “as and when requested” basis.

The City shall not be responsible for the payment of any Provisional Item or Additional Services unless

Page 180: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 20

those services have been authorized and assigned to the Consultant by prior written approval of the

Division Head. If and upon being authorized, the Consultant shall proceed forthwith to supply the

Provisional Item(s) or Additional Service(s), as the case may be, in accordance with: (i) the provisions of

this Agreement; (ii) the terms of such authorization; and (iii) in the case of Provisional Items, the price set

out in the Consultant’s Proposal; or in the case of Additional Services, the applicable unit rates or prices

or lump sum amount set out in the Consultant’s Proposal or otherwise agreed to in writing by the

Consultant and the Division Head, as the case may be.

7. If any Services under this Agreement are included by the Consultant in a progress claim as partially or

fully completed, but are not completed in accordance with this Agreement, the City may withhold from

payment the total amount payable, or a part thereof, for those Services until they are completed or

corrected to the full satisfaction of the Division Head, and the Division Head shall notify the Consultant

in writing of its action and the reason for same.

8. The City shall pay the Consultant on a monthly basis, within forty-five (45) days of the City’s receipt of the

Consultant's invoice properly prepared to show details of the portion of the Services accomplished and

the hours expended by the Consultant's Personnel to carry out the Services covered by the said invoice.

9. All or part of the aforementioned amounts are to be paid by the Consultant on a timely basis to any other

firm and/or personnel which assists the Consultant in performing part or all of the Services, and the

Consultant shall advise the Division Head when such payments by the Consultant have all occurred. It

is agreed and understood that the City will not pay any firm and/or personnel other than the Consultant

for the Services and that it is the Consultant's responsibility to pay all the other firms and personnel.

10. The Consultant's fees and disbursements shall be in accordance with the Consultant's Cost of Services

Proposal [REPLACE “the Consultant’s Cost of Services Proposal” with “section 2 of this Schedule” where

replacement has been made in section 2] and shall not exceed the specified Maximum Agreement Price with respect to the Services under this Agreement. Subject to section 7 [Confirm correct section reference] (Cost of Services) of the RFP, the payment for Services and authorized Additional Services shall be paid in accordance with the following:

(a) Time of Principals, Senior Officers, Specialists

For time-based services, Personnel specifically identified in the Consultant’s Proposal attached hereto shall be billed at the all-inclusive hourly or per diem flat rates indicated therein or this Schedule “B”, as the case may be; otherwise billing rates for this class of personnel shall be submitted for review and shall be subject to prior approval of the Division Head.

(b) Time of other Staff For time-based services, staff or personnel classifications specifically identified in the Proposal attached hereto shall be billed at the hourly or per diem flat rates indicated therein.

Billing rates for staff or classifications other than those identified in the Proposal shall be submitted for review and shall be subject to prior approval of the Division Head.

(c) Disbursements A lump sum limit for any and all anticipated disbursements required in connection with any part of the Services shall be provided as identified in the RFP.

Payments for disbursements will be pro-rated based on the value of the Services performed during a billable period.

SCHEDULE “SD-FINAL”

Page 181: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 21

STATUTORY DECLARATION BY THE CONSULTANT

RE: FINAL PAYMENT PROVINCE OF ONTARIO ) IN THE MATTER OF ) the consulting agreement entered into ) between the City of Toronto ) and ___________________________________ ) dated ___________________ (the “Agreement”) ) and an Invoice dated ___________________ (the “Invoice”) ) To Wit:

I, ____________________________________ of the ____________________________________ (Name) (City, Town, etc.)

in the ____________________________________ (Regional Municipality, City, etc.)

do solemnly declare that:

[modify to appropriate professional type, where no engineering services are being provided under agreement]

1. I am a senior professional engineer employed by ______________________________________ (Consultant’s full legal name)

(the “Consultant”). I have personal knowledge of the facts herein set forth and, as a duly authorized representative of the Consultant, have the authority to certify as follows.

2. Attached hereto and marked as Exhibit A to this my declaration are true copies of statements of the

Consultant as part of the Invoice addressed to the City of Toronto setting forth in detail the services performed and the disbursements incurred by the Consultant during the period from the ____ day of _________________, 200___ to the ____ day of _________________, 200___, and for which payment is requested. I do hereby certify that such services were performed and such disbursements were properly incurred by the Consultant pursuant to and in accordance with the provisions of the Agreement.

3. The Consultant has completed all Services (as defined in the Agreement) to be performed by the Consultant.

AND I make this solemn declaration conscientiously believing it to be true and knowing that it is of the same force and effect as if made under oath and by virtue of the Canada Evidence Act.

DECLARED before me at the ) ) _________________ of _____________________, ) ) in the Province of Ontario, ) ) this day of _________________, 200___. ) ________________________________ ) ) ) _______________________________ ) A Commissioner, etc.

Page 182: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 22

SCHEDULE “C”

CONSULTANT’S COST OF SERVICES PROPOSAL

[ATTACH Cost of Services Proposal for the Services applicable to this Agreement - e.g. Cost of Services Proposal for Design Services/ Cost of Services Proposal for Construction Services - where Services are not all within 1 agreement]

Page 183: design: - wx.toronto.ca · A9 Preliminary Design Engineering (Report and Drawings) for Project Component 2 (Sunrise STM) $ A10 Disbursements (5%) $ Sub-Total (A) $ B DESIGN AND TENDERING

RFP 0000-00-0000 [ENTER RFP #] Preliminary & Detailed Design/Construction Consulting Services

[ENTER Type of Services provided under this Agreement if not all in one agreement]

v.2012.11.12 23

SCHEDULE “D”

CONSULTANT’S CLARIFICATION LETTER(S)

[REMOVE Schedule “D” where there are no clarifications]