42
REFINING MAJOR PROJECTS GENERAL MANAGEMENT PROJECT: RPLC DEEP CONVERSION SUBPROJECT: GENERAL UNIT: GENERAL (U-00) AREA: GENERAL PHASE: DETAILED ENGINEERING DISCIPLINE: CIVIL TITLE: DESIGN SPECIFICATION FOR MODULE STRUCTURE PDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000 PDVSA DOC. No. 3006-5000-DC117301 CONFEED DOC. No. S-000-1330-0301P REV. A DATE: 05-10-12 PAGE 1 OF 42 1 REV. DATE ISSUE PURPOSE / DESCRIPTION OF CHANGE TOTAL PAGES CONFEED PREP’D/CHK’D /APR’D BY PDVSA CHECKED BY PDVSA APPROVED BY . A 05-10-12 For Approval/First Issue 42 P.M/N.O./K.Y. M.K .S.S CONFEED PDVSA CHECKED BY PDVSA APPROVED BY PREPARED BY: Pamela Macaraig CHECKED BY: Naoko Okamoto APPROVED BY: Keizo Yusa SIGNATURE SIGNATURE NAME:Masatoshi Kagaya NAME:Simon Sandoval INDRA 04-OCT-2012

Design Spec for Structure

  • Upload
    sm8575

  • View
    435

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 1 OF 42

1

REV. DATE ISSUE PURPOSE / DESCRIPTION OF CHANGE

TOTAL PAGES

CONFEED PREP’D/CHK’D

/APR’D BY

PDVSA CHECKED

BY

PDVSA APPROVED

BY

.

A 05-10-12 For Approval/First Issue 42 P.M/N.O./K.Y. M.K .S.S

CONFEED PDVSA CHECKED BY PDVSA APPROVED BY

PREPARED BY: Pamela MacaraigCHECKED BY: Naoko OkamotoAPPROVED BY: Keizo Yusa

SIGNATURE SIGNATURE

NAME:Masatoshi Kagaya NAME:Simon Sandoval

INDRA04-OCT-2012

SATOT
Reviewed
Page 2: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 2 OF 42

2

RPLC DEEP CONVERSION PROJECT

DESIGN SPECIFICATION FOR MODULE STRUCTURE

UNIT 00

INDRA04-OCT-2012

Page 3: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 3 OF 42

3

Contents

1 SCOPE ................................................................................................................................... 6

2 APPLICABLE DOCUMENTS.................................................................................................. 6

2.1 Project Documents.......................................................................................................... 6

2.2 Codes and Standards...................................................................................................... 6

3 DEFINITIONS AND ABBREVIATIONS ................................................................................... 7

4 STEEL MATERIAL ................................................................................................................. 9

4.1 Structural Steel, including Grillage and Sea Fastening................................................. 9

4.2 Grating............................................................................................................................10

4.3 Floor Plate ......................................................................................................................11

4.4 High Strength Bolt..........................................................................................................11

4.5 Mild Steel Bolt ................................................................................................................11

4.6 Corrosion Protection .....................................................................................................11

4.7 Fireproof.........................................................................................................................13

4.8 Welding Electrodes........................................................................................................13

4.9 Drainage Pipe.................................................................................................................13

5 WORK FLOW ........................................................................................................................13

5.1 Scope of Work................................................................................................................13

5.2 Scope of Design Work ...................................................................................................13

5.3 Design Flow....................................................................................................................14

6 DESIGN LOADS ....................................................................................................................16

6.1 Dead Load ......................................................................................................................16

6.1.1 Structure····················································································································16

6.1.2 Piping·························································································································16

6.1.3 Equipment ·················································································································17

6.1.4 Others ························································································································17

6.2 Live Load........................................................................................................................17

6.3 Operational Load............................................................................................................17

6.3.1 Piping·························································································································17

6.3.2 Equipment ·················································································································17

6.3.3 Temperature Loads ···································································································17

6.3.4 Crane Impact Load····································································································17

6.3.5 Maintenance Loads ···································································································17

INDRA04-OCT-2012

Page 4: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 4 OF 42

4

6.3.6 Static Operation Loads ·····························································································17

6.4 Hydrotest Load...............................................................................................................17

6.5 Blanket Load ..................................................................................................................17

6.6 Wind Load ......................................................................................................................17

6.6.1 Wind Load for In-Service Analysis ···········································································18

6.6.2 Wind Load for Sea Transportation ···········································································18

6.6.3 Wind Load for Load out/Land Transportation ·························································18

6.6.4 Wind Load for Lifting ································································································18

6.7 Seismic Load..................................................................................................................18

6.8 Sea Transport Action Load............................................................................................18

6.8.1 Module Weight and Critical Point ·············································································18

6.8.2 Inertia Force Due to Vessel Motion ··········································································18

6.8.3 Wind Load ·················································································································21

6.8.4 Transport Vessel Deflection ·····················································································21

6.8.5 COG Adjustment ·······································································································21

6.8.6 Piping Load for Sea Transportation ·········································································21

6.9 Load out / Land Transportation Load............................................................................21

6.9.1 Module Weight and COG ··························································································21

6.9.2 Effect of Module Tilt and Acceleration ·····································································22

6.9.3 COG Adjustment ·······································································································23

6.9.4 SPMT Axle Line Forces·····························································································24

6.9.5 Longitudinal Force ····································································································25

6.9.6 Transverse Force ······································································································25

6.9.7 Wind Load ·················································································································25

6.9.8 Unbalance Load ········································································································25

6.9.9 Vertical Impact Load ·································································································25

6.10 Lifting Load and Load Factors ......................................................................................25

6.10.1 Module Weight and COG ··························································································26

6.10.2 COG Inaccuracy ········································································································26

6.10.3 Skewing Effects·········································································································26

6.10.4 Out of Plane Forces at Lift Points (Only for Padeye/Padear Design)······················26

6.10.5 Dynamic Amplification Factors (DAFs)····································································26

6.10.6 Consequence Factors·······························································································26

6.10.7 2-Hook Lift Factor ·····································································································27

INDRA04-OCT-2012

Page 5: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 5 OF 42

5

6.11 Blast Loads ....................................................................................................................27

6.12 Upset Loads ...................................................................................................................27

7 DESIGN LOAD COMBINATIONS ..........................................................................................27

7.1 In-Service Design...........................................................................................................27

7.1.1 Primary Load Cases··································································································27

7.1.2 Load Combinations···································································································28

7.1.3 Code Checking··········································································································29

7.2 Sea Transportation Design ............................................................................................29

7.2.1 Primary Load Cases··································································································29

7.2.2 Load Combinations···································································································30

7.2.3 Code Checking··········································································································32

7.3 Load out/Land Transportation Design...........................................................................32

7.3.1 Primary Load Cases··································································································32

7.3.2 Load Combinations···································································································33

7.3.3 Code Checking··········································································································34

7.4 Lifting Design.................................................................................................................35

7.4.1 Primary Load Cases··································································································35

7.4.2 Load Combinations···································································································35

7.4.3 Code Checking··········································································································35

ATTACHMENT 7.1A “LOAD COMBINATION MATRIX FOR IN-SERVICE ANALYSIS” ....................36

ATTACHMENT 7.2A “LOAD COMBINATION MATRIX FOR SEA TRANSPORT ANALYSIS” ..........40

LOAD COMBINATION MATRIX FOR TYPE-2 PIPE RACK ...............................................................40

ATTACHMENT 7.3A “LOAD COMBINATION MATRIX FOR LOAD OUT/LAND TRANSPORTATION ANALYSIS” .......................................................................................................................................41

ATTACHMENT 7.4A “LOAD COMBINATION FOR LIFTING ANALYSIS”.........................................42

INDRA04-OCT-2012

Page 6: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 6 OF 42

6

1 SCOPE

This Design Specification covers the design requirements of on-shore MODULE structure, covering the requirements and design flow based on the requirements of RPLC Project.

The term ‘MODULE’ here refers to inter-connecting pipe racks that are to be assembled at the fabrication yard including structures and piping, excluding electrical/instrument cables and trays, and then transported as complete packages from a fabrication yard to site.Electrical/instrumental cable trays and structure fireproofing are installed at final locations after erection of modules

‘Stick built structure” which structural members, piping, equipments etc are erected and assembled at the construction site, is not covered in this guideline.

2 APPLICABLE DOCUMENTS

2.1 Project Documents

SPECIFICATIONSS-000-1310-0001P DETAILED ENGINEERING DESIGN DATA FOR CIVIL AND

STRUCTURE

S-000-1330-0101A DESIGN MANUAL FOR STRUCTURE

S-066-12A0-0003A MODULE LIST

PROCEDURE

S-000-1310-0002P SEISMIC DESIGN RESPONSE SPECTRUM

S-000-1310-0003P SEISMIC DESIGN CRITERIA FOR STRUCTURES

S-000-1310-0004P WINDLOAD CALCULATION PROCEDURE

S-000-1450-0004P ACCELERATION ANALYSIS FOR MODULE TRANSPORT (SEA)

2.2 Codes and Standards

ANSI/AISC 360-10 Specification For Structural Steel Buildings, LRFD Design (2010)

ANSI/AISC 341-10 Seismic Provisions for Structural Steel Buildings (2010)

ASTM A36 Standard Specification for Carbon Structural Steel

ASTM A572 / A572M Standard Specification For High-Strength Low-Alloy Columbium-Vanadium Structural Steel

ANSI/AWS D1.1 / D1.1M:2010

Structural Welding Code – Steel

GL Noble Denton 0030/ND

Guidelines for Marine Transportation

INDRA04-OCT-2012

Page 7: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 7 OF 42

7

GL Noble Denton013/ND

Guidelines for Load outs

GL Noble Denton027/ND

Guidelines for Marine Lifting Operations

3 DEFINITIONS AND ABBREVIATIONS

General

CL Concentrated Load

COG Center of Gravity

COMPANY PDVSA

CONTRACTOR CONFEED

COR Center of Rotation

Cryogenic Protection Protection of Steel Structure from Low Temperature Spill

DAF Dynamic Amplification Factors

DOF Degree of Freedom

D/T Tubular diameter/wall thickness ratio

FEED Front End Engineering Design

HFE Human Factor Engineering

HSE Health Safety and Environment

INSPECTOR Nominated third party agency

k Effective Length Factor

L Member Length

LC Load case

LRFD Load and Resistance Factor Design

MOD Module

Module Fabricator Subcontractor who contracts directly with COMPANY. (Contract may revert to EPC Contractor in EPC stage)

MOF Module Offloading Facility

MTO Material Take Off

Pancake Construction Method

Construction method by pre-assembled frames for each level

Purchaser COMPANY or EPC Contractor. Used for Requisitioning and Purchasing related work

SLS Service Limit State

SUBCONTRACTOR Module Fabrication Subcontractor

Supplier Equipment Supplier, i.e. Vendor

INDRA04-OCT-2012

Page 8: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 8 OF 42

8

t Tons

THK Thickness

TOG Top of Grating

TOS Top of Steel

ULS Ultimate Limit State

UDL Uniformly Distributed Load

Upset Condition Simultaneous flooding of mechanical vessels by the finite fluid content with a particular process system due to inadvertent failure of the controls

VIV Vortex Induced Vibration

WSD Working Stress Design

WT Weight

Lifting

Determinate Lift A lift where the slinging arrangement is such that the sling loads are statically determinate, and or not significantly affected by minor differences in sling length or elasticity.

