Design Guidelines for Inland Ships

Embed Size (px)

Citation preview

  • 8/17/2019 Design Guidelines for Inland Ships

    1/142

    Buenos Aires, 18-09-2015

    Workshop on DESIGN GUIDELINES FOR INLAND

    WATERWAYS (PIANC INCOM WG 141)

    Bernhard Söhngen

    “SMART RIVERS 2015” 

    www.baw.de

    1. Presentations held at the Workshop

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 3

    Bernhard Söhngen (Germany): Introduction to WG 141 approach and findings (45 min.)

    Otto Koedijk (The Netherlands): Classification of waterways, design vessel and data needed (25 min.)

    Jean-Marc Deplaix (France): Existing waterways with special respect to China and ease ofnavigation (30 min.)

    Katja Rettemeier, Bernhard Söhngen (Germany): Recommendations of WG 141 concerning fairway

    design in canals and rivers (30 min.)

    Jose Iribarren (Spain): Examples for comparative variant analysis in using ship handling simulatorswith special respect to assess ease quality and human factor (30 min.)

    Lunch break

    Katrien Eloot (Belgium): Appl ication of WG 141 approach including full bridge ship handlingsimulators for Class Va-vessels to the Upper-Seascheldt (ca. 35 min.)

    Bernhard Söhngen (Germany): Appl ication of WG 141 approach including elaboration of field data and fast time simulation forClass Va-vessel passing narrow Jagstfeld Bridge in the German Neckar River (ca. 40 min).

    Pierre-Jean Pompee (France): Channel types with special respect to speed, power used and easequality (40 min.) 

    Feedback from the participants and final discussion  – ca. 20 min.

  • 8/17/2019 Design Guidelines for Inland Ships

    2/142

    www.baw.de

    Content

    1. Presentations held at the Workshop

    2. Terms of reference of WG 141

    3. WG 141: Design Guidelines for Inland Waterways

    4. Content of the future report with examples

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 2

    www.baw.de

    Motivation:

    There is a need for revised guidelinesbecause of

    • larger, but better equipped inland

    vessels,• better on-board information systems and

    • better simulation methods.

    2. Terms of reference of WG 141

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 4

  • 8/17/2019 Design Guidelines for Inland Ships

    3/142

    www.baw.de

    2. Terms of reference of WG 141

    Main Tasks:

    • Consider actual dimensions of vessels

    according to international standards

    • Take into account the demands of

    climate change and ecology

    • Consider influences of wind effects,

    visibility, currents

    • Refer to all relevant PIANC publications,

    especially to MarCom WG 49 

    Class Vb

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 5

    www.baw.de

    2. Terms of reference of WG 141

    We will focus on

    • modern vessels

    • dimensions of

    fairways

    • lock approaches

    • turning basins

    • berthing places

    • bridge openings

    Class Va

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 6

    Defining lower limits of navigational

    space based on nautical aspects only

    supports economical, environmental

    and climate change aspects

  • 8/17/2019 Design Guidelines for Inland Ships

    4/142

    www.baw.de

    3. WG 141: Design Guidelines for Inland Waterways

    Katja Rettemeier,

    Ministry of Traffic,

    Germany

    Jose Iribarren,

    SIPORT, Spain

    Pierre-Jean Pompee,

    VNF, France

    Otto Koedijk,

    Reijkswaterstaat,

    The Netherlands

    Ji Lan, Shanghai

    Waterway

    Engineering, China

    Bernhard Söhngen

    BAW, Germany

    Katrien Eloot, Flanders

    Hydraulics, Belgium

    Ismael Verdugo,

    SIPORT, Spain

    Interim meeting, May 2012, SIPORT, Madrid, Spain

    12th meeting, July 2015, DST, Duisburg

    “Hard Core”of WG 141

    Jean-Marc Deplaix,

    COCOM,

    France

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 8

    www.baw.de

    Katja Rettemeier,Ministry of Traffic,

    Germany

    Jose Iribarren,

    SIPORT, Spain

    Pierre-Jean Pompee,

    VNF, France

    Otto Koedijk,

    Reijkswaterstaat,

    The Netherlands

    Ji Lan, Shanghai

    Waterway

    Engineering, China

    Bernhard Söhngen

    BAW, Germany

    Katrien Eloot, Flanders

    Hydraulics, Belgium

    Ismael Verdugo,

    SIPORT, Spain

    Interim meeting, May 2012, SIPORT, Madrid, Spain

    12th meeting, July 2015, DST, Duisburg

    “Hard Core”of WG 141

    Jean-Marc Deplaix,

    COCOM,

    France

    3. WG 141: Design Guidelines for Inland Waterways

    WG 141 consists of governmental

    experts and consultants concerning

    planning and maintenance of

    waterway infrastructure, users and

    developers of ship handling

    simulators and skippers

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 9

  • 8/17/2019 Design Guidelines for Inland Ships

    5/142

    www.baw.de

    4. Content of the future report with examples

    1. INTRODUCTION

    2. DISCUSSION OF EXISTING GUIDELINES

    3. DIMENSIONS OF EXISTING WATERWAYS – PRACTICE

    4. TECHNICAL INFORMATION5. CONSIDERATION OF SAFETY AND EASE QUALITY

    6. RECOMMENDED STEPS IN WATERWAY DESIGN

    7. RECOMMENDATIONS FOR SPECIAL DESIGN ASPECTS (dimensions of

    canals, fairways in rivers, junctions, turning basins, bridge openings, lock

    approaches, berthing and waiting areas, harbour entrances)

    8. CONCLUSIONS

    9. APPENDIVCES

    EXISTING GUIDELINES

    PRACTICAL EXAMPLES

    EASE QUALITY EXAMPLES

     APPLICATION EXAMPLES

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 10

    www.baw.de

    Chapter 1: INTRODUCTION

    Contribution

    of WG 141

    report to the

    planning

    process of

    waterway

    infrastructure

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 11

  • 8/17/2019 Design Guidelines for Inland Ships

    6/142

    www.baw.de

    Chapter 1: INTRODUCTION

    Contribution

    of WG 141

    report to the

    planning

    process ofwaterway

    infrastructure

    Our report can (clearly) not support all the usual steps in planning

    of a waterway infrastructure, but it supports one of the most

    important aspects: The safety and ease of navigation!

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 12

    www.baw.de

    Chapter 2: DISCUSSION OF EXISTING GUIDELINES

    Country  BLA/B  LLA/L 

    China 3.5 - 4.5 (s)  3.5 - 4.0 

    7.0 (d)  3.0 - 3.5* 

    Dutch  2.2 (s)  1.0 - 1.2 

    French  2.9 (s)  0.5 

    Germany 

    3 - 4 (s) 

    2.2 

    Example lock approach

    breadth BLA and length LLA 

    (double locks, upper harbour)

    River BLA/BLLA/L

    Main 2.8 (d) , 1.8 (s) ~ 2.5Neckar 8.3 (t), 2.6 (d),

    2.3 (s)0.7 – 1.4

    Nederrijn

    (Lek)2.9 (s) 6.3 (s)

    Maas 8.2 (t), 4.9 (d),9.4 (s)

    4.3 (t), 3.3 (d)4.6 (s)

     Average

    8.3 (t), 3.6 (d),

    4.1 (s)

    3.5 (t,d,s)

    d = double lock, s = single lock, t = triple lock

    Data from guidelines

    Data from practice

    The data vary widely!It seems that especially the lock approach

    lengths were chosen according to the

    available space (as long as feasible), not the

    necessary space.

    LLA

    BLA 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 13

  • 8/17/2019 Design Guidelines for Inland Ships

    7/142

    www.baw.de

    Chapter 2: DISCUSSION OF EXISTING GUIDELINES

    Example lock approach

    breadth BLA and length LLA 

    (double locks, upper harbour)

    LLA

    BLA 

    Lock approach widths and lengths

    depend on each other, depending on

    the “driving style”. 

    • Stopping in front of the lock in anapproach requires a wider

    entrance, but reduced lengths!

    • If the pilot is forced to stop inside

    the approach, BLA can be smaller,

    but LLA longer!

    Caution if one uses the smallest

    dimensions each for length and

    width e.g. from existing

    guidelines!

    ou e oc s, upper ar our  

    B

    Nevertheless, one needs concrete waterway dimensions at least for preliminary

    design, that means, before a detailed study can start, because simulation or scale

    model tests need the geometry and the flow field of the lock approach!

