126
University of Massachusetts Amherst University of Massachusetts Amherst ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses April 2018 Design for Sustainability through a Life Cycle Assessment Design for Sustainability through a Life Cycle Assessment Conceptual Framework Integrated within Product Lifecycle Conceptual Framework Integrated within Product Lifecycle Management Management Renpeng Zou University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Mechanical Engineering Commons Recommended Citation Recommended Citation Zou, Renpeng, "Design for Sustainability through a Life Cycle Assessment Conceptual Framework Integrated within Product Lifecycle Management" (2018). Masters Theses. 623. https://doi.org/10.7275/11177891 https://scholarworks.umass.edu/masters_theses_2/623 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected].

Design for Sustainability through a Life Cycle Assessment

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Design for Sustainability through a Life Cycle Assessment

University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

April 2018

Design for Sustainability through a Life Cycle Assessment Design for Sustainability through a Life Cycle Assessment

Conceptual Framework Integrated within Product Lifecycle Conceptual Framework Integrated within Product Lifecycle

Management Management

Renpeng Zou University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation Zou, Renpeng, "Design for Sustainability through a Life Cycle Assessment Conceptual Framework Integrated within Product Lifecycle Management" (2018). Masters Theses. 623. https://doi.org/10.7275/11177891 https://scholarworks.umass.edu/masters_theses_2/623

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected].

Page 2: Design for Sustainability through a Life Cycle Assessment

DesignforSustainabilitythroughaLifeCycleAssessmentConceptualFrameworkIntegratedwithinProductLifecycleManagement

AThesisPresentedby

RenpengZou

SubmittedtotheGraduateSchooloftheUniversityofMassachusettsAmherstinpartialfulfillment

oftherequirementsforthedegreeof

MASTEROFSCIENCEINMECHANICALENGINEERING

FEBRUARY2018

MECHANICALANDINDUSTRIALENGINEERING

Page 3: Design for Sustainability through a Life Cycle Assessment

©CopyrightbyRenepngZou2018

AllRightsReserved

Page 4: Design for Sustainability through a Life Cycle Assessment

DesignforSustainabilitythroughaLifeCycleAssessmentConceptualFrameworkIntegratedwithinProductLifecycleManagement

AThesisPresentedby

RenpengZou

Approvedastostyleandcontentby:____________________________________________________SundarKrishnamurty,Chair____________________________________________________IanR.Grosse,Member____________________________________________________DouglasC.Eddy,Member

_______________________________________________SundarKrishnamurty,DepartmentHeadofMechanicalandIndustrialEngineering

Page 5: Design for Sustainability through a Life Cycle Assessment

DEDICATION

Iwouldliketodedicatethisthesistomyparents,WeikangZouandXiaoqing

Wang.Asaninternationalstudent,studyingabroadislargeexpensetomyfamily.

Buttheyhaveconstantlysupportedmethroughoutthepastthreeyears.Without

theirencouragement,Iwouldnothavebeenabletofinishthiswork.Iwouldalso

dedicatethistomyfriendsthathavehelpedme.

Page 6: Design for Sustainability through a Life Cycle Assessment

v

ACKNOWLEDGMENTS

Firstly,Iwouldliketothankmyprimaryadvisor,ProfessorSundar

Krishnamurty,forhisguidance,encouragementandsupportinthepasttwoyears.I

amdeeplythankfulfortheopportunitytoworkinthee-Designresearchgroupand

assistantshipinmyhardesttime.Duringthelasttwoyears,heconstantlymotivated

mefromanormalgraduatestudentintoanindependentresearcher.Hetaughtme

theattitudesandhowtobehaveasaresearchersupposedtobe.

IwouldalsoliketoexpressmygratitudetoDr.DouglasEddy.Hehas

providedmewithknowledgeandideasonthisresearchandwasalwayswillingto

helpme.Hispatientcommentsandsuggestionsonthisworkgreatlymotivatedme.

Underhishelp,Ihavebecomeacapableresearchwhogetsmoreinterestedin

sustainabledesign.

Finally,IwouldliketothankmycommitteememberProfessorIanR.Grosse.

Healsoadvisedmethroughtheweeklygroupmeetingfromthestartofthisthesis.

Hisinvaluableguidanceandinsightonthisresearchenlightenedmethroughthe

hardinitialstage.Healsohelpedincreasemypresentingskills,whichissoprecious

fortherestofmylife.

Page 7: Design for Sustainability through a Life Cycle Assessment

vi

ABSTRACT

DesignforSustainabilitythroughaLifeCycleAssessmentConceptualFrameworkIntegratedwithinProductLifecycleManagement

FUBRUARY2018

RenpengZou,B.S.,DALIANJIAOTONGUNIVERSITY

M.S.M.E.,UNIVERSITYOFMASSACHUSETTSAMHERST

Directedby:ProfessorSundarKrishnamurty

Theneedtoincludesustainabledesignprinciplesduringproductrealization

posesseveralchallengesinneedofresearch.Thedemandforgreenerproductshas

increasedwhilecompetitionhasshortenedproductrealizationprocesses.Product

LifecycleManagement(PLM)providessolutionsinacceleratingthedevelopment

processandtimetomarketbymanagingtheinformationthroughafulllifecycleofa

productline.LifeCycleAssessment(LCA)providesawaytopredictthe

environmentalimpactsthatshouldbeexpectedoverthecompletelifecycleofa

givenproduct,butLCAmethodsarenotwellsuitedtoefficientcomparisonof

productalternativesduringearlydesignstages.Customersandotherstakeholders

demandproductsthatnotonlycomplywithregulationsandminimize

environmentalimpacts,butalsominimizecostsandmaximizecertainperformance

objectivesofaproduct.Thus,anapproachisneededtounifyvalidationofnew

productscompliancewithholisticconsiderationofenvironmentalimpactsalong

withotherobjectivesoveracompletelifecyclefortheselectionoftheoptimal

designconceptinanefficientmanner.

Page 8: Design for Sustainability through a Life Cycle Assessment

vii

Thisresearchaddressesthesemattersbyproposingtheapproachof

integratingLCAsoftwarewithaPLMsystem.AconceptualLCAframework-

LCAatPLM(LifeCycleAssessmentofassemblytreeinPLM)isproposedthatallows

environmentalassessmentofassemblytreedirectlyextractedfromPLM.Firstly,

relevantexistingsolutionsarereviewedandseveralchallengesareidentifiedthat

preventintegration.BydecomposingthestructureofbothPLMandLCA,acommon

foundationisidentifiedfortheintegration.Then,adesignmethodologyisdeveloped

toshowtheuseofLCAatPLMwithinPLMenvironment.Acharcoalgrilldesigncase

studyisdetailedtoshowhowevaluationscanbemadebasedonachievementof

strategicgoals,alongwithverificationofcomplianceandthevisibilityofLCAand

otherresults.OurfindingsshowthatdesignexecutionsthroughLCAintegratedwith

PLMrevealenvironmentalcriterionatearlystages.Itcanbeconsideredwithother

designcriteriatoidentifyandselectoptimalalternatives.Thisresearchtransforms

LCAasanevaluationtoolusedafteradesignisalreadycompletedtoonethatcan

guidedesignsearlierwithinthePLMenvironment.

Page 9: Design for Sustainability through a Life Cycle Assessment

viii

TABLEOFCONTENTS

PageACKNOWLEDGMENTS..............................................................................................................................vABSTRACT...................................................................................................................................................viLISTOFTABLES........................................................................................................................................xiLISTOFFIGURES.....................................................................................................................................xiiCHAPTER1.INTRODUCTION.....................................................................................................................................1

1.1ResearchMotivation..........................................................................................................11.2ResearchScopeandPurpose..........................................................................................41.3ThesisOutline........................................................................................................................6

2.BACKGROUND........................................................................................................................................8

2.1PreviousWork......................................................................................................................82.2ProductLifecycleManagement(PLM).....................................................................102.3ProductStructureinPLM...............................................................................................132.4LifeCycleAssessment(LCA).........................................................................................142.5OverviewofSustainabilityandSustainableDesignMethodologies............172.6Multi-criteriaDecisionMaking(MCDM).................................................................202.7DecisionSupportforSustainabilityinPLM...........................................................24

3.STATEOFTHEART............................................................................................................................27

3.1OverviewofLCAintegratedwithPLM/CAD..........................................................27

3.1.1Interfaceapproach..........................................................................................273.1.2Integrationapproach.....................................................................................293.1.3SeveralConceptsofLCAIntegratedwithCAD/PDM/PLM...........30

3.2OtherWaysofIntegratingEnvironmentalAssessmentinPLM....................314.CHALLENGES........................................................................................................................................33

4.1DesignParadoxofConsideringEnvironment.......................................................334.2DifferentRepresentationofProductinLCAandPLM.......................................344.3PropermappingsfromPLMtoLCA...........................................................................364.4LackofcomprehensiveLCIdatabaseandStaticNatureofLCA....................364.5DesignersLackingKnowledgeofEco-design........................................................37

Page 10: Design for Sustainability through a Life Cycle Assessment

ix

5.PROPOSEDSYSTEM...........................................................................................................................395.1OpeningProductModelfromPLMtoLCA..............................................................395.2CompletetheLifeCycleInformationExtractedThroughProper

Mappings...............................................................................................................................415.3ProposedLCAatPLM.........................................................................................................43

5.3.1RawMaterialExtractionPhase.................................................................435.3.2ProductionPhase............................................................................................445.3.3TransportationPhase....................................................................................455.3.4UsePhase............................................................................................................465.3.5End-of-LifePhase............................................................................................475.3.6OverallLCAFramework...............................................................................49

5.4ProposedSubstanceComplianceModuleusedinPLM.....................................515.5ProposedSystemArchitecture....................................................................................53

6.DESIGNMETHODOLOGY.................................................................................................................56

6.1BeforeDesignStage..........................................................................................................57

6.1.1Step1.1:PlanningandManagement.......................................................576.1.2Step1.2:UseofSustainabilityModuleforanInitial

Investigation..........................................................................................................596.1.3Step1.3:FeedbackstoPLM........................................................................61

6.2DesignPhase........................................................................................................................626.2.1Step2.1:SetDesignGoals............................................................................636.2.2Step2.2:IdentifyDesignAlternatives....................................................636.2.3Step2.3:UseSustainabilityModuletoGenerate

EnvironmentalReports....................................................................................646.2.4Step2.4:CollectFeedbacks.........................................................................676.2.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative.........68

6.3AfterDesignPhase............................................................................................................696.3.1Step3.1:PrepareforNewDesignInitiatives......................................69

7.CASESTUDY:CHARCOALGRILLREDESIGN...........................................................................71

7.1SimulationoftheProposedSystemConcept.........................................................717.2CaseStudy:BeforeDesignStage.................................................................................74

7.2.1Step1.1:PlanningandManagement.......................................................747.2.1Step1.2:UseofSustainabilityModuleforanInitial

Investigation..........................................................................................................767.2.3Step1.3:FeedbackstoPLM........................................................................80

7.3CaseStudy:DesignStage................................................................................................817.3.1Step2.1:SetDesignGoals............................................................................817.3.2Step2.2:IdentifyDesignAlternatives....................................................827.3.3Step2.3:UseSustainabilityModuletoGenerate

EnvironmentalReports....................................................................................847.3.4Step2.4:CollectFeedbacks.........................................................................86

Page 11: Design for Sustainability through a Life Cycle Assessment

x

7.3.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative.........877.4CaseStudy:AfterDesignStage....................................................................................96

7.4.1Step3.1:PrepareforNewDesignInitiatives......................................968.DISCUSSION...........................................................................................................................................98

8.1Summary...............................................................................................................................988.2Limitations............................................................................................................................998.3Benefits...............................................................................................................................1008.4FutureWork......................................................................................................................102

REFERENCES..........................................................................................................................................104

Page 12: Design for Sustainability through a Life Cycle Assessment

xi

LISTOFTABLES

Table PageTable2.1Optimizingstrategiesonproductlifecycle...........................................................19

Table4.1Differencesbetweenprocessandproductmodel..............................................34

Table5.1Entity,Lifecycleandprocesstype............................................................................40

Table5.2Requiredinformationforlifecycleandextractionplaces.............................42

Table7.1Environmentalimpactsofbaseline..........................................................................79

Table7.2Strategiesofnewalternativesandgoals................................................................81

Table7.3Maincomponentsofnewalternatives....................................................................83

Table7.4Designattributesindecision-makingmodule.....................................................86

Table7.5Normalizedscoreforhypotheticalalternatives..................................................88

Table7.6Realvaluesofhypotheticalalternatives.................................................................89

Table7.7Normalizedalternativescores....................................................................................89

Table7.8Attributesweights............................................................................................................91

Table7.9Attributesweights............................................................................................................91

Table7.10Utilityscoreforeachalternatives...........................................................................91

Table7.11NewUnnormalizedhypotheticalalternatives..................................................93

Table7.12Finalattributesweights..............................................................................................94

Table7.13Utilityscorefordesignalternatives.......................................................................95

Page 13: Design for Sustainability through a Life Cycle Assessment

xii

LISTOFFIGURES

PageFigure1.1Theparadoxofeco-design............................................................................................3

Figure2.1PLMarchitecture.............................................................................................................11

Figure2.2Relevantsoftwareusedindifferentdesignaction...........................................12

Figure2.3ISO14040Lifecycleassessmentframework.....................................................15

Figure2.4Thedimensionsofsustainability.............................................................................17

Figure2.5Designattributesconsideredinnewproductdevelopment.......................21

Figure4.1DifferentpresentationofproductmodelbetweenPLMandLCA.............35

Figure5.1MappingconceptfromPLMtoLCA........................................................................42

Figure5.2Exampleofaproductinassemblytree.................................................................43

Figure5.3RMEinproposedLCAframework...........................................................................44

Figure5.4ProductioninproposedLCAframework.............................................................45

Figure5.5TransportationinproposedLCAframework.....................................................46

Figure5.6UsephaseinproposedLCAframework................................................................47

Figure5.7EOLinproposedLCAframework............................................................................49

Figure5.8OverallproposedLCAframework...........................................................................50

Figure5.9Proposedsystemarchitecture..................................................................................53

Figure6.1Proposeddesignmethodology.................................................................................56

Figure6.2InformationextractionfromPLMtoLCAatPLMtoLCA………………………65Figure7.1SimulationofLCAatPLM..............................................................................................72

Figure7.2InputsandOutputsinRME........................................................................................73

Figure7.3DesigninPLM...................................................................................................................74

Page 14: Design for Sustainability through a Life Cycle Assessment

xiii

Figure7.4ReferenceproductinPLM..........................................................................................75

Figure7.5ExampleofmappingsfromPLMtoLCAatPLM..................................................77

Figure7.6UseLCAtosimulateLCAatPLMwithanexample.............................................78

Figure7.7DetailedBOMofalternative#3inPLM.................................................................83

Figure7.8SimulationofLCAframeworkonalternative#2..............................................84

Figure7.9SimulationofLCAframeworkonalternative#3..............................................85

Figure7.10Strengthofpreferences.............................................................................................88

Figure7.11Feasibleweightsandwinningalternatives......................................................90

Figure7.12Feasibleweightsandonerobustoptimalalternative..................................94

Figure7.13Developedalternativesstoredforfuturedevelopment..............................97

Page 15: Design for Sustainability through a Life Cycle Assessment

1

CHAPTER1

INTRODUCTION

Withtheincreasingpressureofenvironmentalregulations,suchasRoHS,

REACH,WEEE,theselectionofdesignandmanufacturingprocesseswhichcomply

withtheseregulationsandalsohavemuchlowerenvironmentalimpactshas

becomeincreasinglycomplicated.Manycompaniesrealizethatinordertostay

competitiveintoday’smarket,itiscrucialtointroduceenvironmentalthinking

duringthedesignofaproduct.Nowadays,asmoreandmorepeoplecareaboutthe

environment,customerstendtoprefergreenerproducts.Moresustainableproducts

willnotonlybuildagoodreputationofacompany’sbrand,butalsoincreasetheir

marketshare.Includingenvironmentalthinkingandcomplyingwithregulations

seemsinevitableforeverycompanythatwantstosurviveintheirmarket.

1.1ResearchMotivation

Themotivationofthisresearchisbasedontheneedforcompaniesto

developgreenerproductsinshortertermandtopreventtheregulatoryviolations

andlatechange.Todaymanufacturersandretailersarefacingaregulatory

avalancheinthefieldofenvironmentallegislationonaworldwidescale.Theyare

exposedtoacontinuouslygrowingvarietyandthereforecomplexityoflegal

requirementsforplacingtheirproductsonmorethanjustthedomesticmarket[1].

Ononehand,companieshavetomeettheseevergrowingenvironmental

regulationssothattheycanatleastenterthemarket.Ontheotherhand,another

centralobjectiveforthemisfulfillcustomerneeds,whichareincreasinglydirected

towardthesocialandenvironmentalperformanceofaproduct[2].

Page 16: Design for Sustainability through a Life Cycle Assessment

2

TheresultsofindustrialsurveysidentifiedCADgeometricmodelsasdata

reference,Computer-AidedDesign(CAD),ProductLifecycleManagement(PLM)and

ProductDataManagement(PDM)systemsasthemostusedtoolsduringthedesign

phase[3].ProductLifecycleManagement(PLM)isanintegratedapproachthat

combinesmethods,modelsandITtoolsformanagingproductinformation,

engineeringprocessandapplicationsfortheentirelifecycleofaproduct.Many

authorsagreethatPLMisthekeyconceptfortheestablishmentofeco-design

processes[4][5][6][7].Theopportunitytoinfluenceaproduct’senvironmental

impactsisprevalentinthedesignphase.ConnectingPLMandsustainabilitymight

provideusefulinsightstoasustainablenewproductdevelopmentapproach[8].

Asfortheenvironmentalimpacts,LifeCycleAssessment(LCA)isthemost

commonlyassumedmethodforassessingtheenvironmentalimpactofaproductor

servicethroughallitslifecyclestages.However,Figure1.1demonstratesthe

paradoxofeco-design:betweenknowledgeoftheproduct,potentialenvironmental

improvementanddesignsolutions[9].Theimpactsofaproductuponthe

environmentisdeterminedatthedesignphase,andoftenintheveryearlydesign

phase.Astheknowledgeoftheproductincreasesfromconceptualstagetodetailed

designtomanufacturing,theopportunityforenvironmentalimprovementis

reduced.Also,thedesignspacesarerelativelylargeinthebeginningofproduct

developmentwhenideasandconceptualsolutionsarequiteopen.Supportersof

integratingenvironmentalaspectsintoproductdevelopmentasearlyaspossible,

nothandledindependentlygaveseveralliteratures[10][11].However,LCA

requiresdetailedproductdesigninformation,whichmakesitunsuitableforusein

Page 17: Design for Sustainability through a Life Cycle Assessment

3

theearlydesignstages[12][13][14].Asaresult,afullLCAwillbeunfeasibleforthe

studyofalternativesthatsubstantiallydifferfromtheoriginallyassessedproduct

[15].BythetimetheproductsarematureandenoughLCA-relevantdataare

availableforacomprehensiveenvironmentalevaluation,muchofthedesignspace

islocked-in.

Figure1.1Theparadoxofeco-design

Also,acomprehensiveLCAisverycostlyandtimeconsumingandsometimes

notaffordableforsmallbusiness[16].Anditrequiresspecifichigh-levelexpertise

forinterpretation[9].Asurveyofdesignersconductedindictsdesignersare

typicallyoverburdenedwithproductfunctionalityandcostreductionobjectives

[17].Lagerstedt[18],alsoclaimsthatdesignersdonotwanttoomuchinformation,

asprovidedbymostLCAanalysis.

Page 18: Design for Sustainability through a Life Cycle Assessment

4

Insummary,LCAisnotadesigntoolbutanevaluationtoolthatseemsnotto

beusedduringthedesignprocess.Thisresearchtriestomitigatetheselimitations

ofLCAduringdesignprocessthroughtheideathatusesPLMastheestablishmentof

eco-designprocesswhileusesLCAtoevaluatetheenvironmentalimpacts.Sincea

LCAstudycanbeperformedbasedonBillofMaterial(BOM)andBillofProcess

(BOP)providedbyPLM,thisleadstoapotentialityforintegration.Wehopethat,

whilePLMhelpsacceleratethedesignprocessbymanagingtheinformationofa

productoveritsentirelifecycle,LCAisperformedatearlydesignstagebasedonthe

sameinformationsothatenvironmentalimpactscanbeconsideredalongwithother

priorities.Intheend,sustainabledesignmethodologiesandframeworkswere

developedbyourresearchgroup[19][20][21][22],whichguideanddirectthis

thesiswork.

1.2ResearchScopeandPurpose

Thegoalofthisresearchistodesignofproductwithaholisticconsideration

ofenvironmentalimpactsalongwithotherobjectivesoveracompletelifecycle

throughtheintegrationofLCAintoPLM,andtrytomitigatethelimitationsofLCA

thatisnotsuitabletobeusedduringthedesignprocess.

ThisisdonebyfirstlyidentifyingseveralchallengesthatpreventLCAfrom

integratingwithinthedesignprocess.Also,currentsolutionsonintegrationofLCA

withPLM/CADisreviewed.Theconclusionshowsthatdifferentrepresentationsof

productmodelbetweenLCAandPLMareused.PLMusesproductstructureto

representtheproductmodel,whileLCAusesprocessmodeltoformthefullproduct

lifecycleanddoesnotcareproductstructure.Tothisend,LCAatPLM(LifeCycle

Page 19: Design for Sustainability through a Life Cycle Assessment

5

AssessmentofassemblytreeinPLM)isproposed.ItisaconceptualLCAframework

thatmaintainstherepresentationofproductstructureusuallyusedbydesigners

duringdesignintheformofanassemblytreeinPLM.Anenvironmentalassessment

thatisbasedonthesamestructuralitemscouldeasilytransformandreuseexisting

productpresentationdirectlyfromPLMsystem.Throughthis,anintegrationsystem

isformedwithPLMservesasthefoundationandLCAatPLMisintegratedintoPLM

likeotherdesignsupportingtools(Computer-AidedDesign(CAD),Computer-Aided

Manufacturing(CAM),etc.).

Secondly,adesignmethodologybasedontheintegrationsystemisproposed.

Itillustratesawayonhowtotakeenvironmentalimpactsintoconsiderationatearly

designstageusingtheintegration.Designersworkoutdifferentalternativesofthe

productandstorerelevantinformationinthePLMsystem.Then,basedonthat

information,environmentalevaluationsofthesepotentialalternativesareacquired

usingLCAatPLM.Differentcategoriesofenvironmentalimpactsaretransformed

intoadimensionlessnumberthroughnormalization,characterizationandweighting

withtheaimofsimplifyingtheresultstodesigners.Then,theseenvironmental

resultsarestoredalongwithotherdesignattributesinacommonplaceinPLM.A

finaldecisionmakingprocessisperformedbasedonthepreferencesofthedecision

makers.