Indeterminate Lift Any lift where the sling loads are not statically determinate.

Lifting Lug The connection between the rigging and the structure to be lifted. May include pad-eye or pad-ear.

Matched Pair of Slings

Fabricated or designed so that the difference does not exceed 0.5d, where‘d’ is the nominal diameter of the sling.

Pad-ear A lift point consisting of a central member, which may be of tubular or flat plate form.

Pad-eye A lift point consisting essentially of a plate, reinforced by cheek plates if necessary, with a hole through which a shackle may be connected.

Rigging The slings, shackles and other devices including spreaders used to connect the structure to be lifted to the crane.

Rigging Weight The total weight of the rigging, including slings, shackles, spreaders and contingency, if necessary.

Spreader Bar (beam) A structure designed to resist the compression forces induced by angle slings, by altering the line of action of the force on a lift point into a vertical plane. The structure shall also resist bending moments due to geometry and tolerances.

Yaw Factor Factor to consider tolerances in lift radii of the 2 hooks.

INDRA04-OCT-2012

SATOT
Note
Please show the PDVSA drawing No. AND document title.
Page 9: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 9 OF 42

9

Transportation

Barge A vessel that is designed primarily for freight carrying. They usually have no engines and are towed or pushed by other boats.

Grillage A framework of beams or plate girders used for spreading the weight of modules to the web frames of the transportation vessels

Haul Road Temporary road for transporting modules to their final locations

Hogging/Sagging Longitudinal deflection of vessel during sea transportation

Land Transportation Operation to off-load the modules from the vessel and to move them to their final locations

Load out Operation to transport modules from the fabrication yard onto the vessel

Sea fastening Steel members such as roll and pitch braces provided to restrain the horizontal forces occurred during sea transportation

SPMT Self Propelled Modular Transporter

SPV Self Propelled Vessel

Stowage Plan Arrangement of Modules on Vessel Deck

Transport vessel A general term that represent any kind of vessel used for sea transportation

Volume Drawing This drawing shows reserved volumes for grillage and SPMTarrangement. However, wing plates, gusset plates and others are excluded. Also shown are weight report (COG location) and installation method to be adapted at site.

4 STEEL MATERIAL

4.1 Structural Steel, including Grillage and Sea Fastening

The steel material grades are summarized in Table 4.1A.

Table 4.1A Steel Grades for Pipe Rack

High GradeASTM A992, ASTM A572 Grade 50,EN10025 S355 JR, JIS G3106 SM490 orequivalent

Normal GradeASTM A36, EN10025 S275 JR、JIS G3106

SM400 、JIS G3106 SS400 with carboncontents 0.23% max. or equivalent

Normal GradeASTM A53 Type E or S Gr. B, API 5L Gr. B orequivalent

Material Grade ofH-shaped, Cut Tee, and

Plates

Material Grade ofAngle and Channel

Material Grade ofStructural Steel Pipe

INDRA04-OCT-2012

Page 10: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 10 OF 42

10

Material grade to be used for grillage and sea fastening shall be normal grade steel.

The material constants summarized in Table 4.1B shall be common to all structural analyses conducted.

Table 4.1B Material ConstantsYoung’s Modulus (E) 200000 N/mm2 from S-000-1310-0001P, Sec.9.2

Shear Modulus (G)11,200 ksi (77 200 MPa)As per AISC 360-10 Sec. E4

Poisson’s Ratio (υ) 0.3

Density (ρ) 7850 kg/m3 from S-000-1310-0001P, Sec.4.2.1

Coefficient of thermal expansion 12x10-6/°C

Coefficient of friction, steel on steel 0.3 from S-000-1310-0001P , Sec.4.8.2

Table 4.1C Section List

Sections to be used in the Project are shown in standard drawings as mentioned below.

Drawing Numbers Section

D-000-1330-0751P H-shaped, Cut Tee, Angle, Channel, Plates

Table 4.1D Applicable Yield Strength

Strengths of steel vary for each steel types, depending of the different compatible national standard. To avoid confusion and mistake in design, strengths of material to be used in design shall be shown.

PROFILE CRITERIA BS (Compatible to (D-000-1330-501~)

High GradeASTM A992, ASTM A572 Grade 50, EN10025 S355 JR, JIS G3106 SM490 or equivalent

Normal GradeASTM A36, EN10025 S275 JR、JIS G3106 SM400 、JIS G3106 SS400 with carbon contents 0.23% max. or equivalent

Normal GradeASTM A53 Type E or S Gr. B, API 5L Gr. B or equivalent

Yield Strength

345 Mpa

235 Mpa

240 MpaMaterial Grade of

Structural Steel Pipe

Material Grade of Angle and Channel

Material Grade of H-shaped, Cut Tee, and Plates

4.2 Grating

Steel grating material shall conform to ASTM A-36 and shall be galvanized in accordance with the General Specification for Painting and Surface Preparation (S-000-13A0-0001P) and Detailed Engineering Design Data for Civil and Structure (S-000-1310-0001P). Except in areas

INDRA04-OCT-2012

Page 11: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 11 OF 42

11

where floor cranes and maintenance trolley operate, floor grating shall have main bearing bars 25mm x 4.8mm in cross section, with serrated upper edge and spaced at 30mm centres. Twisted transverse bars will be spaced at 100mm centres and recessed below the top surface of the bearing bars.

Maximum span for gratings, details of opening (or cut-out), maximum weight per panel, and other details shall refer to Standard Details for Grating Floor (D-000-1330-0509P).

4.3 Floor Plate

Floor plate flooring may be used as required. Checkered plate flooring shall be of 6mm thickness, galvanized in accordance with the General Specification for Painting and Surface Preparation (S-000-13A0-0001P) and Detailed Engineering Design Data for Civil and Structure (S-000-1310-0001P).

Floor plate fixing, joist connection, floor opening and other details shall be referred to Standard Details for Floor Plate and Joist (D-000-1330-0510P).

4.4 High Strength Bolt

Standard bolts to be ASTM A325, or equivalent, hot-dip galvanized in accordance with the ASTM A153 and General Specification for Painting and Surface Preparation (S-000-13A0-0001P). See Table 4.6A.

All bolted connections shall be in accordance with AISC.

4.5 Mild Steel Bolt

Standard bolts to be ASTM A307, Grade A, hot-dip galvanized in accordance with the ASTM A153 and General Specification for Painting and Surface Preparation (S-000-13A0-0001P).

4.6 Corrosion Protection

All steelwork shall be protected against corrosion as specified in the General Specification for Painting and Surface Preparation (S-000-13A0-0001P). Table 4.6A shows the painting schedules for structure steel as extracted from the specification.

Corrosion Protection shall be as follows:

- Steel Members including Stair stringers shall be painted.

- Floor plate, Grating floor shall be hot-dip galvanized.

- Ladders shall be painted.

- High Strength Bolt/Mild Steel bolt shall be hot-dip galvanized.

- Handrails shall be painted.

- Stair threads shall be hot-dip galvanized.

INDRA04-OCT-2012

Page 12: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 12 OF 42

12

Table 4.6A Paint Systems

Color Scheme for Structural Steel Elements

STRUCTURESBASIC COLOR

Carbon Steel Galvanized Steel

Beams, general supports except stairway, ladder cages, fire stairways and safety loops

Medium Gray (RAL-7034) No painting

Platforms (grating, steps) Medium Gray (RAL-7034) No painting

Stairways (handrails) and Ladder cages Yellow (RAL-1003) Yellow (RAL-1003)

Escape routes on buildings Orange (RAL-2009) Orange (RAL-2009)

Fire stairways (handrails) and safety loops Yellow (RAL-1003) Yellow

(RAL-1003)

(Paint Systems, S-000-13A0-0001P)

Note 1: Grillage, Sea Fastening and Lifting Beam shall be primary coated only.

INDRA04-OCT-2012

Page 13: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 13 OF 42

13

4.7 Fireproof

Fireproof Material shall be Fendolite M-II or equivalent. Unit weight of 775 kg/m3 (7.6 kN/m3) shall be used in design calculation.

Details and extent of fireproofing shall be referred to D-000-1330-0151P~0156P and S-000-1242-0003P.

Fireproofing shall be applied at site.

4.8 Welding Electrodes

Design shall use electrode grade E70XX, with weld tensile strength of 480 MPa.

4.9 Drainage Pipe

Not Applicable.

5 WORK FLOW

5.1 Scope of Work

Table 5.1A Scope of Work between CONTRACTOR, Module Fabricator and Sub Contractors

Work Item CONT

RACTOR

Module Fabricator

Sea Transporte

r

Land Transporte

r

Mechanical

Subcon

1 Design of Module Structure (See 5.2 for more details)

Y - - - -

2 Material Purchase of Module Structure

- Y - - -

3 Module Structure Fabrication - Y - - -

4 Grillage/Sea Fastening Fabrication

- Y - - -

5 Lifting Beam Fabrication - - - - -

6 Load out - Y - - -

7 Attach Grillage/Sea Fastening to Transport Vessel

- Y - - -

8 Sea Transportation - - Y -

9 Load in - - - Y -

10 Module Structure Erection - - - - Y

5.2 Scope of Design Work

Scope of Design work is as shown on Table 5.2A.

Table 5.2A Scope of Design Work between Contractor, Module Fabricator and Others

INDRA04-OCT-2012

Page 14: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 14 OF 42

14

Work Item CONTRACTOR Module Fabricator

Others

1 Design of Module Steel structures Y

2 Design of Temporary member/brace for transportation

Y

3 Design of Temporary member/brace for fabrication work

Y

4 Design of Grillage Y

5 Design of Sea Fastening Y

6 Design of Spreader Beam for Lifting Y

7 Design and Connection Detail of Module Steel Structures

Y

8 3D Models of Module Steel Structures (without connection details) in Tekla Structures or SP3D

Y

9 Shop Drawing Preparation of Module Steel Structures

Y

10 Shop Drawing Review of Module Steel Structures

Y

11 BM List for Material Procurement Y

5.3 Design Flow

Onshore module structures shall be designed for pre-service conditions and in-place condition. Where applicable, the following pre-service conditions shall be considered:

-Sea Transportation Condition

-Load out/ Land Transportation Condition

-Lifting Condition

Figures 5.3A and Figure 5.3B show Concept and Flow of Module transportation and Installation.