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 14

    www.baw.de

    Chapter 3: DIMENSIONS OF EXISTING

    WATERWAYS – PRACTICE (example fairway in rivers)

    • Fairway data from different rivers, interpreted as to be limited by buoys

    • Interpretation according to usual usage one-lane or two-lane

    • US data according to model tests

    • Calculated fairway width according to guidelines for comparison

    Practical data replace data from guidelines because there are only few information available

    • There was no

    significant

    influence of flow

    velocity

    detectable, apartfrom US guidelines

    • The influence of

    curvature was

    significant and

    about the same as

    for empty vessels

    according to Dutchguidelines  

       

     

    n=2 3 4 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 15

  • 8/17/2019 Design Guidelines for Inland Ships

    8/142

    www.baw.de

    • Classification of reference vessels

    • Design relevant properties of waterway types

    • Design relevant aspects of driving dynamics

    “Driving Dynamics

    of Inland Vessels” 

    (soon available in

    English)

     Association for

    European Inland

    Navigation and

    Waterways

    Chapter 4: TECHNICAL INFORMATION 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 16

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    Why? • Different boundary conditions in our waterways(vessels, environment, waterway properties) lead to

    different s&e qualities

    • Different international guidelines reflect these different

    boundary conditions and so, demand for different s&e

    standards

    • There are several rational reasons speaking e.g. for

    higher necessary or lower acceptable standards

    designation 

     A  nearly unrestricted

    driveB  moderate to

    strongly restricted

    drive 

    C  strongly restricted

    drive 

    How? • Definition of three different ease qualities (standards)

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 17

  • 8/17/2019 Design Guidelines for Inland Ships

    9/142

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    Why? • Different boundary conditions in our waterways(vessels, environment, waterway properties) lead to

    different s&e qualities

    • Different international guidelines reflect these different

    boundary conditions and so, demand for different s&estandards

    • There are several rational reasons speaking e.g. for a

    higher necessary or lower acceptable standards

    How? • Definition of three different ease qualities (standards)

    • Concept Design (simplified approach):

    •  All the recommended waterway dimensions are

    assigned to ease qualities B 

    W = 4 B  W = 3 B 

    Example fairway widthin straight canals 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 18

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    Why? • Different boundary conditions in our waterways(vessels, environment, waterway properties) lead to

    different s&e qualities

    • Different international guidelines reflect these different

    boundary conditions and so, demand for different s&e

    standards

    • There are several rational reasons speaking e.g. for a

    higher necessary or lower acceptable standards

    How? • Definition of three different ease qualities (standards)

    • Concept Design (simplified approach):

    •  All the recommended waterway dimensions are

    assigned to ease qualities

    •  A scoring system helps to define the necessary

    ease quality for design – and thus, the

    appropriate waterway dimension, e.g. W=4B in

    case of ease quality between A and B

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 19

  • 8/17/2019 Design Guidelines for Inland Ships

    10/142

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    Why? • Different boundary conditions in our waterways(vessels, environment, waterway properties) lead to

    different s&e qualities

    • Different international guidelines reflect these different

    boundary conditions and so, demand for different s&estandards

    • There are several rational reasons speaking e.g. for a

    higher necessary or lower acceptable standards

    How? • Definition of three different ease qualities (standards)

    • Concept Design (simplified approach):

    •  All the recommended waterway dimensions are

    assigned to ease qualities

    •  A scoring system helps to define the necessaryease quality for design – and thus, the

    appropriate waterway dimension, e.g. W=4B in

    case of ease quality between A and B

    • Concept Design sim  

      e ine the necess  r es gn an t us, t e

    ppropr ate waterway mens on, e.g. =

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 20

    www.baw.de

    approach):

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    How?

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 21

    (8) Determine the decisive design case,

    e.g. the one with the largest necessary

    waterway dimensions

    (2) Assess the necessary s&e quali ty for

    design (“dc”) with the simplified approach

    Compare s&e scores of (2) and (3)

    and modify if necessary the ease

    reference case

    (3) Choose an ease reference case

    (“erc”), having the same s&e quality

    as “dc”(check applying the simplified &

    detailed approach)

    (4) Check the sensitivity of the ease scores 

    of “pnc” and “erc” 

    (6) Perform the design, using the ConceptDesign Method, the Practice Approach

    and/or the Detailed Design Method and

    compare the results Go back to (1), (2) and (3) if the decisive

    design case was initially not clear

    (1) Analyze the s&e quality of the present

    nautical condition(s) (“pnc”) with thesimplified approach

    (5) Specify the aspired ease standards for

    the design case 

     Adapt the weighting factors of the simplifiedand detailed s&e approach if necessary

    Results: s&e quality, especially for the

    decisive design cases

    (7) Check ease quality of “dc” and “erc”

    with the detailed approach: Should be the

    same!

    simplified detaileds&e approach

    2  Assess the s&e quali ty or

    ease reference caseChoose an

    (“erc ing the same”), hav s&e quality

    as “dc ck applying the simplified &che

    roachdetailed a

    ase quality of dc” and erc”

    tailed approach: Should be the

    ) Check the sensi  

    o

    or

    design (“dc”) with the simplified approach

    (7) Check

    with the d

    same!

  • 8/17/2019 Design Guidelines for Inland Ships

    11/142

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    How? • Case by Case Design (detailed approach):

    • Relevant results from simulations or field

    data will be transferred into appropriate s&e

    scores and matched to a comprehensive score

    Group  Subgroup  Characteristic value from simulations  

       E  x  p   l  o   i   t  a   t   i  o  n

      o   f

      r  e  s  o  u  r  c  e  s

    Waterway

    related 

    Percentage of permitted speed 

    Percentage of critical speed 

    Bank distance 

    Swept area width 

    Vessel related  Main rudder angle 

    Percentage of bow thruster power used 

    Percentage of main power usage 

       D  r   i  v   i  n  g

       d   i   f   f   i  c  u   l   t  y

      a  n   d

       h  a  n   d   i  c  a  p  s

    Human related 

    Number of rudder actions (incl. bow thruster)per minute

     

    Standard deviation of swept area width 

    Vessel related  Standard deviation of rpm 

    Standard deviation of main rudder angles 

    Rudder angular velocity 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 22

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    How? • Case by Case Design (detailed approach):

    •  All the results of simulations or field data will

    be transferred into appropriate s&e scores

    and matched to a comprehensive score

    Significant

    rudder angle,

    e.g. 20 

    Usual peak value,

    e.g. 30 

    Rudder angle producing

    max. crosswise force,

    e.g. 45 for twin rudders

    Geometrically max.rudder angle of the

    design vessel

    The score can be chosenaccording to the ease scoresof the simplified approach 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 23

  • 8/17/2019 Design Guidelines for Inland Ships

    12/142

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    How? • Case by Case Design (detailed approach):

    •  All the results of simulations or field data will

    be transferred into appropriate s&e scores

    and matched to a comprehensive score

    Time series of rudder angles Time series of

    ease scores

    Transformation

    into ease

    scores

    The average ease score inthe time interval of interestdefines an ease quality o flevel B (in our example) 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 24

    www.baw.de

    Chapter 5: CONSIDERATION OF SAFETY AND EASE 

    How? • Case by Case Design (detailed approach):

    •  All the results of simulations or field data will

    be transferred into appropriate s&e scores

    and matched to a comprehensive score

    Time series of rudder angles Time series of

    ease scores

    Transformation

    into ease

    scores

    The average ease score inthe time interval of interestdefines an ease quality o flevel B (in our example) 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 25

    an matc e to a co

    Time

    e

  • 8/17/2019 Design Guidelines for Inland Ships

    13/142

    www.baw.de

    Chapter 6: RECOMMENDED (3) DESIGN STEPS

    Concept Design

    • Choose appropriate s&e quality

    • Perform the design e.g.

    concerning necessary fairway

    width by adding the “basic

    width” + increments• Check applicability limits

    Compare results

    from Concept

    and PracticePractice Approach

    • Use practical data provided

    by WG 141 comparable to

    design case considered

    • Use data from previous or

    similar projects

    • Check application limits

    Use national guidelines if

    available and applicable

    Use international

    guidelines if applicable

    and accepted instead

    Finalize Design

    If Concept Design

    and Practice deliver

    reliable results 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 26

    www.baw.de

    Chapter 6: RECOMMENDED (3) DESIGN STEPS

    Concept Design

    • Choose appropriate s&e quality

    • Perform the design e.g.

    concerning necessary fairway

    width by adding the “basic

    width” + increments

    • Check applicability limits

    Compare resultsfrom Concept

    and PracticePractice Approach

    • Use practical data provided

    by WG 141 comparable to

    design case considered

    • Use data from previous or

    similar projects

    • Check application limits

    Use national guidelines if

    available and applicable

    Use international

    guidelines if applicable

    and accepted instead

    Finalize Design

    If Concept Design

    and Practice deliver

    reliable results 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 27

    BLABLA

    flow towards

    weir

    LLA

    approach flow

    velocity vFlow

    Still

    water 

    average crosswise

    flow velocity vc

    cross-

    flow

    zone 

    B

    Sailing fast relative to water (requires stoppinginside lock approach and thus longer LLA):

    Assuming vFlow/vSW  0.3

    BLA (one lane)  2B + bc  2.6 B

    Data from guidelinesConcept Design

    Example lockapproach width

  • 8/17/2019 Design Guidelines for Inland Ships

    14/142

    www.baw.de

    Chapter 6: RECOMMENDED (3) DESIGN STEPS

    Concept Design

    • Choose appropriate s&e quality

    • Perform the design e.g.

    concerning necessary fairway

    width by adding the “basic

    width” + increments• Check applicability limits

    Compare results

    from Concept

    and PracticePractice Approach

    • Use practical data provided

    by WG 141 comparable to

    design case considered

    • Use data from previous or

    similar projects

    • Check application limits

    Use national guidelines if

    available and applicable

    Use international

    guidelines if applicable

    and accepted instead

    Finalize Design

    If Concept Design

    and Practice deliver

    reliable results 

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 28

    BLA

    flow towards

    weir

    LLA

    approach flow

    velocity vFlow

    Still

    water 

    average crosswise

    flow velocity vc

    cross-

    flow

    zone 

    B

    Sailing fast relative to water (requires stoppinginside lock approach and thus longer LLA):

    Assuming vFlow/vSW  0.3

    BLA (one lane)  2B + bc  2.6 B

    Data from guidelinesConcept Design

    Example lockapproach width

    C

    r

    If

    a

    r

    li

     

    i

    ous or

    cts

     application limits

    Data from guid

     

    ractice Approac

    se p-flow

    g

    www.baw.de

    Chapter 6: RECOMMENDED (3) DESIGN STEPS

    Concept Design

    • Choose appropriate s&e quality

    • Perform the design e.g.