Acasestudyofredesigningacharcoalgrillisperformedtoillustratethe

proposedconceptandmethodology.Firstly,welookatLCAinformationofan

existingbaselinedesignacquiredfromliterature,andusethatinformationto

methodicallyidentifytheidealnewdesignconceptoftheproduct.AstheBOMis

Page 20: Design for Sustainability through a Life Cycle Assessment

6

developedinPLM,weexaminepotentialparallelprocessingcapabilitiesof:

evaluationofthedesigninrelationtothegoalsanticipatedfortheselecteddesign

strategy,verificationofanycomplianceissues,comparisonofthedesignconceptto

othercandidates,andthevisibilityoftheLCAresultswiththoseofotherobjectives

toindicatethroughoutadesignprocessthedesignintentofwhyaselectedconcept

isthemostsustainabledesign.

Insum,theobjectiveofthisresearchistoprescribeawayhowLCAcanbe

bestintegratedwithPLMandproposeadesignmethodologythatshowshowto

introduceenvironmentalcriteriaintodesignprocessasearlyaspossible.Itis

importanttounderstandthatLCAatPLMstillcannotreachtheaccuracyofa

completeLCAmodelofaproduct.Itisespeciallyfordesignerstoreveal

environmentalresultsandunderstandtheenvironmentalimpactsofadesign

decisionatearliestdesignstage.IttransformsLCAfromanevaluationtoolused

afteradesignisalreadycompletedtoonethatcanguidedesignsearlierwithinthe

PLMenvironment.

1.3ThesisOutline

Theremainderofthisthesisisorganizedasfollows.Chapter2reviews

backgroundandpriorworkrelatedtosustainabledesign,PLM,LCAanddecision-

making.Then,anoverviewoftheexistingsolutionsontheintegrationofLCAwith

PLMispresentedinChapter3,StateoftheArt.Thisincludescurrentinterfaced

approachesandintegrationapproachesofconnectingLCAwithPLMorCAD.

BesidesintegratingLCAintoPLM,someconceptsofintegratingenvironmental

impactsintoPLMarepresented.InChapter4,severalmainchallengesof

Page 21: Design for Sustainability through a Life Cycle Assessment

7

integratingLCAintoPLMareidentifiedbasedontheliteraturereview.InChapter5,

anewLCAframeworkisproposedtoaddressthechallengesidentified.After

introducingtheLCAframework,adesignmethodologyusingtheproposedsystemis

introducedinChapter6.Acasestudyofredesigningacharcoalgrillisimplemented

tovalidatetheproposedsystemandmethodologyinChapter7.Chapter8concludes

withasummaryofbenefitsandlimitationsofthisworkandrecommendationsfor

futurework.

Page 22: Design for Sustainability through a Life Cycle Assessment

8

CHAPTER2

BACKGROUND

Thischapterfirstsummarizespreviousresearchinsustainabledesigndone

intheCenterfore-Design.PriorworksincludeNASDOP(Normativedecision

AnalysismethodfortheSustainability-basedDesignofProducts)andintegrationof

sematicframeworkwithPLM.Then,backgroundaboutPLM,LCAandotherrelevant

knowledgearepresented.

2.1PreviousWork

Withtheincreasingdemandofgreenerproductswhiledevelopingtimehas

decreased,LCAmethodsarenotwellsuitedtoefficientcomparisonofproduct

alternativesduringearlydesign.Productsthatnotonlycomplywithregulationsand

havelowerenvironmentalimpactsbutalsominimizecostsandmaximizeother

performanceobjectivesareexpectedbycustomersandstakeholders.Tothisend,

previouspublishedworksintheresearchgroupintroduceapproachestoaddress

theseissues.

AnapproachwasdevelopedtomethodicallyaccountforLCAalongwith

uncertaintyandproductcostsoverthesamelifecycle.Themethodintroducedthe

mathematicalrigorofanormativeapproachtoselectanoptimaldesignconceptby

theholisticconsiderationofmultipleobjectives[19].

Anotherapproachpresentsanontologicalframeworkdesignedtorepresent

boththeobjectivesthatpertaintosustainabledesignandtheapplicable

sustainabilitystandardsandregulations.Thisintegratedapproachnotonlycanease

theadoptionofthestandardsandregulationsduringadesignprocessbutcanalso

Page 23: Design for Sustainability through a Life Cycle Assessment

9

influenceadesigntowardsustainabilityconsiderations.Theresultsshowthatboth

thestandardsandcriteriamaybeconsideredatearlydesignstages.Furthermore,it

canbeusedtocapture,reveal,andpropagatethedesignintenttransparentlytoall

designparticipants[20].

ABillofMaterial(BOM)-basedapproachwasintroducedtoselectthemost

suitablematerialsformulti-criteriadecisionmakingoftheoptimalproductdesign.

Surrogatemodelsareconstructedwhichconsisttheenvironmentalobjectiveswith

othertraditionaldesignobjectives.Thennovelfeasibleapproximationapproachare

usedtoidentifyoptimalconceptsinthedesignspacebeyondtheoriginaldatasetof

theknowndesignalternatives.ThismethodcanstreamlineLCAestimationfor

materialselectionofmajorcomponentsinanewBOMattheearlydesignstages

[21].

Finally,asemanticframeworkdevelopedinoure-Designcenterisintegrated

withacommercialPLMsystem.Thisintegrationapproachisasemanticextraction

processthatexecutestheinterfacefromPLMtoaframeworkcompatiblewiththe

semanticweb,whilemaintainingthePLM’sBOM.Designexecutionwithina

semanticframeworkfacilitatesdynamiclinkingofproductinformationthroughout

thedesignprocess.ItalsopreservesandpropagatestheBOMrelatedinformation

fromPLMinalldesignstages[22].

Insummary,thesepreviousworkwithintheresearchgrouphavecovered

LCA,PLM,knowledgemanagement,multi-criteriadecisionmaking,material

selection,etc.Thisresearch,basedonthesepreviousworks,tookadvancestoward

furtherbenefitsbydeploymentofsomeoftheseconceptsormethodologiesabove.

Page 24: Design for Sustainability through a Life Cycle Assessment

10

2.2ProductLifecycleManagement(PLM)

AsdesignersnoticeagrowingvolumeoffilesgeneratedbyCADsystem,

engineersrealizethereisaneedtokeeptrackoftheminoneplace.Inthelate1980s,

ProductDataManagementSystem(PDM)hasemerged.PDMisusuallyconsidered

tobeasubsetofPLM.APDMallowdesignerstostandardizeitems,tostoreand

controldocumentfiles,tomaintainBOM’s,tocontrolitem,BOManddocument

revisionlevels,andimmediatelytoseerelationshipsbetweenpartsandassemblies.

Thisfunctionalityallowsthemtoquicklyaccessstandarditems,BOMstructures,

andfilesforreuseandderivation,whilereducingtheriskofusingincorrectdesign

versionsandincreasingthereuseofexistingproductinformation[23].

PLMevolvedfromthePDMapproach.WhilePDMfocusesonmanagementof

productdatawithinproductdesign,PLMhasamanagementfocusingondata,

processesandapplicationsforthewholelifecycleofaproduct.PLMisanintegrated

approachincludingnotonlyitems,documentsandBOM,butalsoanalysisresults,

specifications,engineeringrequirements,manufacturingprocesses,product

performanceinformation,suppliersandsoforth.PLMisalsoasystem.Amodern

PLMsystemhascapabilitiesofdesignworkflow,programmanagement,andproject

controlandspeedupoperations.Theweb-basedsystemcannotonlyaddressonly

onecompanybutitalsoenablesglobalcollaborationsbetweenmanufacturers,

suppliersandcustomers.PLMisacollaborativebackboneallowingpeopleof

differentfieldstoworktogethereffectively[24].

Page 25: Design for Sustainability through a Life Cycle Assessment

11

Ideation Design Production Services

InformationManagement

ProcessManagement

ApplicationIntegration

DocumentManagement ComponentManagement BOMManagement WorkflowManagement ClassificationManagement ChangeManagement

ProjectManagement RequirementManagement ManufacturingProcessManagement MaintenanceandRepairOperationManagement SupplyChainManagement IntegrationwithCAx,ERP,SCM,etc.

Visualization

Collaboration(Customers,Suppliers,OEMs)

DataAnalytics&Reporting

PLMDatabase

PLM

Figure2.1PLMarchitecture

UsuallyPLMintegratesdataprocessmetamodelmanagedbyadatabaseand

acentralcontrolleddatavaultforthestorageofallcreatedproprietarymodelsand

documents(e.g.CADmodels,documents,),Figure2.1.PLMmethodandtoolscanbe

clusteredintothreegroups[25]:

• Informationmanagement(e.g.methodsforidentifying,structuring,

classifying,modelling,retrieving,sharing,disseminating,visualizing

andachievingproduct,processandprojectrelateddata)

• Processmanagement(e.g.methodsformodelling,structuring,

planning,operatingandcontrollingformalprocesseslikeengineering

releaseprocess,reviewprocess,changeprocessornotification

processes).

Page 26: Design for Sustainability through a Life Cycle Assessment

12

• Applicationintegration(e.g.methodsfordefiningandmanaging

interfacesbetweenPLManddifferentapplicationlikeCAD,CAM,

Computer-AidedEngineering(CAE)andintegratedenterprise

softwaresuchasEnterpriseResourcePlanning(ERP),SupplyChain

Management(SCM)).

Figure2.2Relevantsoftwareusedindifferentdesignaction

AstrongadvantageofPLMisitsapplicationintegrationwithdataprovided

withdifferentITsystemsusedbydifferentdepartmentsofenterprise,Figure2.2.

Computer-aideddesign,manufacturing,andengineeringsystem(CAD,CAM,CAE)

usedforproductandprocessdesign;materialrequirementsplanning,advanced

production,manufacturingexecution,andenterpriseresourceplanningsystems

(MaterialRequirementPlanning(MRP),AdvancePlanningandScheduling(APS),

ManufacturingExecutionSystem(MES),ERP)usedformaterialsandproduction

Page 27: Design for Sustainability through a Life Cycle Assessment

13

processplanning;andsupplychainmanagementandcustomerrelationship

managementsystems(SCM,CustomerRelationshipManagement(CRM))usedfor

dataandcommunicationsmanagementwithcustomersandsuppliers.

Overall,PLMinthemoderneraissometimesinterpretedasa“systemof

systems”.Vendorsdefinedas‘PLMsuppliers’comefromthreediversebackgrounds

andareadoptingstrategiestoexpandtheirpastfoci.Theseinclude[26]:

• SiemensandDassaultSystèmes,fromthedigitalengineeringworld

tryingtoconnecttotheoperationmanagementprocesses.

• SAPandOracle,fromERPworldattemptingtoconnecttodigital

manufacturingandengineeringtoolsandplatforms.

• Windchill,fromgenericinformationandcommunicationstechnology

(ICT)worldaimingatestablishingcollaborativeenvironmentsfor

integration,basicallyusingwebtechnology.

2.3ProductStructureinPLM

Aproductmodelcanberepresentedindifferentstructures.Differentusers

willalsoworkwithdifferentstructures.Forexample,engineering,accounting,

productionmanagement,andassemblymayallhavedifferentrequirementsforthe

BOMstructures.Fordesigner,throughoutthedevelopmentprocess,designchanges,

componentsaremodified,productsarerestructuredandprojectstatusisupdated

accordingly.

Toefficientlyconsiderenvironmentalassessmentduringproduct

development,aCAD-likeproductstructurewillbeservedasthefoundationofthe

Page 28: Design for Sustainability through a Life Cycle Assessment

14

utilizedmodel.Themostimportantdefinitionsforsuchastructureislistedbelow

[27]:

• Aproductstructureconsistsofassemblies,parts,andfeatures.

• Assemblies,parts,andfeaturesarecomponentsoftheproduct.

• Assembliesconsistsofsubordinateassembliesandparts.

• Partsconsistoffeaturesandhaveanassignedmaterial.

• Featurescanbespecializedtospecifickindsoffeatures.

• Eachcomponentcanbesubordinatetoonlyoneothercomponentto

ensureahierarchicaltreestructureratherthananetwork.

Mostproductmodelsthatareusedwithinmodern3DCADsystemsfollow

theserules,sometimeswithsmalldeflections[28].Anenvironmentalassessment

thatisbasedonthesamestructuralitemscouldeasilytransformandreuseexisting

productpresentationdirectlyfromCADorPLMsystems.

2.4LifeCycleAssessment(LCA)

LCAisa“cradletograve”approachforassessingindustrialsystems.“Cradle

tograve”meansresourcesfirstlymustbeextractedfromearthandconvertedinto

materialorcomponentsfromwhichtheproductismade,infrastructuremust

provideitsfunctiontotheplantandemployees.Whentheproductenteritsendof

lifestage,thematerialsaretoberecycledorreturnedtoearth.LCAincludesfive

stagesof:rawmaterialextraction,manufacturing,distribution,useandendoflife.

LCAevaluatesallstagesofaproduct’slifecyclefromtheperspectivethattheyare

interdependent.Itenablestheestimationofcumulativeenvironmentalimpacts

resultingfromallstagesintheproductlifecycle,oftenincludingimpactsnot

Page 29: Design for Sustainability through a Life Cycle Assessment

15

consideredinmoretraditionanalyses.Byevaluatingtheimpactsthroughoutthelife

cycle,LCAprovidesacomprehensiveviewoftheenvironmentalaspectsofthe

productorprocessandamoreaccuratepictureofenvironmentaltrade-offsin

productandprocessselection[29].Itisatoolforrelativecomparison,therebyitcan

beusedbydecisionmakerstocompareallmajorenvironmentalimpactsinthe

choiceofalternativecoursesofaction[30].

TheInternationalStandardsOrganization(ISO)startedastandardization

processforLCA[31].Fourstandardsweredevelopedforlifecycleassessmentand

itsmainphasesandissuedinISO14000seriesofstandardsforEnvironmental

Management.TheframeworkforLCAisshowninFigure2.3.

Figure2.3ISO14040Lifecycleassessmentframework

AsillustratedinFigure2.3LCAisaniterativeprocess.

• Goalandscopedefinition:goalandintendeduseofLCAisdefined,

andtheassessmentisscopedintermsofboundariesofthe

productsystem.

• LifeCycleInventory(LCI):Alifecycleinventoryisaprocessof

quantifyingenergyandrawmaterialrequirements,atmospheric

Page 30: Design for Sustainability through a Life Cycle Assessment

16

emissions,waterborneemissions,solidwastes,andotherreleases

fortheentirelifecycleofaproduct,process,oractivity.

• LifeCycleImpactAssessment(LCIA):theevaluationofpotential

humanhealthandenvironmentalimpactsoftheenvironmental

resourcesandreleasesidentifiedduringtheLCI.Itattemptsto

establishalinkagebetweenproductorprocessanditspotential

environmentalimpacts.

• Interpretation:InterpretationisthephaseoftheLCAwherethe

resultsoftheotherphasesareinterpretedaccordingtothegoalof

thestudyusingsensitivityanduncertaintyanalysis.

Computer-aidedtoolstosupporttheapplicationofLCAcanbedividedinto

twomajorgroups[32].Firstly,variousgeneralinventoriesarepre-compiledtobe

usedtoperformLCAlater.Suchinventoriescontaindatasetsrelatedtogeneral

processes,likeresourceextraction,energysupply,materialsupply,chemicals,

metals,wastemanagementandtransportservices.Eachdatasetcontainsgeneral

descriptiveinformationalongwiththedetailedinput/outputdata,parameterized

withrespecttoareferenceunit.ExamplesofsuchdatabaseareEcoinvent[33],ETH-

ESU96[34],etc.Secondly,varioustypesofanalysistoolsaredevelopedand

implemented.Suchtoolsallowusertodescribetheprocessunderinvestigationin

termsofelementaryprocesses,eventuallyclusteredandrelatedtoeachother,in

ordertodefinemorecomplexprocesses.Theusercanthenparameterizethe

differentprocessesbysettingtheallocationvalues,andselecttheappropriateeco-

indicatortobeusedtoperformtheimpactassessment.Examplesofsuchtoolsare

SimaPro,GaBiandOpenLCA.

Page 31: Design for Sustainability through a Life Cycle Assessment

17

LCAsoftwarewillsignificantlysavetimetocollect,analyzeandmonitora

product’senvironmentalperformance.LCAsoftwareisdevelopedtosupporttheISO

framework.Sincecollectionofdatafortheenvironmentalexchangebetween

processesandenvironmentisnormallylabor-intensive.ThedatabasewithinLCA

softwarestoresdatainaunitprocesswhichallowsthemtobeusedasbuilding

blocksindifferentlifecyclemodels.Thedataisusuallyaboutthemostimportant

processes(manufacturing,transportation,recycle)andmaterial(metal,plastic,etc.).

Asfortheinterpretationpart,LCAsoftwarecangivedesignersdirectviewthrough

aggregationofnumbersandgraphs.Somealsohavescenarioanalysiswhichhelps

designtoreduceenvironmentalimpactsbychangingcertainaspectsoftheproduct

systemthatyoumodelled.

2.5OverviewofSustainabilityandSustainableDesignMethodologies

Sustainabilityisnotonlyaboutenvironment.Itsimultaneouslyaddressesthe

socialimpacts,theenvironmentalimpacts,andtheeconomicimpactsofthe

company’sactivitiesasintroducedintheconceptofTripleBottomLine(TBL)[35].

Figure2.4Thedimensionsofsustainability

Page 32: Design for Sustainability through a Life Cycle Assessment

18

AsshowninFigure2.4,theintersectionofthreespheresliesthemost

sustainableproductthatbalanceeconomic,socialandecologicaldimensions.Many

organizationshaveadoptedtheTBLframeworktoevaluatetheirperformanceina

broaderperspectivetocreategreaterbusinessvalue[36].Integratedsustainability

triangleisonesuchtoolthatdoesnotonlyprovideawaytoquantifysustainable

performanceofaproduct[37],butalsointroducesanappropriateinstrumentfor

thesystemizationandevaluationoftheperformanceofacompanyregarding

sustainabilitymanagement[38].

However,traditionallybusinessesmaintainastrongfocusonfactorsthat

haveaclearanddirecteffectontheireconomicperformance.Severalsustainable

designmethodologies,suchasLifeCycleDesign(LCD),DesignforEnvironment

(DfE),thattrytobalancebetweenthreeaspectsinTBLaredeveloped.These

methodologiesuseenvironmentevaluationtoolsincludingLCAtodeterminethe

environmentalperformanceofaproduct.

LCDisatermwhichhascometohaveagreatdealofoverlapwithDfE[39].It

isanapproachformoreeffectivelyconservingresourcesandenergy,preventing

pollution,andreducingtheaggregateenvironmentalimpactsandhealthrisks

associatedwithaproductsystemwhichintegratesenvironmentalrequirements

intotheearliestphasesofdesignandbalanceswithotherrequirementslike

performance,cost,cultural,andthelegalcriteria.Conceptssuchasconcurrent

design,cross-disciplinaryteams,multi-objectivedecisionmaking,andtotalcost

assessmentareessentialelementsofit[40].

Page 33: Design for Sustainability through a Life Cycle Assessment

19

Table2.1Optimizingstrategiesonproductlifecycle

LifeCycle DfEStrategies SpecificStrategies

Rawmaterial

Materialuseoptimization

Designforresourceconservation-Reductionofmaterialuse-Userenewablematerial-UserecycledandrecyclableDesignforlowimpactmaterial-Avoidtoxicorhazardoussub.-Useoflowerenergycontent

Manufacturing

Cleanmanufacturing

Designforcleanerproduction-Minimizethevarietyofmaterial-Avoidwasteofmaterial-Selectlowimpactancillarymaterialandprocess

Distribution

Efficientdistribution

Designforefficientdistribution-Reducetheweightofproduct-Reducetheweightofpackaging-Ensurere-usableandrecyclableTransportpackaging-Ensureefficientdistribution

ProductUse

Cleanuse/operation

DesignforenergyefficiencyDesignformaterialconservationDesignforminimalconsumptionAvoidanceofwasteDesignforlow-impactuse/operationDesignfordurability

EndofLife

EndofLifeoptimization

Designforre-useDesignforre-manufacturingDesignfordisassemblyDesignforrecyclingDesignforsafedisposal

DesignforEnvironment(DfE)isasystematicconsiderationofdesign

performanceintermsofenvironment,healthandsafetyobjectivesoverthefull

productandprocesslifecycle.EstablishinganappropriateDfEstrategyfor

designingasustainableproductiscrucialindeterminingtheenvironmentalaspects

oftheproduct[41].DfErequiresthecoordinationofseveraldesignanddata-based

activities,suchasenvironmentalimpactmetrics,datamanagement,design

optimizationandothers[42].Exampleofenvironmentalimpactmetricsor

Page 34: Design for Sustainability through a Life Cycle Assessment

20

methodologiesforderivingthemaregivenbyVeroutisetal[43]andO’Shea[44].

Therearealsogeneralguidelinesfordevelopingenvironmentalfriendlyproducts,

suchasthe“TenGoldenRules”[45].Theenvironmentalimpactsofaproductcanbe

reducedthroughasetofDfEstrategiesofoptimizingeachstageofproductlifecycle

asshowninTable2.1[46].

DespitethemanyexistingDfEmethodsandtools,theiruseisstilllimited.

Smallandmedium-sizecompanieshaveexperiencewithDfEprojects,butthey

rarelyleadtotheuseofDfEinordinaryproductdevelopment[47].Mostcompanies

donottreatDfEasamanagementissue.Finally,itiscommonthatwhenacompany

doespracticeDfE,thefocusisonenvironmentalredesignofproductinsteadofthe

developmentofnewproducts.Givenallthis,thepotentialbenefitsofDfEhavenot

beenrealized[48].

2.6Multi-criteriaDecisionMaking(MCDM)

Asmentionedabove,asustainabledesignshouldbalanceenvironmental,

performance,cost,culturalandlegalrequirements.Theintegrationof

environmentalconsiderationsmustfinditsplaceamongmanyotherpriorities

consideredinthedevelopmentofanewproductasshowninFigure2.5.Usually,

someofthesecriteriacannotbeconsideredintoamonetaryvalue,because

environmentalconcernsofteninvolveethicalandmoralprinciplesthatmaynotbe

relatedtoanyeconomicuseofvalue.Selectingfrommanydesignalternativesoften

involvesmakingtrade-offs.Nevertheless,considerableresearchofMCDMhasmade

availablepracticalmethodsforapplyingscientificdecisiontheoreticalapproaches

tocomplexmulti-criteriaproblems.MCDMmethodhasbeenutilizedtoiteratively

Page 35: Design for Sustainability through a Life Cycle Assessment

21

solveengineeringproblems[49].TheapplicationofMCDMinengineeringdesign

canbefoundinmanyliteratures[49][50][51].

Figure2.5Designattributesconsideredinnewproductdevelopment

Multi-attributeutilitytheory(MAUT)orAnalyticalHierarchyProcess(AHP)

arebothdecision-makingtechniquesthatbeingutilizedtoiterativelysolve

engineeringproblems.Theyemploynumericalscorestocommunicatethemeritof

oneoptioncomparedwithothersonasinglescale.Scoresaredevelopedfromthe

performanceofalternativeswithrespecttoanindividualcriterionandaggregate

intoanoverallscore.ThegoalofMAUTistofindasimpleexpressionfordecision-

makerspreferences.MAUTtransformsdifferentcriteria(cost,environmentalindex,

performance,etc.)intoadimensionlessscale(0-1)ofutility.Utilityfunctionforeach

criteriaconvertthecriteriaunitsintothe0-1utilityscaleandarecombinedwith

weightingfunctionsofthecriteriawithintheoveralldecisiontoforadecisionscore

Page 36: Design for Sustainability through a Life Cycle Assessment

22

foreachalternative.MAUTreliesonthedecisionmaker’spreferences.Thegoalof

decisionmakersistomaximizeutility[52].