INDRA04-OCT-2012

Page 15: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 15 OF 42

15

Figure 5.3A Concept of Module Transportation and Installation for Some Modules

Figure 5.3B Concept of Module Transportation and Installation for Other Modules

In this project, basically Figure 5.3B will be applied to modules. However for A120 Sloped Area,where lifting crane access is very limited, Figure 5.3A shall apply. Module Pipe Racks will be installed onto the foundations directly by SPMT.

Initially, In-Service condition shall be designed. Then, pre-service conditions shall be designed and adjust member sizes, additional members and so on. Design development done duringpre-service conditions shall be incorporated on In-service design and other design conditions of pre-service.

However, order of in-place and pre-service conditions may be adjusted. When foundation design schedule is critical, in-place condition shall be designed initially. When material procurement schedule is critical, sea transportation condition shall be designed initially since primary members might be governed by this condition.

Foundation loading data from In-service condition shall be used for foundation design. Design

INDRA04-OCT-2012

Page 16: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 16 OF 42

16

allowance of module structures shall be carefully considered for foundation loading data since greater dead load may help foundation/pile design.

Plan and output of pre-service design shall be submitted to Logistic and Construction team. This is because module structure design might be governed by transportation and installation plan and construct-ability. See Chapter 12 for details.

6 DESIGN LOADS

This chapter defines the loadings which shall be considered for the design of the module structures during load out, transportation, installation and the In-place phases of the project.

6.1 Dead Load

6.1.1 Structure

1. Modeled Weight

All Steel weight shall be increased by 18% to consider increase of weight due to change of BS member to compatible ASTM member and to account weight of connection bolts and plates.

2. Non-modeled Weight

Weight of accessories such as stair, ladder, handrail and fire proofing, gratings are as shown in Table 6.1A.

Table 6.1A Non-modeled WeightFlooring (including handrail) 0.5 kN/m2 All Conditions

Ladder (with cage) 0.4 kN/m Not Applicable

Ladder (without cage) 0.3 kN/m Not Applicable

Stairways (with handrail) 2.2 kN/height (inclined portion) All Conditions

Stairways (with handrail) 1.7 kN/m (landing) All Conditions

Wall Not Applicable Not Applicable

Roof Not Applicable Not Applicable

Fireproofing 7.6 kN/m3 In-Service Only

Dead Load of Cable Tray 150 kg/m (900W with cover) In-Service Only

130 kg/m (600W with cover)

6.1.2 Piping

Refer to S-000-1330-0101A Sec. 3.3.

Future piping load does not need to be considered for pre-service cases, i.e. Sea Transportation, Load out/Land Transportation and Lifting..

Separate instruction shall be prepared for detailed concerns.

INDRA04-OCT-2012

Page 17: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 17 OF 42

17

6.1.3 Equipment

Not Applicable.

6.1.4 Others

Fireproofing shall be applied at site. Weight will not be considered during pre-service condition.

6.2 Live Load

Refer to S-000-1310-0001P, Section 4.4.

6.3 Operational Load

Operational loads are static and dynamic loads, which may vary in magnitude or position during the normal operation. Operating inventory loads will be the modeled as either discrete load, where they can be associated with the explicitly modeled equipment, or as uniformly distributed loads for all other contents. Inventory loads will be correlated against the current issue of the weight control report.

6.3.1 Piping

Refer to H-000-1330-0101A Sections 3.3 and 3.5.

6.3.2 Equipment

Not applicable.

6.3.3 Temperature Loads

Not applicable.

6.3.4 Crane Impact Load

Not applicable.

6.3.5 Maintenance Loads

Not applicable.

6.3.6 Static Operation Loads

Not applicable.

6.4 Hydrotest Load

For Piping Hydrotest Load, refer to S-000-1330-0101A Sections 3.3 and 3.4.

6.5 Blanket Load

Not Applicable

6.6 Wind Load

INDRA04-OCT-2012

Page 18: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 18 OF 42

18

6.6.1 Wind Load for In-Service Analysis

Wind Load for In-Place Condition shall be referenced from S-000-1310-0004P (Wind Load Calculation Procedure).

6.6.2 Wind Load for Sea Transportation

Wind Load for Sea Transportation on this project is neglected. In reference to S-000-1450-0004P, Acceleration Analysis For Module Transport (Sea), effects of direct wind load can be ignored. This is also stressed by Noble Denton’s Guideline for Marine Transportation.

6.6.3 Wind Load for Load out/Land Transportation

Wind loads are considered to be negligible during load out/load in operations.

6.6.4 Wind Load for Lifting

Wind loads are considered to be negligible during lifting operation.

6.7 Seismic Load

Refer to S-000-1310-0003P. Seismic load shall not be considered during pre-service condition.

6.8 Sea Transport Action Load

6.8.1 Module Weight and Critical Point

Sea Transportation Analysis will use the Load-out weight from summation of dead weightscalculated by STAAD. It shall be compared to the latest transportation weight indicated inVolume Drawing. Difference or margin of +10% is deemed to be acceptable.

Load cases that represent this weight are carried forward from the In-Service analysis, and will be used to represent the mass of the structure and appurtenances for generating inertia loads.

Critical Point

Reference for acceleration evaluation shall be the critical point only. It is the outermost top corner of a module structure, farthest from the center of rotation of the vessel. This point has been chosen for the reason that biggest moment will be generated from this location as explained in Chap. 6.4.3.2.

6.8.2 Inertia Force Due to Vessel Motion

1. General

Maximum accelerations are given in Table 6.8A for different sea directions. The components are defined in Figure 6.8A.

INDRA04-OCT-2012

Page 19: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 19 OF 42

19

Table 6.8A Vessel Accelerations at Centre of Vessel Deck

In reference to S-000-1450-0004P, Acceleration Analysis for Module Transport (Sea), Motion Criteria developed Noble Denton is deemed acceptable to implement. Relative to actual barge size, unrestricted case 2 was assumed (highlighted above).

Default motion criteria shall only be applied in accordance to the following:

a) Roll and Pitch axes shall be assumed to pass through the center of floatation.

b) Heave shall be assumed to be parallel to the global vertical axis. Therefore, the component of heave parallel to deck at the roll or pitch angles shown above is additive to the forces caused by the static gravity component and by the roll or pitch acceleration.

c) Phasing shall be assumed to combine, as separate load cases, the most severe combinations of roll + heave or pitch + heave.

INDRA04-OCT-2012

Page 20: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 20 OF 42

20

Figure 6.8A Inertia Force Components

(Note: accelerations are in the opposite direction to the forces)

Note: Inertial Acceleration is dependent on size of barge and module pipe rack. It varies.

In applying rotational accelerations, it is necessary to define the critical point as described at Section 6.8.1 of the guideline.

In this guide line, the centre of rotation to be used in generating inertia forces is the ‘Rotation Datum’, shown in Figure 6.8A. The datum is at the intersection of the vessel longitudinal and transverse centerlines of the vessel deck, at the elevation of the vessel deck as the sea level.

Assumption of Unrestricted Nature of Transportation for Motion Criteria by Noble Denton is conservative. It is concluded thereby that further evaluation based on actual condition of barge is no longer necessary.

The accelerations are ‘single-amplitude’, i.e. they are equal in magnitude in both the positive and negative directions. Thus, for example, roll accelerations to port and to starboard are of the same magnitude, but in the opposite direction. The values in the tablecorrespond to positive roll and pitch displacements; the full list of load combinations will consider all possible combinations of polarities.

2. Generating Inertia Loads by STAAD “Notional Load” command

Inertia Load is caused by self weight, joint weights and member joint weights. All input dead loads are converted to mass and accelerations applied to these masses give inertia force.

See design instruction for input procedure.

INDRA04-OCT-2012

Page 21: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 21 OF 42

21

6.8.3 Wind Load

Wind loads shall be excluded in the voyage condition design. This is as stated on Chapter 6 of S-000-1450-0004P.

6.8.4 Transport Vessel Deflection

For Transport Vessel Deflection, refer to Section 6.4.4 of this document.

6.8.5 COG Adjustment

Not applicable.

6.8.6 Piping Load for Sea Transportation

Piping load shall be considered as mass, acting together with structure self weight. Further, Piping temporary supports, guides and stoppers shall be considered for local beam design of structure in pre-service conditions

Design instruction will be issued later, as deemed necessary.

6.9 Load out / Land Transportation Load

6.9.1 Module Weight and COG

The Load out / Land Transportation analysis will use the gross load out weight from staad output and COG from the latest Volume Drawings. Load cases representing this weight will be carried forward from the In-Place or Sea Transportation analysis.

To cover future variation of the COG during design, a COG tolerance envelope will be considered as shown in Figure 6.9A, where:

A = 0.1 LA or 2m, whichever is less

B = 0.1 LB or 2m, whichever is less

The COG envelope is centered on the COG from the Volume Drawing.

INDRA04-OCT-2012

Page 22: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 22 OF 42

22

Figure 6.9A Tolerance on Location of Load out COG

6.9.2 Effect of Module Tilt and Acceleration

Moving the module on an inclined roadway produces an apparent COG shift, ⊿ with respect to the SPMT (See Figure 6.9B). The analysis will consider a 12% tilt in each longitudinal direction to cover movement on an incline (7%) and acceleration (0.05g = 5%) except for A120 Area which will have a 15% tilt (10% incline and 5% acceleration). Acceleration of 0.02g (2%) shall be considered for transverse direction.

Figure 6.9B COG Shift Due to Module Tilt

INDRA04-OCT-2012

Page 23: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 23 OF 42

23

Combining this with the COG tolerance envelope we get an overall envelope, shown in Figure 6.9C. The analysis will consider the COG at the extreme corner locations a, b, c, d. The COG will be adjusted in the analysis to each location using unit-moment load cases as described in Chapter 6.9.3.

Figure 6.9C COG Locations for Analysis

(Dimensions ‘A’ and ‘B’ obtained from Figure 6.9A. Note: ⊿ applies only in the direction of tilt)

Weight load cases will be adjusted to ensure that the modeled weight matches the Volume Drawing value.

6.9.3 COG Adjustment

Two load cases consisting of unit moments about global X and Z will be included in the analysis. These will be combined with the gravity load cases to give the desired COG in the analysis. See Figure 6.9D

Figure 6.9D COG Load Cases for COG Adjustment

INDRA04-OCT-2012

Page 24: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 24 OF 42

24

6.9.4 SPMT Axle Line Forces

The SPMT axle-line forces in the three hydraulic zones will be calculated using the spreadsheet “RPLC Loadout SPMT Configuration.xls”, for each of the four COG locations. The forces are applied to the SPMT spine beams. An example is shown in Figure 6.9E. The forces are applied either as a UDL or as point loads at the axle line locations. In the case of a UDL, the loaded length is the length between the extreme axle lines within each zone, as shown in Figure 7.9E.