    concerning necessary fairway

    width by adding the “basic

    width” + increments

    • Check applicability limits

    Compare resultsfrom Concept

    and PracticePractice Approach

    • Use practice data provided

    by WG 141 comparable to

    design case considered

    • Use data from previous or

    similar projects

    • Check application limits

    Use national guidelines if

    available and applicable

    Use international

    guidelines if applicable

    and accepted instead

    Finalize Design

    If application limits

    are exceeded (e.g.

    if flow velocity is

    too high) or if there

    are other good

    arguments for a

    Case by Case Study

    Detailed Design

    • Choice of method & modelling,

    • Performance of the detaileddesign study

    • Interpretation of results

    • Check of decisive design cases

    • Feedback to planners

    Compare results

    from all 3 methods

    + preliminary

    projects

    If Concept Design

    and Practice deliver

    reliable results 

    If the results are

    resilient 

    Use Concept Design as preliminary design 

    bathymetry and flow field for the detailed design

    Concept Design

    • Choose appropriate s&e quality

    • Perform the design e.g.

    concerning necessary fairway

    width by adding the “basic

    width” + increments

    • Check applicability limits

    Compare resultsfrom Concept

    and Practiceractice Approach

    • Use practice data provided

    y WG 141 comparable to

    design case considered

    • Use data from previous or

    similar ro ects

    Use national guidelines if

    available and applicable

    Use international

    guidelines if applicable

    and accepted instead

    If Concept Design

    and Practice deliver

    reliable results

    Check application limits

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 29

  • 8/17/2019 Design Guidelines for Inland Ships

    15/142

    www.baw.de

    (1) Prepare and check data basis

    (2) Check modelling capacity

    (6) Choose the ease reference

    case “erc” (may also be identical

    to “pnc”)

    (8) Simulate the design case “dc”,

    analyse the ease quality, compare itwith “erc” and adjust “dc” if necessary

    (3) Perform simulations for thepresent nautical conditions

    “pnc”

    (9) Interpret 1st the simulations,

    using differences between “dc”

    and ”pnc”, use the result of (8) as

    a 2nd approach, use 3rd the simu-

    lations directly (absolute values)and account for 4th experiences

    Modelling 

    Calibration

       M   o    d   e    l   V   e   r   i    f   i   c   a   t   i   o   n

    Comparative analysis

    (4) Choose the verification

    reference case “vrc” (may be

    identical to “pnc”)(5) Simulate the verification

    reference case “vrc” and

    compare it with field data

    (7) Simulate “erc” and adjust if

    necessary the “s&e” approach

    Interpretation 

    Support  to check modelling

    capability and s&e approach

    Excursus: Application of simulation techniques

    Application of s&e

    approach

    (8) Simulate the design case “dc”,

    analyse the ease quality, compare itwith “erc and adjust “dc” if necessary

    (7) Simulate “erc” and adjust if

    necessary the “s&e” approach

    (6) Choose the ease reference

    case “erc (may also be identical

    to “pnc”)

    Comparative

    considerations

    (9) Interpret 1s the simulations,

    using differences between “dc”

    and ”pnc”, use the result of (8) as

    a 2n approach, use 3r the simu-

    lations directly (absolute values)and account for 4th experiences

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 30

    www.baw.de

    GMS Hanna Krieger , coupled in front of pusher Vogel

    Gryff, simulating a üGMS

       28 m net width in draught

    depth between foundations

       24 m net width in headroom

    Ship positions of GMS, approximately mean water

    level (MW)

    Excursus: Application of simulation techniques (fast time)

    Example German Neckar River: Future

    passage of narrow Jagstfeld Bridge by

    135 m long Class b vessels

    Application of field data for

    analysing the present nautical

    conditions, to check the modelling

    capacity and to define the ease

    reference case: here empty GMS at

    highest navigable stage!

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 31

  • 8/17/2019 Design Guidelines for Inland Ships

    16/142

    www.baw.de

    “erc” “dc” 

     All the scores of “dc” are a bit lower than those for

    “erc”, but not very much!  Therefore, widening

    of the fairway does not seem to be

    absolutely necessary (only wind)!

    Excursus: Application of simulation techniques (fast time)

    lutely necessary (only wi

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 32

    www.baw.de

    What about keeping safety margins between

    bridge piers and not using the entire installed

    bow thruster power (42%)?

    Excursus: Application of simulation techniques (fast time)

    Keeping safety

    margins between

    bridge piers

    8 m

    exceedingof safety

    margins

    downstream

    of thebridge

    Taking extra widths into account for

    instabilities & human factor and wind

    increments (Dutch “rule of thumb” 0.05 L)

    one ends up with 17 m necessary widening!

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 33

  • 8/17/2019 Design Guidelines for Inland Ships

    17/142

    www.baw.de

    (1) Prepare and check data basis

    (2) Check modelling capacity

    (6) Choose the ease reference

    case “erc” (may also be identical

    to “pnc”)

    (8) Simulate the design case “dc”,

    analyse the ease quality, compare itwith “erc” and adjust “dc” if necessary

    (3) Perform simulations for thepresent nautical conditions

    “pnc”

    (9) Interpret 1st the simulations,

    using differences between “dc”

    and ”pnc”, use the result of (8) as

    a 2nd approach, use 3rd the simu-

    lations directly (absolute values)and account for 4th experiences

    Modelling 

    Calibration

       M   o    d   e    l   V   e   r   i    f   i   c   a   t   i   o   n

    Comparative analysis

    (4) Choose the verification

    reference case “vrc” (may be

    identical to “pnc”)(5) Simulate the verification

    reference case “vrc” and

    compare it with field data

    (7) Simulate “erc” and adjust if

    necessary the “s&e” approach

    Interpretation 

    Support  to check modelling

    capability and s&e approach

    Excursus: Application of simulation techniques

    Concept Design -routing methods

    hoose the ease reference

    erc (may also be identical

    to “pnc”)

    n

     Choose the verification

    rence case “vrc” (may be

    identical to “pnc”)

    t to check modelling

    lity and s&e approach

    (8) Simulate the design case “dc”,

    analyse the easewi “

     

    (9) In

    usin

    and ”

    rati

    (4)

     po

    abi 

     

    oachr

    a 2n ap

    lations dand acc

     

    , mpare itand adjust “dc” if necessary

    ary the “s&e”

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 34

    www.baw.de

    Generally recommended

    steps in waterway design

    Excursus: Application of simulation techniques

    Generall recommen  

    steps in water   

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 35

  • 8/17/2019 Design Guidelines for Inland Ships

    18/142

    www.baw.de

    Chapter 7: SPECIAL RECOMMENDATIONS (example)

    7.2 Canal cross section and fairway width7.2.1 Definition7.2.2 Scaling parameters7.2.3 Precision and data needed (check lists)

    7.2.4 Concept Design with respect to s&e7.2.5 Extensions by adding increments7.2.6 Review international guidelines7.2.7 Practice examples7.2.8 Detailed design7.2.9 Recommended additional information

    Bank impact from bow and main thruster and “body contact”  

    Model tests at DST in a very narrow canal (OHW); ES

    (9,5x85, camera), ballasted (0,7/1,8), meets GMS

    (11,45; 2,5/2,5), 2,2 m net space in draught depth

    ow

    x ens ons y a ng ncremeReview internationaPractice e

      onal information

    an mpact rom

    Workshop on Design Guidelines for Inland Waterways (PIANC INCOM WG 141), Bernhard Söhngen

    SMART RIVERS 2015, 09.09.2015 Page 38

    Bundesanstalt für Wasserbau

    76187 Karlsruhe, Germany

    www.baw.de

    Thank you for your attention

    For further questions do not hesitate to contact: 

    Prof. Dr. Bernhard Söhngen

    [email protected]

    phone: 0049-721-9726-4600

    “SMART RIVERS 2015” 

    Paper 34 - Workshop on Design Guidelines for Inland Waterways, Introduction to WG 141 Approach and Findings

  • 8/17/2019 Design Guidelines for Inland Ships

    19/142

    5/10/2015

    1

    Otto Koedijk MSc

    Rijkswaterstaat WVL / TU Delft

    The role of classification and

    reference vessels in the design of inland

    waterways for commercial vessels – 

    Pianc WG 141. Paper No. 21

    Buenos Aires, Argentina, 7-11 September 2015

    “SMART RIVERS 2015” 

    08-09-2015 “SMART RIVERS 2015” 

    Introduction (1)

    • Speaker :

    • Otto C. Koedijk MSc, Netherlands

    • Former professional captain (inland + sea)

    • Senior advisor Rijkswaterstaat WVL,

    waterway design (from traffic point of view)

    • Lecturer TU Delft, Ports and Waterways

    • Pianc: member of Pianc Commission

    InCom and WG’s 141 & 179 

  • 8/17/2019 Design Guidelines for Inland Ships

    20/142

    5/10/2015

    2

    08-09-2015 “SMART RIVERS 2015” 

    Introduction (2)

    • Subject: the role of classification and

    reference vessels in the design of inland

    waterways for commercial vessels

    • Use of reference vessel and classification

    • Classification: the example of Europe

    • Reference vessel: concept and use

    • Design of inland waterways

    08-09-2015 “SMART RIVERS 2015” 

    Use of reference vessel andclassification

    • Designing an inland waterway ->

    first determine vesseltypes and –dimensions

    • How to determine them?