Priortothisresearch,HypotheticalEquivalentsandInequivalentsMethod

(HEIM)[53]wasusedforconceptselectioninsustainabledesignwithinthe

researchgroup.Also,amethod[54]thatexpandsHEIMtohandlemulti-leveland

multi-attributetrade-offswasdeveloped.Thesepreviousstudieshaveprovedthe

usefulnessofHEIMinsustainabledesign.Inthisresearch,HEIMwasalsousedfor

decision-making.

Theselectionofbestconceptindesigndecision-makingdependsonweights,

sameasMAUTandAHP.Asitcanbedifficultforadecisionmakertoexplicitlystate

theiraccuratepreference,HEIMwasformulatedtodeterminethedecisionmaker’s

trueweightsimplicitlybyrankingasetofhypotheticalalternativesinorderto

assessattributeimportance,anddeterminethemdirectlyfromadecisionmaker’s

statedpreferences[55].Whenapreferenceisstated,suchas“Ipreferhypothetical

alternativeAoverB”,constraintsareformulatedandanoptimizationproblemis

constructedtosolvefortheattributeweights.Theweightsaresolvedby

formulatingthefollowingoptimizationproblem,

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 𝑥 = 1 − 𝑤.

/

.01

2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜ℎ 𝑥 = 0(2.1)

𝑔(𝑥) ≤ 0

where,theobjectivefunctionensuresthesumoftheweightsisequaltoone.Xisthe

vectoroftheattributeweights,nisthenumberofattributes,𝑤. istheweightof

Page 37: Design for Sustainability through a Life Cycle Assessment

23

attribute𝑖.Theinequalityconstraintsarebasedonasetofstatedpreferencesfrom

thedecisionmaker.IfthedecisionmakerpreferhypotheticalalternativeAto

alternativeB,forexample,

𝐴 > 𝐵(2.2)

then,theirvalueofalternativeAisgreaterthanthatofalternativeB,whichcanbe

expressedas

𝑉(𝐴) > 𝑉(𝐵)(2.3)

Finally,theinequalitycanbeformulatedasaninequalityconstraintforthe

optimizationproblem,asshowninEq.2.4

𝑉 𝐵 − 𝑉 𝐴 < 0𝑉 𝐵 − 𝑉 𝐴 + 𝛿 ≤ 0(2.4)

The𝛿inEq.2.4isasmallpositivenumberincludedtotransformthestrict

inequalitytothemorestandardconstraintsrepresentation ≤ whileensuringV(A)

isstilllargerthanV(B).

Theequalityconstraintsaredevelopedbasedonstatedpreferenceof

alternativesequally.Theirvalueisequal,givingthefollowingEqn.2.5

𝑉 𝐴 = 𝑉 𝐵 𝑜𝑟𝑉 𝐴 − 𝑉 𝐵 = 0(2.5)

Thevalueofanalternative(alternativeAinthiscase)isgiveas

𝑉 𝐴 = 𝑤.𝑟H.(2.6)/

.01

where𝑟H. istheratingofalternativeAonattribute𝑖.

Page 38: Design for Sustainability through a Life Cycle Assessment

24

Finally,theoptimizationprobleminEq.2.1canbesolvedinordertofindthe

trueattributeweightsusingEqn.2.4,todetermineascoreforeachalternative.

AnormalprocessofexecutingHEIMincludes:1)Identifytheattributes,2)

Determinethestrengthofpreferencewithineachattribute,3)Setuphypothetical

alternatives,4)Normalizethescaleandcalculatethevalueforeachalternative,5)

Formulatethepreferencestructureasanoptimizationproblem,6)Solveforthe

preferenceweights,7)Makeadecision.

2.7DecisionSupportforSustainabilityinPLM

LCAhasbecomeaninvaluabledecision-supporttoolthatcanbeusedby

manufacturers,suppliers,customers,policy-makersandotherstakeholders[56].

However,applicationofLCAanditsintegrationintodecision-makingprocesses

havenotbeenaswidespreadasexpected.Duringtheproductdevelopmentprocess,

designersworkincollaborationwithdifferentdesignparticipants,asaresult,the

developmentofadecision-supportsystem(DSS)tosupportaneco-designapproach

mustthereforeconsiderthenatureofthedesignwork,thesequenceofactivities,

thevalidationprocessandtheshareresponsibilitieswithinthecorporationinorder

tobeefficient[57].PLMmanagesandstoresproductdata.However,facedwitha

hugeamountofinformation,thelackofdecisionsupportleavesdesignerslooking

foraproperwaytomakeadecisioninsteadofusingpastexperienceinmostofthe

cases.Golovatchevetal.[58]alsoproposedanextgenerationPLMIT-architecture

thatsupportsPLM-processinthedimensions:Decisionsupport,Operational

supportandintegrationofsupplementalbusinessapplications.Thus,adecision-

supportsystemseemsnecessarytobeusedwithinthePLMenvironment.

Page 39: Design for Sustainability through a Life Cycle Assessment

25

ThemainpurposeofaDSSistogatherandconsolidatedatainorderto

providemanagementwithaggregatedinformationontheproductlifecycle.They

canhelpgenerateandguidethepreferenceofstakeholdersintoorganized

structuresthatcanbelinkedwithothertechnicaltoolsfromriskanalysis,modeling

andcostestimations.Theyalsoprovidegraphicaltechniquesandvisualization

methodstoexpressthegatherinformationinunderstandableformats.Fewofthem

havebeenconnectedwithPLM.

Poudeletetal.[59]assertsthatdesignersnotonlyrequireatooltosupport

theassessmentofdifferentalternatives,buttheyalsoneedadatabasetostoreallof

thealreadytestedsolutions.Andtheyalsosetoutseveralmainrequirementsfor

suchDSS:

• Thetoolshouldallowdesignerstocomparedifferentdesign

alternativesintermsofenvironmentandcostperformances;

• Thetoolshouldbesimpletouseandfitperfectlyintodecision-making

process;

• Thetoolwillbebasedonrigorousenvironmentalmetricssupported

byanLCAapproach;

• Theresultsobtainedfromthetoolshouldbesimpleenoughtobe

understood.

EventhoughproposingaDSSinPLMisnotthefocusofthisresearch,the

authorisstillasupporterofthisthought.Sointhiswork,asimplifieddecision

supportmoduleusingaspreadsheetuploadedintoPLMisincludedinthe

integrationsystem.ThesimplifiedDSSstoresthedesignattributesoftestedand

untestedalternatives.TheseattributesareeitherextractedfromPLMorcollect

feedbacksfromLCA.Then,theseresultsarenormalizedandcombinedwithweights

Page 40: Design for Sustainability through a Life Cycle Assessment

26

calculatedfromHEIM.Optimalalternativeswillbefinallyselectedbasedonthe

preferencesofthedecisionmaker.

Page 41: Design for Sustainability through a Life Cycle Assessment

27

CHAPTER3

STATEOFTHEART

ThischapterintroducescurrentsolutionsonPLMandLCAintegrationand

alsoCAD/LCAintegration,includinginterfacedapproachandintegrationapproach.

Finally,besidesLCA,someotherwaysofintegratingenvironmentalassessmentin

PLMareintroduced.

3.1OverviewofLCAintegratedwithPLM/CAD

Normally,integratingtwosystemsisthroughinterfaceapproachor

integrationapproach.Theinterfaceapproachismostcommon.Itusuallyinvolves

twostandalonesystemexchanginginformationbetweeneachother,suchasPLM

andCADsystem.OnecanuseCADsystemtobuildmodel,drawings.Through

interface,modelsordrawingscanbeopenedandmodifiedinPLMsystem.Interms

ofintegratingLCAwithPLM,thereissomeresearchdonebothontheinterfaceand

integrationapproach.However,existingresearchoutcomesseemtofocusmoreon

theintegrationofLCAwithCADratherthanPLM.

3.1.1Interfaceapproach

Mathieuxetal.haveproposedthe“DEMONSTRATOR”[60].Itisaprototype

oftoolbasedonfeaturetechnologyinextractingCAD/PDMdata,fromCATIAv5

(CAD)toEIME(LCA).Theidentifiedbenefitsofthisinterfaceare:timesaving,more

datacollected,datakeyed-inonlyonce.However,thelimitationsarethatallthe

environmentaldatarequiredbytheLCAtoolcannotbelocatedintheCADandPLM

system,mostofthedataarerelatedtoproductstructure(componenttree,mass…)

ratherthanproduct&correspondingprocessesinotherlifecyclephases:

Page 42: Design for Sustainability through a Life Cycle Assessment

28

manufacturing,transportation,use,endoflife.Thisworkhasdemonstratedthata

directconnectionbetweenCADandLCAtoolsprovideslessinformationthanusing

PLMbutmostoftheadditionalcollecteddataarenotlocatedinthePLMwitha

directlink.TheinformationisinattachedWorddocumentsorexpertapplications

[61].Consequently,thenecessarydatatocarryoutaLCAstudyisnoteasytoobtain.

PernexasandGreenDeltaproposedandimplementedaninterfacecalled

“eLCA”[62]wasdevelopedthatallowsadynamicaccesstotheLCAtoolfrom

ENOVIAusingtwonewPDMtypes:LCAProductSystemwhichmakesthelinkwith

someproductsystemdefinedintheLCAandLCAContainerwhichmakesthe

inheritanceofaLCAproductsystemforapartdependingitpartfamily.Thelimits

arethatdataregardingeachpartaremanuallysetthroughtheirtwonewPDMtypes

andthenaLCAresultcanbeacquired.Alsodesignersmaybefacedwithasituation

thatanovelpartdoesnotbelongtoanyproductsystemdefinedintheLCAtool.In

otherwords,environmentaldataaboutapartcannotbesetupthroughsimulationof

howitwillbemade.

Maroskyetal.[63]presentedthestructureofanalgorithmthatallowsa

mutualtransferofdatabetweenCADandLCA,thistransferisbasedonextracting

datafromCADmodel.TheyproposedthatdataformatsofCADandLCAhaveto

exchangeable.Dataaboutproductspecificationsthatcannotbeprovidedbythe

productmodelbutisneededasdatainputforLCA,shouldbeprovidedbytheLCA

database.Inthesameway,Cappellietal.[64]proposedaframeworkthatisbased

ontheanalysisofthetreestructureofCADprojectcomposedofassemblies,

subassemblies,partsandfeatures,andconsiderthatfeaturesrepresentdata

Page 43: Design for Sustainability through a Life Cycle Assessment

29

associatedwithassemblymodelthatcanbestoredinCADfilesorinaspecific

database.Afterthat,theydeveloped“EcoCAD”.Theinformationinputwayfor

environmentalassessmentmakesitnottostudytheoverallimpactofacomplex

productbutratherpreventmostoftheworseenvironmentalerrorsduringthe

virtualdesignphase.

Similarly,Computer-AidedLifeCycleInventory(CALCI)tool[65]was

developedtoprovidearchitectureandauserinterfacetoassociateentitiesofPLM

systemcomponentswithentitiesofLCAsoftwareandlifecycledatabases.However,

useofSimplifiedLCA(SLCA)andmissinglifecyclestagesmakeresultsaccuracy

remaintobeseen.Morbidonietal.[66]developsanewsoftwaretoolwhich

integratesdatafromdifferentdesignsupportingsystemusingSLCA.Thedifference

fromCALCIisthatitconsidertheassessmentofthecompleteproductlifecycle.

3.1.2Integrationapproach

Currently,thereisnoLCAthatisembeddedwithinPLM.Therearemany

researchesonLCAintegratedwithCADsystem.Ottoetal.[67]introduceda

frameworkfortheintegrationofdatafromaproductmodelandanLCIdatabase.It

allowsefficientdataretrievalofLCIrelevantproductinformationandprovidesa

toolforpracticalevaluationofdigitalproductmodelsandprocessmodels.

DassaultSystèmesSolidWorksincludesSolidWorksSustainabilityand

SolidWorksSustainabilityXpresstoprovideacompletedashboardofLCA

informationfordeterminingtheenvironmentalimpactsofpartorassemblydrawn.

ItallowsLCAanalysesinrealtimeonpartsorassemblyandreplacementof

comparablematerialsinrealtimetoseehowtheyaffectenvironmentalimpact[68].

Page 44: Design for Sustainability through a Life Cycle Assessment

30

Also,EcologiCAD[27]worksasastandaloneassessmentsystemthatinconjunction

withCADsystemforecologicalassessmentduringdevelopmentstages.Thelackof

thissolutionishisdependencetotheCADsystemusedinthiswork.

ThedrawbacksofcurrentlyCADintegratedwithLCAsystemsarethatthey

useSimplifiedLCA(SLCA),whichneglectsthewholelifecycle(inparticularuseand

endoflife)andlackofdetailedestimationonmaterialusedandmanufacturingcycle

impact.LiteratureshowsthatSLCAsystembasedonintegrationofCADtoolswith

LCAdatabasesaredeeplyinaccurate,comparedwithdedicatedLCAtools.

Hochschorneretal.[69]evaluatedtwosimplifiedLCAmethodsandcomparedtothe

resultsofaquantitativeLCA.Theyconcludethatasimplifiedandsemi-quantitative

LCAcanprovideinformationthatiscomplementarytoaquantitativeLCA.They

suggestthatasimplifiedLCAcanbeusedbothasapre-studytoaquantitativeLCA

andasaparallelassessment,whichisusedtogetherwiththequantitativeLCAinthe

interpretation.

3.1.3SeveralConceptsofLCAIntegratedwithCAD/PDM/PLM

Exceptfortheexistinginterfacedorintegrationsystems,therearealsomany

conceptsproposedfortheintegrationofLCAwithdifferentsystems.

AframeworkisintroducedfortheintegrationofCADmodels,EDM/PDM

databasesandLCIdatabases[70].EfficientandsemanticallymappingofCAD

modelsdataintoLCI-relevantdataisrealizedbyusingLCIprocess-relevant

attributesandfeaturetechnology.

Knowledge-basedapproximatelifecycleassessmentsystem(KALCAS)[71]

isdevelopedwithaimofimprovedesignefficiencybymanaginghigh-levelproduct

Page 45: Design for Sustainability through a Life Cycle Assessment

31

information.Itconsistsaproductinformationmodule,LCAmodule,databaseand

knowledge-basedapproximateLCAmodule.Itprovestheinformationexchangeof

differentdomainscanbefeasibleandvaluabletothedecision-makingofdesign

alternativesbyemphasizingthecollaborativedesignenvironment.

Afour-layeredstructureEnergy-savingandEmission-ReductionLCAsystem

wasproposedbasedonInternetofThingsandBOM[72].TheconceptofbigBOMis

proposed,whichcanfacilitatetheeffectivedataintegrationandexchangebetween

theproposedsystemandexistinginformationsystem,suchasPDM,ERP,andSCM.

TheyproposedbigBOMisacombinationoftheexistingdataineachstageofthe

productlifecycle,andtheLCI-relevantdatageneratedintheprocessofeachstage

fromdesignBOM,manufacturingBOMtouseBOManddisposalBOM.

3.2OtherWaysofIntegratingEnvironmentalAssessmentinPLM

Besidestheachievementsmentionedabove,severalmethodologiesabout

integratingenvironmentalassessmentinPLMhavebeenproposed.Yousnadjetal.

arguesfullLCAstudyisnotapplicableintheearlystagesofdesignduetolackof

information.TheyproposedamethodologyofconnectingasimplifiedLCAtoolwith

PLMandERPtoevaluateanentireproductportfolio[73].Januschkowetzetal.

describeshowanLCIonaproductcanbecompiledusinganERPsystem.Itshows

thattheenvironmentaldatacanbeintegratedintoERPsystems,whichfacilitates

theregistrationofenvironmentaldataanddecreasestimeofgatheringLCIdata[74].

Eigneretal.proposedaconceptforanintuitiveandinteractiveeco-efficiency

assessmentwhichcanbefullyintegratedinPLMsolutions.Itenablesthatthe

Page 46: Design for Sustainability through a Life Cycle Assessment

32

increasedcomplexityduetoenvironmentalfactorsremainsmanageableand

environmentalpotentialsforaproductcanbeidentifiedandinfluencedearly[4].

Page 47: Design for Sustainability through a Life Cycle Assessment

33

CHAPTER4

CHALLENGES

4.1DesignParadoxofConsideringEnvironment

Inordertopreventlatechanges,useofnon-hazardousmaterialsandthe

environmentalimpactsshouldbemonitoredandevaluatedasearlyaspossible.

However,asshowninFigure1.1,theparadoxofeco-designbetweenknowledgeof

theproduct,potentialenvironmentalimprovementanddesignsolutionsusually

preventstheuseofLCAatearlydesignstageduetodataunavailability.Asaresult,a

fullLCAwillbeunfeasibleforthestudyofalternativesthatsubstantiallydifferfrom

theoriginallyassessedproduct[15].Bythetimetheproductsarematureand

enoughLCA-relevantdataareavailableforacompleteenvironmentalevaluation,

muchofthedesignspaceislocked-in.SimplifiedorstreamlinedLCAaredeveloped

tomitigatethisissue.Butitturnsouttobeinaccurateduetoexclusionofsomelife

cyclestages.Itonlyallowsforqualitativecomparisonsofalternativesatearlydesign

stage.Tomaintainaccuracy,acompletelifecycleshouldbeconsidered.

ThereareresearcherswhoproposethatanewfullLCAisnotrequiredfora

newproductifintendedenvironmentalevaluationisimplementedintheearly

designstages[75].Duringredesigningaproduct,previousmodelofproductcanbe

deployed.LCAresultsshouldbescalableifnewfeaturesareaddedinthenewer

modelinordertocalculatetheLCAresultsofthenewermodel.Incaseanew

dependentproductisdeveloped,atermLCA-familywasintroducedasasetof

productswhoseLCAsharesacommonbehaviorandcanthereforebecomparedin

somepracticalway.

Page 48: Design for Sustainability through a Life Cycle Assessment

34

Thus,areferenceproductofthesimilartypeorthelastgenerationproductof

thecompanycanbeusedtosolvetheinformationunavailabilityatearlystage,since

manypartswithinaproductcanbereused.Also,areferencemodelwillhelp

designerstoidentifyenvironmental“hotspots”.

4.2DifferentRepresentationofProductinLCAandPLM

Aproductcanberepresentedusingdifferentkindsofmodels.Processand

productmodelaremodels,whichareusedinLCAandproductdevelopmentwith

CAD.TheydescribetheproductfromadifferentpointofviewaslistedinTable4.1

[63].

Table4.1Differencesbetweenprocessandproductmodel

Differences ProcessModel ProductModelMainobjective Descriptionandguidanceon

processesofaproduct’slifecycle

Descriptionofaproduct’sconstructionstructureandspecificationsoftheproduct

Levelsofstructure Processesofaproduct’slifecycle

Assemblyofaproduct

Methodologicalorigin/mainareaofapplication

LCAmethodology/LCAsoftwaretools

Productdevelopment/CADsoftwaretools

InLCAsoftwaretools,eachassessmentrequiresmanualremodelingof

productdata,andthemanualassignmentofecologicaldatasets.Verybasic

principlesofutilizedmethodologyapproachesinexistingsolutionsprevent,orat

leastrestrictthedigitalintegrationintoexistinginfrastructures.Structuralitems

likeassemblies,parts,andfeatures,whichrepresenttheframeofvirtualproduct

data,arenotconsideredastheyareusedinCAD,PLMsystems,asshowninFigure

4.1.Instead,materialandprocessareusedforthemainsystemstructure.

Page 49: Design for Sustainability through a Life Cycle Assessment

35

StructuralitemsrepresentproductmodelinPLM

Aggregate

StructuralitemsnotconsideredinLCA,insteadmaterialsandprocessesareaggregated

Figure4.1DifferentpresentationofproductmodelbetweenPLMandLCA

ManycurrentLCAsoftwaredonotconsiderthedefinitionofanindividual

lifecycleforeachcomponent,andthenormalizationofafunctionunitbythe

definitionofanindividuallifetimeforeachcomponent.Thisresultsinhuge

complexitywhendealingwithacomplexproductsystem.Sincematerialsand

processesareaggregatedduringremodelingprocess,identificationsof

environmental“hotspots”regardingcomponentswithinproductsystembecome

difficult.What’smore,theremodelingoftheentirelifecycleofaproductincreases

developingtimecausedbycomplexityofremodelingprocessanddatakeyedtwice

duetopoorinterconnectionofLCAwithotherdesigntools.

Thus,LCAandPLMsoftwaretoolsshallbelinked,datastructuringneedsto

beconsistent.Then,productmodelinPLMcanbeeasilymigratedtoLCAand

lifecycle-relevantinformationisextractedtocompletethelifecycleofthatproduct

model.

Page 50: Design for Sustainability through a Life Cycle Assessment

36

4.3PropermappingsfromPLMtoLCA

ThenextbarrieristhecollectionofdatafromPLMsystemandconnectionto

LCA.TheBOMinformationfromPLMneedtobeascomplete,error-freeand

consistentaspossibleundergiveconstraintsandmustbeinareadableformatby

LCA[76].TheworkofTheretetal.[61]assertsthatadirectconnectionbetween

CADandLCAtoolsprovideslessinformationthanusingPLM.Data,suchasmaterial

typeandweight,aredefinedinCADsystem.Additionaldata,suchasusageandend-

of-lifetreatments,areusuallyattachedtoWorddocumentsorexpertapplications,

whichishardtobelocatedinthePLMwithadirectlink.Consequently,the

necessarydatatocarryoutaLCAstudyisnoteasytoobtain.

Thus,propermappingsneedtobebuiltinorderforLCAtoextractrightdata

fromtherightplace.Currently,theformatsusedinCAD/PLMandLCIarenot

exchangeable.Propertiesoftheproduct,suchasmaterialsandprocesses,needtobe

mappedtodatafromLCIdatabasetobeusedinLCA.Otherinformationthatdefined

inembeddedfilesneedstobemachine-readable.However,thisoperationcanbe

hardintermsofcomplicatedend-of-lifetreatmentscenariosforexample.Manually

inputsshouldbeallowedtocompletethelifecycle.Ifdataismissingforcarryingout

theLCA,itshouldbeaskedtoprovidethisdatabyselectingmissingprocesses.

4.4LackofcomprehensiveLCIdatabaseandStaticNatureofLCA

InordertoperformaLCAstudy,adatabaseincludingtheecologicalbalances

ofvariousmaterials,manufacturingprocesses,sourcesofenergyproduction,modes

oftransportation,end-of-lifetreatment,etc.,isrequired.Thesedata,whentheyare

notdirectlymeasured,areoftenpresupposedconditionsofthedataissuedfrom

Page 51: Design for Sustainability through a Life Cycle Assessment

37

regulatoryreportsandindustrialstudies[13].AlthoughtherearesomeLifeCycle

Inventory(LCI)database,likeEcoinvent,NERLU.S.LCIdatabase,itisstillhard

sometimestofindpropermaterialtypesorprocessestodescribethelifecycleof

developingproduct.Timeandmoneyarestillinvestedtofindtherightdatafilling

intotheproperplace.Anotherimportantproblemconcernsthedataupdating;the

staticnatureofLCAdatacanimpedenewproductdesignandinnovation[77].

