11
4.0 Drivetrain 4.1 Overall Design A Torsen T1 University Special differen6al was chosen to be the basis for the drive train. This differen6al was chosen due to the desirable characteris6cs of an automa6c torquebiasing differen6al when used in a racing environment. The Torsen T1 is used in many commercial applica6ons, including the center differen6al from an Audi QuaCro system, and is very affordable. A differen6al case that uses a chain driven input was designed. The differen6al assembly was also designed to carry an inboard braking system on adapters connected to the differen6al housing. This design allows the cases to remain sta6onary while the differen6al housing, brake disk, and sprocket rotates together. A sta6onary case is beneficial to performance because it lowers the rota6ng mass within the drive train. A lower rota6ng mass can more efficiently deliver the maximum amount of horsepower to the 6res due to fewer losses to rota6ng iner6a. The inboard braking system reduces unsprung weight by carrying the caliper on the frame and the disk brake on the differen6al. The connec6on between the brake rotor and the differen6al is effec6vely iden6cal to the connec6on between the drive sprocket and the differen6al. Both systems are solidly mounted to the differen6al housing. Inputs to the housing are then transferred through the gear set within the differen6al and into CV shaLs. The disadvantage of moun6ng the brake directly to the differen6al is the loss of brake torque distribu6on to each side of the chassis. In the event that a rear 6re leaves the ground, the differen6al will open up, and braking torque will only be applied to the 6re in the air. Figure 20: Differen.al unit assembly

Design Report for Website - Mick Peterson · 2013. 1. 11. · Special"consideraon"was"taken"to"meetthe"stricttolerances"for"the"journal"surface"the"bearing"must rotate"on."Since"the"mo6ons"between"the"two"rotang"surfaces"are

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 4.0  Drivetrain

    4.1  Overall  Design

    A  Torsen  T1  University  Special  differen6al  was  chosen  to  be  the  basis  for  the  drive  train.  This  differen6al  was  chosen  due  to  the  desirable  characteris6cs  of  an  automa6c  torque-‐-‐-‐biasing  differen6al  when  used  in  a  racing  environment.  The  Torsen  T1  is  used  in  many  commercial  applica6ons,  including  the  center  differen6al  from  an  Audi  QuaCro  system,  and  is  very  affordable.

    A  differen6al  case  that  uses  a  chain  driven  input  was  designed.  The  differen6al  assembly  was  also  designed  to  carry  an  inboard  braking  system  on  adapters  connected  to  the  differen6al  housing.  This  design  allows  the  cases  to  remain  sta6onary  while  the  differen6al  housing,  brake  disk,  and  sprocket  rotates  together.  A  sta6onary  case  is  beneficial  to  performance  because  it  lowers  the  rota6ng  mass  within  the  drive  train.  A  lower  rota6ng  mass  can  more  efficiently  deliver  the  maximum  amount  of  horsepower  to  the  6res  due  to  fewer  losses  to  rota6ng  iner6a.

    The  inboard  braking  system  reduces  unsprung  weight  by  carrying  the  caliper  on  the  frame  and  the  disk  brake  on  the  differen6al.  The  connec6on  between  the  brake  rotor  and  the  differen6al  is  effec6vely  iden6cal  to  the  connec6on  between  the  drive  sprocket  and  the  differen6al.  Both  systems  are  solidly  mounted  to  the  differen6al  housing.  Inputs  to  the  housing  are  then  transferred  through  the  gear  set  within  the  differen6al  and  into  CV  shaLs.  The  disadvantage  of  moun6ng  the  brake  directly  to  the  differen6al  is  the  loss  of  brake  torque  distribu6on  to  each  side  of  the  chassis.  In  the  event  that  a  rear  6re  leaves  the  ground,  the  differen6al  will  open  up,  and  braking  torque  will  only  be  applied  to  the  6re  in  the  air.