The unit SPMT load cases will be checked to ensure they equal the target weight and COG.

Figure 6.9E Example of Unit SPMT Load Cases

The unit SPMT load cases will be combined in appropriate manner so as to equal the target weight and COG.

INDRA04-OCT-2012

Page 25: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 25 OF 42

25

6.9.5 Longitudinal Force

The longitudinal component of weight due to module incline and acceleration/braking is simply applied as a set of horizontal forces on the deck nodes at the SPMT connection points at module deck, as shown in Figure 6.9F.

Figure 6.9F Longitudinal Forces Due to Tilt and Acceleration

6.9.6 Transverse Force

Transverse Force due to acceleration of 2% shall be treated same as Longitudinal Load which will be loaded as horizontal loads at the deck nodes in the transverse direction.

6.9.7 Wind Load

Wind loads will not be considered in the analysis because of the load out contractor’s procedure.

6.9.8 Unbalance Load

Not Applicable.

6.9.9 Vertical Impact Load

Vertical impact load of 5% shall be considered as an increase in Gravity Loads of the Module and will be included in the analysis. Additional 5% impact load will be incorporated in load combination.

6.10 Lifting Load and Load Factors

INDRA04-OCT-2012

Page 26: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 26 OF 42

26

6.10.1 Module Weight and COG

In reference to Chapter 5.5.3 of Noble Denton Guidelines for Marine Lifting Operation, COG inaccuracy factor of 1.10 shall be applied if a COG envelope is not used.

6.10.2 COG Inaccuracy

See 6.10.1 of this document.

6.10.3 Skewing Effects

Skewing effect is to account for sling length mismatch in a statically indeterminate lift. Inreference to Chapter 5.7.4 of Noble Denton Guidelines for Marine Lifting Operation, Skew Load Factor 1.10 shall be used.

6.10.4 Out of Plane Forces at Lift Points (Only for Padeye/Padear Design)

Out of plane forecast lift points is used to consider horizontal force on lifting lug design. Chapter 5.9.1 of Noble Denton Guidelines for Marine Lifting Operation states that, horizontal force equal to 5% of the resolved lift point load shall be applied. It is assumed to be acting through the centreline and along the axis of the pad-eye pin-hole or pad-ear geometric centre. Typically, this effect is significant for local design of lifting lug and can be omitted from the global structure design.

6.10.5 Dynamic Amplification Factors (DAFs)

DAF is the factor by which gross weight is multiplied, to account for accelerations and impacts during lifting operation. Chapter 5.6.1 of Noble Denton Guidelines for Marine Lifting Operationstates that DAF factor of 1.0 have to be applied for onshore lifts, where crane movement is limited to lifting or lowering.

6.10.6 Consequence Factors

This is a factor to ensure that main structural members, lift points and spreader bars/frames have an increased factor of safety related to the consequence of failure.

Lifting lug 1.30

Attachments of lift points to structure 1.30

Members directly supporting or framing in to lift points

(Columns with lifting lug)1.15

Other structural members 1.00

\

INDRA04-OCT-2012

Page 27: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 27 OF 42

27

6.10.7 2-Hook Lift Factor

This load factor is used to account for the increased loads due to the tolerances of the elevation in the crane hooks. As indicated on Chapter 5.8 of Noble Denton Guideline for Marine Lifting Operation, factors to be used shall be:

Centre of gravity shift factor 1.03

Tilt Factor 1.03

Yaw Factor 1.05

6.11 Blast Loads

Not Applicable.

6.12 Upset Loads

Not Applicable.

7 DESIGN LOAD COMBINATIONS

This section defines the load combinations which shall be considered for each particular service condition to determine:

- “Required Strength” of structural members and connections

- “Deflection of the structure” (for In-place condition only)

7.1 In-Service Design

7.1.1 Primary Load Cases

Basic load cases are listed in Table 7.1A. Primary loads (with load factors) shall be combinedaccordingly to suit actual site conditions. To come up with a sound design, structure has to be analyzed considering all possible cases.

Table 7.1A Primary Load Cases

Load Case Description

1 Load induced by self weight

2 Dead Load of accessories

3 Surge, Slug, Start up/Shut down

4 Empty load of piping including insulation

5 Operating fluid load of piping

6 Test Load of Pipe 1

7 Test Load of Pipe 2

8 Test Load of Pipe 3

9 Empty load of equipment (Not applicable)

INDRA04-OCT-2012

Page 28: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 28 OF 42

28

Load Case Description

10 Operating fluid load of equipment (Not applicable)

11 Test fluid load of equipment 1 (Not applicable)

12 Test fluid load of equipment 2 (Not applicable)

13 Test fluid load of equipment 3 (Not applicable)

14 Floor Live loads

15 Thermal anchorage including guide forces which will act at fixed directions (X,Y and Z).

16-17 Thermal anchorage including guide forces for dual temp at T1.and T2

18-19 Thermal friction forces of piping, @X,@Z

20 Thermal sliding forces of equipment @X,@Z (N/A)

21-23 Crane/Trolley Impact load of crane @X, @Y, @Z (N/A)

24-25 Wind load of structure, equipment, and piping @ X, @Z

26-27 Seismic load of structure, piping and equipment @X, @Zcalculated by IBC LOAD GENERATOR

28-29Seismic up/down load induced by earthquake load of X direction which shall be inputted manually (if required)

30~31 Bundle Pulling load, @X,@Z

32~33 Vibration Load, @X,@Z

7.1.2 Load Combinations

1. Intermediate Load combinations

Not Applicable.

2. Code Check Combinations

The In-Service load combination grouping is as follows:

The following guidelines should be followed for final In-Service load combination numbering:

a) 201 - 304 Load combinations – Design for All Members

b) 297 - 304 Load combinations – Local Beam Check

c) 305 - 320 Load combinations – Beam Deflection Check

d) 321 - 352 Load combinations – Base Plate Check Design

INDRA04-OCT-2012

Page 29: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 29 OF 42

29

7.1.3 Code Checking

Note that when Column Axial Strength and Column Bases are designed in reference with ASIC-341, they shall be checked using amplified Seismic Load; otherwise, check is not necessary.

Target member utilization ratio shall be within 1.00. Members will be re-sized where necessary, in conjunction with results from other analyses. Members with low utilization will also be optimized.

7.2 Sea Transportation Design

7.2.1 Primary Load Cases

Two separate primary load cases have been prepared and developed to consider actual Pipe Rack orientation on project site.Pitch shall always be along pipe rack longitudinal direction. On the other hand, roll should always be along transverse direction of pipe rack. This is to further avoid confusion and mistake on the correct load factors to be used during analysis and design.

Primary load cases for sea transportation design are shown in Table 7.2A.

Table 7.2A Primary Load Cases for Type 1 Structure

Load Case Description Direction

1 Structure Self Weight Y2 Accessories Y4 Piping Dead Load – Including Insulation Y

399 Temporary Loads due to Sea Transportation Y400 Combined Dead Weights Y401 Roll Gravity Vertical Y402 Roll Gravity Transverse Z403 Heave Gravity due to Roll (Vertical) Y404 Heave Gravity due to Roll (Transverse) Z

INDRA04-OCT-2012

Page 30: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 30 OF 42

30

Load Case Description Direction

405 Roll Inertial Acceleration (Vertical) Y406 Roll Inertial Acceleration (Transverse) Z407 Pitch Gravity Vertical Y408 Pitch Gravity Longitudinal X409 Heave Gravity due to Pitch (Vertical) Y410 Heave Gravity due to Pitch (Longitudinal) X411 Pitch Inertial Acceleration (Vertical) Y412 Pitch Inertial Acceleration (Longitudinal) X

Table 7.2B Primary Load Cases for Type 2 Structure

Load Case Description Direction

1 Structure Self Weight Y2 Accessories Y4 Piping Dead Load – Including Insulation Y

399 Temporary Loads due to Sea Transportation Y400 Combined Dead Weights Y401 Roll Gravity Vertical Y402 Roll Gravity Transverse X403 Heave Gravity due to Roll (Vertical) Y404 Heave Gravity due to Roll (Transverse) X405 Roll Inertial Acceleration (Vertical) Y406 Roll Inertial Acceleration (Transverse) X407 Pitch Gravity Vertical Y408 Pitch Gravity Longitudinal Z409 Heave Gravity due to Pitch (Vertical) Y410 Heave Gravity due to Pitch (Longitudinal) Z411 Pitch Inertial Acceleration (Vertical) Y412 Pitch Inertial Acceleration (Longitudinal) Z

Inertia Loads Analysis

Unit inertia load cases are given in Tables 7.2A and 7.2B. These load cases will be suitably factored in Load Combination to give the appropriate total inertia loads on the structure.

Lateral components of inertia force (401– 412) will be generated in STAAD through Notional Load command. Combined dead weights at load case 400, as specified in Tables7.2A and 7.2B, shall be used to define the total mass of the model.

Vertical components of inertia force shall be generated by applying Acceleration Load factor to the combined dead weights (load 400).

7.2.2 Load Combinations

The structural strength of high quality steel work shall be assessed using the methodology of a

INDRA04-OCT-2012

Page 31: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 31 OF 42

31

recognized and applicable code including the associated load and resistance factors for LRFD code.

1. Intermediate Load Combination

For ease of understanding, intermediate load combination for all gravity loads has been introduced. This is to further avoid confusing and lengthy load combination.

Table 7.2C: Primary load cases for Intermediate combinationLoad Case Description Direction

1 Structure Self Weight Y2 Accessories Y4 Piping Dead Load Y

399 Temporary Loads due to Sea Transportation Y

Table 7.2D: Intermediate Combinations for Types 1 and 2 Pipe Rack

Intermediate Load Number

Load Description

1 2 4 399

Structure Self Weight Accessories Pipe Dead

Load

Temporary Dead Load

400All Gravity

Loads 1.0 1.0 1.0 1.0

2. Check Code Combinations

Final factored load combinations for code checking are shown on Tables 7.2E and F.

In reference to GL Noble Denton Guideline for Marine Transportations, Ultimate Limit State LRFD Option having 1.2 load factor for dead load and variable load, like live load, is acceptable to use.

Most Probable Maximum Extreme (MME) load cases, (which typically occur at the same frequency as the maximum wave associated with the design sea state) may be treated as Ultimate Limit State.

Table 7.2E: Load Combination for Type-1 Module Pipe Rack

INDRA04-OCT-2012

Page 32: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 32 OF 42

32

Table 7.2F: Load Combination for Type-2 Module Pipe Rack

7.2.3 Code Checking

The Direct analysis results generated for the structure for all Ultimate Limit State – Strength load combinations within the 501 series combinations will be checked to the provision of AISC LRFD.