Facingtheunavailabilityofreliableactualizeddata,thoroughstudiesofthemissing

ecologicaldata,andotherimpediments,areessential.

ButthankstoLCAbecomemoreimportantduetoeithergovernment

regulationsordemandsofhighlycompetitivemarkets,oneargumentincreasingly

heardisthatLCAwillberequiredinthenearfutureforeveryproductandprocess

[78].Thiscanpotentiallyresultinmoreecologicaldatatobedevelopedtosolvethe

problemofdatainsufficiency.

4.5DesignersLackingKnowledgeofEco-design

AnotherproblemisthedesignerslackingexpertLCAknowledgeandtime

[15].Allthedesignparticipantshavetheirownbundleofknowledge.Inaddition,

someofthemmayhaveabasicunderstandingofotherspecificdomains.Inorderto

helpallthedesignparticipantstointegratetheenvironmentalimpactintheirdesign

activities.Theywillneedadditionalknowledge.However,agenerallackof

environmentalskillsisnotedateachstageofdesignprocess[79].Consequently,itis

difficulttousetheappropriatesoftwareandtoshareaglobalunderstandingabout

thewaytheenvironmentshouldbeintegratedinthedesignprocess.Thelackof

coherencebetweentheenvironmentalstakesasunderstoodbyparticipantsfrom

Page 52: Design for Sustainability through a Life Cycle Assessment

38

differentdepartmentsandbyitsproviders,raisesthequestionoftheenvironmental

managementstrategy[80].

Insuchcase,theseenvironmentalresultsshouldbeapparentand

understandabletodesigners.Researchers[75]proposedthatakeysuccessfactorto

bringLCAtoearlydesignstagesisthewaytheresultsofenvironmentalevaluation

shouldbevisualized,similartoFEAmodulesintegratedwithCAD,wheresome

parametersneedtobespecifiedtoobtainvisualizedandunderstandableresults.In

termsofselectingoptimalalternatives,quantitativeresultsrepresentingthe

environmentalperformanceofanalternativeshouldbeobtainedaccompaniedby

thecompletionofdesignparametersandreadytousedirectlywithoutoverburden

designers.

Page 53: Design for Sustainability through a Life Cycle Assessment

39

CHAPTER5

PROPOSEDSYSTEM

Inthischapter,onewaytosolvedifferentrepresentationofproductmodelin

LCAandPLMareintroducedbyanalyzingfeaturesofassemblytree.Then,

LCAatPLM-aLifeCycleAssessmentconceptualframeworkisproposedtotransform

productmodelusedbyPLMintoprocessmodelusedbyLCAwhilemaintainedthe

productstructure.Then,asubstancecompliancemoduleisalsoproposedtomake

sureenvironmentalregulationsarecheckedearly.ThenLCAframeworkand

substancecompliancecomposetheSustainabilityModule.Asystemarchitecture

includingSustainabilityModule,PLMandotherdesignsupportingtoolsisshownat

theend.

5.1OpeningProductModelfromPLMtoLCA

Theoperationsandrepresentationsinthetwosystemsaredifferent.Inorder

tointegratethem,firstlyacommonrepresentationofproductmodelmustbeused.

However,theaggregatedmaterialsandprocessesinLCAdonotclearlyindicate

whichpartisa“hotspot”andaredifficulttochangewhenanotheralternativeis

workedout.ThemaingoalistoletLCAtoreceivestructuralitemsandusethemto

performaLCAstudy.

Insection2.3,productstructureusuallyusedinPLMisintroduced.Aproduct

structureincludesassembly,partsandfeatures.Assemblyconsistsofsub-assembly

andparts.Partsconsistoffeatures.Eachpartorsub-assemblycanbesubordinateto

onlyoneotherassemblytoensureahierarchicaltreeratherthananetwork[27].

Page 54: Design for Sustainability through a Life Cycle Assessment

40

Ahierarchicaltreestructurecomprisesoffourentitytypes,namelytheroot,

nodes,leafsandfeatures.Suchadatastructurebasicallyresemblesaproducttree

consistingofrootrepresentingproductandasetofassemblies(treenodes),parts

(treeleafs)andattributes(processfeatures).

Analyzingeachentityinthetreestructure,eachtypemayresideindifferent

LCAphaseswithdifferenttypeofprocesses.Forexample,apart,i.e.aleaf,is

definedasanodewithnochild.Itisproducedbyintermediatematerialsthrough

productionLCAphase.Theseintermediatematerialsaretransformedfromraw

materialsthroughrawmaterialextractionLCAphase.Then,itisassembledwith

otherpartsusingenergytoformanassembly,i.e.anode.Inthiscase,thenodecan

beassociatedtoproductionLCAphase.Bothassembliesandpartsneedtobe

transportedtocertainplaces.SobothnodeandleafhastransportationLCAphase.

Finally,partsaredisposedorrecycledindividuallyorwithinanassembly.They

finallyhaveendoflifeLCAphase.

Morbidoniandassociatesconcludethatactualdataentitiesofthosetypecan

beassociatedtoprocesstypesandlifecyclephasesasshowninTable5.1[65].

Table5.1Entity,Lifecycleandprocesstype

Entity LCAphase Typeofprocesses

Root

ProductionUse

Endoflife

AssemblyTransportation

Energyproduction

Node ProductionEndoflife

AssemblyTransportation

Leaf

ProductionEndoflife

MaterialTransformationTransportation

Feature Manufacturing Machining

Page 55: Design for Sustainability through a Life Cycle Assessment

41

Afterdefiningeachentityinthehierarchicaltreestructureassociatedtofive

LCAphases,aproductmodelusingstructuralitemscanbeopenedinLCAdirectly

receivedfromPLM.

5.2CompletetheLifeCycleInformationExtractedThroughProperMappings

Aftertheentitieswithinaproductmodelcanbeassociatedwithdifferentlife

cyclestages,thenextstepistoextractpropermaterialsandprocessesinorderto

completetheentirelifecycleoftheproduct.Actualdataofindividualallocation

parameterareextractedmainlyfromPLMordesignsupportingsystemsintegrated

withPLM.Mappingscouldbebuiltthroughprogrammedprocedurestoallow

automaticallyextractionfrommultipleplaces.Forexample,featureslikematerial

andvolumeshouldbelinkedtomaterialtransformationprocesses.Thisinformation

canusuallybefoundinaCADorPLMsystem.Featureslikemanufacturingmethods

areavailableinCAMormanuallyselectandassign.Otherfeaturessuchas,

transportationmodesanddistance,endoflifetreatmentscenario,canbefoundin

embeddeddocumentsattachedtoeachstructuraliteminPLM.Forthoseembedded

documents,amachine-readableformatshallbeenabledforautoextraction.If

recycleorreuseisconsidered,completeend-of-lifetreatmentscenariosshallbe

developed.Forthemissingprocessestocompletealifecycle,manuallyselection

fromanLCIdatabaseiscombinedwithanauto-extractionprocess.Table5.2shows

requirementsoflifecyclestagestocompleteaLCAstudyandplacestoextractthem.

Page 56: Design for Sustainability through a Life Cycle Assessment

42

Table5.2Requiredinformationforlifecycleandextractionplaces

LifeCycle Requirements ExtractionplacesRawmaterialExtraction

(Transformation)

•Material•Geometry•Volume

CAD,PLM

Production

•Manufacturingprocess•Energy•Machineselection

CAM,CAPP,PLM

Transportation •Transportationmodes•Distance

PLM

ProductUse

•Energy•Resources•Parts

PLM

EndofLife •End-of-lifetreatmentscenarios PLM

Finally,aproductmodelusedbyPLMandotherComputer-aidedtechnology

(CAx)canbekeptusingitsoriginalstructureandlifecycleinformationassociated

withdifferententitiesaremappedfromPLMtofivelifecyclestagesthatlinkedto

theseentities.Figure5.1showstheconceptofsuchmappingsfromPLMtoLCA.

PLM,CAx,etc..

Product

-transport-usage-EOL

-...

Assembly

-assembly-transport-EOL

-...

Part

-material-volume-manufacturing-transport-EOL-...

RME EOLUseTransportationProduction

...

Root Node Leaf

Figure5.1MappingconceptfromPLMtoLCA

Page 57: Design for Sustainability through a Life Cycle Assessment

43

5.3ProposedLCAatPLM

AconceptofaLCAframeworkthatincorporatesfivelifecyclestagesis

proposedtoreceiveproductmodeldirectlyfromPLM.Itkeepstheformofaproduct

treeandextractsrelevantinformationfromPLMandotherdesignsupportingtools.

Then,theseinformationisfilledintofivelifecyclestagesincludingRawMaterial

Extraction(RME),Production,Transportation,UseandEnd-of-life(EOL).Through

thismeans,noeffortisusedforremodelingtheentirelifecycleofaproductby

buildingacompleteLCAmodel.

AnexampleofproducttreeinFigure5.2isusedtoshowhowproductmodel

andlifecycle-relevantinformationareusedintheLCAframework.Inthiscase,Ais

therootrepresentingaproduct,Bisnoderepresentinganassembly,andC,D,Eare

leafsrepresentingsinglepart.

Figure5.2Exampleofaproductinassemblytree

5.3.1RawMaterialExtractionPhase

IntheRawMaterialExtraction(RME)block,typesofmaterialandother

geometricalpropertiesarerequired.AsshowninTable5.1,leafsintheassembly

treehavelifecycleprocessesofmaterial,transformation,transportationandendof

Page 58: Design for Sustainability through a Life Cycle Assessment

44

life.Sowithinthisblock,onlyleafshaveinputplace.Availableinformationcanbe

foundfrompropertiesdefinedduringCADdesignphasesorfromPLM.

Optimalmaterialselectionearlyinthedesignprocesswillimprovethe

overallimpactsofproducts.Ljungberg[81]arguedthatmaterialselectionisoneof

themostimportantfactorsthataffectthequesttoachievemoresustainable

products.HereamaterialselectionlibraryisproposedtobeusedwithPLMto

providematerialinformationtothedesigners.FinalRMEblockconceptfigureis

shownbelowusingtheexample.

Figure5.3RMEinproposedLCAframework

5.3.2ProductionPhase

Intheproductionblock,manufacturingprocessesandenergiesareneededto

manufacturetheintermediatematerialsfromRMEblocktothefinishedparts.This

isthefeatureofleafs.Besidesleafs,treerootandnodesalsohaveinputareas.The

assemblingofdifferentpartsintoanassemblyorarootmayrequireenergy.LCI

databasecontainsmostofthecurrentmanufacturingprocessesandenergy

Page 59: Design for Sustainability through a Life Cycle Assessment

45

consumptionwhichcanbeenoughforanevaluation.Notonlyoneprocessbutalso

multipleprocessescabeselectedorextractedbasedonthedesigninformation.

Thereisalsoaneedtobuildamachinedatabasethatcontainsalistof

processingmachinesavailableinthecompany,withspecificconsumption[82].Bya

combinationofselectionofmultipleprocessesandmachinesacompanyowns,itis

possibletomodelthecorrectandrealmanufacturingprocess.Onechallenge

mentionedabovethatLCIdatabaseswhichareneversufficientcanbemitigatedbya

customizableLCAdatabasewhichcontinuouslyupdatethelatestLCIbyadding

processes,andaddingoradjustingtheavailablemachines.Aconceptualfigureof

Productionblockisshownbelow.

Figure5.4ProductioninproposedLCAframework

5.3.3TransportationPhase

IntheTransportationblock,transportationmodesanddistancearerequired

tocompletethisstage.Alltheentitiesinthetreestructurecanbeassociatedto

transportationphaseasshowninFigure5.5.

Traditionally,whenremodelingthisstageusingLCAsoftwareormethods,

anaggregatedestimationofmodesanddistanceisusedtorepresentthewhole

Page 60: Design for Sustainability through a Life Cycle Assessment

46

producttransportationstage.However,byseparatingtheentireproductstructure

intoeachpart,inotherwords,separatingtheoneentirelifecycleofaproductinto

onelifecycleforeachpart,everyentityinthetreestructurecanhaveitsown

transportationmodesanddistance.Thiswillhelptounderstandhowtheselection

ofsupplierinfluencesthefinalecologicalimpacts.Thisisratherimportantinreal

world.Sincenowadays,oneproductisseldomproducedinoneplace.Theselection

ofsupplierwhileconsideringthecostandalsoenvironmentalimpactsbecomesa

problem.

Figure5.5TransportationinproposedLCAframework

5.3.4UsePhase

TheUsephasecansometimescontributemosttotheenvironmentalimpact

ofaproduct.Theuseofthefinishedproductincludesuseofresourcesorenergyand

useofcomponents.Firstly,theuseofenergyorresourcescanbeselectedprocesses

fromLCAdatabaseandassignthemtheproduct.Secondly,duetothedegradationof

thecomponentsandtheirsubsequentsubstitutionormaintenance,thereplacement

andrepairhavearelevantcontributionandcomputationoftwoormoreofthem.So

intheUsecolumn,itenablesmultipleselectionsfromprocesseslikethe

Page 61: Design for Sustainability through a Life Cycle Assessment

47

consumptionofelectricity,water,tocomponentstoallowthemaintenanceand

replacementphasestobeconsidered.OnlyrootcanbeassociatedwiththeUse

phaseasshowninFigure5.6.

Figure5.6UsephaseinproposedLCAframework

5.3.5End-of-LifePhase

Finally,theEnd-of-Lifestageislittlemoredifficultythantheformerstages.

Firstbarrieristhatusuallyduringthedesignstages,thefinalend-of-lifetreatment

scenariosarenotdecided.ItisnecessarytoenvisageeverypossibleEnd-of-Life

treatmentscenariosandthisprocessisusuallytime-consuming.Thesecondissueis

thereisatendencyforsustainableproductsslidingfromacradle-to-graveapproach

toacradle-to-cradleone[83].Thiscanbeseenfromseveralregulations,suchas

End-of-LifeVehicle(ELV)[refer]whichisdesignedtopromotecollection,reuseand

recyclingofvehicles.Usuallyaclosed-loopindustrialsystemimpliesthat

manufacturersdonotonlytakecareofproductmanufacturinganduse,butalsoof

howproductscanbetakenbackandtreatedattheirend-of-lifeorre-includedin

newlifecycles[84][85].Reuse,remanufactureandrecycleareofgreatimportance

Page 62: Design for Sustainability through a Life Cycle Assessment

48

tolowertheenvironmentalimpactsofaproduct.Gehinetal.[86]introduced3R

strategyforclosed-loopsystemnamedafteramixofthethreeEOLscenarios:Reuse,

RemanufactureandRecycle.Forexample,ifthecomponent𝑖isrecycledinaclosed-

loopsystem(itisassumedthattherecycledmaterialisusedformanufacturethe

sametypeofcomponents)orremanufactured,orreused,thenforeachusagecycle

between2and𝑢. andforthepercentageofrecoveredproduct,thematerialstage

impactissettozero.Ifthecomponent𝑖isremanufactured,orreused,thenforeach

usagecyclebetween2and𝑢. andforthepercentageofrecoveredproduct,the

manufacturingimpactissettozero.Theenvironmentalimpactattributedtoeach

lifecyclephasecanbecalculateddependingontheEOLchoices.Sointheproposed

EOLcolumn,eachcomponenthasfourchoices:Reuse,Recycle,Remanufacturing

andothertreatment(Disposal,incineration,Landfill,etc.).Morbidonietal.[66]

providesanapproachtosolveEOLtreatmentscenarios.Intheirpaper,they

proposedfirstlyintheReusechoice,thereusetimescanbespecifiedforthe

calculationofenvironmentalimpact,acomponentcanbereusedmoretimesduring

theproductlifecycle,afteritcannotbeused,theotherthreechoicescanbeselected.

SecondlyintheRecyclechoice,theusercanselect“closedloop”or“Genericrecycle”

asrecycletypes,thefirstcasethematerialisreusedforthesamecomponent

production,intheothercasethematerialisusedforotherapplications.Inthe

Remanufacturingchoice,percentageofcomponentsthatcanbeeffectively

remanufacturedisdefinedaswellasremanufacturingtimes.Aftercomponentscan

nolongerbeused,recycleandothertreatmentchoicescanbeselected.Inthelast

choice,OtherTreatment,anEOLprocess(Incineration,Landfill,etc.)canbeselected

Page 63: Design for Sustainability through a Life Cycle Assessment

49

fromLCAdatabase.Tosavetime,thesefourchoicescanbeassignedtoparts,

assembliesandthewholeproduct.ItisnotnecessarilytodefineEOLforeachpart.

EOLstageunlikeotherstagesstronglydependsonthetypesoftheproduct.Usually

forlesscomplexproduct,OtherTreatmentchoiceissufficient.Butforproductslike

vehicleorelectronicdevices,amixofallfourchoiceswillbeselectedanddefined.

BydefiningalltheEOLtreatmentlikethis,adirectviewofEndoflifephasewillbe

acquiredforanalyzingproductagainststrictenvironmentalregulationsduringthe

designstage.AnillustrativefigureofEOLcolumnisshownbelow,eachEOLcanbe

openedandselectfromfourchoicesanddefinerelevantdatatocompleteEOLstage.

Figure5.7EOLinproposedLCAframework

5.3.6OverallLCAFramework

AfterintroducingfiveblocksoftheproposedLCAframework,theoverallLCA

frameworkinSustainabilityModulewithinPLMisshowninFigure5.8.Eachblock

canbeopenedseparatelyforinformationinputinordertocompletethelifecycle.

Theideaofmakingenvironmentalimpactsasadependentpropertyattachedto

assembliesorpartsisintroduced.DesignerscanperformaLCAstudyjustafteran

assemblyisdesigned.Theresultswillbeusedforquickaddtotheproductand

Page 64: Design for Sustainability through a Life Cycle Assessment

50

comparisonwithotherassemblydesign.Whenarevisionofassemblyorproductis

workedout,anewLCAresultwillbeattachedtotherevision.Bythismeans,the

designerscanmonitortheenvironmentalimpactsdirectly.Thedependentproperty

canbevisiteddirectlyduringthecalculationofacompleteproduct,which

significantlysavecomputingtimewhendealingwithacomplexproductstructure.

RME Production TransportationEnergy Modes/Distance

Processn1/Energy Modes/Distance

Material1/volume Processn2/Energy Modes/Distance

Material2/volume Processn3/Energy Modes/Distance

Material1/volume Processn4/Energy Modes/Distance

Use EOLUsageprocesses/Components

EOL

EOL

AB

C

ED

AB

C

ED

AB

C

ED

AB

C

ED

AB

C

ED

Figure5.8OverallproposedLCAframework

SeveralworksonLCAintegratedwithCAD[27][64][65]usedacommon

ideathatcomponentsinaproducttreecanbeassociatedwithdifferentlifecycle

phases.Thisideaestablishedthefundamentalbasisforthiswork.However,these

fundamentalworksdevelopedauserinterfacethatconnectsaCADsystemandLCA,

andinputlifecycleparametersonecomponentafteranotherbyvisitingeachentity

inanassemblytreeinCADsystem.Thus,theyarestilltwostand-alonesystems.

Someofthemexcludedcertainlifecyclestagesforsimplification.

ThisworkproposedaLCAframeworkusedinaPLMsysteminorderto

retrievedatathatcannotbeprovidedbyanassemblytreeusedinaCADsystem.

Page 65: Design for Sustainability through a Life Cycle Assessment

51

What’smore,thisworkintegratesaproductmodelandaprocessmodel,andbrings

theminthesameinterface.Thisfeaturegivesdesignersadirectviewon

componentsassociatedwiththeirlifecyclestagesandallowsthemtoeasilyselect

andmodifydifferentprocesses.Also,thisframeworkcoversacompletelifecycle,

whichguaranteesmoreaccurateenvironmentalperformanceoftheproduct.Many

features,includingprocessmanagementandintegrationwithdesignsupporting

tools,providedbyPLMbeyondasingleCADsystemcannotonlybringdesign

participantsofdifferentexpertiseintooneplacebutalsoprovidesmore

comprehensiveinformationofaproduct.

5.4ProposedSubstanceComplianceModuleusedinPLM

Theenvironmentalconcernusuallystartswith“complyingwithregulations”.

Acertainproductbelongstoacertaincategorythatmightfallunderrestrictions.

Sometimes,theyareevenmoreimportantthanalowerenvironmentalimpacts.

Fallingtocomplywiththeseregulationsmakesproductunabletoentermarketfor

theworstcase.

Areviewofsomeoftheenvironmentalregulationsfoundtheyfocuson

differentlifecyclestages.RoHS,alsoknownas,Lead-Free,standsforRestrictionof

HazardousSubstances.Itrestrictstheuseofsixhazardousmaterialsfoundin

electricalandelectronicproducts.REACHalsoaimstoprotecthumanhealthand

environmentthroughtheidentificationoftheintrinsicpropertiesofchemical

substances.Regulationsofsuchfocusonearlierlifecyclestagesinordertomaintain

theproductdonotconsistofrestrictedmaterials.However,inrecentyears,more

andmorefocushasbeenonthereuse,recyclingandrecoveryoftheproductsafter

Page 66: Design for Sustainability through a Life Cycle Assessment

52

theyaredisposed.RespondingtoconstantlymoredemandingEuropeanlegislation,

notablyforelectricalandelectronicequipment,worn-outvehiclesorhazardous

substances,manufacturershavetodevelopEnd-of-Life(EOL)strategies[83].For

example,theEuropeanUnion’sEnd-of-LifeVehicle(ELV)Directive,whichcameinto

forceinSeptember2000,aimsatmakingdismantlingandrecyclingofELVsmore

environmentalfriendly.Itsetsclearquantifiedtargetsforreuse,recyclingand

recoveryoftheELVsandtheircomponents.Wasteofelectricalandelectronic

equipment(WEEE)alsofocusontheend-of-lifestagesbysettingtargetsof

collection,recyclingandrecoveryforalltypesofelectricalgoods.

CurrentsolutionsonthesemattersincludesEnvironmentalComplianceand

productsustainabilitymoduleusedinTeamcenterfromSiemens,WindchillProduct

AnalyticsfromPTCandproductcompliancesoftwarefromThinkstep.BOM

combinedwithinformationprovidedfromsuppliersenablethemtotrackand

managethecomplianceofproductsveryearly.WithBillofSubstance(BOS)

acquiredfromBOMandsuppliers,itiseasiertochecktheuseofhazardous

materialsatverystart.ComparedwithREACHandRoHS,ELVandWEEEtarget

mainlyontheendoflifephase.IntheproposedLCAframework,detailedscenarios

canbesetforeachpartorassembly.Afteranalternativeisworkedout,designers

canhaveadirectlyviewontheEnd-of-Lifephasebygeneratingadisassembly

report,recoveryrateorotherways.Eventhoughthesesettingsmaynotbefinal

ones,itsmainaimistoimprovetheknowledgeoftheproductattheearliesttimefor

designers.

Page 67: Design for Sustainability through a Life Cycle Assessment

53

Finally,asthecomplyingwithregulationsisthestartoftheeco-design

process,thesubstancecompliancemodulewillbeserveasagateofYESandNO.

Newalternativesthatcomplywiththerelevantregulationsaftercheckedby

substancecompliancemodulewillcontinuetheirdesignprocesses.New

alternativesthatviolatetheregulationsaftercheckingwillbemarkedandreturned

nomatterhowgoodtheirLCAresultsare.Thisprocesskeepsallthedevelopingnew

alternativescomplywithregulationsfromthestarttotheendofdevelopment

process.