    Figure  20:  Differen.al  unit  assembly

  • 4.2  Sprocket  Selection

    An  op6mum  final  drive  gear  ra6o  will  enable  the  formula  car  to  be  in  the  peak  of  the  engines  power  band  at  every  corner  exit.  The  drive  sprocket  to  driven  sprocket  tooth  count  ra6o  on  a  chain  driven  system  is  the  final  drive  ra6o.  The  final  drive  ra6o  dictates  the  vehicle  speed  for  a  given  engine  RPM  in  each  transmission  gear.  The  controlling  factors  that  contribute  to  the  selec6on  of  a  final  drive  ra6o  are  the  engine’s  usable  power  band,  the  vehicle’s  6re  diameter,  the  engine’s  maximum  rpm,  and  the  transmission  ra6os.  The  Aprilia  engine  has  a  maximum  engine  speed  of  13,500rpm  and  peak  torque  between  7,000  and  9,000  rpm.  The  formula  car  has  been  fiCed  with  13-‐-‐-‐inch  wheels  and  20-‐-‐-‐inch  diameter  6res.  A  40/16-‐-‐-‐sprocket  ra6o  is  used,  providing  the  shiL  points  shown  on  the  table  below.

    Table  8:  Final  drive  ra.o  selec.on  table

    4.3  Rear  Brake  Adaptor

    The  rear  brake  system  is  mounted  inboard  on  the  differen6al  carrier.  The  differen6al  case  is  sta6onary  and  will  not  be  loaded  by  any  braking  torques.  Torque  will  be  transferred  directly  into  the  differen6al  housing.  The  brake  system  has  been  aCached  to  the  differen6al  by  a  series  of  components,  while  the  brake  rotor  is  aCached  to  the  differen6al  supports,  shown  below  in  red,  through  a  brake  input  adapter,  shown  below  in  gray.

  • Figure  21:  Rear  braking  system,  located  inboard  on  the  differen.al

    The  rear  brake  system  consists  of  a  single  hydraulically  actuated  caliper  mounted  to  the  chassis.  The  maximum  torque  that  can  be  delivered  to  the  brake  is  dependent  on  the  6re  radius  and  the  weight  of  the  car  applying  a  force  to  the  ground.  Any  greater  torque  will  simply  result  in  wheel  slip.  In  the  event  that  braking  and  accelera6on  occur  simultaneously,  the  maximum  torque  applied  to  the  wheels  will  be  a  factor  of  output  torque  from  the  engine.

    4.4  Estimation  of  Reaction  Forces

    Proper  drive  train  design  requires  that  all  included  components  can  withstand  the  peak  loads  generated  during  usage.  The  major  forces  on  the  drive  train  are  the  torques  produced  when  the  throCle  or  brake  is  applied.  Due  to  weight  transfer  between  the  front  and  rear  6res,  the  largest  torsional  load  on  the  rear  axle  and  drive  components  will  occur  not  during  braking  but  while  accelera6ng.  This  load  depends  on  the  torque  output  from  the  engine,  as  well  as  the  gearing  ra6o  of  the  transmission  and  sprockets  being  used.

    The  maximum  torque  this  engine  can  deliver,  by  calcula6on,  to  the  drive  train  is  1068  N*m.  This  assumes  the  6res  do  not  slip.  In  order  to  check  if  the  6res  can  provide  enough  grip  for  these  condi6ons,  a  force  balance  must  be  done  on  the  car.  Using  an  approxima6on  of  the  car’s  weight,  loca6on  of  center  of  gravity,  and  wheelbase,  it  is  possible  to  calculate  the  normal  force  pushing  up  on  the  rear  6res.  These  calcula6ons  assume  that  the  maximum  amount  of  longitudinal  accelera6on  that  could  be  produced  is  1  g.  This  results  in  a  combined  load  of  about  2000N  on  the  rear  6res.  Using  an  es6mated  coefficient  of  fric6on  for  the  6res  and  the  radius  of  the  wheel,  the  maximum  torque  that  one  or  both  6res  can  provide  before  slipping  is  found.

  • It  is  found  that  the  each  6re  can  resist  up  to  312Nm  before  slipping  given  these  condi6ons.  This  means  that  624Nm  is  the  most  torque  that  the  drive  train  will  experience  in  the  absence  of  any  shock  loading.  If  both  the  brake  and  gas  were  to  be  applied  at  the  same  6me,  it  would  be  possible  for  the  components  to  experience  the  1068  Nm  of  torque  coming  from  the  engine.  These  calcula6ons  can  then  be  used  to  find  the  maximum  stress  when  tracking  fa6gue  failures.