    -> by using the appropriate classification (if

    available)

    -> by selecting the appropriate reference- or

    design vessel

  • 8/17/2019 Design Guidelines for Inland Ships

    21/142

    5/10/2015

    3

    08-09-2015 “SMART RIVERS 2015” 

    Classification: the European

    example (1)• History of the European (CEMT)

    classification

    -> 1879 standardisation started in France:

    9000 km canal built for Peniche ship type

    (38.5 x 5.05 m)

    -> 20th century Germany Dortmund-Ems

    canal (73.0 x 8.20m) and Rhein-Hernecanal (85 x 9.50 m)

    08-09-2015 “SMART RIVERS 2015” 

    Classification: the Europeanexample (2)

    • From 1954 on, European transport

    Ministers resoluted on a European

    classification (CEMT)

    • Current CEMT classification is from 1992

    -> CEMT ’92 based on Pianc WG 9 report

    ‘Standardization of Inland Waterway’s Dimensions’ 

    -> CEMT ‘54 no provisions for push convoys 

  • 8/17/2019 Design Guidelines for Inland Ships

    22/142

    5/10/2015

    4

    5-10-2015 “SMART RIVERS 2013” 

    1992

    08-09-2015 “SMART RIVERS 2015” 

    Pianc WG 179: l’histoire serépe`te

    • CEMT ‘92 no provisions for larger

    motorvessels (e.g. 135 x 17 m) and

    coupled units

    • Misunderstandigs exist among the

    different countries• I wrote the ToR; Pianc WG 179 started in

    June 2015 and can still use participants!

    • WG 179 same approach as WG 9

  • 8/17/2019 Design Guidelines for Inland Ships

    23/142

    5/10/2015

    5

    08-09-2015 “SMART RIVERS 2015” 

    Reference vessel – starting

    point for design• Reference vessel: biggest vessel in a

    certain waterway class

    • If there are different ship types, a

    reference vessel should be determined for

    each category

    • In Europe, categories are motorvessels,

    pushed convoys and coupled units• Example of 1st category in next slide:

    08-09-2015 “SMART RIVERS 2015” 

    Characteristics of referencemotor cargo vessels

    • Source table below: Dutch Guidelines for Waterways 2011

  • 8/17/2019 Design Guidelines for Inland Ships

    24/142

    5/10/2015

    6

    08-09-2015 “SMART RIVERS 2015” 

    Lack of classification

    • If no classification is available, the

    region/country should construct one, e.g.

    by drawing a squatter diagram from the

    existing fleet and clustering it in logical

    classes.

    • This is what Rijkswaterstaat did in 2002

    and 2010 (see next slides).

    08-09-2015 “SMART RIVERS 2013” 

    FLEET OF MOTORVESSELS IN 2002, PLOTTED AFTER LENGTH (HORIZONTAL AXIS) AND

    BEAM (VERTICAL AXIS)

  • 8/17/2019 Design Guidelines for Inland Ships

    25/142

    5/10/2015

    7

    08-09-2015 “SMART RIVERS 2013” 

    RWS 2010

    Classification (left part)

    Source: Dutch

    Guidelines for

    Waterways 2011

    08-09-2015 “SMART RIVERS 2013” 

    RWS 2010 Classification(right part)

    Source: Dutch Guidelines

    for Waterways 2011

  • 8/17/2019 Design Guidelines for Inland Ships

    26/142

    5/10/2015

    8

    08-09-2015 “SMART RIVERS 2015” 

    Choice for reference vessel

    • primarily based on the horizontal

    dimensions, with the ships beam as most

    important factor

    • is to be made by the administrator of the

    fairway. He can choose for different

    dimensions than the class if thisrepresents the studied fairway better

    08-09-2015 “SMART RIVERS 2015” 

    Design of waterway

    • Having selected the proper reference

    vessel, the waterway can be designed by

    using guidelines (if available) and, in

    specific cases, ship handling simulators

    • This process is treated by others in this

    Workshop, given by WG 141

  • 8/17/2019 Design Guidelines for Inland Ships

    27/142

    5/10/2015

    9

    08-09-2015 “SMART RIVERS 2015” 

    Completion

    • References• 1. European Conference of Ministers of Transport CEMT/ECMT), Athens 11 – 12 June 1992,

    Resolution No. 92/2 on new classification of inland waterways (including reccomendations and

    notes for table). .

    • 2. Pianc Working Group no. 9, 1990, Standardization of Inland Waterway’s. 

    • 3. Brolsma, J.U. and K. Roelse 2011, Waterway Guidelines 2011 (meant for waterway

    design from a vessel traffic perspective), Rijkswaterstaat Dienst Verkeer en Scheepvaart.

    (http://www.rijkswaterstaat.nl/en/images/Waterway%20guidelines%202011_tcm224-320740.pdf)

    • Questions?

    • Thank you for your attention!

  • 8/17/2019 Design Guidelines for Inland Ships

    28/142

    5/10/2015

    1

    DEPLAIX J.-M.

    Member, Cooperation Commission (CoCom) of PIANC

    EXISTING WATERWAYS

    with special respect of CHINA, &

    EASE OF NAVIGATION

    Buenos Aires, Argentina, 7-11 September 2015

    “SMART RIVERS 2015” 

    10/5/2015“SMART RIVERS 2015” 

    Dutch waterways total 6 105 km,

    spread as follows as regards size

    Craft size ITF

    Class length (km) 

    of which

    leisure

    network 

    3 000 t andover  

    Vb andover  

    751 

    108 

    1 500-2 999 t 

    Va 

    1297 

    512 

    1 000-1 499 t  IV  741  324 

    650-999 t  III  259  165 

    400-649 t  II  1091  686 

    250-399 t  I  511  405 

    below 250 t  0  1455  1455 

    TOTAL  6105  3655 

  • 8/17/2019 Design Guidelines for Inland Ships

    29/142

    5/10/2015

    2

    10/5/2015

    The WAAL River is the largest arm of the Rhine inthe Netherlands; it flows for 87km towards Rotterdam

    “SMART RIVERS 2015” 

    Width is 150 m by 2.80 m (depth) below the water level of OLR

    (agreed lowest water level). Target minimal width is 170 m.

    The Waal is navigated by 116.000 commercial vesselsannually in 4-lane traffic. Reference vessel is a push convoy VIc

    (6 barges) with draught of 4.00 m.

    10/5/2015

     AMSTERDAM-RHINE CANAL

    “SMART RIVERS 2015” 

    This large canal aims at being the continuation of

    the Waal, and accepts the same 6 barges tows than

    the Waal and the Rhine in Germany. It has a traffic

    of 70.000 vessels/year  

  • 8/17/2019 Design Guidelines for Inland Ships

    30/142

    5/10/2015

    3

    10/5/2015

    JULIANA CANAL

    The Juliana Canal is being improved for longer craft,from Class Va/Via (135x14m) to Vb/Vib (185x14m),

    which also involves widening the canal, and lengthening

    the locks, both underway. Traffic is 22.000 vessels/year

    North-South Emden-Maastricht route is being improved

    to ITF Vb (185x11,40m)“SMART RIVERS 2015” 

    10/5/2015

    IJSSEL• The IJssel is a branch of the river Rhine and flows

    northerly from Arnhem over 120 km to the Iake

    IJsselmeer.

    The channel width in the IJssel varies from 40x2.5m

    (upper part) up to 60x2.8m (lower part), yet it is

    navigated by 36.000 commercial vessels/year

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    31/142

    5/10/2015

    4

    10/5/2015

    GERMANY

    “SMART RIVERS 2015” 

    Craft size  ITF Class length

    (km) 

    3 000 t and over   Vb and over   2993 

    1 500-2 999 t  Va  1002 

    1 000-1 499 t 

    IV 

    1781 

    650-999 t  III  233 

    400-649 t  II  252 

    250-399 t  I  404 

    below 250 t  0  1012 

    TOTAL  7675 

    Germany has the longest network in Western Europe

    The main waterway is the Rhine, which has large characteristics,

    except at some narrow stretches (Gebirge, Lorelei, etc.). Other

    rivers are the Main, the Mosel and the Neckar, in the Rhine basin,

    and the Elbe, closer to Berlin

    10/5/2015

    RHINEThe Rhine is navigated over 900km, out of which 740km in

    Germany. Traffic is 135.000 craft/year at the border.

    “SMART RIVERS 2015” 

    River

    Rhine drive

    Section km direction length (m) beam (m) depth width Radius width

    287-334 up&downstream 270/193 22,9 3,00

    334-344 up&downs tream 193 22,9 2,10

    344-359,8 up&downstream 193 22,9

    359,8-424 up&downstream   193/153b

    22,9/34,35b

    424-508 up&downstream   193/153b

    22,9/34,35b

    508-540,2 up&downstream   193/153b

    22,9/34,35b 1560 120

    540,2 - upstream   186,5/193c 22,9

    556 downstream   116,5/193c

    22,90/12,50c

    556 - upstream   186,5/193c 22,9

    564,3 downstream   116,5/193c

    22,90/12,50c

    564,3 upstream   269,50e

    22,9d,e

    763 downstream   193e

    34,35d,e

    763 upstream   269,50e

    22,9d,e

    863 downstream   193e

    34,35d,e

    Self-propelled vessels can be upto 135x22,80m everywhere on the Rhine, except

    during droughts or floods at the Lorelei (110m)

    670 92

    600

    (Lorelei)  120

    92

    120

    120

    120

    150

    150

    push tows

    guaranteed

    fairway (m)

    1,90

    2,10

    curvature of

    worst bend (m)

    1260 88

    2,10

    88

    2,80 1430 150

    2,50 670 150

    2,10

  • 8/17/2019 Design Guidelines for Inland Ships

    32/142

    5/10/2015

    5

    10/5/2015

    Mittellandkanal 

    This canal links the Ruhr region on the Rhine withBerlin.