Target member utilization ratio shall be in the range 0.90. Members will be re-sized where necessary, in conjunction with results from other analyses. Members with low utilization will also be optimized.

7.3 Load out/Land Transportation Design

7.3.1 Primary Load Cases

Primary load cases are shown in Table 7.3A.

Table 7.3A: Primary Load Cases for Type 1 & 2 Structures

Load Case Description Direction

1 Dead Load Induced by Structure Self Weight Y

2 Dead Load - Accessories Y

4 Piping Dead Load – Including Insulation Y

50 Temporary members for load-out only Y

61 SPMT reactions COG location A Y

62 SPMT reactions COG location B Y

63 SPMT reactions COG location C Y

64 SPMT reactions COG location D Y

70 Longitudinal force due to tilt + braking acceleration X (Type 1), Z (Type 2)

71 Transverse force due to braking acceleration Z (Type 1), X (Type 2)

INDRA04-OCT-2012

Page 33: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 33 OF 42

33

Load Case Description Direction

91 Moment Couple about X-axis due to COG Shift Y

92 Moment Couple about Z-axis due to COG Shift Y

7.3.2 Load Combinations

1. Intermediate Load Combinations

Initially, and for convenience of checking, the module weight cases and SPMT loading cases are assembled into intermediate sets of combinations given in Table 7.3B, 7.3C and 7.3D.

Load Case Description

1 Dead Load Induced by Structure Self Weight

2 Dead Load - Accessories

4 Piping Dead Load – Including Insulation

50 Temporary members for load-out only

LOAD COMB DESCRIPTIONCOMBINATION FACTORS

Weight SPMT Forces Long Trans COG Correction

100 61 62 63 64 70 71 91 92101 Load-out wt, COG at loc A 1.0 1.0 -1.0 -1.0 -1.0 1.0102 “ B 1.0 1.0 -1.0 1.0 1.0 1.0103 “ C 1.0 1.0 1.0 -1.0 -1.0 -1.0104 “ D 1.0 1.0 1.0 1.0 1.0 -1.0

LOAD COMB DESCRIPTIONCOMBINATION FACTORS

Weight SPMT Forces Long Trans COG Correction

100 61 62 63 64 70 71 91 92101 Load-out wt, COG at loc A 1.0 1.0 -1.0 1.0 -1.0 -1.0102 “ B 1.0 1.0 -1.0 -1.0 -1.0 1.0103 “ C 1.0 1.0 1.0 1.0 1.0 -1.0104 “ D 1.0 1.0 1.0 -1.0 1.0 1.0

Table 7.3B: Intermediate Combination 100 (Load-Out Weight)

Table 7.3C : Intermediate Combinations for Type 1 Structures

Table 7.3D : Intermediate Combinations for Type 2 Structures

INDRA04-OCT-2012

Page 34: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 34 OF 42

34

2. Code Check Combinations

Final factored combinations for code checking are shown on Table 7.3E.

Table 7.3F shows WSD load combinations for SPMT reaction, spine beam bending moment and module serviceability assessment purpose. These load combinations are not code checked.

In reference to Noble Denton Guideline for Loadouts, Normal Serviciability Limit State (SLS) case LRFD Option having a factor of 1.60 shall be used.

LOAD COMB DESCRIPTIONCOMBINATION FACTORS

Intermediate Combinations

101 102 103 104111 Load-out wt, COG at loc A 1.6112 “ B 1.6113 “ C 1.6114 “ D 1.6

LOAD COMB DESCRIPTIONCOMBINATION FACTORS

Intermediate Combinations

101 102 103 104151 Load-out wt, COG at loc A 1.0152 “ B 1.0153 “ C 1.0154 “ D 1.0

7.3.3 Code Checking

The Direct analysis results generated for the structure for all Ultimate Limit State – Strength load combinations 111 – 114 (See Attachment 7.3A) will be checked to the provisions of AISC LRFD.

Target member utilization ratio shall be less than 0.90. Members will be re-sized where necessary, in conjunction with results from other analysis. Members with low utilization will also be optimized.

The engineer shall ensure that vertical reactions on the global supports are zero, or very small (<20 kN). Should vertical reactions exceed this, the necessary load adjustments shall be made and the analysis re-run.

In addition to the member code checks, the bending moments and shear forces in the SPMT spine beams due to WSD load combinations 151 – 154 (See Attachment 7.3A) shall be checked. Should these exceed the allowable values, the SPMT arrangement shall be revised and the analysis re-run.

Table 7.3E : Final Load Combinations - LRFD

Table 7.3F : Final Load Combinations - WSD

INDRA04-OCT-2012

Page 35: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 05-10-12

PAGE 35 OF 42

35

7.4 Lifting Design

7.4.1 Primary Load Cases

1. Dead Weight Load CasesThe basic load cases that define total lift weight for the Lift Analysis are shown in Table 7.4A. These will be used in the load combinations defined in subsequent sections.

Table 7.4A Basic Dead Weight Load-Cases

Load Case Description Direction

1 Dead Load Induced by Structure Self Weight Y

2 Dead Load - Accessories Y

4 Piping Dead Load – Including Insulation Y

599 Temporary members for Lifting only Y

7.4.2 Load Combinations

1. Intermediate Load Combinations

2. Final Load Combinations

The final combinations for code checking include the LRFD factor for lift design of 1.6. For the details, refer to refer to Attachment 7.4A, “Load Combination Matrix for Lifting Analysis”.

7.4.3 Code Checking

In accordance with Noble Denton load factor of 1.6 shall be used for Limit State code checking.The P-Delta analysis results will be checked to the provisions of AISC. Target member utilization ratio shall be in the range 0.90 Members will be re-sized where necessary in conjunction with result from other analysis. Member with low utilization will also be optimized

INDRA04-OCT-2012

Page 36: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 28-09-12

PAGE 36 OF 42

36

ATTACHMENT 7.1A “Load Combination Matrix for In-Service Analysis”Factored Load Combination for Strength Design (LRFD-05)RPLC Deep Conversion Project

2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37ope fluid test fluid only "+" = Downwards

(S) Fluid Surge

(L) Live Load (T) Friction (T) Friction Local Beam

(T) Sliding

Combination Condition Factored 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 RemarksNo. Ds Do S Pe Pf PT1 PT2 PT3 Ee Ef ET1 ET2 ET3 L Ta T1 T2 Tf Tf lb Ts Ix ly lz Wx Wz Ex Ez Emx Emz Bpx Bpz Vx Vz Sx Sz Tx Tz201 LC.A1 Strength Design (LRFD) 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400202 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400203 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400204 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400205 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600 1.600 1.600 1.600206 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.600 -1.600 1.600 -1.600 -1.600207 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600 1.600 1.600 1.600208 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.600 -1.600 1.600 -1.600 -1.600209 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000210 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000211 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000212 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000213 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000214 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000215 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000216 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000217 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000218 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000219 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000220 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000221 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000222 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L- 0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000223 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000224 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000225 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000226 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000227 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000228 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000229 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000230 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000231 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000232 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000233 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000234 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000235 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000236 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000237 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000238 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000239 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000240 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000241 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000242 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000243 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000244 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000245 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000246 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000247 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000248 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000249 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000250 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000251 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000252 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000253 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000254 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000255 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000256 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000257 LC.B1 Piping Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400258 LC.B1 Piping Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400259 LC.B1 Piping Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400260 LC.B1 Equipment Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400261 LC.B1 Equipment Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400262 LC.B1 Equipment Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400263 LC.B2 Piping Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800264 LC.B2 Piping Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800265 LC.B2 Piping Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800266 LC.B2 Equipment Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800267 LC.B2 Equipment Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800268 LC.B2 Equipment Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800269 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429270 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429271 LC.B3 Piping Test w/Wind 1.2(D+F)-1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429272 LC.B3 Piping Test w/Wind 1.2(D+F)-1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429273 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429274 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429275 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429276 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429277 LC.B3 Equipment Test w/Wind 1.2(D+F)-1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429278 LC.B3 Equipment Test w/Wind 1.2(D+F)-1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429279 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429280 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429281 LC.C1 Erection w/Wind 0.9D+1.3Wx 0.900 0.900 0.900 0.900 1.300282 LC.C1 Erection w/Wind 0.9D+1.3Wz 0.900 0.900 0.900 0.900 1.300283 LC.C1 Erection w/Wind 0.9D-1.3Wx 0.900 0.900 0.900 0.900 -1.300284 LC.C1 Erection w/Wind 0.9D-1.3Wz 0.900 0.900 0.900 0.900 -1.300285 LC.C2 Erection w/Seismic 0.9D+1.0Ex+0.3Ez 0.900 0.900 0.900 0.900 1.000 0.300 1.000 0.300286 LC.C2 Erection w/Seismic 0.9D+0.3Ex+1.0Ez 0.900 0.900 0.900 0.900 0.300 1.000 0.300 1.000287 LC.C2 Erection w/Seismic 0.9D-1.0Ex-0.3Ez 0.900 0.900 0.900 0.900 -1.000 -0.300 -1.000 -0.300288 LC.C2 Erection w/Seismic 0.9D-0.3Ex-1.0Ez 0.900 0.900 0.900 0.900 -0.300 -1.000 -0.300 -1.000289 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpx 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 1.600290 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpz 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 1.600291 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpx 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 -1.600292 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpz 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 -1.600293 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.000 1.000294 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.000 -1.000295 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.000 1.000296 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.000 -1.000297 LC.A1 Local Beam Design 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400298 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400299 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400300 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400301 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600 1.600 1.600 1.600302 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 1.600 1.600 1.600 -1.600 -1.600303 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600 1.600 1.600 1.600304 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 1.600 1.600 1.600 -1.600 -1.600305 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000306 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000307 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000308 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000309 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700310 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700311 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700312 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700313 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700314 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700315 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700316 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700317 LC.G3 Drift Check w/ Seismic D+C+S+T+0.5*L+1.724*Ez 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.724 1.724318 LC.G3 Drift Check w/ Seismic D+C+S+T+0.5*L-1.724*Ez 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -1.724 -1.724319 LC.G3 Drift Check w/ Seismic D+C+S+T+0.5*L+1.724*Ez 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.724 1.724320 LC.G3 Drift Check w/ Seismic D+C+S+T+0.5*L-1.724*Ez 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -1.724 -1.724

Combination for STAAD/PRO

REPEAT LOAD

(C) Piping (C) Equipment (I) Crane Impact (D) Structure (T) Piping Thermal Anchor/Guide Force (W) Wind (E) Structure Seismic (E) Additional Seismic for Equipment