5.5ProposedSystemArchitecture

Planning ConceptualDesign

DetailedDesign

EmbodimentDesign

Text&Prototype

Designprocess

PLM

CAD CAM,CAPP DecisionMaking

MaterialSelectionLibrary

ProductSpecificationBOM ManufacturingInformationembedded

inducuments

SustainabilityModule

LCAdatabase

SubstanceCompliance

Machinedatabase

feedbacks

DesignersManufacturingspecialists

DecisionMakers

Customers

ManagementWastemanagementprofessionals

LocalorGlobalEvaluation

Suppliers

Environmentalspecialist

LCA@PLM

Figure5.9Proposedsystemarchitecture

TheSustainabilityModulewillbelikeotherintegratedapplicationswithin

PLMlikeCAD,CAM,etc.AproposedsystemarchitectureisshowninFigure5.9.The

PLMserveasthefoundationforallbymanaginginformationfromallsourceto

maximizeinformationsharingandinteroperability.Informationthatareembedded

Page 68: Design for Sustainability through a Life Cycle Assessment

54

inthedocumentshelpstranslateneedsintodesigngoalsandcompletelifecycle

informationthatcannotextractfromCAx.Adecision-makingmoduleisaddedatthe

endfordesignattributescollectionandcomparisonofalternatives.Sinceadecision-

supportsystemislackinPLM,inthiscaseaspreadsheetisattachtoPLMfor

decisionmaking.

Thisarchitectureincludestwolevels.Firstly,thehorizontallevelisanormal

productdesignprocess.DifferentfromthedefinitionoflifecycleinPLM,i.e.from

ideation,designtoservice,thisarchitecturemainlyemphasizesitsuseduringdesign

stages.Usuallytheboundarybetweenphasesarevague.Thedesignprocessisnota

phaseafterphaseprocedure.Sometimesadetaileddesignalternativemaygoback

toplanningphaseandrestart.Themostsustainabledesignmeetsallthecriteria

definedatthestart,balancingcost,performance,environmentalimpactsandsoon.

However,duringtherealimplementation,therearealwaystrade-offs.Inorderto

getamoreoptimaldesign,theverticallevelwillhelp.Afterdesignalternativesare

workedout,theywillsendtoSustainabilityModuleforidentifying“hotspots”,check

substancecomplianceandgenerateanenvironmentalreport.Theseinformationare

feedbacktoPLMtonotifydesignersontheenvironmentalperformanceofthat

alternativeforfuturemodifications.Thesereportsarealsoattachedtoeach

alternativeandfillintothedecision-makingmodule.Sincethereisnoboundary

betweendesignstages,designerscanmakelocalorglobalevaluationanddonot

havetowaitonlyafterthelifecycleinformationofanalternativeiscomplete.Local

evaluationmeansdesignerscanevaluatefinishedassemblyorparts,whileglobal

evaluationmeansevaluateoffullproductintermsoftheenvironmentalimpacts.

Page 69: Design for Sustainability through a Life Cycle Assessment

55

Also,afterevaluation,instantfeedbackissentbacktoPLM.Throughconstant

feedbacks,productsintermsofenvironmentalimpactsarewellmonitored.

CombinedwithotherdesignattributesgatheredfromPLMandotherplaces,all

designattributesarestoredindecisionmakingmoduleforaholisticconsideration

ofalldesignattributes.

Anotherfeatureofthearchitectureistheparticipationofpeoplefrom

differentfields.Bringalldesignparticipantsintooneplaceiscrucialforshorten

developingtime,maximizinginformationsharingandinteroperability.There

certainlyareroleswhicharenotshownintheframework,however,thebasicideais

thatpeoplerangingfromcustomers,supplierstodesignersofdifferentdepartments

shouldhavetheirrolesintherightplaceattherighttime.

Page 70: Design for Sustainability through a Life Cycle Assessment

56

CHAPTER6

DESIGNMETHODOLOGY

Asustainabledesignmethodologyisproposedusingtheconceptofproposed

SustainabilityModuleintegratedwithinPLM.Thedesignmethodologycombined

withLCAatPLMmainlytriestosolvethechallengesmentionedinChapter4.Some

designstepsuseofcapabilityprovidedbyaPLMsystem.Themaindesignprocessof

themethodologyisshowninFigure6.1followedbyadetailedillustrationofeach

process.Weillustratethismethodologyisusedatearlydesignstages,where

potentialdesigngoalsandalternativesareestablishedforcomparison.

Planning&Management

Planning DesignStage Test&Prototype

UseSustainableModuleforInvestigations

FeedbackstoPLM

PLM

SustainabilityModule

SetDesignGoals

IdentifyDesignAlternatives

UseSustainableModuletoGenerate

EnvironmentalReports

CollectFeedbacks

ExecuteHEIMandSelecttheOptimalAlternative

PrepareforNewDesignInitiatives

StartingPointforNewProducts

Ifgoalsarenotmet

Step1.1

Step1.2

Step1.3

Step2.1

Step2.2

Step2.3

Step2.4

Step2.5

Step3.1

Figure6.1Proposeddesignmethodology

Page 71: Design for Sustainability through a Life Cycle Assessment

57

6.1BeforeDesignStage

AsshowninFigure1.1,aPLMsystemhascapabilityofdatamanagement,

processmanagementandintegrationwithotherdesignsupportingtools.Itisalsoa

collaborativebackboneallowingpeopleofdifferentfieldstoworktogether

effectively.SomeofthefeaturesprovidedbyPLMarehelpfulforexecutingeco-

designprocesses.Thus,manyauthorsagreethatPLMisthekeyconceptforthe

establishmentofeco-designprocesses[4][5][6][7].

Beforedesignstage,planningphaseexertsamajorinfluenceonallphasesof

development.Teamcoordination,strategies,needanalysisandbaselineareallneed

tosupportdesignprojects.Inthesectionsbelow,planningphasemakesfulluseof

capabilitiesofPLM.

6.1.1Step1.1:PlanningandManagement

Firstly,PLM’sprojectmanagementiscriticaltoproductdevelopmenteither

intermsofcollaborationsordevelopingtime.PLMcanhelpbuildinganeco-design

teamfromdifferentfieldsinaproject.Whentheskillsandknowledgeofmany

disciplinesareavailableduringallstagesofaproject,memberswithintheteamare

notoverwhelmedbythetaskofincludingenvironmentalcriteriaintheirdesign.

Projectmanagementalsocanhelptocreateschedulewithmilestonesand

deliverablessothatprojectarefinishedefficientlyandon-timesinceeveryone

throughouttheproductlifecyclehaswhattheyneedtogettheirworkdone

effectively.

Page 72: Design for Sustainability through a Life Cycle Assessment

58

Secondly,PLM’srequirementmanagementcandocumentdesign

requirementsfromdifferentsourcesfromgovernmentalregulations,standardsand

customerneedsanddeterminewhethertheserequirementsaresatisfied.

Formulatingrequirementsisprobablymostcriticalphaseofdesign.

Requirementsshouldbestatedindetailfordesignteamtotranslateneedsinto

solutions.Afterformulatingdesignalternatives,theycanbeevaluatedonhowwell

theymeetrequirements.Itisimportanttospendenoughtimetodevelopproper

requirements.

Thirdly,PLM’sdocumentmanagementcanhelpmanagealltypesoffilesfrom

specification,2D/3Ddrawingstospreadsheetsandtechnicalpublications.Withthis

feature,designrequirementsarewelldocumented,basedonwhichdifferentdesign

alternativesareformulated.Inthismethodology,comprehensiveenvironmental

profilesarealsostoredintheformofadocument.Aspreadsheet,usedasadecision-

makingmodule,isuploadedtobeusedforcollectingdesignattributesanddecision-

making.

Besidesusingthesefeatures,somemoreworkneedtobedoneduringthe

planningphase.NeedsAnalysisisusuallyperformedoffthesystem.Needscome

frommanysources,includingcustomers,researches,orexistingproductsystems.In

anycase,theneedwhichadesigncommitsmustbeclearlystatedandexisting

optionsformeetingtheneedmustbeassessed.

Thefocusofthisresearchistopursuethemostsustainablepathwaysfor

addressingneeds.Baselineanalysisofexistingproductsandbenchmarking

competitorsmayindicateopportunitiesforimprovingaproduct’senvironmental

Page 73: Design for Sustainability through a Life Cycle Assessment

59

performance.Foraredesigningprocess,componentsandsubassembliesarealready

availableinthereferencemodel.Wenzelandcolleaguesrefertoalreadyexisting

componentsandsubassembliesasreferenceproducts,andassumethat

environmentalinformationisalreadyavailableforthesesystems[87].Inthiscase,a

referencemodelofacompany’slastgenerationproductorproductofsimilarfamily

couldbeusedforanalysisandsolvingthedataunavailabilityatearlydevelopment

stage.Usually,productdatahavealreadybeenstoredinPLMandreadyforuse.

Environmentalprofileofthereferencemodelwillbeinstantlyavailableusing

SustainabilityModule.

However,forcompletelynewproductswithlittleinformationisreadilyat

hand,therearetwosolutionsthatcansolveinformationunavailabilityatearly

designstage.Firstly,sincenewproductareusuallybasedonexistingtechnologiesin

newcompositions,itispossibletocomposeausefulreferenceproductbyputting

existingunitsandtechnologiestogethertoformafictivemodel.Thesecondsolution

istheideaofLCA-comparisonproductfamilies(LCP-families)[88]asasetof

productswhoseLCAsharesacommonbehaviorandcanbecomparedinsome

practicalway.Eventhoughthestartingphasewilltakesometimeforacompletely

product,oncethedesignprocessisfinished,futuredevelopmentwillbecomemuch

easierandfaster.

6.1.2Step1.2:UseofSustainabilityModuleforanInitialInvestigation

Theinitialinvestigationincludesthreeparts.Firstly,anenvironmental

profileofthereferenceproductwillbegenerated.Allinformationaboutthe

Page 74: Design for Sustainability through a Life Cycle Assessment

60

referenceproductarestoredinPLMintheformofhierarchicaltreewithdetailed

BOMandotherLCI-relevantinformation.LCAatPLMwillreceiveproductmodel

fromPLMandextractrelevantinformationfrommultipleplacestocompletethelife

cycleofthereferenceproductandfillintothefiveLCAblocks.Muchinformationcan

beautomaticallyextracted,whiledesignerscanalsomanuallyselectLCItocomplete

thelifecycle.

However,theenvironmentalprofileofaproductisasummaryofall

environmentalimpactsthroughouttheproduct’slifecycle.Makingtheseimpact

categoriescleartonon-environmentalexpertsisquitecriticalifenvironmental

attributesaretobeusedearly.InanattempttosimplifytheLCAoutputfordecision-

making,thegreatestenvironmentalimpactshavebeenconsideredforsimplicity.

Throughnormalization,characterizationandweighting,multipleenvironmental

impactscategoriesaretransformedintoanenvironmentalindexthatindicatethe

overallenvironmentalperformanceoftheproduct.Suchaquantitativenumber

requiresnoenvironmentalexpertiseandcanbeeasilyunderstoodandusedby

designers.Theoverallenvironmentalprofilewillbehelpfultoanalyzetheproduct

improvementintermsofenvironment.Thesingleenvironmentalindexisusedfor

purposeofsupportingdecision-makingprocess.

Secondly,asubstancecompliancereportwillbegenerated.Thesubstance

complianceinSustainabilityModulewillhelptocheckwhetherthereferencemodel

complieswiththeexistingenvironmentalregulationsinordertoidentifythe

restrictions.Itwillmakesureallthecomponentswithinthereferencemodelcanbe

reusedandassembledintoanewproduct.Thesuccessofthisstepgreatlydepends

Page 75: Design for Sustainability through a Life Cycle Assessment

61

onthecommunicationwithsuppliers.Adirectviewatend-of-lifetreatmentofthe

referenceproductalsocanbeacquiredforanalysis.

Thirdly,themostimportantsourcesofenvironmentalimpactinthe

referencemodel’slifecycle(environmental‘hotspots’)arepointedoutinorderto

identifypotentialfocusareasforthefurtherproductdevelopment.TheLCA

frameworkseparatethewholelifecycleofaproductintoeachuniquelifecycleofa

partoranassembly.Eachuniquelifecyclewillgeneratethecomponent’sLCA.Then,

thesecomponent’sLCAresultsaretransformedintoenvironmentalindexesusing

thesamecharacterization,normalizationandweightingmethodasusedabove.

Theseindexeswillbeattachedtothecomponentsaccordingly.Thedesignerscan

compareallthecomponentswithinanassemblyaccordingtheseenvironmental

indexesandthendeterminewhichcomponentsare‘hotspots’.Also,thefivelife

cyclephaseswillnotifydesignerswhichstagesofthereferencemodelcontribute

most.

Withanoverallreportregardingtheenvironmentalperformanceofthe

referencemodel,environmentalrequirementscanbeformulated.Newalternatives

canbeidentifiedbyreplacingtheenvironmental‘hotspots’.TheLCAresultsof

referencemodelcanbealsoservedasameasureofsuccesswhenitiscompared

withnewsetsofalternatives.

6.1.3Step1.3:FeedbackstoPLM

Thegeneratedenvironmentalreportincludingenvironmentalprofile,

substancecompliancereportandenvironmental‘hotspots’arethenfedbackto

Page 76: Design for Sustainability through a Life Cycle Assessment

62

PLMtoallowallthedesignparticipantstoview.Managementpersoncanmakenew

environmentalpolicyandmakeenvironmentalrequirementsonthefutureproduct.

Thesubstancecompliancereportwillnotifydesignerswhetherall

componentswithinthereferencemodelcomplywithregulations.Ifsomeofthem

arevioletstheregulations,theywillhelpsetdesigngoalsonsolvingthatissue.For

othercomponents,theyaresafetobereused.

Allthedesignattributesofthereferenceproductarealsofilledintothe

decision-makingmoduleinPLM.Itwillworkasabaselinetoevaluatethe

performanceofthenewalternatives.

6.2DesignPhase

ThisdesignprocessusessomeoftheideasfromNASDOP[19]developedby

Dr.Eddywhoisincooperationwiththeauthoronthisresearch.TheNASDOP

designprocessfirstidentifiesdesignalternativesbasedondesigngoals.Then,for

eachalternative,LCAandLCC(LifeCycleCosting)areusedtoaccountforall

environmentalandcostflowstodeterminetheresultingenvironmentalandcost

attributes.Thenuncertaintiesareaccountedforduetosignificantuncertaintyin

environmentalandcostdata.HEIM(hypotheticalequivalentsandinequivalents

method)isexecutedtofindtheweightsoftheattributesbasedonthestated

preferencesofthedecisionmaker.Finally,MAU(Multi-attributeutility)valueare

computedforeachdesignalternativeandthealternativewithgreatestMAUvalueis

chosen.Ifthedesigngoalsarenotmet,newsetsofdesignalternativesareidentified

andrepeattheprocessesuntilthedesigngoalsaremet.

Page 77: Design for Sustainability through a Life Cycle Assessment

63

6.2.1Step2.1:SetDesignGoals

Aftertheplanningphases,designrequirements,needanalysisareall

formulatedandstoredinPLM.Aninitialinvestigationofthereferencemodelisalso

performedtogetenvironmentalrequirements.Then,designgoalsarefirstlysetin

ordertoidentifynewalternativesthatsatisfythem.

6.2.2Step2.2:IdentifyDesignAlternatives

Aftertheenvironmentalprofileofthereferenceproductisacquired,design

goalsincludingallaspectsoftheproductsuchas,cost,environmentalperformance,

feasibility,etc.mustbetakenintoconsiderationtoensurethenewalternativesat

leastgetclosetothegoals.Newfunctionalitiescanbeaddedtothereference

productinordertomeetthecurrentcustomer’sneeds.

Regardingtheenvironmentalperformances,itistimetodeterminewhether

someoftheenvironmental‘hotspots’canbemoderatedorremovedbymodifying

orreplacingcertainsolutionsinthereferencemodel.Throughthismeans,

environmentalimprovementscomparedtothereferencemodelcanbeachievedif

environmentalreportsfromPLMaretakenasanopportunitytorethinktraditional

solutions.Asforthosenon-environmental‘hotspots’,detailedinformationabout

themcanbereuseddirectlyduringthedesignphase.

Then,newalternativesareidentifiedthroughmodifyingorreplacingcertain

solutions,addingnewfunctionalitiesandreusingcomponentsinthereference

model.Materials,weightandprocessesaredetermined.Allenergyusesorpartsare

takenintoaccount.Transportationprocessesareincluded.End-of-Lifetreatment

scenariosarebuiltupbasedonestimations.

Page 78: Design for Sustainability through a Life Cycle Assessment

64

6.2.3Step2.3:UseSustainabilityModuletoGenerateEnvironmentalReports

Afterthestrategiesofidentifyingnewalternativesareset,theBOMofeach

newalternativeisformedwiththeuseofdesignsupportingtools,suchasCAD,and

storedinthePLMintheformofaproducttreestructure.Productproperties,such

asmaterialstypesandmanufacturingprocessescanbefoundinthePLM.

Informationonlifecyclestages,suchastransportations,useandend-of-life,are

includedintheWordfilesorothertypesofdocumentsuploadedintoPLM.

Withtheavailabilityoftheseproductdata,theentirelifecycleofthe

alternativecanbemodeledinordertogetanLCAresult.However,theproposed

LCAatPLMdoesnotneedthelifecycleremodelingprocess.Itkeepstheproduct

modelandfillslifecycleinformationassociatedwithdifferentcomponentsinthe

producttreeintofivelifecyclestages.Anenvironmentalprofileisgenerated

throughthis.Also,anotherpart,substancecompliance,intheSustainabilityModule

willcheckthesenewalternativesattheearliestwhethertheycomplywith

environmentalregulationsinordertoredesignorexcludethebadalternativesto

preventlatechange.

IfpropermappingsarebuiltfromPLMtoLCA,theLCAresultwillbe

generatedinreal-time.ItchangesthestaticnatureofLCAandletLCAdynamically

updatedwiththemodificationsinalternativessothatthedesignersareawareof

howwellnewalternativesbecomecomparedwithreferencemodelintermsof

environmentalimpacts.

Page 79: Design for Sustainability through a Life Cycle Assessment

65

RMERME ProductionProduction

TransportationTransportation

UseUse

EOLEOL

RME Production

MaterialsVolumes

Use

Transportation

EOL

EmbeddedFiles

BOMStructure

LCAModel

Root

Node

Leaf

Root

Node

Leaf Transformation

Assembly

Assembly

Root

Node

Leaf

Transportationmodes/Distance Root

Node

Leaf

Usageprocesses/components

Root

Node

Leaf

EOL

EOL

EOL

PLMside:

PLMside:

LCAside:

Figure6.2InformationextractionfromPLMtoLCAatPLMtoLCA

Page 80: Design for Sustainability through a Life Cycle Assessment

66

Thisstepisbetterillustratedwithanexample.Afteranewalternativeis

identified,aBOMiscreatedinPLM,asshowninFigure6.2.ThisBOMwillmainly

providelifecycleinformationtothefirsttwolifecyclestages,RMEandProduction.

Otherinformationthatcannotberepresentedusingaproducttreeareembeddedin

Wordfilesordocumentstoprovidelifecycleinformationtothereststages,which

areTransportation,UseandEOL.AfterpropermappingsarebuilttoconnectPLMto

thisLCAframework,alifecycleoftheproductmodeliscomplete.Thus,LCAresults

willbeavailable.

However,sincethisresearchdoesnotyetinvolveanyprogramming,itsaim

istoprovideaconceptonhowLCAcanbebestusedwithinPLMandablueprintfor

softwaredevelopers.Thus,thisconceptisachievedthroughotherwayfirst.

AnLCAmodeliscreatedwithspecificcreatingrulesusingacommercialLCA

software.InFigure6.2,fivelifecycleprocesseswhicharemarkedinredboxare

deliberatelycreatedtorepresentthefiveLCAblocksinLCAatPLM.Otherprocesses

areeitherselecteddirectlyfromLCIdatabasestoserveasinputsorforconnection

purpose.Throughthismeans,asimulationoftheproposedLCAatPLMisfirstly

achievedbyusingaLCAtoolandaPLMsystemseparately.

However,asmentionedabove,thematerialsandprocessesareaggregatedin

LCAwithoutconsideringtheproducttree.ThereisnowaytogetLCAresultson

eachsinglepartexceptforcreatingLCAmodelsofeachpartoneafteranother

manually,whichissignificantlytime-consuming.Thus,althoughtheauthor

simulatestheoperationsinLCAatPLMbyinputproductpropertiesbasedonthe

producttreeonebyone,thesamematerialsorprocessesarestilladdedtogetherin

Page 81: Design for Sustainability through a Life Cycle Assessment

67

theend.Duetolimitedtime,theLCAresultsofeachpartarenotgenerated.

Otherwise,theywillmakethisresearchmorecompleteontheaspectofidentifying

environmental‘hotspots’basedoneachpart.

Butthatdoesnotnecessarilymeanthese‘hotspots’cannotbeidentified.The

LCAtoolenablesdetailedenvironmentalanalysis.Whichlifecyclestagescontribute

mosttotheenvironmentcanbeeasilyidentified.Theidentificationof

environmental‘hotspots’basedonpartsrequiresextraanalysisbyopeningimpact

resultsofeachlifecyclestage.Thisprocessrequiressometime.Theproposed

LCAatPLMtendstomakethisprocessmoreapparentandeasy.

Simulationofanotherpart,SubstanceCompliance,intheSustainability

ModuleisachievedmanuallybyanalyzingtheBOMagainstenvironmental

regulations.Overall,thesimulationofSustainabilityModuleisdonebyusingLCA

andPLMseparatelyhoweverbasedoncertainrules.ThissectionshowshowaLCA

toolisactuallyintegratedwithaPLMsystem.

6.2.4Step2.4:CollectFeedbacks

Afterenvironmentalreportshavebeengenerated,PLMcollectsthem.

Differentcategoriesofenvironmentalimpacts,throughnormalization,

characterizationandweighting,aretransformedintoanenvironmentalindexand

filledintodecision-makingmoduleuploadedinPLM,inthiscase,aspreadsheet.

Theywillbeusedasoneofthedesignattributesforselectingtheoptimal.Asthe

newalternativesareidentified,otherdesignattributesareset,suchascost,

performanceandotherrelevantattributes.Thedecision-makingmodulealso

collectsthemandbringsalltheattributesintooneplace.Itisstraightforwardfor

Page 82: Design for Sustainability through a Life Cycle Assessment

68

designerstoviewallthedesignattributesatthesametimeandexecutethe

comparisonprocess.

6.2.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative

Atthestep,thegoalofthisresearchismet,whichisaholisticconsideration

ofenvironmentalimpactsalongthisotherdesignattributesatearlydesignstage.

Newalternativeandreferenceproductarecomparedwitheachotherfromaholistic

considerationofalldesignattributes.QualitativeandQuantitativecomparisoncan

bothbeappliedtothedecision-makingprocess.