    Since reunification it is being improved to its new

    characteristics, for design craft of

    185x11.5x2.80m. Its traffic is around 22Mt“SMART RIVERS 2015” 

    10/5/2015

    FRANCEWith more than 8 000 km, French network was

    the longest of Europe, but most of it is composed

    of small Freycinet canals (250t capacity) or

    unused.

    Many waterways are not used anymore for goods

    transportation and are not reported in recent statistics.

    “SMART RIVERS 2015” 

    Craft size  ITF Class  length (km) 

    3 000 t and over   Vb and over   1420 

    1 500-2 999 t 

    Va 

    343 

    1 000-1 499 t  IV  118 

    650-999 t  III  126 

    400-649 t  II  85 

    250-399 t  I  2742 

    below 250 t  0  162 

    TOTAL  4996 

  • 8/17/2019 Design Guidelines for Inland Ships

    33/142

    5/10/2015

    6

    10/5/2015

    The main waterway is the Seine River, passing through Paris. Its

    traffic is around 22 Mt.

    “SMART RIVERS 2015” 

    Since there are few shallow parts, the guaranteed depth is

    only 1.15 times the design draught. On most of the route,

    depth is over 5 m.

    The canalized Deule River is part of the Seine

    Scheldt project. It is located between Lille and the

    Belgium

    border.

    The design channel (navigation rectangle) is

    34x4m. for craft 185x11,45m, with 3 m draught.

    Its traffic is 5.2 Mt

    10/5/2015

    DEULE WATERWAY

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    34/142

    5/10/2015

    7

    10/5/2015

    BELGIUM

    “SMART RIVERS 2015” 

     Although its territory is small, Belgium has a relatively large network, and 60%

    of it belong to Class IV and beyond

    Craft size 

    ITF Class 

    length

    (km) 

    3 000 t and over  

    Vb and

    over   252 

    1 500-2 999 t  Va  248 

    1 000-1 499 t  IV  431 

    650-999 t  III  0 

    400-649 t  II  216 

    250-399 t 

    338 

    below 250 t  0  31 

    TOTAL 

    1516 

    The main inland waterway is the Albert Canal, linking Liège with the port of

     Antwerp. The main rivers are the Meuse, upstream from Liège, and the Scheldt,

    canalized upstream of Gent, and tidal between Gent and Antwerp.

    10/5/2015

     ALBERT CANAL

    It is being widened to the new cross section of

    102x72x5 m, with locks 24 m wide. Its traffic is in

    the range of 40 Mt.

    “SMART RIVERS 2015” 

    This 130 km canal is quite large, with locks 200x24 m,

    enabling pushed convoys 196x12,5x3,40 m to pass,

    except at some places. 

  • 8/17/2019 Design Guidelines for Inland Ships

    35/142

  • 8/17/2019 Design Guidelines for Inland Ships

    36/142

    5/10/2015

    9

    10/5/2015

    MISSISSIPPI RIVER

    Fairway dimensions seem restricted compared to Europe. But in

    fact the river is much larger, the Corps of Engineers is bound to

    maintain and dredge a channel, yet nature provides more.

    “SMART RIVERS 2015” 

    Mississippi River[m] 

    Shallow draught fleet used Guaranteed

    fairway 

    length  beam  draught  depth  width 

    Head of Passes, LA

    to New Orleans, LA 540

     

    86,0 

    13 

    13,7 

    228,6 

    New Orleans, LA to

    Baton Rouge, LA 

    480  86,0  13  13,7  152,4 

    Baton Rouge, LA

    to Cairo, IL 480  75,0  2,7+  3,65  91,5 

    Cairo, IL

    to St. Louis, MO 360  32,0  2,7  2,7  91,5 

    St. Louis, MO to

    Minneapolis, MN 

    180  32,0  2,7  2,7  91,5 

    10/5/2015 “SMART RIVERS 2015” 

    Baton Rouge, LA

    to Cairo, IL 480  75,0  2,7+  3,65  91,5 

  • 8/17/2019 Design Guidelines for Inland Ships

    37/142

    5/10/2015

    10

    10/5/2015

    476x64m and 355x85.3m in a 91m channel !“SMART RIVERS 2015” 

    Baton Rouge, LA

    to Cairo, IL 480  75,0  2,7+  3,65  91,5 

    10/5/2015

    TENNESSEE-TOMBIGBEE

    The Tenn-Tom waterway is a divide canal

    linking 2 basins

    The cut canal on the divide is 3,65 m deep

    and 85 m wide. Trafic is around 7Mt

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    38/142

  • 8/17/2019 Design Guidelines for Inland Ships

    39/142

    5/10/2015

    12

    10/5/2015

    CHINESE CLASSIFICATION

    “SMART RIVERS 2015” 

    10/5/2015

    CHINESE CLASSIFICATION

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    40/142

    5/10/2015

    13

    10/5/2015

    Why is it useful to have a

    detailed Classification ?• If you compare only the depth,

    • Both waterways are equal !

    “SMART RIVERS 2015” 

    10/5/2015

    38 barges counted for zero ?• If you insist on a guaranteed

    depth as sole criteria, this river,

    Orinoco, would rank very low,

    with less than 1.5m of

    guaranteed depth, but is nearly

    equal to Mississippi during thenavigation season

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    41/142

    5/10/2015

    14

    10/5/2015

    HUMAN FACTOR ALSO has to be taken into

    account. The chairman of our working group is

    using these results to prove the point:

    These graphs show

    the swept area width

    of a manually steered

    craft (top) and that

    made with autopilot

    (below)

    “SMART RIVERS 2015” 

    10/5/2015

     Another important factor is speed: in USA, they

    round the bends slowly, even « Heeling » to pass

    safely in a sandy river

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    42/142

    5/10/2015

    15

    10/5/2015

    SAFETY & EASE

    These are the various factors influencing waterway design

    “SMART RIVERS 2015” 

    10/5/2015

    (Waterway related criteria)

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    43/142

    5/10/2015

    16

    10/5/2015

    There are two different ways to

    use the left table: If you look at

    an existing waterway, a smallfairway width describes a poor

    waterway, while for design a

    narrow fairway requires a

    better design on all other

    counts, a better ease.

    “SMART RIVERS 2015” 

    10/5/2015

    • In thinking of a new design (Design case), a high quality waterway (A) will be

    indicated when most criteria are in the red column, with few green, to prepare

    for possible dangers. Accordingly, lower standards B and C may be

    accepted, when more green show in the analysis, with more safety ensured.

    • However, if observing an existing waterway (Analysis case), things are

    reverse, and green arguments denote a good waterway, while red arguments

    denote dangerous parts of the network. Here are some examples:

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    44/142

    5/10/2015

    17

    10/5/2015 “SMART RIVERS 2015” 

    10/5/2015 “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    45/142

    5/10/2015

    18

    10/5/2015

    These figures of traffic are the same as in the Dutch

    Guidelines and may have to be adjusted in other countriesThey sum traffic in both driving directions. 

    Leasure traffic is also to be accounted for, as it dramatically

    impacts the ease of navigation for commercial vessels

    “SMART RIVERS 2015” 

    10/5/2015 “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    46/142

    5/10/2015

    19

    10/5/2015 “SMART RIVERS 2015” 

    10/5/2015 “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    47/142

    5/10/2015

    20

    10/5/2015

    OTHER FACTORS TO BE TAKEN INTO CONSIDERATION FOR

    GUIDELINES OR CLASSIFICATION 

    •  All this attention to “Ease related to Safety” is mostly an attention to actual

    circumstances. Like any complex structure, Guidelines are the result of conflictingconstraints, criteria and elements. Here are some other factors to which attention

    should be paid.

    • INTERNAL CONSTRAINTS: TYPE 0F WATERWAY AND LEVEL

    0F TRAFFIC

    • Type of Waterways: we shall see in detail.

    • Degrees of roughness of the water bodies (canals, rivers, lakes, estuaries, open sea);

    • Level of traffic expected. less stringent criteria on a waterway with little traffic; better

    profitability in the economic calculations; such an approach was approved by PIANC

    at its Centenary congress in 1985, at the request of the UNESCAP secretariat, then

    represented by the author.

    • Existing waterways used by craft larger than classification would point to. Thus three

    levels of design appear appropriate: one for existing infrastructure, one for future

    waterways of low traffic and one for future waterways of high traffic. This is link

    between craft and waterway characteristics.

    “SMART RIVERS 2015” 

    10/5/2015

    OTHER FACTORS TO BE TAKEN INTO CONSIDERATION FOR

    GUIDELINES OR CLASSIFICATION 

    • AN EXTERNAL CONSTRAINT: AVERAGE SHIPMENT SIZE

    • Each flow of traffic, each commodity has its requisites. Each customer likes to have

    his deliveries tailored to his needs, while each fleet operator wants to have the largest

    unit shipment size; however one cannot force upon a customer 5,000 tonnes of

    goods at one time if he has no storage space, if the commodity does not permit long

    storage or if it has a relatively high value. The cost of prolonged storage often

    outweighs the savings offered by large shipments.

    • So the service must be frequent enough to suit the customer, and shipment size is

    the result of a trade-off between the financial costs and the transport cost; IWT ischeaper if it involves for instance ten trips of 1,000 tonnes rather than 100 trips of 100

    tonnes, but in a global, logistics perspective this may not be so for the customer.

    • This over —riding consideration obliged to have craft of varied dimensions, barred

    networks to be completely uniform, and led to a graded classification to encompass

    all cases.