(V) Vibration (T) Transporting

1.724 = 2.5/1.45

(Bp) Bundle Pulling (S) Shipping

1.353=1.20+0.153

1.353=1.20+0.153

1.353=1.20+0.153

1.353=1.20+0.153

0.747=0.90-0.153

0.747=0.90-0.153

0.747=0.90-0.153

0.747=0.90-0.153

INDRA04-OCT-2012

Page 37: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 28-09-12

PAGE 37 OF 42

37

321 LC.H Seismic x Ω 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 0.600 1.000 0.600 1.000 1.000322 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 2.000 0.300 2.000 1.000 1.000323 LC.H1 Operating w/Live+Ω∗Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 -0.600 -1.000 -0.600 -1.000 -1.000324 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 -2.000 -0.300 -2.000 -1.000 -1.000325 LC.H1 Operating w/Live+Ω∗Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 -0.600 1.000 -0.600 1.000 -1.000326 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 2.000 -0.300 2.000 -1.000 1.000327 LC.H1 Operating w/Live+Ω∗Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 0.600 -1.000 -0.600 -1.000 1.000328 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 -2.000 0.300 -2.000 1.000 -1.000329 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 0.600 1.000 0.600 1.000 1.000330 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 2.000 0.300 2.000 1.000 1.000331 LC.H1 Operating w/Live+Ω∗Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 -0.600 -1.000 -0.600 -1.000 -1.000332 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 -2.000 -0.300 -2.000 -1.000 -1.000333 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 -0.600 1.000 -0.600 1.000 -1.000334 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 2.000 -0.300 2.000 -1.000 1.000335 LC.H1 Operating w/Live+Ω∗Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.6Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 0.600 -1.000 -0.600 -1.000 1.000336 LC.H1 Operating w/Live+Ω*Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex+2.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 -2.000 0.300 -2.000 1.000 -1.000337 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 0.600 1.000 0.600 1.000 1.000338 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 2.000 0.300 2.000 1.000 1.000339 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 -0.600 -1.000 -0.600 -1.000 -1.000340 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 -2.000 -0.300 -2.000 -1.000 -1.000341 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 -0.600 1.000 -0.600 1.000 -1.000342 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 2.000 -0.300 2.000 -1.000 1.000343 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 0.600 -1.000 -0.600 -1.000 1.000344 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 -2.000 0.300 -2.000 1.000 -1.000345 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 0.600 1.000 0.600 1.000 1.000346 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 2.000 0.300 2.000 1.000 1.000347 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 -0.600 -1.000 -0.600 -1.000 -1.000348 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 -2.000 -0.300 -2.000 -1.000 -1.000349 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 -0.600 1.000 -0.600 1.000 -1.000350 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 2.000 -0.300 2.000 -1.000 1.000351 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.6Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 0.600 -1.000 -0.600 -1.000 1.000352 LC.H2 Operating w/Ω*Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+2.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 -2.000 0.300 -2.000 1.000 -1.000353 LC.J1 Shipping w/Wind 1.2D+1.21Wx+1.4Ax+1.4X0.411Ay 1.775 1.775 1.775 1.775 1.210 1.400354 LC.J1 Shipping w/Wind 0.9D+1.21Wx+1.4Ax-1.4X0.411Ay 0.325 0.325 0.325 0.325 1.210 1.400355 LC.J1 Shipping w/Wind 1.2D-1.21Wx-1.4Ax+1.4X0.411Ay 1.775 1.775 1.775 1.775 -1.210 -1.400356 LC.J1 Shipping w/Wind 0.9D-1.21Wx-1.4Ax-1.4X0.411Ay 0.325 0.325 0.325 0.325 -1.210 -1.400357 LC.J1 Shipping w/Wind 1.2D+1.21Wz+1.4Az+1.4X0.305Ay 1.627 1.627 1.627 1.627 1.210 1.400358 LC.J1 Shipping w/Wind 0.9D+1.21Wz+1.4Az-1.4X0.305Ay 0.473 0.473 0.473 0.473 1.210 1.400359 LC.J1 Shipping w/Wind 1.2D-1.21Wz-1.4Az+1.4X0.305Ay 1.627 1.627 1.627 1.627 -1.210 -1.400360 LC.J1 Shipping w/Wind 0.9D-1.21Wz-1.4Az-1.4X0.305Ay 0.473 0.473 0.473 0.473 -1.210 -1.400361 LC.K1 Transporting w/Wind 1.2D+1.4Ax+1.4X0.05Ay 1.270 1.270 1.270 1.270 1.400362 LC.K1 Transporting w/Wind 0.9D+1.4Ax-1.4X0.05Ay 0.830 0.830 0.830 0.830 1.400363 LC.K1 Transporting w/Wind 1.2D-1.4Ax+1.4X0.05Ay 1.270 1.270 1.270 1.270 -1.400364 LC.K1 Transporting w/Wind 0.9D-1.4Ax-1.4X0.05Ay 0.830 0.830 0.830 0.830 -1.400365 LC.K1 Transporting w/Wind 1.2D+1.4Az+1.4X0.05Ay 1.270 1.270 1.270 1.270 1.400366 LC.K1 Transporting w/Wind 0.9D+1.4Az-1.4X0.05Ay 0.830 0.830 0.830 0.830 1.400367 LC.K1 Transporting w/Wind 1.2D-1.4Az+1.4X0.05Ay 1.270 1.270 1.270 1.270 -1.400368 LC.K1 Transporting w/Wind 0.9D-1.4Az-1.4X0.05Ay 0.830 0.830 0.830 0.830 -1.400369 LC.L1 Lifting w/Wind 1.2D+1.3Wx 1.200 1.200 1.200 1.200 1.300370 LC.L1 Lifting w/Wind 1.2D+1.3Wz 1.200 1.200 1.200 1.200 1.300371 LC.L1 Lifting w/Wind 1.2D-1.3Wx 1.200 1.200 1.200 1.200 -1.300372 LC.L1 Lifting w/Wind 1.2D-1.3Wz 1.200 1.200 1.200 1.200 -1.300

1.353=1.20+0.153

1.353=1.20+0.153

0.747=0.90-0.153

Ax = 0.15 Ay = 0.05 Az =

0.05

1.353=1.20+0.153

Ax = 0.332 Az = 0.526 Ayx = 0.411 Ayz = 0.305

Wind Load 26m/s

1.353=1.20+0.153

0.747=0.90-0.153

0.747=0.90-0.153

0.747=0.90-0.153

INDRA04-OCT-2012

Page 38: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 28-09-12

PAGE 38 OF 42

38

TYPE-2Factored Load Combination for Strength Design (LRFD-05)RPLC Deep Conversion Project

2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37ope fluid test fluid only "+" = Downwards

(S) Fluid Surge (L) Live Load (T) Friction (T) Friction

Local Beam (T) Sliding

Combination Condition Factored 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 RemarksNo. Ds Do S Pe Pf PT1 PT2 PT3 Ee Ef ET1 ET2 ET3 L Ta T1 T2 Tf Tf lb Ts Ix Iy Iz Wx Wz Ex Ez Emx Emz Bpx Bpz Vx Vz Sx Sz Tx Tz201 LC.A1 Strength Design (LRFD) 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400202 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400203 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400204 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400205 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600 1.600 1.600 1.600206 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.600 -1.600 1.600 -1.600 -1.600207 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600 1.600 1.600 1.600208 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L+1.6I 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.600 -1.600 1.600 -1.600 -1.600209 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000210 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000211 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000212 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000213 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000214 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 1.300 1.000 1.000215 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000216 LC.A3 Operating w/Live+Wind 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.3W 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.200 1.200 1.200 -1.300 -1.000 -1.000217 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000218 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000219 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000220 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000221 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000222 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L- 0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000223 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000224 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000225 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000226 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000227 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000228 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000229 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+1.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000230 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.3Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000231 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-1.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000232 LC.A4 Operating w/Live+Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.3Ex-1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000233 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000234 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000235 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000236 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000237 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000238 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 1.300 1.000 1.000239 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000240 LC.A5 Operating w/Wind 0.9(D+C)+1.2(S+T)+1.0V+1.3W 0.900 0.900 1.200 0.900 0.900 0.900 0.900 1.200 1.200 1.200 -1.300 -1.000 -1.000241 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000242 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000243 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000244 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000245 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000246 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000247 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000248 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000249 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 0.300 1.000 0.300 1.000 1.000250 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 1.000 0.300 1.000 1.000 1.000251 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 -0.300 -1.000 -0.300 -1.000 -1.000252 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 -1.000 -0.300 -1.000 -1.000 -1.000253 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 1.000 -0.300 1.000 -0.300 1.000 -1.000254 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.300 1.000 -0.300 1.000 -1.000 1.000255 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V+1.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -1.000 0.300 -1.000 0.300 -1.000 1.000256 LC.A6 Operating w/Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.3Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.300 -1.000 0.300 -1.000 1.000 -1.000257 LC.B1 Piping Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400258 LC.B1 Piping Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400259 LC.B1 Piping Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400260 LC.B1 Equipment Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400261 LC.B1 Equipment Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400262 LC.B1 Equipment Test Condition 1.4(D+F) 1.400 1.400 1.400 1.400 1.400263 LC.B2 Piping Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800264 LC.B2 Piping Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800265 LC.B2 Piping Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800266 LC.B2 Equipment Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800267 LC.B2 Equipment Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800268 LC.B2 Equipment Test w/Live 1.2(D+F)+1.6*0.5L 1.200 1.200 1.200 1.200 1.200 0.800269 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429270 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429271 LC.B3 Piping Test w/Wind 1.2(D+F)-1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429272 LC.B3 Piping Test w/Wind 1.2(D+F)-1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429273 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429274 LC.B3 Piping Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429275 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429276 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429277 LC.B3 Equipment Test w/Wind 1.2(D+F)-1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429278 LC.B3 Equipment Test w/Wind 1.2(D+F)-1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429279 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wx 1.200 1.200 1.200 1.200 1.200 0.429280 LC.B3 Equipment Test w/Wind 1.2(D+F)+1.3*0.33Wz 1.200 1.200 1.200 1.200 1.200 0.429281 LC.C1 Erection w/Wind 0.9D+1.3Wx 0.900 0.900 0.900 0.900 1.300282 LC.C1 Erection w/Wind 0.9D+1.3Wz 0.900 0.900 0.900 0.900 1.300283 LC.C1 Erection w/Wind 0.9D-1.3Wx 0.900 0.900 0.900 0.900 -1.300284 LC.C1 Erection w/Wind 0.9D-1.3Wz 0.900 0.900 0.900 0.900 -1.300285 LC.C2 Erection w/Seismic 0.9D+1.0Ex+0.3Ez 0.900 0.900 0.900 0.900 1.000 0.300 1.000 0.300286 LC.C2 Erection w/Seismic 0.9D+0.3Ex+1.0Ez 0.900 0.900 0.900 0.900 0.300 1.000 0.300 1.000287 LC.C2 Erection w/Seismic 0.9D-1.0Ex-0.3Ez 0.900 0.900 0.900 0.900 -1.000 -0.300 -1.000 -0.300288 LC.C2 Erection w/Seismic 0.9D-0.3Ex-1.0Ez 0.900 0.900 0.900 0.900 -0.300 -1.000 -0.300 -1.000289 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpx 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 1.600290 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpz 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 1.600291 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpx 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 -1.600292 LC.D1 Bundle Pulling 1.2D+L+1.6I+1.6Bpz 1.200 1.200 1.200 1.200 1.000 1.600 1.600 1.600 -1.600293 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.000 1.000294 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.000 -1.000295 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.000 1.000296 LC.E1 Abnormal Operation 1.2(D+C)+1.2(S+T)+V+1.6L 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.000 -1.000297 LC.A1 Local Beam Design 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400298 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400299 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400300 LC.A1 Normal Operating 1.4(D+C)+1.4(S+T) 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 -1.400 1.400301 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600302 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.600 -1.600303 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.200 1.600 1.600304 LC.A2 Operating w/Live 1.2(D+C)+1.2(S+T)+1.6V+1.6L 1.200 1.200 1.200 1.600 1.200 1.200 1.200 1.600 1.200 1.200 -1.200 1.200 -1.600 -1.600305 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000306 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000307 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000308 LC.G1 Drift Check D+C+S+T+L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.000 1.000309 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700310 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700311 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700312 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700313 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700314 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 0.700315 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700316 LC.G2 Drift Check w/Wind D+C+S+T+0.5*L+0.7*W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 -0.700317 LC.G3 Drift Check w/ Seismic D+C+S+T+0.5*L+1.724Ex 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.724 1.724318 LC.G3 Operating w/Live+Ω *Seismic D+C+S+T+0.5*L+1.724Ex 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.724 1.724319 LC.G3 Operating w/Live+Ω∗Seismic D+C+S+T+0.5*L+1.724Ex 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.724 1.724320 LC.G3 Operating w/Live+Ω *Seismic D+C+S+T+0.5*L+1.724Ex 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.724 1.724