Qualitativeanalysiscanbefirstlyusedforexcludingmostlyunlikely

alternativeinordertosavetimeforperformingaquantitativeanalysis.Ifthecost,

forexample,istheonlysignificantdifferencebetweendifferentalternatives,the

comparisonofcostswillnotrequireanydecision-makingprocess.Ifmoreattributes

areconsidered,thealternativeswillbehardtotellfromeachother.

Inthiscase,quantitativecomparisonusingMulti-CriteriaDecisionMaking

(MCDM)methodwillbeused.Multipleattributeshavealreadybeenlistedinthe

decision-makingmoduleincludingenvironmentalimpacts,costandsoon.Theycan

thenbeevaluatedasaMCDMprocessusingHEIM.Thepreferenceamongthedesign

attributesaremodeledusingHEIM.Thenanoptimizationproblemisformulated

basedonthepreferencestructure.Theproblemissolvedforweights.Finally,the

alternativewithmaximumvalueistheoptimalone.

Itshouldbenotedthatthelargestenvironmentalimprovementpotentials

arenotnecessarilyfoundamongthese“hotspots”.Theimprovementpotentialcan

bezeroifactualsolutionshavealreadybeenoptimizedtothebestsituation.This

Page 83: Design for Sustainability through a Life Cycle Assessment

69

canbereviewedbymonitoringtheenvironmentalimprovementsonthe“hotspots”

componentsineachalternative.Iftheirresultsarenotsodifferent,theredesign

processshouldfocusonthelesssignificant‘hotspots’.Asthedesignprocesses,the

selectedalternativeisdevelopedwithmoredetails.Theincreaseknowledgeabout

theproductmayvalidateoriginalassumptionsmadeduringtheconceptualdesign

stage,butitcouldalsorevealthatoneormoreoftherequirementscannotbemet.In

suchcase,thedesignprocessrequiresanadditionaliteration.

6.3AfterDesignPhase

Basedonthecomparisonofvariousalternativeswithdifferencepreferences,

theoptimalonesshallbeselected.Minorproblemsrevealedatthispointcanstillbe

corrected.Afterformalapproval,theestablishmentoftheproductcanbegin.

6.3.1Step3.1:PrepareforNewDesignInitiatives

Thefinaldetailsofthebestalternativeareworkedout.Detaileddrawing,

engineeringspecifications,andfinalprocessdesignarethencompleted.Whenall

detailsofthebestalternativeshavebeensettled,thefinalenvironmentalprofileof

theproductcanbegenerated.Beforeimplementation,thealternativeiscompared

toreferencemodel.Finalevaluationshouldidentifybothstrengthsandweaknesses.

Fromthesustainabilityperspective,theprofilewillserveasdocumentationforthe

environmentalpropertiesoftheproductandenvironmentaladvantageswhichhave

beenachievedcomparedwiththereferencemodel.

However,thedesignactiondoesnotendatthispoint.Productdevelopment

isacontinuousprocess.Aftertheproductentersthemarket,feedbacksmaybe

Page 84: Design for Sustainability through a Life Cycle Assessment

70

returnedforopportunityofimprovement.Theexistingproductsshouldbeviewed

asthestartingpointfornewinitiatives.

WithallinformationstoredandwellsetupinPLM,futuredevelopment

processcanbesignificantlyfacilitated.

Page 85: Design for Sustainability through a Life Cycle Assessment

71

CHAPTER7

CASESTUDY:CHARCOALGRILLREDESIGN

Inthischapter,acasestudyofredesigningacharcoalgrillisperformedto

illustratethedesignmethodologyandsystem.SincethereiscurrentlynoLCAand

PLMintegrationsystem,asimulationoftheproposedconceptisintroducedusing

LCAandPLMseparately.TwocommercialLCAandPLMsoftwareareintroduced

andshowedhowtheywillbeintegratedtosimulatetheproposedLCAatPLM,as

mentionedinSection6.2.3.Afterthesimulation,itisappliedtoaWebercharcoal

grillthatusedbyChoi[89][90].Intheirpaper,theproductlifecyclescenariofora

baselinecharcoalgrillisdefinedbasedonrealisticscenariosandassumptions.

7.1SimulationoftheProposedSystemConcept

Sincecurrently,thereisnoLCAsoftwareintegratedwithPLM.Twostand-

alonesoftwareareusedincombinationtosimulatetheproposedsystem.GaBi6

fromThinkstepisusedforevaluatingenvironmentalimpactandTeamcenter10

fromSiemensisusedasPLMsystem.AspreadsheetisuploadedintoTeamcenterto

collectdesignattributesandhelpsthedecision-makingprocess.

TheuseofGaBi6requiresremodelingprocessofanentirelifecycleofa

productbycreatingcustomizedblocks.Ineachoftheseblocks,inputsandoutputs

thatremodelthelifecycleoftheproductwillbedefined.Theseinputsusually

includematerialtype,weight,energiesandprocesses.Theoutputsarethefinal

outcome,usuallyfinishedassemblyorpart,withinthatblock.Thelastblock’s

outputservesastheinputofthenextblock.Thentheyareallconnectedtogetherto

Page 86: Design for Sustainability through a Life Cycle Assessment

72

completethewholelifecycle.Overall,theremodelingprocessenabledbyLCA

softwareisratheropenaslongastheusersfollowcertainrules.

RMERME ProductionProduction

TransportationTransportation

UseUse

EOLEOL

Figure7.1SimulationofLCAatPLM

However,inordertosimulatetheproposedLCAframework,thosefive

indispensablelifecyclestagesthatfollowsLCA1400seriesareprescribedon

purpose.Thosefivestages,asintroducedabove,consistsofRME,Production,

Transportation,UseandEOL,asshowninFigure7.1.Thehighlightedinredboxare

thesefivecustomizedblocksthatsimulatetheproposedLCAframework.Ineach

block,inputsandoutputsaredefinedbasedonproductproperties.Forexample,the

Page 87: Design for Sustainability through a Life Cycle Assessment

73

RMEblockisformedbyseveralprocessesforproducingtheparts.Theweightof

thesepartsserveasinputstoRME,asshowninFigure7.2.Otherblocksarecreating

forconnectionpurpose.Theydonotcreateanyenvironmentalimpacts.Allother

LCAmodelofotheralternativeswillfollowthiscreatingrules.

RMERME

Consists

Detailsofinputsandoutputs

Figure7.2InputsandOutputsinRME

ThedesignprocessismostlyimplementedinthePLMsystem.Andallthe

informationisstoredthereintheformofassemblytree,BOMandembeddedfiles,

asshowninFigure7.3.

Page 88: Design for Sustainability through a Life Cycle Assessment

74

Figure7.3DesigninPLM

Withineachblock,lifecycleinformationofeachentitytype(root,node,leaf)

associatedwithitslifecyclestagearefilledintothesefiveredboxes.Thismapping

processisdonemanuallybyreadingentityanditsinformationinPLMandwriting

themintotheLCAmodelcreatedbyGaBi.Throughthisprocess,theproposed

conceptissimulated.

ThenenvironmentalprofileswillbegeneratedandfedbackfromGaBiand

storedinTeamcenter.DesignattributesareinputintospreadsheetuploadedinPLM.

Otherdesignprocesses,suchasperformanceevaluation,decision-making,willbe

doneofftheproposedsystem.

7.2CaseStudy:BeforeDesignStage

7.2.1Step1.1:PlanningandManagement

Firstly,adesignteamisformed.Sincethiscasestudyisonlyforresearch

purpose,onlytworolesareinvolved,whichareadesignerandanadministrator.

Page 89: Design for Sustainability through a Life Cycle Assessment

75

TheAdministratorfirstcreatesaprojectinPLMcalledCharcoalGrillRedesign.Role

ofdesignerareassignedtotheauthorandauthoritytoaccesstodifferent

information.Requirements,designspecificationsareembeddedinWordfilesand

uploadedintoPLMforsharing.

AreferenceproductisacquiredfromChoietal.[89][90].Intheirpaper,

well-definedinformationofabaselinecharcoalgrillisavailableincludingBOM,

manufacturingprocess,useinformationandEnd-of-Lifetreatmentscenarios.They

proposeasustainabledesignmethodologyusingthebaselinecharcoalgrill.Other

informationincludemanufacturing,useandend-of-lifecanbefoundintheirwork

[90].

Figure7.4ReferenceproductinPLM

Page 90: Design for Sustainability through a Life Cycle Assessment

76

Then,basedonthisbaselinecharcoalgrill,allofthedetailedinformationis

inputintoPLM,asshowninFigure7.4.Theinformationthatcannotbepresentedin

theformofaBOMstructure,areembeddedintheWordfiles.

Then,generaldesigngoalbasedoncustomeranalysisandotherwaysare

concluded.Comparedwithgasgrillorelectronicgrill,ametalcharcoalgrillshould

keepitspricelowtosatisfythemarked.Itsperformanceneedtobeupgraded.Three

generalgoalsarelistedbelow:

1.Minimizethecostandkeepitbelow$100

2.Minimizetimetoheatupthecookingzonetoidealcookingtemperature

3.Minimizecookingtime

7.2.1Step1.2:UseofSustainabilityModuleforanInitialInvestigation

AfteralltheinformationaboutthereferenceproductismatureinPLM,use

theSustainabilityModuleforaninitialinvestigation.Again,sincethereisnoLCA

andPLMintegrationsystem,wewillsimulatetheproposedLCAframeworkusing

GaBi6andfilleachlifecycleblocksbasedonthebothBOMandembeddedfilesfrom

PLM.ThemappingsfromPLMtotheproposedLCAframeworkisillustratedusinga

part(Charcoalgrilllid)fromreferencemodelinFigure7.5

Thematerialandprocessestoproduceacharcoalgrilllidismappedfrom

PLMtotheproposedLCAatPLMasconnectedbyblackarrow.Intheend,bothLCA

resultswillbegeneratedonthelidpartandthewholereferencemodel.ThelidLCA

resultwillbesentbacktotheplacewhereotherpropertiesofitarestoredasa

dependentproperty.Inthiscase,itsenvironmentalimpactsaretransformedintoan

index.Thus,theideaofseparatingproductlifecycleintoindividuallifecycleofper

Page 91: Design for Sustainability through a Life Cycle Assessment

77

partorassemblywilleasilyhelptoidentifyenvironmental‘hotspots’.However,this

functionisnotachievedinthisresearch.Theyareidentifiedbyanalyzingthe

detailedLCAreportsgeneratedbyGaBi.Additionally,thefullproductLCAwillbe

sentbacktoPLM,includingdifferentcategoriesofimpacts.

RME Production TransportationColdrolledsteel/3.115kg

Castiron/1.835kg

Use EOL

Charcoalgrill

LidCookinggrate

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Cookinggrate Cookinggrate

Cookinggrate Cookinggrate

Cutting&bendingprocess/1.5kWhelectricity

Diecasting/0.7kWhelectricity

4000km/28tontruck

30briquttes

60%recycling/40%incineration60%recycling/40%incineration

Feedbacks

LidLCA

ProductLCA

Figure7.5ExampleofmappingsfromPLMtoLCAatPLM

TosimulatetheLCAatPLM,anLCAmodelofthebaselinecharcoalgrillis

created.SameastheLCAmodelmentionedinSection6.2.3,itincorporatesfivelife

cyclestagesrepresentingfivelifecycleblocksproposedinLCAatPLM,asmarkedin

redinFigure7.6.Again,otherlifecyclestagesintheFigureareeitherservedas

inputtothestageorforconnectionpurpose.Theydonotproduceanykindsof

Page 92: Design for Sustainability through a Life Cycle Assessment

78

environmentalimpacts.WithineachoflifecycleprocessesintheLCAmodel,inputs

andoutputsaresetupallbasedontheinformationbasedonthereferencemodel

fromPLM.Userscanclickalltheselifecycleprocessestosetandviewinputsand

outputs,sameasshowninFigure7.2.Duetothelengthofthisthesis,onlytheLCA

modelsofallnewalternativeswillbeshowninthisresearch.Finally,asimulationof

LCAatPLMisillustratedwithFigure7.6.Thefigureshowshowthelifecycle

informationisfirstlymappedfromPLMtotheproposedLCAframework,thenusea

commercialLCAtooltosimulatetheframework.

RME Production TransportationColdrolledsteel/3.115kg

Castiron/1.835kg

Use EOL

Charcoalgrill

LidCookinggrate

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Cookinggrate Cookinggrate

Cookinggrate Cookinggrate

Cutting&bendingprocess/1.5kWhelectricity

Diecasting/0.7kWhelectricity

4000km/28tontruck

30briquttes

60%recycling/40%incineration60%recycling/40%incineration

Figure7.6UseLCAtosimulateLCAatPLMwithanexample

Page 93: Design for Sustainability through a Life Cycle Assessment

79

AfterLCAmodeliscreatedandfilledwithlifecycleinformation,an

environmentalprofilecanbegenerated.CurrentLCAsoftwareisabletogenerate

comprehensiveenvironmentalreportsthatcoverdifferentcategoriesofimpacts.

However,inordertosolvethechallengeofdesignerslackingenvironmental

knowledge,thecategoriesofimpactsshouldbeeasyandrepresentative.The

environmentalimpactsaresimplifiedfordecisionmakingpurposes.Traci1.08

providedbyGaBi6whichincludessixcategoriesofenvironmentalimpactsisused.

Thosecategoriesinclude:GlobalWarmingPotential(GMP),AcidificationPotential

(AP),EutrophicationPotential(EP),OzoneLayerDepletionPotential(ODP),

PhotochemicalOzoneCreationPotential(POCP)andHumanToxicityPotential

(HTP).ThereferencedcharcoalgrillenvironmentalimpactsareshownasTable7.1.

Table7.1Environmentalimpactsofbaseline

Thentheenvironmentalregulationsarecheckedatthistime.Regulationslike

REACHandRoHScanbecheckedbasedonBillofSubstance(BOS).Sinceacharcoal

grilldoesnotcontainelectricalparts,regulationslikeWEEEisnotapplicabletoit.If

itiselectricalproductoravehicle,sincetheend-of-lifetreatmentscenarioshave

Page 94: Design for Sustainability through a Life Cycle Assessment

80

beenalreadysetupinLCAatPLM,adisassemblyreportwillbegeneratedtogive

designersdirectionknowledgeonthepercentageofrecoveryandtreatments.

Besidesenvironmentalregulations,therearealsosomedesignregulationsofa

charcoalgrill,likeEuropeanStandardEN1860-1:2013-Appliances,solidfuelsand

firelightersforbarbecuing-Part1:Barbecuesburningsolidfuels-Requirements

andtestmethods[91,92,62,92,92,92,62,62,36,36].Theseregulationsarenotin

theconcernduringthisresearch.Afterapproval,norestrictedmaterialsareused.

Allpartscanbereusedinthefuturealternatives.

Theredesignprocessinthisresearchmainlyfocusesonmodifyingor

replacingenvironmental‘hotspots’inordertomoderateorremovethem.However,

thefunctionalityofidentifyingthese‘hotspots’isnotachieved.Itisachieved

throughananalysisofimpactsindifferentlifecyclestagesinLCA.Table7.2shows

aportionofthewholeLCAreport.Wecaneasilyidentifythatusephasecontributes

totheenvironmentmost.Environmental‘hotspots’areidentifiedbyextending

thesecategoriesofimpactsandperforminganalysisonthem.Inthisresearch,four

environmental‘hotspots’areidentified,whicharegrillbowl,lid,bottomgrateand

charcoalgrill.Thesepartsmakeupmostofthecharcoalgrill’sweight.Thus,the

redesignprocessfocusonthesefourpartstowardsimpactreduction.

7.2.3Step1.3:FeedbackstoPLM

InthePLM,specificfoldersarecreatedtostorereportsfromdifferentplaces.

Alsoaspreadsheetisusedfordecision-making.

AsshowninFigure7.5,bothpartLCAandproductLCAarefedbacktoPLM.

ThendesignattributesarecollectedfromPLMandsenttothedecision-making

Page 95: Design for Sustainability through a Life Cycle Assessment

81

moduleuploadinthePLM.Inthiscase,theenvironmentalimpactsaswellasthe

index,afternormalization,characterizationandweighting,arestoredin“Baseline

designLCA”file.Thentheenvironmentalindexisfilledintothedecision-making

module.ThecostoftheproductisgeneratedusingBOMreportfeatureofPLMand

thenalsosenttodecision-makingmodule.Astheheatingperformanceisalso

anotherdesigncriterion,theperformanceofthereferencemodelisevaluated.A

quantitativeresultrepresentingtheperformanceisfilledtoo.Theseattributeswill

becomparedwithnewalternatives.ThecontentsisshowninTable7.3.

7.3CaseStudy:DesignStage

7.3.1Step2.1:SetDesignGoals

Firstly,thegeneraldesigngoalsarementionedabove:

1.Minimizethecostandkeepitbelow$100

2.Minimizetimetoheatupthecookingzonetoidealcookingtemperature

3.Minimizecookingtime

Then,basedontheenvironmentalprofileobtainedabove,usestageandraw

materialextractionstageareidentifiedtobethephasesthatcontributemosttothe

environmental.Thus,twostrategyofnewalternativesareworkedoutshownin

Table7.2.

Table7.2Strategiesofnewalternativesandgoals

Strategynumber DescriptionofStrategy DesignGoal

#1

Componentsfromrenewableresources

50%morerecyclingandhalfgreenhousegasimpact

#2

Efficientduringuse

1/3lessenergyduringuseand2%morematerialsandmanufacturingimpacts

Page 96: Design for Sustainability through a Life Cycle Assessment

82

7.3.2Step2.2:IdentifyDesignAlternatives

Regardingtheenvironmental“hotspots”identifiedearlyandlargestimpacts

fromthem,theywillberedesignedtowardsthedesigngoals.Forstrategyone,more

recyclablematerialswillbechosenforcomponents.Aluminumisamorerecyclable

materialbuthasahigherthermalconductivity,whichmeansitcannotmaintainheat

withinthegrill.Aluminumoxideontheotherhandseemsaperfectmaterialtokeep

heat.Thus,surfacetreatmentofanodicoxidationisappliedonthealuminumbowl

andlidtoincreaseheatinsulation.Forthesecondstrategy,materialwithmuch

lowerthermalconductivityisselectedformaintainheat.Thus,toachievethesame

performanceofthebaselinedesign,lesscharcoalisused.Severalpotentialmaterials

arestainlesssteel,castiron,ceramic,etc.Consideringthedesigngoals,stainless

steelisselectedasthesecondalternative.

Regardingtheheatingperformance,foradirectcookingprocess,lidand

bowlmaintainheattoenabletheinternalspacereachidealcookingtemperature

faster.Thecookinggrateconductheatdirectlytomeat.Sinceanormalgrillhasa

ratherlonglifecycle,replacingtheparts,especiallygrates,areinevitable.Castiron

gratestendtorust.Intheentirelifecycleofacharcoalgrill,severalcastirongrates

areneedediftheyarenotkeptwell.Thiswillpotentiallyincreasetheenvironmental

impactsforonecharcoalgrill.Stainlesssteelisoneofthematerialsthatdonotneed

extracareandeasytobemanufactured.Thus,stainlesssteelisusedfornew

materialascookinggratesandbottomgrates.Thus,fourconceptualalternativesare

identifiedusingdifferentcombinationsofmaterialsmentionedabove.Table7.3

showsthesefouralternatives.

Page 97: Design for Sustainability through a Life Cycle Assessment

83

Table7.3Maincomponentsofnewalternatives

Alternatives MainComponentsAlternative#1 AnodizedaluminumbowlandlidwithcastirongratesAlternative#2 StainlesssteelbowlandlidwithcastirongratesAlternative#3 AnodizedaluminumbowlandlidwithstainlesssteelgratesAlternative#4 Stainlesssteelbowl,lidandgrates.

Figure7.7DetailedBOMofalternative#3inPLM

Aftertheidentifications,thedesignprocessismainlyperformedinPLMto

buildBOMandotherlifecycleinformationforeachnewalternative.Forthe

alternativesthatusecastirongrates,threepiecesareassumedtobeusedinonelife

cycleofacharcoalgrill.Foralternativesthatusesstainlessgrates,oneisassumed

Page 98: Design for Sustainability through a Life Cycle Assessment

84

foronelifecycle.Finally,allBOMarebuilt,asshowninFigure7.7.PLM’s‘BOM

compare’lightsupthepartwithineachalternativeinredtoshowthedifferences

fromreferenceproduct.

7.3.3Step2.3:UseSustainabilityModuletoGenerateEnvironmentalReports

Afterthedesignisfinished,thesealternativeswillbesenttoSustainability

Moduleinstantlytogetreal-timeenvironmentalreports.Sameastheprocessof

performinganenvironmentalstudyonthereferenceproductusingSustainability

Module,LCAmodelsofthenewalternativesarecreatedwiththesamerulewhich

usesfivemainlifecycleprocessestosimulatethefivelifecycleblocksproposed.

TwoLCAmodelsareshownhereinFigure7.8and7.9.

Figure7.8SimulationofLCAframeworkonalternative#2

Page 99: Design for Sustainability through a Life Cycle Assessment

85

Figure7.9SimulationofLCAframeworkonalternative#3

Afteranalyzingallthegeneratedenvironmentalreports,norestrictedusesof

materialsarefound.Theenvironmental‘hotspots’arestillidentifiedasthosefour

parts.Someofthemincreasetheimpactscomparedwithreferencemodel,while

someofthemmoderatethe‘hotspots’.

Sincemostofthepartscanbereused,theenvironmentaldependentproperty

significantlysavescomputingtime.Theinstantenvironmentalreportsalsoreduce

developmenttimeandmakeenvironmentalperformanceofalternativesavailableat

earlydesignstage.

Page 100: Design for Sustainability through a Life Cycle Assessment

86

7.3.4Step2.4:CollectFeedbacks

Then,theenvironmentalreportsarefedbacktoPLM,sameastheprocessof

referencemodelsendingreportsbacktoPLM.Comprehensiveenvironmental

reportsarestoredinspecificfolderaswellasotherdesignattributes.Thenthe

environmentalindexofeachalternativeisfilledintothedecision-makingmodule.

Thesequantitativenumbersareapparenttodesignersandcanbeuseddirectlyin

thedecision-makingprocess.Theproductioncostattributesareacquiredusing

BOMreportinPLM.Theheatingperformanceisevaluatedusingcomparisons

againstthebaselinedesign.Itiscalculatedbasedonanormaldirectcookingprocess

whichmeansplacingthemeatonthegrateaftertheinternaltemperaturereaches

idealtemperaturewithlidclosedatfirst.Forsimplification,theexactcookingtime

isnotcalculated.Instead,thecookingtimeissettoTsecond.Theotheralternative’s

cookingtimeiscalculatedaccordingly.Finally,theperformanceattributesoffour

alternativesare0.74T,0.58T,2.294Tand1.798Trespectively.Thenallthese

quantitativenumbersarecollectedbydecision-makingmodule,asshowninTable

7.4.