    • TECHNICAL RESPONSE : FR0M CUSTOM BUILT CRAFT TO MULTI-MODAL

    INTEGRATION

    • Thus the average shipment size is a variable external to the technical design of a

    waterway. To solve this difficulty, craft were traditionally designed to match this

    average capacity; or they would also have sub-divisions, either holds or hatches,

    which could be isolated and devoted to one commodity or one customer

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    48/142

    5/10/2015

    21

    10/5/2015

    OTHER FACTORS TO BE TAKEN INTO CONSIDERATION FOR

    GUIDELINES OR CLASSIFICATION 

    • The recent tendency to multimodal integration led to introducing handling units of the

    appropriate size, be it internal containers (5 tonnes), ISO container (20 to 30 tonnes),LASH barges (350 tonnes), or even Danube-Seabee barges (800—1000 tonnes).

    • IWT can accept a spectrum of shipment sizes, from 5 tonnes up to 80,000 tonnes in

    the United States, and 32,000 tonnes in China, Brasil or Argentina, but at the same

    time the craft sizes show less dispersion: containers are consolidated in one barge,

    while the above large shipment in America is made up of 60 x 1250 tonnes barges in

    a convoy.

    • Thus integration, through the pushing technique, offer another alternative, by

    combining small unit craft and a much bigger global convoy capacity. It retains the

    economy of scale of a large power plant while barges are of adapted, smaller size.

    • So the criteria of the number of craft in the moving unit, and of the modularity of the

    respective craft have been incorporated in the ITF classification (former CEMT

    classification).

    “SMART RIVERS 2015” 

    10/5/2015

    OTHER FACTORS TO BE TAKEN INTO CONSIDERATION FOR

    GUIDELINES OR CLASSIFICATION 

    • DETERMINATION OF CLASSES: DEADWEIGHT OR CRAFT DIMENSION?

    •  Actually these two approaches complement each other. Reference to deadweight is

    more adapted to describing an existing, diverse network, while reference to the craft

    dimensions is most useful in the planning of networks.

    • One could say that classification using craft dimensions as a base are adapted to the

    national planning of waterways, while reference to deadweight intervals is more

    suited for an international classification aiming at describing networks in more than

    one country.

    • Countries like Russia and China, enjoying the first and second longest waterwaynetworks in the world, have developed complex classifications which incorporate both

    approaches, because they must at the same time describe their very diverse

    networks, and plan the upgrading or construction of new waterways and fleet. As can

    be seen in Annex, the ITF classification, although less precise, has evolved and has a

    structure similar to that of Russia or China.

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    49/142

    5/10/2015

    22

    10/5/2015

    That is why a long analysis is needed to

    deal with any waterway“SMART RIVERS 2015” 

    10/5/2015

    Thanks for your attention

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    50/142

    www.bmvi.de

    Workshop “Design Guidelines for Inland Waterways” Paper 101 - ApplyingConcept Design Method – Practice Approach – Case by Case Design

    PIANC – INCOM WG 141

    Katja Rettemeier & Bernhard Söhngen

    “SMART RIVERS 2015” 

    Buenos Aires, 18-09-2015

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Wide variety of boundary conditions

    determining the design

    Variety in bathymetric and flow conditions

    Variety in traffic density, vessel types

    Variety in tradition of shipping

    Variety in safety and ease demands … 

    Limited information available

    Rivers (in general) and high flow velocities

    Special dimensions as harbor intakes

    http://en.wikipedia.org/wiki/File:Yangtze-Ships.JPG

    Yangtze, China

    General Approach in Inland Waterway Design

    It is not appropriate to give one specific number for

    designing a waterway dimension. WG 141 provides

    process recommendations instead (3 step approach)! 

    „Binnenschiffahrt in Köln“ von Rolf Heinrich, Köln. Lizenziert unter CC BY 3.0 über

    Wikimedia Commons -https://commons.wikimedia.org/wiki/File:Binnenschiffahrt_in_K%C3%B6ln.jpg#/media/File:

    Binnenschiffahrt_in_K%C3%B6ln.jpg

  • 8/17/2019 Design Guidelines for Inland Ships

    51/142

  • 8/17/2019 Design Guidelines for Inland Ships

    52/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Classification reflects each country‘s fleet 

    Class DWT (t) Design vessel [m]length beam draught

    I 250-400 38,5 5.05 2.5

    II 400-650 50-55 6.6 2.6

    III 650-1000 67-85 8.2 2.7

    IVa 1000-1500 80-105 9.5 3.0

    IVb 1250-1450 170-185 9.5 3.0

    Va 1500-3000 110-135 11.4 3.5

    Vb 3200-6000 170-190 11.4 3.5-4.0

    European CEMT

    Class Va Vessel

    Class IV Convoy

    „Freudenberg Main“ von Presse03 - Eigenes Werk. Lizenziert unter CC BY-SA 3.0 über

    Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Freudenberg_Main.jpg#/media/File:Freudenberg_Main.jpg

    Main, Freudenberg, D

    „Main Stadtprozelten“ von Presse03 - Eigenes Werk. Lizenziert unter CC BY-SA 3.0 über W ikimedia Commons -https://commons.wikimedia.org/wiki/File:Main_Stadtprozelten.JPG#/media/File:Main_Stadtprozelten.JPG

    Main, Stadtprozelten, D

    Category of Driving(assumption)

    actual case: Cat. B

    Moderate to strongly restricted drive

    design case: Cat. C

    Strongly restricted drive (short distance)

    165 x 9,6 x 2,5

    110 x 11,45 x 2,8

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    E.g. China‘s approach for rivers is based on

    specific relations for:

    • Swept area width• Bank Clearance

    • Passing Distance

    • But for restricted curvature radii only

    US and German Guidelines take constant (from

    vessel type independent) increments for:

    • Bank Clearance

    • Passing Distance

    Dutch Guidelines:

    • Distinguish normal & narrow profile

    • Take wind increment into account

    •  Account for high traffic density

    http://www.wsa-braunschweig.wsv.de/wasserstrassen/MLK/

    „Chinesisches contbinnenschiff“ von Henryvb in der Wikipedia auf Deutsch. Lizenziertunter CC BY-SA 3.0 über Wikimedia Commons -

    https://commons.wikimedia.org/wiki/File:Chinesisches_contbinnenschiff.JPG#/media/File:Chinesisches_contbinnenschiff.JPG

    Existing guidelines use partly very different approaches

  • 8/17/2019 Design Guidelines for Inland Ships

    53/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Existing guidelines use partly very different approaches

    E.g. China‘s approach for rivers is based on

    specific relations for:

    • Swept area width

    • Bank Clearance

    • Passing Distance

    • But for restricted curvature radii only

    US and German Guidelines take constant (from

    vessel type independent) increments for:

    • Bank Clearance

    • Passing Distance

    Dutch Guidelines:

    • Distinguish normal & narrow profile

    • Take wind increment into account

    •  Account for high traffic density

    http://www.wsa-braunschweig.wsv.de/wasserstrassen/MLK/

    „Chinesisches contbinnenschiff“ von Henryvb in der Wikipedia auf Deutsch. Lizenziert

    unter CC BY-SA 3.0 über Wikimedia Commons -https://commons.wikimedia.org/wiki/File:Chinesisches_contbinnenschiff.JPG#/media/File:

    Chinesisches_contbinnenschiff.JPG

    i

    en b in der Wikipedia auf Deutsch. Lizenziert

    e r 

    n Guideline

      ype independent)

    • an earance

    • ass ng stance

    . .

    specific rel

    ass r s

     

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Fairway design in Canals:

    Concept Design Method

    Ship (BxLxD) two-lane one-laneDrivingquality

    F/B D/d n F/B D/d category

    China

    Canal

     Average(Class III  – VII)

    4,4 1,3 7 - - A-B

    ChinaChannel

     Average(Class II  – VII)

    4,4 1,4 6-7 - - A-B

    ChinaRiver

     Average(Class I  – VII)

    4,4 1,2 - 2,3 1,2 A-B

    Dutchnormal

    11.45x185x3.5 4.0 1.4 8.7 2 1.3 A-B

    Dutchnarrow

    11.45x185x2.8 3.0 1.3 6.7 - - B-C

    France 11.45x185x2.5 3.1 1.4 5.8 - - B-C

    Germany 11.45x185x2.8 3.3 1.4 5.6 1.8 1.4 B-C

    Russia 16.5x135x3.5 2.6 1.3 - 1.5 1.3 C

    US River 10.7x59.5x2.7 ~3.3 ~1.3 ~4.9 ~2.2 1.3 B-C

    Relative waterway dimensions from guidelines

    http://www.wna-helmstedt.wsv.de/projekte/mittellandkanal/allgemeines/index.html

    http://en.wikipedia.org/wiki/Grand_Canal_%28China%29

    Mittellandkanal, Wolfsburg, D

    Jiangnan Canal, Yangtze, CH

  • 8/17/2019 Design Guidelines for Inland Ships

    54/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Outline of the Design Case: Side Canal

    [m] 

    actual

    situation  design case

     

    canal profile  vertical and sloped 1:3 

    driving  one lane  one lane 

    wind condition 

    3-4 Bf  

    flow velocity [m/s] 

    0.5 

    design vessel  

    CEMT Class  Va Vb (length-extended Va)

     

    traffic density [vessel/a] 

    11000 

    11000 

    quality of navigation  B  C 

    length  105  135 beam  11.45  11.45 

    draught 

    2.70 

    2.70 

    squat 

    0.30 

    0.30 

    Cf (turning point) loaded(bow thruster) - empty

     

    0.8 - 1.0  0.8 – 1.0 

    fairway dimension 

    net width in 3 m depth  28.0  28.0 depth/draught

     

    1.3 

    1.3 

    water depth 

    3.5 

    3.5 

    radius  685  685 

    extra width in curves

    loaded / empty 5.1 / 7.9

     

    8.3 / 13.0 

    Neckar, Pleidelsheim Canal

    28 m

    Locks shall be

    extended.