    4.5  Case  Design

    The  main  purpose  of  the  differen6al  case  is  to  provide  the  Torsen  differen6al  with  an  enclosure  that  will  hold  the  fluid  needed  to  lubricate  the  differen6al  gears  and  bearings.  Keeping  the  case  sta6onary  and  not  allowing  it  to  rotate  with  the  brake  rotor  and  sprocket  reduce  the  rota6ng  mass  in  the  drive  train.  The  case  must  contain  bearings  that  allow  the  differen6al  and  the  differen6al  supports  to  rotate  within  it.

    For  assembly  purposes,  it  is  necessary  that  the  case  be  made  of  two  halves.  By  joining  the  two  halves  in  the  middle,  it  is  also  possible  to  shim  behind  the  seats  of  the  bearings  to  adjust  the  amount  of  preload  on  the  tapered  roller  bearings.  The  bearings  are  press  fit  into  the  case  using  a  very  6ght  transi6onal  fit.  This  will  ensure  that  the  races  of  the  bearings  do  not  rotate  within  the  case  while  allowing  for  easy  assembly  and  disassembly.

    The  two  halves  of  the  case  slide  over  the  differen6al  supports  and  are  joined  in  the  middle  by  two  flanges  fastened  together  with  six  Allen  head  cap  screws  and  threaded  inserts.  A  free  fit  was  chosen  for  the  bolt  holes.  The  ma6ng  surfaces  are  sealed  with  the  use  of  compression  packing,  similar  to  an  O-‐-‐-‐ring.  It  is  also  necessary  to  seal  between  the  CV  shaLs  and  the  adapters  for  the  brake  rotor  and  drive  sprocket.  This  is  accomplished  by  pressing  a  double-‐-‐-‐lip  spring  loaded  shaL  seal  into  the  case  from  the  outside.  Each  case  half  also  incorporates  series  of  ridges  that  contact  with  the  assemblies  moun6ng  system,  which  prevents  lateral  movement.

    6061  Aluminum  is  the  material  used  for  the  case,  chosen  for  its  low  weight,  affordability,  and  ease  of  machining.  The  case  is  turned  on  a  lathe  from  a  solid  slug  of  material.  The  bolt  holes  are  drilled  on  a  ver6cally  milling  machine  and  are  then  reamed  to  the  final  diameter.  All  cri6cal  tolerances  are  verified  using  a  coordinate  measuring  machine  (CMM).

  • 4.6  Input  Adapters

    The  unique  size  and  bolt  paCerns  of  the  brake  rotor  and  drive  sprocket  necessitate  moun6ng  adapters.  These  adapters  must  connect  the  brake  rotor  and  drive  sprocket  to  the  differen6al  supports.  The  tolerances  between  the  adapters  and  supports  have  an  H11/h11  clearance  fit.  4150  alloy  steel  is  used,  chosen  for  its  high  strength  and  low  price.  A  sta6c  analysis  is  considered  to  be  sufficient  on  these  parts,  as  they  are  not  expected  to  experience  a  very  large  amount  of  life  cycles  or  any  major  deflec6ons.  Without  performing  fa6gue  analysis  on  the  input  adapters,  a  large  factor  of  safety  is  applied  to  all  calcula6ons.  Final  selec6ons  show  the  components  are  sized  to  a  safety  factor  of  4.475.

    4.7  Differential  Supports

    The  differen6al  supports  are  designed  to  transmit  the  torque  of  the  drive  sprocket  and  the  brake  rotor  from  the  input  adapters  to  the  Torsen  differen6al.  Each  support  aCaches  to  the  input  adapters  by  the  use  of  8  pins  around  the  circumference  of  their  outer  cylindrical  shell.  The  supports  must  seal  to  the  differen6al  housing  and  to  the  CV  shaLs  that  run  concentrically  through  the  center  of  them.  The  two  supports  are  almost  iden6cal  to  each  other  in  design  and  will  be  placed  on  both  sides  of  the  Torsen  differen6al.

  • Figure  22:  Differen.al  supports

    The  differen6al  supports  were  also  designed  with  a  surface  to  hold  both  a  tapered  roller  bearing  inside  the  case.  The  inside  face  includes  a  polished  surface  for  a  bronze  sleeve  bushing  to  allow  rota6on  between  the  axle  shaLs  and  supports.