0.747=0.90-0.153

0.747=0.90-0.153

0.747=0.90-0.153

0.747=0.90-0.153

1.353=1.20+0.153

1.724 = 2.5/1.45

(T) Transporting

Combination for STAAD/PRO

REPEAT LOAD

(C) Piping (C) Equipment (I) Crane Impact (Bp) Bundle Pulling(W) Wind (D) Structure (E) Additional Seismicfor Equipment

(V) Vibration (T) Piping Thermal Anchor/Guide Force

1.353=1.20+0.153

1.353=1.20+0.153

(S) Shipping(E) Structure Seismic

1.353=1.20+0.153

INDRA04-OCT-2012

Page 39: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 28-09-12

PAGE 39 OF 42

39

321 LC.H Seismic x Ω 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 2.000 0.300 2.000 0.300 1.000 1.000322 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.600 1.000 0.600 1.000 1.000 1.000323 LC.H1 Operating w/Live+Ω∗Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -2.000 -0.300 -2.000 -0.300 -1.000 -1.000324 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.600 -1.000 -0.600 -1.000 -1.000 -1.000325 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 2.000 -0.300 2.000 -0.300 1.000 -1.000326 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.600 1.000 -0.600 1.000 -1.000 1.000327 LC.H1 Operating w/Live+Ω∗Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -2.000 0.300 -2.000 0.300 -1.000 1.000328 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.600 -1.000 0.600 -1.000 1.000 -1.000329 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 2.000 0.300 2.000 0.300 1.000 1.000330 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.600 1.000 0.600 1.000 1.000 1.000331 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -2.000 -0.300 -2.000 -0.300 -1.000 -1.000332 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.600 -1.000 -0.600 -1.000 -1.000 -1.000333 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex+0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 2.000 -0.300 2.000 -0.300 1.000 -1.000334 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -0.600 1.000 -0.600 1.000 -1.000 1.000335 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L+2.0Ex-0.3Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 -2.000 0.300 -2.000 0.300 -1.000 1.000336 LC.H1 Operating w/Live+Ω *Seismic 1.2(D+C)+1.2(S+T)+1.0V+1.0L-0.6Ex+1.0Ez 1.353 1.353 1.200 1.353 1.353 1.353 1.353 1.000 1.200 1.200 1.200 0.600 -1.000 0.600 -1.000 1.000 -1.000337 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 2.000 0.300 2.000 0.300 1.000 1.000338 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.600 1.000 0.600 1.000 1.000 1.000339 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -2.000 -0.300 -2.000 -0.300 -1.000 -1.000340 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.600 -1.000 -0.600 -1.000 -1.000 -1.000341 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 2.000 -0.300 2.000 -0.300 1.000 -1.000342 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.600 1.000 -0.600 1.000 -1.000 1.000343 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -2.000 0.300 -2.000 0.300 -1.000 1.000344 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.600 -1.000 0.600 -1.000 1.000 -1.000345 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 2.000 0.300 2.000 0.300 1.000 1.000346 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.600 1.000 0.600 1.000 1.000 1.000347 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -2.000 -0.300 -2.000 -0.300 -1.000 -1.000348 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.600 -1.000 -0.600 -1.000 -1.000 -1.000349 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex+0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 2.000 -0.300 2.000 -0.300 1.000 -1.000350 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V+0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -0.600 1.000 -0.600 1.000 -1.000 1.000351 LC.H2 Operating w/Ω∗Seismic 0.9(D+C)+1.2(S+T)+1.0V+2.0Ex-0.3Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 -2.000 0.300 -2.000 0.300 -1.000 1.000352 LC.H2 Operating w/Ω *Seismic 0.9(D+C)+1.2(S+T)+1.0V-0.6Ex+1.0Ez 0.747 0.747 1.200 0.747 0.747 0.747 0.747 1.200 1.200 1.200 0.600 -1.000 0.600 -1.000 1.000 -1.000353 LC.J1 Shipping 1.1D+1.35Az+1.35X0.559Ay 1.855 1.855 1.855 1.855 1.350354 LC.J1 Shipping 0.9D+1.35Az-1.35X0.559Ay 0.145 0.145 0.145 0.145 1.350355 LC.J1 Shipping 1.1D-1.35Az+1.5X0.559Ay 1.855 1.855 1.855 1.855 -1.350356 LC.J1 Shipping 0.9D-1.35Az-1.35X0.559Ay 0.145 0.145 0.145 0.145 -1.350357 LC.J1 Shipping 1.1D+1.35Ax+1.35X0.381Ay 1.614 1.614 1.614 1.614 1.350358 LC.J1 Shipping 0.9D+1.35Ax-1.35X0.381Ay 0.386 0.386 0.386 0.386 1.350359 LC.J1 Shipping 1.1D-1.35Ax+1.35X0.381Ay 1.614 1.614 1.614 1.614 -1.350360 LC.J1 Shipping 0.9D-1.35Ax-1.35X0.381Ay 0.386 0.386 0.386 0.386 -1.350361 LC.K1 Transporting 1.2D+1.4Az+1.4X0.05Ay 1.270 1.270 1.270 1.270 1.400362 LC.K1 Transporting 0.9D+1.4Az-1.4X0.05Ay 0.830 0.830 0.830 0.830 1.400363 LC.K1 Transporting 1.2D-1.4Az+1.4X0.05Ay 1.270 1.270 1.270 1.270 -1.400364 LC.K1 Transporting 0.9D-1.4Az-1.4X0.05Ay 0.830 0.830 0.830 0.830 -1.400365 LC.K1 Transporting 1.2D+1.4Ax+1.4X0.05Ay 1.270 1.270 1.270 1.270 1.400366 LC.K1 Transporting 0.9D+1.4Ax-1.4X0.05Ay 0.830 0.830 0.830 0.830 1.400367 LC.K1 Transporting 1.2D-1.4Ax+1.4X0.05Ay 1.270 1.270 1.270 1.270 -1.400368 LC.K1 Transporting 0.9D-1.4Ax-1.4X0.05Ay 0.830 0.830 0.830 0.830 -1.400369 LC.L1 Lifting 1.2D 1.200 1.200 1.200 1.200370 LC.L1 Lifting 1.2D 1.200 1.200 1.200 1.200371 LC.L1 Lifting 1.2D 1.200 1.200 1.200 1.200372 LC.L1 Lifting 1.2D 1.200 1.200 1.200 1.200

0.747=0.90-0.153

0.747=0.90-0.153

0.747=0.90-0.153

0.747=0.90-0.153

1.353=1.20+0.153

1.353=1.20+0.153

1.353=1.20+0.153

1.353=1.20+0.153

Az = 0.626 Ax = 0.394

Ayz = 0.559 Ayx = 0.381

Az = 0.15 Ay = 0.05 Ax =

0.05

INDRA04-OCT-2012

Page 40: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 28-09-12

PAGE 40 OF 42

40

ATTACHMENT 7.2A “Load Combination Matrix for Sea Transport Analysis”

Load Combination Matrix for Type-1 Pipe Rack TYPE -1 Pipe Rack LOAD COMBINATION FACTORS

Load Combination401 402 403 404 405 406 407 408 409 410 411 412

Roll Gravity Vertical

Roll Gravity

Transverse

Heave Gravity due to Roll

(Vertical)

Heave Gravity due

to Roll (Transverse)

Roll Inertial Acceleration

(Vertical)

Roll Inertial Acceleration (Transverse)

Pitch Gravity Vertical

Pitch Gravity

Longitudinal

Heave Gravity due to Pitch

(Vertical)

Heave Gravity due to

Pitch (Longitudinal)

Pitch Inertial Acceleration

(Vertical)

Pitch Inertial Acceleration

(Longitudinal)LOAD CASE Description

501 +Gravity + Heave + Roll 1.2 1.2 1.2 1.2 1.2 1.2

502 +Gravity - Heave + Roll 1.2 1.2 -1.2 -1.2 1.2 1.2

503 +Gravity + Heave - Roll 1.2 -1.2 1.2 1.2 -1.2 -1.2

504 +Gravity - Heave - Roll 1.2 -1.2 -1.2 -1.2 -1.2 -1.2

505 +Gravity + Heave + Pitch 1.2 1.2 1.2 1.2 1.2 1.2

506 +Gravity - Heave + Pitch 1.2 1.2 -1.2 -1.2 1.2 1.2

507 +Gravity + Heave -Pitch 1.2 -1.2 1.2 1.2 -1.2 -1.2

508 +Gravity - Heave - Pitch 1.2 -1.2 -1.2 -1.2 -1.2 -1.2

Load Combination Matrix for Type-2 Pipe Rack

TYPE -2 Pipe Rack LOAD COMBINATION FACTORS

Load Combination401 402 403 404 405 406 407 408 409 410 411 412

Roll Gravity Vertical

Roll Gravity

Transverse

Heave Gravity due to Roll

(Vertical)

Heave Gravity due

to Roll (Transverse)

Roll Inertial Acceleration

(Vertical)

Roll Inertial Acceleration (Transverse)

Pitch Gravity Vertical

Pitch Gravity

Longitudinal

Heave Gravity due to Pitch

(Vertical)

Heave Gravity due

to Pitch (Longitudinal)

Pitch Inertial Acceleration

(Vertical)

Pitch Inertial Acceleration (Longitudinal)LOAD

CASE Description

501+Gravity + Heave + Roll 1.2 1.2 1.2 1.2 1.2 1.2

502+Gravity - Heave + Roll 1.2 1.2 -1.2 -1.2 1.2 1.2

503+Gravity + Heave - Roll 1.2 -1.2 1.2 1.2 -1.2 -1.2

504+Gravity - Heave - Roll 1.2 -1.2 -1.2 -1.2 -1.2 -1.2

505+Gravity + Heave + Pitch 1.2 1.2 1.2 1.2 1.2 1.2

506+Gravity - Heave + Pitch 1.2 1.2 -1.2 -1.2 1.2 1.2

507+Gravity + Heave -Pitch 1.2 -1.2 1.2 1.2 -1.2 -1.2

508+Gravity - Heave - Pitch 1.2 -1.2 -1.2 -1.2 -1.2 -1.2

INDRA04-OCT-2012

Page 41: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 28-09-12

PAGE 41 OF 42

41

ATTACHMENT 7.3A “Load Combination Matrix for Load Out/Land Transportation Analysis”

(T) Load out

Combination Condition Factored 1 2 4 50 61 62 63 64 70 71 91 92 100 101 102 103 104 Remarks

No.