Table7.4Designattributesindecision-makingmodule

LCA Productioncost($) Performance(s)Reference 0.7282 76.15 TAlternative#1 0.6061 83.46 0.74TAlternative#2 0.5060 92.35 0.58TAlternative#3 0.5681 80.65 2.294TAlternative#4 0.5058 89.545 1.798T

Page 101: Design for Sustainability through a Life Cycle Assessment

87

7.3.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative

Atfirstglance,intermsofenvironmentalimpacts,allthesealternativeshave

lowerimpactscomparedwithbaseline.Duetobettermaterialsareusedandits

manufacturingprocess,theproductioncosthaveincreasedandtheperformance

varies,too.Insummary,allalternativeshavetheirtrade-offs.Sincemostofthe

informationarealreadyindetailandreflectthetrueaspectsoftheproduct,the

executionofthemethodologyisbestaccomplishedbyanaccurateand

computationallyefficientdecisionmodel.HEIM(HypotheticalEquivalentsand

InequivalentsMethods)wasusedoninthiscasethatinvolveselectionfrommultiple

attributeshavingvariousadvantagesanddisadvantages.However,theselectionof

theoptimalalternativelargelydependsonthepreferencesofthedecisionmaker.An

underconstraintoptimizationproblemisfirstlyformulatedtocomparethewining

alternativesunderdifferentpreference.Then,moreconstraintsareintroduced

basedontheauthor’spreference,asinglerobustalternativeisfound.Theprocessof

modelingpreferencesresultingindifferentoptimalalternativeswillincreasethe

productknowledgesothattheywillbeusedforfuturedevelopment,whichwillbe

illustratedinthefinaldesignstep.

ThemainexecutionofHEIMisexecutedasfollows.Firstly,theattributesare

identifiedmainlyasshowninTable7.4.Nextstepistodeterminethestrengthof

Preferencewithinattributes.Here,weassumeriskaversedecisionmakingforLCA

results,slightlyriskproneforcostandriskpronetendencyfortheperformance

attributes.WewillusethestrengthofpreferencesasshowninFigure7.10.

Page 102: Design for Sustainability through a Life Cycle Assessment

88

LCA Cost($) Performance(%)

Score

Figure7.10Strengthofpreferences

Thenasetofhypotheticalalternativesareestablished.KulokandLewis[93]

deployedathreelevelL9orthogonalarraytosolveadesignproblemwiththree

attributes.Thestandardutilityvaluesineachcellcorrespondtothenormalized

mostdesirable,leastdesirableandmid-leveldesirableforeachsingleattribute.

Thus,theattributevaluesateachlevelcorrespondtosingleattributesutilityvalues

of1(mostdesirable),0(leastdesirable)and0.5.TheweightsofLCA,production

costandperformancearerepresentedwith

𝜔1, 𝜔2and𝜔Qrespectively.Table7.5showsthehypotheticalalternativeswiththeir

correspondingattributesvalues.

Table7.5Normalizedscoreforhypotheticalalternatives

Hypotheticalalternative

LCA Productioncost Performance Totalvalues

A 0 0 0 0B 0.5 0.5 1 0.5𝜔1 + 0.5𝜔2 + 𝜔QC 1 1 0.5 𝜔1 + 𝜔2 + 0.5𝜔QD 0 0.5 0.5 0.5𝜔2 + 0.5𝜔QE 0.5 1 0 0.5𝜔1 + 𝜔2F 1 0 1 𝜔1 + 𝜔QG 0 1 1 𝜔2 + 𝜔QH 0.5 0 0.5 0.5𝜔1 + 0.5𝜔QI 1 0.5 0 𝜔1 + 0.5𝜔2

Page 103: Design for Sustainability through a Life Cycle Assessment

89

Therealvaluescorrespondingtothehypotheticalalternativesisshownin

Table7.6.

Table7.6Realvaluesofhypotheticalalternatives

Hypotheticalalternative

LCA Productioncost($) Performance(s)

A 0.7282 92.35 2.294TB 0.6753 80.53 0.58TC 0.5058 76.15 0.823TD 0.7282 80.53 0.823TE 0.6757 76.15 2.294TF 0.5058 92.35 0.58TG 0.7282 76.15 0.58TH 0.6753 92.35 0.823TI 0.5058 80.53 2.294T

Afterthepreferencestrengthshavebeendeterminedinordertoavoidthe

flawsofassumingalinearpreferencestructure,normalizationiscarriedout,as

showninTable7.7.

Table7.7Normalizedalternativescores

LCA Productioncost PerformanceReference 0 1 0.1855

Alternative#1 0.8223 0.5089 0.5268Alternative#2 0.9998 0 1Alternative#3 0.9148 0.6893 0Alternative#4 1 0.151 0.0007

Nextstepistheformulationofpreferencestructureasanoptimization

problem.Here,thepreferencestructureisassumedasC>B>A,E>F>D,G>I>H.By

usingthevaluesshowninTable7.5,sixconstraintscanbecreated.Therefore,the

completeoptimizationproblemcanbeformulatedbelow:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 𝑥 = [1 − 𝑤1 + 𝑤2 + 𝑤Q ]2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝐺1 = −0.5𝜔1 − 0.5𝜔2 + 0.5𝜔Q + 𝛿 ≤ 0

Page 104: Design for Sustainability through a Life Cycle Assessment

90

𝐺2 = −0.5𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺Q = 0.5𝜔1 − 𝜔2 + 𝜔Q + 𝛿 ≤ 0(7.1)

𝐺V = −𝜔1 + 0.5𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0

𝐺W = 𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺X = 0.5𝜔1 − 𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0

Where𝛿 = 0.001

Thesolutionforthepreferenceweightsareobtainedusingoptimization

technique.However,thisisanunderconstraintoptimizationproblem.Different

startingpointswillresultindifferentweights.Aftercalculation,baselinedesign,

alternative#1andalternative#3areallpossiblewinnersdependingthechosenset

offeasibleweightsasshowninFigure7.11.Themeanvalueofweightsresultingin

differentwiningalternativesareshowninTable7.8.

Figure7.11Feasibleweightsandwinningalternatives

𝝎𝟐

𝝎𝟑

𝝎𝟏

Baseline

Alternative#1 Alternative#3

Page 105: Design for Sustainability through a Life Cycle Assessment

91

Table7.8Attributesweights

MeanvalueofweightsAttributesWeights Baseline Alternative#1 Alternative#3

𝝎𝟏 0.1016 0.2542 0.3353𝝎𝟐 0.5238 0.4508 0.5416𝝎𝟑 0.3746 0.2950 0.1234

Localweightthatleadtobaselinedesignhavingthegreatestutilityscoreare

coloredblue,thosethatleadtoalternative#1winningarecoloredorange,andthose

leadtoalternative#3winingarecoloredyellow.Thegreytriangleplanerepresents

thesetsoflocalweightsthatsumtoone.Theminimum,maximumandmeanvalue

arecalculatedforeachattributesandrecordedinTable7.9.Themeanvalueare

usedforcalculatingtheutilityscoreofeachalternativeandthetotalutilityscorefor

eachalternativeisshowninTable7.10.

Table7.9Attributesweights

AttributesWeights Minimum Maximum Mean𝜔1 0.002 0.3982 0.2446𝜔2 0.4010 0.6656 0.5044𝜔Q 0.0013 0.4980 0.2510

Table7.10Utilityscoreforeachalternatives

Baseline Alternative#1

Alternative#2

Alternative#3

Alternative#4

UtilityScore 0.5510 0.5901 0.4956 0.5714 0.3225

Inordertofurtherconstrainthedesignspacesothatonlyonewinneris

found,constraintsmustbeaddedwhichseparatethethreeregionsofthespacethat

leadtoadifferentalternativewinning[53].Threenewpairsofhypothetical

alternativearecreatedinordertoplaceconstraintsbetweenanytwooftheregions.

Page 106: Design for Sustainability through a Life Cycle Assessment

92

Theboundariesbetweentheregionsarelocatedwherethevaluesofthetwo

alternativesareequalasdefinedby

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1)

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#3)(7.2)

𝑉 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1 = 𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#3)

Bysuchdefinition,theboundarylinecanbedeterminedandconvertedintoa

preferenceconstraint.Forexample,thevaluefunctionsforbaselineandalternative

#1are:

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝜔2 + 0.1855𝜔Q(7.3)

𝑉 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1 = 0.8223𝜔1 + 0.5089𝜔2 + 0.5268𝜔Q(7.4)

Therefore,

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑉 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1 (7.5)

𝜔2 + 0.1855𝜔Q = 0.8223𝜔1 + 0.5089𝜔2 + 0.5268𝜔Q = 0(7.6)

Tocreatenewhypotheticalalternatives,thetermsinEq.7.6arerearranged,

asinEq.7.7

0.8223𝜔1 + 𝜔Q = 0.4911𝜔2 + 0.6587𝜔Q(7.7)

ItisimportanttonotethatEq.7.7isjustonepossiblerearrangement.The

rightandlefthandsideofEq.7.7aretwovaluefunctionsthatcorrespondtotwo

differenthypotheticalalternatives.Therestofthefouralternativesaredevelopedin

thesameway.UsingthestrengthofpreferenceofFigure7.10,thesixalternatives

areunnormalizedandpresentedinTable7.11.

Page 107: Design for Sustainability through a Life Cycle Assessment

93

Table7.11NewUnnormalizedhypotheticalalternatives

Hypotheticalalternative

LCA Productioncost($) Performance(s)

J 0.6061 92.35 0.58TK 0.7282 80.63 0.68TL 0.5681 92.35 2.294TM 0.7282 83.21 TN 0.5058 78.64 0.77TO 0.5718 80.53 0.58T

Now,inordertoachievearobustwinningalternative,preferencesarestated

overthenewsetsofhypotheticalalternativesfromJtoO.Inthiscase,weassumed

thatJ>K,M>L,O>Nforthepreferencestructure.

Theadditionalconstraintsmadefromthecomparisonareaddedtothesetof

inequalityconstraintsandnewoptimizationproblemisformulatedinEq.7.8.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 𝑥 = [1 − 𝑤1 + 𝑤2 + 𝑤Q ]2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝐺1 = −0.5𝜔1 − 0.5𝜔2 + 0.5𝜔Q + 𝛿 ≤ 0

𝐺2 = −0.5𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺Q = 0.5𝜔1 − 𝜔2 + 𝜔Q + 𝛿 ≤ 0

𝐺V = −𝜔1 + 0.5𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0(7.8)

𝐺W = 𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺X = 0.5𝜔1 − 𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0

𝐺f = −0.8223𝜔1 + 0.4911𝜔2 − 0.3413𝜔Q + 𝛿 ≤ 0

𝐺g = 0.9148𝜔1 − 0.3107𝜔2 − 0.1855𝜔Q + 𝛿 ≤ 0

𝐺h = −0.0925𝜔1 − 0.1804𝜔2 − 0.5268𝜔Q + 𝛿 ≤ 0

where𝛿 = 0.001

Page 108: Design for Sustainability through a Life Cycle Assessment

94

Theoptimizationproblemissolvedagainusingoptimizationtechnique.

Figure7.12showsthatallthefeasiblepointsnowleadtoalternative#1asbeingthe

robustwinningalternative.

Figure7.12Feasibleweightsandonerobustoptimalalternative

Theminimum,maximumandmeanareagaincalculatedforeachattributes

weightandrecordedinTable7.12.

Table7.12Finalattributesweights

AttributesWeights Minimum Maximum Mean𝜔1 0.117 0.2293 0.1937𝜔2 0.4459 0.5413 0.4816𝜔Q 0.2294 0.4164 0.3247

ThemeanvalueforeachweightinTable7.13isusedforcalculatingutility

scoresforthethreeattributes.TheutilityscoreoneachattributeisfoundinTable

𝝎𝟐 𝝎𝟏

Alternative#1undernewconstraints𝝎𝟑

OriginalAlternative#1

Page 109: Design for Sustainability through a Life Cycle Assessment

95

7.7.Finally,thetotalutilityscoreofeachdesignalternativeisfoundinTable7.13.In

thiscase,alternative#1hasthegreatestutilityscoreandisthemostpreferred.

Thereisnochangeinthewinningalternativebasedontheirutilityscore,whilethe

utilityscoredoeschangeaftermoreconstraintsareaddedtotheoptimization

problem.Theimportantdifferentbetweenusingtheadditionalconstraintsisthe

greaterconfidencethatthedecisionmakerhasaftermakingthreeadditional

pairwisecomparison.

Table7.13Utilityscorefordesignalternatives

Baseline Alternative#1

Alternative#2

Alternative#3

Alternative#4

UtilityScore 0.542 0.575 0.518 0.509 0.267

Finally,weassumethatalternative#1istheoptimalalternativebasedonour

preference.Itwillbeselectedtoproceedthedevelopmenttothenextphaseother

thandesignstage,whichisnottheresearchfocusofthisthesis.Again,itiscompared

withdesigngoals.Iftheyarenotmet,weshouldgobacktoStep2.2andidentify

newalternatives.Inthiscase,aluminumpartscanberecycledmorethan50%.

Globalwarmingpotentialhasbeenreducedby24%.Foralternative#3,aluminum

partsandstainlesssteelpartenablemorethan50%recyclerate.Theglobal

warmingpotentialshasbeenreducedby20%.Foralternative#2,24%lessenergy

isusedand50%moremanufacturingandmaterialimpacts.WithproperEnd-of-life

treatmentwhichletthestainlesssteeltoberecycledto50%,total5%more

manufacturingandmaterialimpactscomparedwithbaselinedesign.Insummary,

sincethegreenhousearemainlyproducedduringuse,especiallyforacharcoalgrill,

Page 110: Design for Sustainability through a Life Cycle Assessment

96

thedesigngoalofhalfglobalwarmingpotentialmaybealittleaggressive.Butthe

newalternativeshavehalfmetthatgoal.Thus,tosomeextent,thedesigngoalsare

75%met.Ifthedesigngoalsarelessaggressive,weassumethatthenew

alternativesbasicallymetthem.

7.4CaseStudy:AfterDesignStage

7.4.1Step3.1:PrepareforNewDesignInitiatives

Ananalysisisperformedontheresultsafterthedecision-makingtoselect

potentialalternativesforthenewproductdevelopment.Inordertoillustratethis

step,weassumethatalltheresultsarebasedonourpreferencestructure.

Firstly,alternative#1isselectedtobetheoptimalone.Thus,itsproduct

propertieswillbedetailedintherestofthedevelopmentphasesandstoredinPLM

servedasthereferencemodelforthenewproductdevelopmentinthefuture.For

therestofthealternatives,especiallyforbaselinedesignandalternative#3,they

arefoundthatwiththesimilarpreferenceoverproductioncost,different

preferencesontheothertwoattributesresultindifferentwinningalternatives.If

weassumeenvironmentalimpactsoverperformance,alternative#3wins.Ifwe

assumeperformanceoverenvironmentalimpacts,baselinedesignisbetterthanthe

restones.Foralternative#1,thechoiceofweightsmoretendstobalancethethree

attributeswhilealittlemoreemphasisisputonproductioncost.Thus,thedesignof

choiceisdifferentbasedondifferentpointofviewoverattributes.Finally,the

developedconceptualalternativesprovideproductknowledgeabouthowto

improvethedesignperformanceintermsofLCA,productioncostandproduct

performance,separately.Thus,alternative#3iscriticaltothenewproduct

Page 111: Design for Sustainability through a Life Cycle Assessment

97

developmentwithgoalsofmoreenvironmentallyfriendly.Baselinedesigniscritical

tonewproductdevelopmentwithgoalsofbetterperformance.

TheFiguregeneratedafterHEIMshowingallthefeasiblealternativesand

winningalternativesareaddedtofuturedevelopmentfolder.Thefigureshowing

alternative#1istheoptimalsolutionisattachedtothe“Alternative#1:Aluminum

bowlandlid”folderasthepreferredscenario.Then,alltheinformationcombined

withalternative’sBOMwillallbesavedinPLMasfuturealternativesforthenew

productdevelopment,asshowninFigure7.13.

Referencemodel

BetterLCA

Betterperformance

Figure7.13Developedalternativesstoredforfuturedevelopment

Page 112: Design for Sustainability through a Life Cycle Assessment

98

CHAPTER8

DISCUSSION

8.1Summary

ThisthesisidentifiedtheseveralchallengesofpreventingcurrentLCA

softwarefromintegratingwithPLM.Thesechallengesincludeparadoxofeco-design,

differentrepresentationofproductinPLMandLCA,difficultiesofextracting

informationfromPLMtoLCA,lackofcomprehensiveLCIdatabaseanddesigners

lackingknowledgeofeco-design.Thus,aconceptofaLCAframework,LCAatPLM

includingfivelifecycleblocks,isproposedwhichkeepstheproductmodelusedby

PLMintheformofaproducttreeandperformanenvironmentalassessmentthatis

basedonthesameproductmodel.Forcompletingthelifecycleinformation,entities

intheproducttreerepresentingproduct,assemblyandpart,canbeassociatedto

thefivelifecycleblocksinLCAatPLM.Theseinformationiseitherprovidedby

designsupportingtoolsorPLM.IttransformsLCAfromanevaluationtoolused

afteradesignisalreadycompletedtoonethatcanguidedesignsearlierwithinthe

PLMenvironment.Inordertochecktheenvironmentregulationsearlytoprevent

latechange,asubstancecompliancemoduleisalsoproposed.Thesetwoparts

formedSustainabilityModuletobebetterusedwithinthePLMenvironment.Then,

asystemarchitectureisshownthatusesPLMasthefoundationofinformation

collectionandsharing.Asustainabledesignmethodologyisproposedtobeusedat

earlydesignstageforaholisticconsiderationofenvironmentalperformancealong

withotherdesignattributesoveracompletelifecycle.CombinedwithSustainability

Page 113: Design for Sustainability through a Life Cycle Assessment

99

Module,itintegratestheuseofPLMandLCAtofacilitatethedesignprocesstoward

sustainability.

Acasestudyisperformedthroughasimulationoftheproposedsystemand

proposedmethodology.Theresultsrevealthattheenvironmentalprofilesofthe

productalternativesareavailablejustafteralltheproductpropertiesaredefined

foreachnewalternativeinPLM.Tobeapparentfordesignersatearlydesignstage,

environmentalindexisusedtoprovideasimplifiedandquantifiednumberthatcan

beusedalongwithotherquantifieddesignattributesfordecisionmakingusing

HEIMatearlydesignstage.AfterexecutingHEIM,productknowledgeisacquired

aboutdifferentpreferencesresultingindifferentalternatives.Thesealternatives

willbesavedinPLMasconceptualalternativesforthefutureproductdevelopment.

8.2Limitations

Inordertogettheenvironmentalperformanceofalternativesattheearliest

timefordesigners,theproposedLCAframeworksacrificessometoachievethatgoal.

Thus,thereareseverallimitationsofthisnewconcept.

Firstly,wastearenotconsidered.TheproposedLCAframeworkreadsthe

BOMinformationdirectlyfromPLMandmapstheinformationofexactweights,

materialsorprocessesoftheassemblyintofivelifecycleblocksandcalculatesaLCA

result.InarealremodelinglifecycleofaproductwithLCA,inputsandoutputsare

setupineachlifecyclestageandtheysometimesdonotequalwitheachother.It

willintroducedeviationsdependingonthepercentageofrawmaterialtobe

manufacturedintofinalpart,whencomparedwithLCAremodelingusingLCAtools

Page 114: Design for Sustainability through a Life Cycle Assessment

100

Inaddition,facedwithinsufficientLCIdatabase,amissingprocessor

materialthatcannotbeselecteddirectlycouldincreaseadditionalburdento

designers.Duringtheimplementationofthecasestudy,sinceananodizingprocess

isnotavailable,theauthorspendsadditionaltimeremodelingit.Suchsituation

appearstoowhendealingwiththeEnd-of-LifetreatmentscenarioinLCA.Thus,a

completeLCIdatabaseshouldbethefoundationforeasyselectionandassigningto

properplaces.

Finally,thisLCAframeworkisonlyproposedtobeusedbydesignersforthe

considerationofenvironmentalimpactsalongwithotherdesignattributesatearly

designstage.Itonlyaimstogetanenvironmentalindictorusedforcomparison

amongotheralternatives.InordertogetacomprehensiveLCAresult,specialized

LCAtoolsarestillnecessaryafterallthedetailedproductpropertiesaredefined

usuallyatlatedesignstage.However,thisframeworkaimstopreventlatechangeto

thelargeextent.

8.3Benefits

Thisresearchmainlyrevealsthattheenvironmentalimpactscanbe

consideredalongwithotherdesignattributesatearlydesignstagesbyprescribinga

waytointegrateLCAintoPLM.Besidesthat,thenewconceptalsointroducedmany

benefits.Thesebenefitsmakeitsignificantlyusefulduringdesignstages,especially

atearlydesignstagefordesigners.

Firstly,designersdonotneedtheexpertiseandtimetoremodeltheentire

lifecycleoftheproductinordertogettheenvironmentalperformance.Theproduct

dataarekeyedonceandthenextractedfromPLMintoLCAframeworkdirectly.An

Page 115: Design for Sustainability through a Life Cycle Assessment

101

environmentalprofilebecomesavailablejustafteranalternativeisfinished.It

significantlyreducesthedevelopmenttimeifenvironmentalimpactsareconsidered

duringdesign.

Then,ithelpsconstantlymonitortheenvironmentalimprovementsof

alternativesthroughreal-timefeedbackstoPLM.Asconceptualalternativesare

filledwithmoredetails,feedbacksofenvironmentalperformanceareconstantly

sendbacktoPLManddocumented.Designerscanhaveanimprovedknowledge

aboutproducttowardssustainability.ThisfeaturechangesthestaticnatureofLCA

intoadynamicnumberthatchangeswithdesignalternatives.Theenvironmental

impactsofalternativesareconsideredalongwithotherdesignattributesatthe

earliesttime.

TheconceptofLCAframeworkintroducedtheideaofseparatingentirelife

cycleofaproductintouniquelifecycleofeachpartorassemblybasedonthe

assemblytree.Andaftercalculation,makeenvironmentalimpactsasadependent

propertythatattachedtothatcomponenttosavecomputingtime.Thisallowsthe

quickidentificationofenvironmental“hotspots”.

Theproposedsystemalsoallowsforlocalorglobalcomparisonintermsof

environmentalimpacts.Globalcomparisonenablesdesignerstocomparewhole

product,whilelocalcomparisonenablestocompareassembly,subassemblyor

singlepart.Quickevaluationsofsubassemblyorpartenablethelowest-impacts

componentstobeusedinthefullassembly.

ComparedwithexistingsolutionsofLCAintegratedwithPLMorCAD,more

accurateLCAresultscanbegotrepresentingmoreaccurateenvironmental

Page 116: Design for Sustainability through a Life Cycle Assessment

102

performanceofthealternatives.Althoughthisconceptcanstillnotbeableto

comparewithdetailedmodeloflifecycleofaproductusingLCAsoftware,itselects

fivemostimportantlifecyclestageswithoutmissinganystagesasdonewith

SimplifiedLCA.

CombinedwiththeSubstanceComplianceModulewhichconstantlychecks

therestrictuseofmaterialintheearlystageandprovidesdirectviewonEnd-of-Life

stage,itisbetterpreparedforeverstricterexistingandfutureregulations.

Finally,thedevelopmentofanewproductbecomesmucheasier.Sincethe

lastgenerationproductisdetailedinPLMalongwithenvironmentalprofiles,parts

canbereusedtothemaximum.Thesecomponentsalreadyhavedocumented

environmentalimpactssothattheycanbeextracteddirectlyandreadytouseinthe

newassembly.Theenvironmentalprofilewillalsonotifycurrentenvironmental

performanceand“hotspots”.Thus,itwillserveasanewreferenceproductand

provideguidanceontheidentificationofnewalternatives.