    Figure  23:  Differen.al  support  assembly-‐-‐-‐  A:  Tapered  bearing,  B:  Inner  and  Outer  Seals,  C:  Brass  Bushing

  • Special  considera6on  was  taken  to  meet  the  strict  tolerances  for  the  journal  surface  the  bearing  must  rotate  on.  Since  the  mo6ons  between  the  two  rota6ng  surfaces  are  usually  less  than  10  feet  per  minute,  the  plain  bearings  will  be  primarily  in  a  boundary  lubrica6on  type  of  opera6on.  This  mode  of  opera6on  usually  results  in  a  coefficient  of  fric6on  between  0.08  and  0.14.  Although  a  full  fluid  film  is  unlikely  to  exist,  aCen6on  must  be  put  into  making  the  journal  eccentric.  It  is  also  determined  that  the  journal  must  have  a  surface  finish  of  8  to  32  micro-‐-‐-‐inches  for  this  type  of  opera6on.

    The  supports  were  machined  on  a  lathe  from  a  4150  steel  slug.  ALer  the  machining  process  was  complete,  the  supports  were  analyzed  with  the  CMM  to  ensure  that  the  accuracy  and  tolerances  of  the  two  adapters  were  met.

    4.8  Bearing  Selection

    To  determine  the  appropriate  bearings,  reac6on  forces  had  to  be  determined.  This  is  done  by  taking  the  moment  about  the  mount  on  the  rotor  side  of  the  assembly  using  the  equa6on  shown  below.  This  assumes  the  moun6ng  system  and  bearing  are  in  line  with  any  reac6on  forces.

    Using  the  equa6on  shown  above,  the  reac6on  force  (Fr)  can  be  determined  by  solving  for  the  reac6on  force,  since  the  max  chain  tension  (Ft)  is  found  to  be  2300  lbs  and  the  distances  are  known  from  Figure  4,  shown  below:

    Photo  11:  Cutaway  view  of  a  Torsen  differen.al

    The  moment  is  taken  about  the  brake  rotor  side  because  the  greatest  force  applied  to  the  differen6al  will  be  coming  from  the  sprocket  end.  Therefore  the  selected  bearing  can  be  used  on  both  sides  of  the  assembly.  The  equa6on  shown  below  is  used  and  the  reac6on  force  is  found  to  be  3220  lbs.

    To  calculate  the  combined  radial  and  thrust  load,  the  following  equa6on  is  used:  Where,

  • P  is  the  equivalent  load,Fr  is  the  applied  constant  radial  load  (3220  lbs),  Fa  is  the  applied  constant  thrust  load,V  is  a  rota6on  factor  (1),X  is  a  radial  factor  (1),and  Y  is  the  thrust  factor

    Since  the  ra6os  between  the  axial  and  radial  forces  are  less  than  .156,  the  thrust  force  can  be  ignored,  which  leaves  the  equivalent  load  (P)  to  be  3220  lbs.

    Using  the  load-‐-‐-‐life  rela6onship  for  a  roller  bearing,  where  L10  is  the  fa6gue  life  expressed  in  million  of  revolu6ons,  the  dynamic  load,  C,  can  be  calculated:

    The  dynamic  load  is  found  to  be  203,168  lbs.  Using  this  value,  the  team  determined  the  appropriate  bearing  for  the  sprocket  side  and  rotor  side  using  the  McMaster  Carr  catalog.  The  appropriate  bearing  to  be  used  for  the  inner  race  is  part  number  5709K33,  with  the  matching  bearing  part  number  5709K69.

    Figure  24:  Inner  Race  (5709K33)  and  Bearing  (5709K69)

    4.9  Mounting

    The  moun6ng  system  for  the  differen6al  is  designed  to  make  the  case  easily  accessible  for  installa6on  and  removal  from  the  car.  The  moun6ng  system  also  is  designed  to  minimize  case  movement  when  torque  is  transferred  through  the  bearings  or  seals  to  the  differen6al  housing.  As  torque  is  transmiCed  through  the  CV  shaLs,  a  thrust  load  is  generated  that  tries  to  move  the  differen6al  and  it’s  housing  sideways.  The  mounts  are  located  along  the  same  plane  as  the  differen6al  bearings.  The  moun6ng  system  consists  of  four  parts:  two  front  mounts  that  connect  to  the  cars  chassis  and  two  rear  mounts  that  have  tabs  on  the  top  and  boCom  to  bolt  into  the  other  mount  and  secure  the  differen6al  housing.