    But what is in the

    reaches between?

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    1. Step: Look at national Guidelines

    Check of applicability

    Fairway design in Canals: Concept Design Method

    0.5 m/s

    [m] 

    actualsituation

     

    designcase

     

    canal profile 

    vertical and sloped 1:3 

    driving  one lane  one lane 

    wind condition 

    3-4 Bf  

    flow velocity [m/s]  0.5 

    design vessel 

    CEMT Class 

    Va 

    Vb 

    traffic density [vessel/a]  11000  11000 

    quality of navigation 

    length 

    105 

    135 

    beam  11.45  11.45 

    draught  2.70  2.70 

    squat 

    0.30 

    0.30 

    Cf (turning point) loaded

    (bow thruster) - empty 0.8 - 1.0

     

    0.8 – 1.0 

    fairway dimension 

    net width in 3 m depth  28.0  28.0 

    depth/draught 

    1.3 

    1.3 

    water depth 

    3.5 

    3.5 

    radius  685  685 

    extra width in curves

    loaded / empty 5.1 / 7.9

     

    8.3 / 13.0 

    > 500 m< 1.4 (not applicable, but not far from threshold)

  • 8/17/2019 Design Guidelines for Inland Ships

    55/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    1. Step: Look at national Guidelines

    Check of applicability

    Fairway in straight section (RT-profile, Germany)

    Fairway design in Canals: Concept Design Method

    [m] 

    actual

    situation 

    design

    case 

    canal profile 

    vertical and sloped 1:3 

    driving  one lane  one lane 

    wind condition 

    3-4 Bf  

    flow velocity [m/s]  0.5 

    design vessel 

    CEMT Class 

    Va 

    Vb 

    traffic density [vessel/a]  11000  11000 

    quality of navigation 

    length 

    105 

    135 

    beam  11.45  11.45 

    draught  2.70  2.70 

    squat 

    0.30 

    0.30 

    Cf (turning point) loaded

    (bow thruster) - empty 0.8 - 1.0

     

    0.8 – 1.0 

    fairway dimension 

    net width in 3 m depth  28.0  28.0 

    depth/draught 

    1.3 

    1.3 

    water depth 

    3.5 

    3.5 

    radius  685  685 

    extra width in curves

    loaded / empty 5.1 / 7.9

     

    8.3 / 13.0 

    [m]  canal water table width 

    fairway width indynamic draught

    including safety distancesand instabilities

    depth  two-lane  one-lane  two-lane  one-lane 

    rectangular-trapezoidal-section (1:3) 

    48.5 

    33.2 

    39.0 

    23.9 

    < 28 m

    dynamic draught,

    loaded (3 m here)

    actual: 28 m 

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    1. Step: Look at national Guidelines

    Check of applicability

    Fairway in straight section (RT-profile, Germany)

    Fairway design in Canals: Concept Design Method

    [m] 

    actualsituation

     

    designcase

     

    canal profile 

    vertical and sloped 1:3 

    driving  one lane  one lane 

    wind condition 

    3-4 Bf  

    flow velocity [m/s]  0.5 

    design vessel 

    CEMT Class 

    Va 

    Vb 

    traffic density [vessel/a]  11000  11000 

    quality of navigation 

    length 

    105 

    135 

    beam  11.45  11.45 

    draught  2.70  2.70 

    squat 

    0.30 

    0.30 

    Cf (turning point) loaded

    (bow thruster) - empty 0.8 - 1.0

     

    0.8 - 1.0 

    fairway dimension 

    net width in 3 m depth  28.0  28.0 

    depth/draught 

    1.3 

    1.3 

    water depth 

    3.5 

    3.5 

    radius  685  685 

    extra width in curves

    loaded / empty 5.1 / 7.9

     

    8.3 / 13.0 

    [m]  canal water table width 

    fairway width indynamic draught

    including safety distancesand instabilities

    depth  two-lane  one-lane  two-lane  one-lane 

    rectangular-trapezoidal-section (1:3) 

    4  48.5  33.2  39.0  23.9 

    dynamic draught,

    loaded (3 m here)

     Increments in curves (Germany) 

          22

    actual: 23.9 + 5.1 = 29 m  28 m (threshold)

    design: 23.9 + 8.3 = 32.2 m (too small)

    actual: 28 m 

  • 8/17/2019 Design Guidelines for Inland Ships

    56/142

  • 8/17/2019 Design Guidelines for Inland Ships

    57/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Fairway design in Canals: Concept Design Method

    3. Step: Increments

    No indication for any other increments

    4. Step: Verify Design Case

    Field data under good environment

    conditions show that the available

    space maybe just enough.

    But one “has to pay it” by very slow

    vessel speeds severe bank and bed

    impact from thrusters!

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    „Mosel Schubverband“ von Schreibkraft - Eigene Aufnahme. Lizenziert unter CC-by-sa

    3.0/de über Wikipedia -https://de.wikipedia.org/wiki/Datei:Mosel_Schubverband.jpg#/media/File:Mosel_Schubver 

    band.jpg

    Mosel, D

    "Loreley von Spitznack". Licensed under CC BY-SA 3.0 via Wikimedia Commons -

    https://commons.wikimedia.org/wiki/File:Loreley_von_Spitznack.jpg#/media/File:Loreley_von_Spitznack.jpg

    Rhine, Lorelei, D

    Fairway Design – Free Flowing River: Practice Approach

    Procedure

    Little information available in national guidelines

    Compare practice examples with care:

     A river is a very complex system

    Safe Navigation

    Seems possible even in case of narrow conditions

    Restrictive licensing and efficient techniques

    Difference to Canals

    F/B larger account for cross flow, turbulence Canals include safety distance to banks – 

    river data don’t 

  • 8/17/2019 Design Guidelines for Inland Ships

    58/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Outline of the Design Case: Free Flowing River

    Rhine River at Speyer

    Push to units:185 x 22.8 m

    sailing

    upstream

    (R = 800 m)

    sailing

    downstream(R = 900 m)

    Class Vb vessel (length-

    extended GMS) sailing

    ups tream (R = 600 m) - data

    from Class Va

    Class Vb unit

    sailing

    downstream (R =

    1000 m)

    [m] actualsituation

     

    design case 

    water body  free flowing river  

    flow velocity [m/s]   1.7    1.7

    river bottom 

    gravel 

    design vessel 

    CEMT Class 

    VIb 

    Vb 

    traffic density [vessel/a] 

    30.000 

    30.000 

    quality of navigation 

     A 

    max. length  195  135/185 

    max. beam  22.8  11.45 

    draught  (1.6) 1.8 – 3.5  (1.6) 1.8 – 3.5 

    squat 

    0.30 

    0.30 

    existing fairway dimensions 

    width 

    92 

    92 

    depth/draught 

    1.4 – 4.7 

    1.4 – 4.7 

    depth (GlW-HSW)  2.5 – 7.5  2.5 – 7.5 

    radius  825 (average) 825 (average)

    width/beam 

    4.0 

    8.0 

    length2/(radius*beam)  2.0 1.9 – 3.6,average 2.8

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Fairway Design – Free Flowing River: Practice Approach

    Fairway Width

    Permission: Up to 195 m long and 22.8 m wide

    push tow units in all possible traffic situations!

    Meetings / overtaking of two of those vessels will be

    avoided in practice – only one-lane traffic realistic

    Design question: Which frequent traffic situation is

     just acceptable, assuming ease quality A

    Design case considered: Class Vb (135 m long

    GMS) meets Class Vb push tow unit (185x11.45)

    [m] actualsituation

     

    design case 

    water body  free flowing river  

    flow velocity [m/s] 

     1.7   

    1.7river bottom

     

    gravel 

    design vessel 

    CEMT Class 

    VIb 

    Vb 

    traffic density [vessel/a] 

    30.000 

    30.000 

    quality of navigation 

     A 

    max. length  195  135/185 

    max. beam  22.8  11.45 

    draught  (1.6) 1.8 – 3.5  (1.6) 1.8 – 3.5 

    squat 

    0.30 

    0.30 

    existing fairway dimensions 

    width  92  92 

    depth/draught  1.4 – 4.7  1.4 – 4.7 

    depth (GlW-HSW)  2.5 – 7.5  2.5 – 7.5 

    radius  825 (average) 825 (average)

    width/beam 

    4.0 

    8.0 

    length2/(radius*beam) 

    2.0 

    1.9 – 3.6,average 2.8

    Discrepancy between permission and practice!

  • 8/17/2019 Design Guidelines for Inland Ships

    59/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Fairway Design – Free Flowing River: Practice Approach

    Fairway Width (meetings)[m] 

    actualsituation

     

    design case 

    water body  free flowing river  

    flow velocity [m/s]   1.7   1.7

    river bottom 

    gravel 

    design vessel 

    CEMT Class 

    VIb 

    Vb 

    traffic density [vessel/a] 

    30.000 

    30.000 

    quality of navigation 

    at least C 

     A 

    max. length  195  135/185 

    max. beam  22.8  11.45 

    draught  (1.6) 1.8 – 3.5  (1.6) 1.8 – 3.5 

    squat 

    0.30 

    0.30 

    existing fairway dimensions 

    width  92  92 

    depth/draught  1.4 – 4.7  1.4 – 4.7 

    depth (GlW-HSW) 

    2.5 – 7.5 

    2.5 – 7.5 

    radius  825 (average) 825 (average)

    width/beam 

    4.0 

    8.0 

    length2/(radius*beam)  2.0 1.9 – 3.6,average 2.8

     Actual: The ease quality of the permitted situation is not acceptable  avoided in practice

    Design: Ease quality will be A as specified!