Ds Do Pe

Temporary Members for

Load out

SPMT Reactions

COG location A

SPMT Reactions

COG location B

SPMT Reactions

COG location C

SPMT Reactions

COG location D

Longitudinal Force

Due to Tilt

Transverse Force Due

to Tilt

Moment Couple

about X-axis Due to COG Shift

Moment Couple about Z-

axis Due to COG Shift

Load-out weight

Load-out weight, COG at

location A

Load-out weight, COG at

location B

Load-out weight, COG at

location C

Load-out weight, COG at

location D

100 Load Out Weight Load Out Weight 1.00 1.00 1.00 1.00101 COG at Location A COG at Location A 1.05 -1.00 -1.00 -1.00 1.00 1.05102 COG at Location B COG at Location B 1.05 -1.00 1.00 1.00 1.00 1.05103 COG at Location C COG at Location C 1.05 1.00 -1.00 -1.00 -1.00 1.05104 COG at Location D COG at Location D 1.05 1.00 1.00 1.00 -1.00 1.05111 COG at Location A - LRFD COG at Location A - LRFD 1.60112 COG at Location B - LRFD COG at Location B - LRFD 1.60113 COG at Location C - LRFD COG at Location C - LRFD 1.60114 COG at Location D - LRFD COG at Location D - LRFD 1.60151 COG at Location A - WSD COG at Location A - WSD 1.00152 COG at Location B - WSD COG at Location B - WSD 1.00153 COG at Location C - WSD COG at Location C - WSD 1.00154 COG at Location D - WSD COG at Location D - WSD 1.00

Pre-Combination

Combination for STAAD/PRO

REPEAT LOAD

(C) Piping (D) Structure

(T) Load out

Combination Condition Factored 1 2 4 50 61 62 63 64 70 71 91 92 100 101 102 103 104 Remarks

No.

Ds Do Pe

Temporary Members for

Load out

SPMT Reactions

COG location A

SPMT Reactions

COG location B

SPMT Reactions

COG location C

SPMT Reactions

COG location D

Longitudinal Force

Due to Tilt

Transverse Force Due

to Tilt

Moment Couple

about X-axis Due to COG Shift

Moment Couple about Z-

axis Due to COG Shift

Load-out weight

Load-out weight, COG at

location A

Load-out weight, COG at

location B

Load-out weight, COG at

location C

Load-out weight, COG at

location D

100 Load Out Weight Load Out Weight 1.00 1.00 1.00 1.00101 COG at Location A COG at Location A 1.05 -1.00 1.00 -1.00 -1.00 1.05102 COG at Location B COG at Location B 1.05 -1.00 -1.00 -1.00 1.00 1.05103 COG at Location C COG at Location C 1.05 1.00 1.00 1.00 -1.00 1.05104 COG at Location D COG at Location D 1.05 1.00 -1.00 1.00 1.00 1.05111 COG at Location A - LRFD COG at Location A - LRFD 1.60112 COG at Location B - LRFD COG at Location B - LRFD 1.60113 COG at Location C - LRFD COG at Location C - LRFD 1.60114 COG at Location D - LRFD COG at Location D - LRFD 1.60151 COG at Location A - WSD COG at Location A - WSD 1.00152 COG at Location B - WSD COG at Location B - WSD 1.00153 COG at Location C - WSD COG at Location C - WSD 1.00154 COG at Location D - WSD COG at Location D - WSD 1.00

Pre-Combination

Combination for STAAD/PRO

REPEAT LOAD

(C) Piping (D) Structure

INDRA04-OCT-2012

Page 42: Design Spec for Structure

REFINING MAJOR PROJECTS GENERAL MANAGEMENTPROJECT: RPLC DEEP CONVERSIONSUBPROJECT: GENERALUNIT: GENERAL (U-00)AREA: GENERALPHASE: DETAILED ENGINEERINGDISCIPLINE: CIVILTITLE: DESIGN SPECIFICATION FOR MODULE STRUCTUREPDVSA PROJECT No.: 3006; CONFEED JOB CODE: 0-5792-20-0000

PDVSA DOC. No.3006-5000-DC117301

CONFEED DOC. No.S-000-1330-0301P

REV. A DATE: 28-09-12

PAGE 42 OF 42

42

ATTACHMENT 7.4A “Load Combination for Lifting Analysis”

Ichthys LNG Project

Load Combination Matrix for Lifting condition

Loadcases 1 2 3 4 5 6 7 8 15 16 17 61 62 63 64 91 92 100 101 102 103 104 105 106 107 108 121 122 123 124 125 126 127 128 141 142 143 144 145 146 147 148

LoadcombNo.

Primarygeneratedselfw eight

Secondary non-generatedselfw eight

Architecturalw eight

MechanicalEquipmentdryw eight

ElectricalEquipmentw eight

Instrumentationw eight

Losscontrolw eight

Piping dryw eight

Temporary :Permanent Items intemporarylocation

Temporary :Rigging,seafastening,voyageprotection

Temporary : Itemspresentfor Load-out only

100% ofGross lif tw eight atVerticalslidingsupport atlocation A

100% ofGross lif tw eight atVerticalslidingsupport atlocation B

100% ofGross lif tw eight atVerticalslidingsupport atlocation C

100% ofGross lif tw eight atVerticalslidingsupport atlocation D

COGcorrection, unit ΣMX= 10000kNm

COGcorrection, unit ΣMZ= 10000kNm

Dead loads- TotalTransport

COG atlocationA 75:25

COG atlocationA 25:75

COG atlocationB 75:25

COG atlocationB 25:75

COG atlocationC 75:25

COG atlocationC 25:75

COG atlocationD 75:25

COG atlocationD 25:75

COG atlocationA 75:25

COG atlocationA 25:75

COG atlocationB 75:25

COG atlocationB 25:75

COG atlocationC 75:25

COG atlocationC 25:75

COG atlocationD 75:25

COG atlocationD 25:75

COG atlocationA 75:25

COG atlocationA 25:75

COG atlocationB 75:25

COG atlocationB 25:75

COG atlocationC 75:25

COG atlocationC 25:75

COG atlocationD 75:25

COG atlocationD 25:75

Intermediate Load Combination

Step-1: Gross Lift Weight Load Combination100 Gross Lif t Weight 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Step-2: COG Shift and Skew loading

101 COG at location A corner 75:25 0.75 a1 b1 1.0102 COG at location A corner 25:75 0.25 a1 b1 1.0103 COG at location B corner 75:25 0.75 a2 b2 1.0104 COG at location B corner 25:75 0.25 a2 b2 1.0105 COG at location C corner 75:25 0.75 a3 b3 1.0106 COG at location C corner 25:75 0.25 a3 b3 1.0107 COG at location D corner 75:25 0.75 a4 b4 1.0108 COG at location D corner 25:75 0.25 a4 b4 1.0

Step-3: Including DAF and Consequence factorsDinamic Amplification Factor (DAF) = 1.35

Consequence factor (CF) = 1.15121 COG at location A corner 75:25 1.5525122 COG at location A corner 25:75 1.5525123 COG at location B corner 75:25 1.5525124 COG at location B corner 25:75 1.5525125 COG at location C corner 75:25 1.5525126 COG at location C corner 25:75 1.5525127 COG at location D corner 75:25 1.5525128 COG at location D corner 25:75 1.5525

Dinamic Amplification Factor (DAF) = 1.35Consequence factor (CF) = 1.0

141 COG at location A corner 75:25 1.35142 COG at location A corner 25:75 1.35143 COG at location B corner 75:25 1.35144 COG at location B corner 25:75 1.35145 COG at location C corner 75:25 1.35146 COG at location C corner 25:75 1.35147 COG at location D corner 75:25 1.35148 COG at location D corner 25:75 1.35

LRFD: Main Elements Supporting Lift Points (CF=1.15)211 COG at location A corner 75:25 LRFD 1.3212 COG at location A corner 25:75 LRFD 1.3213 COG at location B corner 75:25 LRFD 1.3214 COG at location B corner 25:75 LRFD 1.3215 COG at location C corner 75:25 LRFD 1.3216 COG at location C corner 25:75 LRFD 1.3217 COG at location D corner 75:25 LRFD 1.3218 COG at location D corner 25:75 LRFD 1.3

LRFD: Other Elements with the Lifted Structure (CF=1.0)221 COG at location A corner 75:25 LRFD 1.3222 COG at location A corner 25:75 LRFD 1.3223 COG at location B corner 75:25 LRFD 1.3224 COG at location B corner 25:75 LRFD 1.3225 COG at location C corner 75:25 LRFD 1.3226 COG at location C corner 25:75 LRFD 1.3227 COG at location D corner 75:25 LRFD 1.3228 COG at location D corner 25:75 LRFD 1.3

WSD Load Combination: Deflection for pipe stress analysis, Shackle & Sling selection, etc.261 COG at location A corner 75:25 WSD 1.0262 COG at location A corner 25:75 WSD 1.0263 COG at location B corner 75:25 WSD 1.0264 COG at location B corner 25:75 WSD 1.0265 COG at location C corner 75:25 WSD 1.0266 COG at location C corner 25:75 WSD 1.0267 COG at location D corner 75:25 WSD 1.0268 COG at location D corner 25:75 WSD 1.0

Basic Load Cases

Load Combination Description

Intemediate Load Combination

Factor to be adjustedby Engineer

INDRA04-OCT-2012