  • 4.10  Hardware

    Figure  25:  Differen.al  moun.ng  brackets

  • Several  bolts  and  pins  are  required  to  lock  many  of  the  rota6ng  pieces  together.  Based  upon  the  maximum  torque  analysis,  the  maximum  torque  possible  on  the  sprocket  is  1068  N-‐-‐-‐m.  To  solve  for  the  force  that  will  be  applied  to  each  bolt/pin,  the  equa6on  shown  below  is  used:

    Tmax  is  the  maximum  amount  of  torque  the  engine  can  provide.  r  is  the  radius  from  the  bolt  to  the  differen6als’  axis  of  rota6on.  Nb  is  the  number  of  bolts  or  pins  sharing  the  load.

    The  cross  sec6onal  area  of  the  fastener  and  the  shear  stress  can  then  be  found  using  equa6ons.

    The  factor  of  safety  is  then  calculated  based  on  the  yield  strength  and  the  shear  stress  of  the  fastener.  Yield  strength  of  91000  psi  was  used  for  a  grade  8  bolt.

    This  analysis  is  for  sta6c  loading.  Ideally,  the  fasteners  used  in  the  drive  train  that  are  loaded  torsionally  should  be  analyzed  for  fa6gue.  This  is  due  to  the  fully  reversed  loading  from  braking  and

    accelera6ng  the  car.  Since  the  number  of  cycles  would  be  rela6vely  low,  giving  the  bolts  and  pins  a  high  factor  of  safety  would  be  sufficient.

    4.11  Axles

    The  cars  drive  train  required  a  set  of  axles  to  connect  the  Torsen  differen6al  to  the  Mazda  Miata  hubs  that  had  been  previously  fiCed  to  the  outer  knuckles.  ALer  assessing  the  cost  and  6me  involved  in  producing  axles,  the  decision  was  made  to  outsource  the  components  to  RCV  Performance,  a  proven  supplier  and  manufacturer  of  custom  drive  train  components.

    The  axles  are  a  varia6on  of  the  Formula  SAE  Tripod  Axle  Kit  currently  in  produc6on.  They  use  an  inboard  CV  housing  and  stub  shaL  that  fits  the  Torsen  differen6al.  These  splines  came  as  a  cut  to  fit  applica6on  from  RCV,  and  were  cut  to  fit  the  assembly.  The  outboard  CV  housing  was  modified  to  fit  the  spline  paCern  on  the  Miata  hubs.  The  custom  CV  housings  are  shown  below.

  • Figure  26:  Custom  CV  housings  adapted  to  fit  the  differen.al  assembly

    4.12  Drive  train  Conclusion

    The  final  assembly  of  the  differen6al  case  consists  of  the  following  components:

    ● Two  halves  of  the  case  

    ● Sprocket  Input  Adapter  

    ● Brake  Input  Adapter  

    ● Two  Differen6al  Supports  

    The  two  halves  of  the  case  slide  over  the  differen6al  supports  connect  by  a  flange,  enclosing  the  Torsen  Differen6al  along  with  its  essen6al  lubrica6ng  fluid.  The  case  is  machined  from  aluminum  and  has  cri6cal  tolerances  for  the  bearings  and  seals.  Aluminum  was  chosen  because  it  is  a  light  material  and  easy  to  machine.  The  case  is  mounted  to  the  rearmost  horizontal  members  of  the  car.  Both  the  input  adapters  and  differen6al  supports  are  constructed  of  4150  steel.  For  the  analysis  of  the  differen6al  supports,  the  outer  diameter  was  sized  to  have  a  safety  factor  of  3.8.  This  minimum  factor  of  safety  was  then  used  to  develop  the  appropriate  thickness  of  the  brake  and  sprocket  adapters  and  to  select  the  appropriate  hardware.  A  lower  factor  of  safety  used  was  for  the  pins  connec6ng  the  differen6al  supports  to  the  brake  and  sprocket  adapters,  promo6ng  failure  at  a  loca6on  that  would  result  in  minimal  damage,  expense,  and  injury  if  the  drivetrain  were  to  experience  greater  than  expected  loads.  

    The  differen6al  unit  is  designed  to  survive  the  abuse  produced  in  a  race  environment  and  provides  an  effec6ve  way  of  applying  power  to  the  ground,  allowing  the  car  to  be  as  agile  as  possible.