8.4FutureWork

TheworkdescribedinthisthesisprovidesaconceptofhowLCAcanbebest

usedinthePLMenvironment.Bydoingthis,environmentalimpactscanbe

consideredduringdesignphasesattheearliesttime.However,sacrificeshavebeen

madetoachievethisgoal.Thus,thisconceptstillhasseverallimitations.Thefuture

workcouldmainlyfocusonseveralplacesmentionedbelow.

Firstly,wasteshouldfindawaytobeconsideredinordertogetamore

accuratelifecycleoftheproduct.Aspecificholdercanbebuilttostorethe

informationofresiduesandlettheseresiduestoenterEnd-of-Lifestagesdirectly

Page 117: Design for Sustainability through a Life Cycle Assessment

103

aftertheProductionphase.ThentheLCAframeworkshouldnotbelimitedtoonly

fivelifecycleblocks.Theyshouldbecustomizedtomeettheneedsofdifferent

products.Finally,researchcanbedoneforotherwaystoconsiderenvironmental

impactsearlyinthedesignprocessinordertodesignmoresustainableproducts.

Page 118: Design for Sustainability through a Life Cycle Assessment

104

REFERENCES

[1] C.BrandmannandM.Altvater,"Growingregulatorycomplexityaschallenge-

Strategiesformanagingcompliancewithinternationalwasteregulations,"inElectronicsGoesGreen2012+(EGG),Berlin,2012.

[2] H.GmelinandS.Seuring,"Determinantsofasustainablenewproductdevelopment,"JournalofCleanerProduct,pp.1-9,2014.

[3] F.Mathieux,.L.Roucoules,L.LescuyerandD.Brissaud,"ConnectingCADandPLMsystemswithecodesignsoftware:Currentexperiencesandfutureopportunities.,"in16thInternationalConferenceonEngineeringDesign(ICED),Paris,2007.

[4] M.Eigner,K.-G.FAIßT,A.KEßLER,P.SCHÄFERetal.,"ACONCEPTFORANINTUITIVEANDINTERACTIVEFULLYPLM-INTEGRATEDECO-EFFICIENCYASSESSMENTINREAL-TIME,"inINTERNATIONALCONFERENCEONENGINEERINGDESIGN,ICED13,Seoul,2013.

[5] K.Ramani,D.Ramanujan,W.Z.Bernstein,Z.Fuetal.,"IntegratedSustainableLifeCycleDesign:AReview,"JournalofMechanicalDesign,vol.132,no.9,2010.

[6] N.Bey,.M.Z.HauschildandT.C.McAloone,"Driversandbarriersforimplementationofenvironmentalstrategiesinmanufacturingcompanies,"CIRPAnnals-ManufacturingTechnology,vol.62,no.1,pp.43-46,2013.

[7] F.Segonds,M.Iraqi-Houssaini,L.RoucoulesandP.véron,"Theuseofearlydesigntoolsinengineeringprocesses:acomparativecasestudy,"InternationalJournalofDesignandInnovationResearch,vol.5,no.3,pp.61-76,2010.

[8] H.GmelinandS.Seuring,"Determinantsofasustainablenewproductdevelopment,"JournalofCleanerProduction,vol.69,pp.1-9,2014.

[9] G.S.Bhander,M.HauschildandT.McAloone,"Implementinglifecycleassessmentinproductdevelopment,"EnvironmentalProgress&SustainableEnergy,vol.22,no.4,pp.255-267,2003.

Page 119: Design for Sustainability through a Life Cycle Assessment

105

[10] T.A.Bhamra,S.Evans,T.C.McAloone,M.Simon,S.PooleandA.Sweatman,"IntegratingEnvironmentalDecisionsintotheProductDevelopmentProcess.I.TheEarlyStages,"inEnvironmentalConsciousDesignandInverseManufacturing,Tokyo,1999.

[11] S.Ritzenand,IntegratingEnvironmentalAspectsintoProductDevelopment-ProactiveMeasures,Stockholm:MechineDesign,2000.

[12] J.ToddandM.AnnCurran,"StreamlinedLife-CycleAssessment:AFinalReportfromtheSETACNorthAmericaStreamlinedLCAWorkgroup,"SETACandSETACFoundationforEnvironmentalEducation,1999.

[13] D.Millet,L.Bistagnino,C.Lanzavecchia,R.CamousandT.Poldma,"DoesthepotentialoftheuseofLCAmatchthedesignteamneeds,"JournalofCleanerProduction,vol.15,no.4,p.335–346,2007.

[14] D.Yousnadj,G.Jouanne,N.Maranzana,F.Segonds,C.Bouchardand.A.Aoussat,"IntegrationofEnvironmentalAssessmentinaPLMContext:ACaseStudyinLuxuryIndustry,"inProductLifecycleManagementforaGlobalMarket,Heidelberg,SpringerBerlinHeidelberg,2014,pp.201-212.

[15] W.DewulfandJ.Duflou,"SimplifyingLCAUsingIndicatorApproaches-AFramework,"inCIRPseminaronlifecycleengineeringCopenhagen,Denmark,2003.

[16] S.Devanathan,D.Ramanujan,W.Z.Bernstein,.F.ZhaoandK.Ramani,"IntegrationofSustainabilityIntoEarlyDesignthroughtheFunctionImpactMatrix,"JournalofMechanicalDesign,vol.132,no.8,pp.1-8,2010.

[17] V.Mani,S.DasandR.Caudill,"DisassemblyComplexityandRecyclabilityAnalysisofNewDesignsfromCADFileData,"inProceedingsofthe2001IEEEInternationalSymposium,2001.

[18] J.Lagerstedt,"Functionalandenvironmentalfactorsinearlyphasesofproductdevelopment,"December2003.[Online].Available:http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A9267&dswid=-2857.

[19] D.C.Eddy,S.Krishnamurty,I.R.Grosse,J.C.WiledenandK.E.Lewis,"Anormativedecisionanalysismethodforthesustainability-baseddesignofproducts,"JournalofEngineeringDesign,vol.24,no.5,pp.342-362,2013.

Page 120: Design for Sustainability through a Life Cycle Assessment

106

[20] P.W.Witherell,D.Eddy,I.GrosseandS.Krishnamurty,"AnIntergratedApproachtoInformationModelingfortheSustainableDesignofProducts,"JournalofComputingandInformationScienceinEngineering,vol.14,no.2,2014.

[21] D.Eddy,S.Krishnamurty,I.Grosse,J.WiledenandK.Lewis,"Apredictivemodelling-basedmaterialselectionmethodforsustainableproductdesign,"JournalofEngineeringDesign26,vol.10,no.12,pp.365-390,2015.

[22] D.C.Eddy,S.Krishnamurty,I.R.Grosse,A.LiottaandJ.C.Wileden,"TowardIntegrationofaSemanticFrameworkWithaCommercialPLMSystem,"inASME2012InternationalDesignEngineeringTechnicalConferences&ComputersandInformationinEngineeringConference,NewYork,2012.

[23] T.E.GreadelandB.R.Allenby,IndustrialEcology,NewJersey:PrenticeHall,2003.

[24] A.SaaksvuoriandA.Immonen,ProductLifecycleManagement,Helsinki:Springer-VerlagBerlinHeidelberg,2005.

[25] M.Abramovici,"FutureTrendsinProductLifecycleManagement(PLM),"inTheFutureofProductDevelopment,Heidelberg,SpringerBerlinHeidelberg,2007,pp.665-674.

[26] S.Terzi,A.Bouras,D.DuttaandD.Kiritsis,"Productlifecyclemanagement-Fromitshistorytoitsnewrole,"InternationalJournalofProductLifecycleManagement,vol.4,no.4,pp.360-389,2010.

[27] S.Leibrecht,"FundamentalPrinciplesforCAD-basedEcologicalAssessments,"TheInternationalJournalofLifeCycleAssessment,vol.10,no.6,p.436–444,2005.

[28] M.Schichtel,ProductDatenmodellierung,Leipzig:FachbuchPublishing,2002.

[29] M.A.Curran,"LIFECYCLEASSESSMENT:PRINCIPLESANDPRACTICE,"U.S.EnvironmentalProtectionAgency(EPA).,2006.[Online].Available:http://nepis.epa.gov/Exe/ZyNET.exe/P1000L86.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&.

[30] M.A.Curran,EnvironmentalLife-CycleAssessment,McGraw-Hill,1996.

Page 121: Design for Sustainability through a Life Cycle Assessment

107

[31] ISO,"ISO14001:2015Environmentalmanagementsystems--Requirementswithguidanceforuse,"InternationalOrganizationforStandardization,Switzeland,2015.

[32] A.Morbidoni,M.Recchloni,H.E.OttoandF.Mandorli,"EnablinganefficientSLCAbyinterfacingselectedPLMLCIparameters,"inProceedingsofthe8thInternationalSymposiumonToolsandMethodsofCompetitiveEngineering,Ancona,2009.

[33] "Ecoinvent,"Ecoinvent,[Online].Available:http://www.ecoinvent.org/.

[34] Pre-Sustainability,"ESU-ETH96,"WorldResourcesInstitute,[Online].Available:www.pre.nl/download/manuals/DatabaseManualETH-ESU96.pdf.

[35] J.Elkington,"Partnershipsfromcannibalswithforks:Thetriplebottomlineof21st-centurybusiness,"EnvironmentalQualityManagement,vol.8,no.1,pp.37-51,1998.

[36] T.F.SlaperandT.Hall,"TheTripleBottomLine:WhatIsItandHowDoesItWork?,"IndianaBusinessReview,vol.86,no.1,2011.

[37] M.Finkbeiner,.E.M.Schau,.A.Lehmannand.M.Traverso,"TowardsLifeCycleSustainabilityAssessment,"Sustainability,vol.2,no.10,pp.3309-3322,2010.

[38] M.Eigner,.M.v.HauffandP.D.Schäfer,"SustainableProductLifecycleManagement:ALifecyclebasedConceptionofMonitoringaSustainableProductDevelopment,"inGlocalizedSolutionsforSustainabilityinManufacturing,Heidelberg,SpringerBerlinHeidelberg,2011,pp.501-506.

[39] M.Hundal,"LifeCycleAssessmentandDesignfortheEnvironment,"inINTERNATIONALDESIGNCONFERENCE,Dubrovnik,2000.

[40] G.A.keoleianandD.Menerey,"LifeCycleDesignGuidanceManual:Envrironmentalrequirementsandtheproductsystem,"AnnArbor,1993.

[41] A.Stevels,"IntegrationofEco-designintotheBusiness,"inMechanicalLifeCycleHandbook,NewYork,MarcelDekker.Inc,2001,pp.509-527.

[42] C.Mizuki,P.A.SandbornandG.Pitts,"Designforenvironmental-asurveyofcurrentpracticsandtools,"inProceedingsof1996IEEEInternationalSymposiumonElectronicsandtheEnvironment,Dallas,1996.

Page 122: Design for Sustainability through a Life Cycle Assessment

108

[43] A.D.VeroutisandJ.A.Fava,"Frameworkforthedevelopmentofmetricsfordesignforenvironment(DfE)assessmentofproducts,"inProceedingsofthe1996IEEEInternationalSymposiumonElectronicsandtheEnvironment,WestChester,1996.

[44] M.A.O'Shea,"DesignforEnvironmentinconceptualproductdesign–adecisionmodeltoreflectenvironmentalissuesofalllife-cyclephases,"TheJournalofSustainableProductDesign,vol.2,no.1,pp.11-28,2002.

[45] C.LuttropandJ.Lagerstedt,"EcoDesignandTheTenGoldenRules:genericaadviceformergingenvironmentalaspectsintoproductdevelopment,"JounalofCleanerProduction,vol.14,no.15-16,pp.1396-1408,2006.

[46] H.BrezetandC.VanHemel,Ecodesign:apromizingapproachtosustainableproductandconsumption,Delft:UNEnvironmentProgramme,1997.

[47] R.Hillary,SmallandMedium-SizedEnterprisesandtheEnvironment:BusinessImperatives,Sheffield,UK:GreenleafPublishingLimited,2000.

[48] J.R.Ehrenfeld,"Designforenvironment:Anewframeworkforstrategicdecisions,"EnvironmentalQualityManagement,vol.4,no.4,pp.37-51,1995.

[49] S.Krishnamurty,"NormativeDecisionAnalysisinEngineeringDesign,"inDecisionMakinginEngineeringDesign,NewYork,ASMEPress,2006,pp.21-33.

[50] D.L.Thurston,"RealandMisconceivedLimitationstoDecisionBasedDesignWithUtilityAnalysis,"JournalofMechanicalDesign,vol.123,no.2,pp.176-182,1999.

[51] .D.L.Thurston,"Multi-AttributeUtilityAnalysisofConflictingPreferences,"inDecisionMakinginEngineeringDesign,NewYork,ASMEPress,2006,pp.125-133.

[52] G.A.Kiker,T.S.Bridges,A.Varghese,T.P.Seagerand.I.Linkov,"ApplicationofMulticriteriaDecisionAnalysisinEnvironmentalDecisionMaking,"IntegratedEnvironmentalAssessmentandManagement,vol.1,no.2,pp.95-108,2005.

[53] T.-K.See,A.Gurnani,K.Lewisand,"Multi-AttributeDecisionMakingUsingHypotheticalEquivalentsandInequivalents,"JournalofMechanicalDesign,vol.126,no.6,pp.950-958,2005.

Page 123: Design for Sustainability through a Life Cycle Assessment

109

[54] D.Stratton,S.Behdad,K.LewisandS.Krishnamurty,"AMulti-levelApproachtoConceptSelectioninSustainableDesign,"inASMEInternationalDesignEngineeringTechnicalConferences&ComputerandInformationinEngineeringConference,Buffalo,2014.

[55] A.GurnaniandK.Lewis,"Multi-AttributeDecisionMakingUsingHypotheticalEquivalents,"inASMEDesignTechnicalConferencesandComputerandInformationinEngineeringConference,Montreal,2002.

[56] G.Rebitzer,T.Ekvall,R.Frischknechtetal.,"Lifecycleassessment:Part1:Framework,goalandscopedefinition,inventoryanalysis,andapplications,"EnvironmentInternational,vol.30,no.5,p.701–720,2004.

[57] A.ChristopheandA.Franck,"Quellescapacitésdynamiquespourlesstratégiesdedéveloppementdurabledesentreprises?Lecasdumanagementdel’éco-conception,"inQuellescapacitésdynamiquespourlesstratégiesdedéveloppementdurabledesentreprises?Lecasdumanagementdel’éco-conception,Montreal,2007.

[58] J.GolovatchevandO.Budde,"NextGenerationPLM-anintegratedapproachfortheProductLifecycleManagementintheICTIndustry-NextgenerationPLM,"inProceedingsofICCPR2007:InternationalConferenceonComprehensiveProductRealization,Beijing,2007.

[59] V.Poudelet,J.-A.Chayer,M.Margni,R.Pellerinetal.,"Aprocess-basedapproachtooperationalizelifecycleassessmentthroughthedevelopmentofaneco-designdecision-supportsystem,"JounalofCleanerProduction,vol.33,pp.192-201,2012.

[60] .F.Mathieux,.R.Lionel,L.LescuyerandY.Bouzidi,"OpportunitiesandchallengesforconnectingenvironmentalassessmenttoolsandCADsoftware.,"inProceedingofLCM2005InnovationbyLifeCycleManagement,2005.

[61] .J.-P.Theret,D.Evrard,F.Mathieux,Y.LeGuernandP.Chemla,"IntegratingCAD,PLMandLCA:newconcepts,datamodel,architecture&integrationproposals,"inInnovationsinSharing-EnvironmentalObservationsandInformation,Ispra,2011.

[62] "eLCA-Connectro,"PernexasGmbH,[Online].Available:http://pernexas.com/?page_id=140.

Page 124: Design for Sustainability through a Life Cycle Assessment

110

[63] N.Marosky,J.Dose,.G.FleischerandR.Ackermann,"ChallengesofDataTransferbetweenCAD-andLCASoftwareTools,"in3rdInternationalConferenceonLifeCycleManagement,Zurich,2007.

[64] F.Cappelli,.M.Deloguand.M.Pierini,"IntegrationofLCAandEcoDesignguidelineinavirtualcadframework,"in13thCIRPINTERNATIONALCONFERENCEONLIFECYCLEENGINEERING,Leuven,2006.

[65] A.Morbidoni,M.Recchioni,H.E.OttoandF.Mandorli,"EnablingAnEfficientSLCAbyInterfacingSelectedPLMLCIParameters,"inProceedingsoftheTMCE,Ancona,2010.

[66] .A.Morbidoni,C.FaviandF.Mandorli,"ENVIRONMENTALEVALUATIONFROMCRADLETOGRAVEWITHCAD-INTEGRATEDLCATOOLS,"ActaTechnicaCorvininesis-BulletinofEngineering,vol.5,no.1,p.109,2012.

[67] H.E.Otto,F.Kimura,F.MandorliandM.Germani,"IntegrationofCADmodelswithLCA,"inProceedingsofEcoDesign:ThirdInternationalSymposiumonEnvironmentallyConsciousDesignandInverseManufacturing,Tokyo,2003.

[68] "SolidWorksSustainability::SolidWorksSustainability,"DassaultSystèmesSolidWorksCorporation,[Online].Available:http://www.solidworks.com/sustainability/sustainability-software.htm.

[69] E.HochschornerandG.Finnveden,"EvaluationoftwosimplifiedLifeCycleassessmentmethods,"TheInternationalJournalofLifeCycleAssessment,vol.8,no.3,pp.119-128,2003.

[70] H.E.Otto,F.KimuraandF.Manodorli,"SupportofDisassembly/RessemblyEvaluationwithinTotalLifeCycleModelingThroughFeatureNeighborhoods,"inProceedingofASMEInternationalDesignEngineeringandComputersinEngineeringConference,Atlanta,1998.

[71] J.-H.ParkandK.-K.seo,"Knowledge-basedapproximatelifecycleassessmentsysteminthecollaborativedesignenvironment,"inEcoDesign'03.20033rdInternationalSymposiumonEnvironmentallyConsciousDesignandInverseManufacturing,Tokyo,2003.

[72] F.Tao,y.Zuo,L.Xu,l.Lvandl.zhang,"InternetofThingsandBOM-BasedLifeCycleAssessmentofEnergy-SavingandEmission-ReductionofProducts,"IEEETRANSACTIONSONINDUSTRIALINFORMATICS,vol.10,no.2,pp.1252-1261,02MAY2014.

Page 125: Design for Sustainability through a Life Cycle Assessment

111

[73] D.Yousnadj,G.Jouanne,N.Maranzana,F.Segondsetal.,"IntegrationofEnvironmentalAssessmentinaPLMContext:ACaseStudyinLuxuryIndustry,"inProductLifecycleManagementforaGlobalMarket,vol.442,Yokohama,SpringerBerlinHeidelberg,2014,pp.201-212.

[74] A.JanuschkowetzandC.Hendrickson,"ProductandprocessLifeCycleInventoriesusingSAPR/3,"inProceedingsofthe2001IEEEInternationalSymposiumonElectronicsandtheEnvironment,Denver,2001.

[75] H.Ostad-Ahmad-Ghorabi,D.Collado-RuizandW.Wimmer,"TOWARDSINTEGRATINGLCAINTOCAD,"inProceedingsofInternationalConferenceonEngineeringDesign,PaloAlto,2009.

[76] B.McIntoshandC.Koffler,"presentationusingBOMimport&EPDtemplatestominimizethecostsoftypeiiiEPDSbythinkstep,"October2014.[Online].Available:https://issuu.com/peinternational/docs/presentation_-_using_bom_imports____ba691ef223904f.

[77] J.W.Owens,"Life-CycleAssessment:ConstraintsonMovingfromInventorytoImpactAssessment,"JournalofIndustrialEcology,vol.1,no.1,pp.37-49,January1997.

[78] H.E.Otto,K.G.MuellerandF.Kimura,"AFrameworkforStructuredDataRetrievalinLCAUsingFeatureTechnology,"inProceedingsEcoDesign2001:SecondInternationalSymposiumonEnvironmentallyConsciousDesignandInverseManufacturing,Tokyo,2001.

[79] D.Millet,"Intégrationdel’environnementenconception,"inl’entrepriseetledéveloppementdurable,Paris,2003.

[80] M.Rio,T.ReyesandL.Roucoules,"Aframeworkforecodesign:aninterfacebetweenLCAanddesignprocess,"InternationalJournalofEngineering-AnnalsofFacultyofEngineeringHunedoara,vol.9,no.1,pp.121-126,2011.

[81] L.Y.Ljungbergand,"Materialsselectionanddesignfordevelopmentofsustainableproducts,"Materials&Design,vol.28,no.2,pp.466-479,2007.

[82] A.Morbidomi,"TheEcoDesignIssue:proposalforanewapproach,methodologyandtools,"BrecceBianche,Ancona.

[83] A.Gehin,P.ZwolinskiandD.Brissaud,"ATooltoImplementSustainableEnd-of-LifeStrategiesintheProductDevelopmentPhase,"JournalofCleanerProduction,vol.16,no.5,pp.566-576,2008.

Page 126: Design for Sustainability through a Life Cycle Assessment

112

[84] R.GiutiniandK.Gaudette,"Remanufacturing:TheNextGreatOpportunityforBoostingUSProductivity,"BusinessHorizons,vol.46,no.6,pp.41-48,2003.

[85] W.KerrandC.Ryan,"Eco-EfficiencyGainsfromRemanufacturing—ACaseStudyofPhocopierRemanufacturingatFujiXeroxAustralia,"JournalofCleanerProduction,vol.9,pp.75-81,2001.

[86] A.Gehin,P.ZwolinskiandD.Brissaud,"Integrateddesignofproductlifecycles—Thefridgecasestudy,"CIRPJournalofManufacturingScienceandTechnology,vol.1,pp.214-220,2009.

[87] H.Wenzel,M.Z.HauschildandL.Alting,EnvironmentalAssessmentofProducts,Vols.1Methodology,ToolsandCaseStudiesinProductDevelopment,UnitedKingdom:Springer,1997.

[88] D.Collado-RuizandH.Ostad-Ahmad-Ghorabi,"ComparingLCAresultsoutofcompetingproducts-Developingreferencerangesfromaproductfamilyapproach,"JournalofCleanerProduction,vol.18,no.4,pp.355-364,2010.

[89] J.K.Choi,L.F.NiesandK.Ramani,"Aframeworkfortheintegrationofenvironmentalandbusinessaspectstowardsustainableproductdevelopment,"JournalofEngineeringDesign,vol.19,no.5,pp.431-446,2008.

[90] J.K.ChoiandK.Ramani,AQuestforSustainableProductDesign:ASystematicMethodologyforIntegratedAssessmentofEnvironmentallyBenignandEconomicallyFeasibleProductDesign,VDM-Verl.,2009.

[91] E.C.f.Standardization,"CEN/TC281-Appliance,solidfuelsandfirelightersforbarbecuing,"2013.[Online].Available:https://standards.cen.eu/dyn/www/f?p=204:7:0::::FSP_ORG_ID:6262&cs=1546BDAD2A13D0A601C7E76D2F35D0685.

[93] M.KulokandK.Lewis,"AMethodtoEnsurePreferenceConsistencyinMulti-AttributesSelectionDecisions,"JournaloMechanicalDesign,vol.129,no.10,2007.