    4.0

    2.0

    8.0

    2.8

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Fairway Design – Free Flowing River: Practice Approach

    Under Keel Clearance

    d/D = 1.3 good quality of driving

    Min. dynamic underkeel clearance  2.5 m

    (depth at GlW ) – 1.8 m (usual draught at GlW)

     – 0.3 m (squat)  0.4 m

    Safe navigation demands 0.5 m clearance for

    effective bow thrusters usage  0.4 m

     A safe navigation (bow thruster usage possible in case

    of tricky situations) seems to be possible even if largedraughts will be chosen

    [m] actualsituation

     

    design case 

    water body  free flowing river  

    flow velocity [m/s] 

     1.7   

    1.7river bottom

     

    gravel 

    design vessel 

    CEMT Class 

    VIb 

    Vb 

    traffic density [vessel/a] 

    30.000 

    30.000 

    quality of navigation 

    at least C 

     A 

    max. length  195  135/185 

    max. beam  22.8  11.45 

    draught  (1.6) 1.8 – 3.5  (1.6) 1.8 – 3.5 

    squat 

    0.30 

    0.30 

    existing fairway dimensions 

    width  92  92 

    depth/draught  1.4 – 4.7  1.4 – 4.7 

    depth (GlW-HSW)  2.5 – 7.5  2.5 – 7.5 

    radius  825 (average) 825 (average)

    width/beam 

    4.0 

    8.0 

    length2/(radius*beam) 

    2.0 

    1.9 – 3.6,average 2.8

  • 8/17/2019 Design Guidelines for Inland Ships

    60/142

  • 8/17/2019 Design Guidelines for Inland Ships

    61/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Fairway Design - Lock Approach: 3-Step Design Method

    Concept Design Method

    1. German Guidelines

    [m] 

    actual

    situation  

    design

    case 

    Lock double lock 

    wind condition  3-4 Bf  

    Cross flow [m/s]  < 0.3 m/s 

    design vessel 

    CEMT Class 

    Va 

    Vb

    (extended Va) 

    traffic density[vessel/a]

     

    5.000  5.000 

    quality of navigation 

    length 

    105 

    135 

    beam 

    11.45 

    11.45 

    draught  2.70  2.70 

    Lock approach 

    width relation B/b  4.4  4.4 

    harbour width  50  50total length relation 1.3

     

    1.2 

    total length 

    130 

    160 by design 

    straight section L/l 

    1.0 

    1.0 by design 

    straight Section 

    100 

    130 by design 

    entrance funnel L/l  0.3  0.2 

    entrance funnel  30  30 

    min depth  3.5  3.5 

    safety margin 5.0 

    4.0 

    German Guidelines cannot be met in our example!

    s = 5.0 m safety distance between lanes

    straight section > 1.5 LVessel (1.0 LConvoy)

    Inlet > 110 (80)

    Bw = 12.0 m width

    of waiting area

     Approach Channel > 2.8 L

    mooring area > 2.0 L

    c > 5.0 m mole width

    s = 5.0 m safety lane

    Bl  – width of lock =12.5 m

    > 64 m

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    [m] 

    actual

    situation  

    design

    case 

    Lock double lock 

    wind condition  3-4 Bf  

    Cross flow [m/s]  < 0.3 m/s 

    design vessel 

    CEMT Class 

    Va 

    Vb

    (extended Va) 

    traffic density[vessel/a]

     

    5.000  5.000 

    quality of navigation 

    length 

    105 

    135 

    beam 

    11.45 

    11.45 

    draught  2.70  2.70 

    Lock approach 

    width relation B/b  4.4  4.4 

    harbour width  50  50 

    total length relation  1.3 

     1.2 

    total length 

    130 

    160 by design 

    straight section L/l 

    1.0 

    1.0 by design 

    straight Section  100  130 by design 

    entrance funnel L/l  0.3  0.2 

    entrance funnel 

    30 

    30 

    min depth  3.5  3.5 

    safety margin 5.0 

    4.0 

    Lock Approach BLA/b LLA/l

    China3.5 - 4.5 (s) 3.5 - 4.0

    7.0 (d) 3.0 - 3.5*

    Dutch 2.2 (s) 1.0 - 1.2

    French 2.9 (s) 0.5*

    Germany3.0 - 4.0 (s)

    2.84.5 - 6.0 (d)

    Fairway Design - Lock Approach: 3-Step Design Method

    Concept Design Method

    2. Compare different guidelines

    German Guidelines reflect driving category A.

    Practice Examples show driving category down to C.

    Data from

    different

    guidelines and

    practice cover

    existing widths

    and lengths! River B/b (u) B/b (l) L/l (u) L/l (l)

    Main 2.8 (d)1.8 (s)

    2.8 (d)2.4 (s)

    ~ 2.5

    Neckar 8.3 (t)2.6 (d)2.3 (s)

    4.2 (t)2.5 (d)2.0 (s)

    0.7 –

     1.4

    1.0 –

     2.1

    Practice Approach

  • 8/17/2019 Design Guidelines for Inland Ships

    62/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Fairway Design - Lock Approach: 3-Step Design Method

    Detailed Design (approach channel)

     Application routing

    method with cF 

    from numerous filed

    data

    Placing vessel symbols

    tangential at turning point

    along the route

    The 135 m long Class Vb vessel

    stays inside existing fairway.

    Only a little widening justupstream of the lock approach

    seems to be necessary.

    No further investigations needed

    concerning upper harbor!

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Conclusion

     All three design cases considered

    show the general applicability of theproposed design method:

    Concept Design Method should be the first step

    and the best choice in case if applicable

    guidelines are available

    Practice Approach especially helps to get better

    understanding and for comparing results

    Detailed Design uses Practice Approach as a

    starting point

    https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/20040711181710_Mississippi_Memphis_Ausschnitt.jpg/1200px-

    20040711181710_Mississippi_Memphis_Ausschnitt.jpg

    https://upload.wikimedia.org/wikipedia/commons/5/55/2011_03_11_Elbe_Schubverband _DSCI0197_k.JPG

  • 8/17/2019 Design Guidelines for Inland Ships

    63/142

    Smart Rivers 2015 – Applying 3 –Step Design Method (PIANC-INCOM WG 141) Dr. Katja Rettemeier, BMVI

    Recommandation

    Look at the approach with great careand experience:

    Quality of driving and aspects of traffic are

    important

    Qualification of Designer:

    Good understanding of nautical aspects

    Experience in water engineering to select

    correct boundary conditions … 

    https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/20040711181710_Mississippi_Memphis_Ausschnitt.jpg/1200px-

    20040711181710_Mississippi_Memphis_Ausschnitt.jpg

    https://upload.wikimedia.org/wikipedia/commons/5/55/2011_03_11_Elbe_Schubverband _DSCI0197_k.JPG

    www.bmvi.de

    Workshop “Design Guidelines for Inland Waterways” 

    Paper 101 - ApplyingConcept Design Method – Practice Approach – Case by Case Design

    Thank you for your attention

    For further questions do not hesitate to contact:Dr.-Ing. Katja Rettemeier

    Bundesministerium für Verkehr

    und digitale Infrastruktur (BMVI)

    Invalidenstraße 44

    D-10115 Berlin

    [email protected]

    “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    64/142

    5/10/2015

    Comparative variant analysis in using ship

    handling simulators with special respectto assess ease quality and human factorIribarren, Jose R.

    Cal, Carlos Atienza, Raul Verdugo, Ismael

    SMART RIVERS 2015 - Buenos Aires, Argentina, 7-11 September 2015

    “SMART RIVERS 2015” 

    Introduction

    Speaker: Jose R. Iribarren

    Naval Architect (Politechnic University Madrid, Spain) Director General Siport21, Port and Navigation Consultants 1999

    Real-Time Simulation Center

    Design and Operation of Ports and Fairways

    33 countries (Latam, Europe, Africa, Asia)

    Previous: Ministry of Public Works, Port and Coastal Research CenterCEDEX

    PIANC member. Several WG (20, 24, 27, 49, 141, 171)

    Spain: no inland navigation. Experience other countries

    Need to learn. Transfer and adapt criteria

    5-10-2015 “SMART RIVERS 2015” 

  • 8/17/2019 Design Guidelines for Inland Ships

    65/142

    5/10/2015

    Introduction

    Incom WG141 “Design Guidelines for Inland Waterways” 

    Review of existing guidelines

    Conceptual Design - supported by general guidelines and empirical data

    Detailed Design - using more precise formulae or simulation models

    Resulting dimensions linked to operation conditions (water level,current fields, wind conditions, …) and type of vessels (dimensions,propulsion and steering)

    Characterize “safety and ease” levels of the fairway, both for presentand future operation conditions

    Simulation: useful tool to analyze and establish this equilibrium

    Evaluation method for simulation runs

    Case studies:

    approach to lock-gates

    effect of cross currents

    “SMART RIVERS 2015” 5-10-2015

    Safety and Ease Approach

    Reasons to categorize ease quality

    Differences in existing and recommended waterway dimensions in nationalguidelines

    Each waterway system has specific features > accepted minimumdimensions of waterway infrastructure are derived

    Safety and Ease of navigation conditions: different from country to countryor from waterway to waterway

    Safety of navigation should be always ensured

    WG 141 decided to distinguish differ