14
Design Design Considerations of Considerations of table-top table-top FELs FELs • laser-plasma accelerators • principal possibility of table-top FELs • possible VUV and X-ray scenarios new experimental status • critical points review LMU: F. Grüner , U. Schramm, S. Becker, R. Sousa, T. Eichner, D. Habs MPQ: S. Karsch, M. Geissler, L. Veisz, J. Meyer-ter- Vehn, F. Krausz UCLA: S. Reiche DESY, June 20; recap of FLS 2006, May 15, 2006

Design Considerations of table-top FELs

  • Upload
    asta

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Design Considerations of table-top FELs. DESY, June 20; recap of FLS 2006, May 15, 2006. LMU: F. Grüner , U. Schramm, S. Becker, R. Sousa, T. Eichner, D. Habs MPQ: S. Karsch, M. Geissler, L. Veisz, J. Meyer-ter-Vehn, F. Krausz UCLA: S. Reiche. laser-plasma accelerators - PowerPoint PPT Presentation

Citation preview

Page 1: Design Considerations of  table-top  FELs

Design Considerations Design Considerations of of table-toptable-top FELs FELs

• laser-plasma accelerators

• principal possibility of table-top FELs

• possible VUV and X-ray scenarios

• new experimental status

• critical points review

• cooperation with DESY…

LMU: F. Grüner, U. Schramm, S. Becker, R. Sousa, T. Eichner, D. HabsMPQ: S. Karsch, M. Geissler, L. Veisz, J. Meyer-ter-Vehn, F. KrauszUCLA: S. Reiche

DESY, June 20; recap of FLS 2006, May 15, 2006

Page 2: Design Considerations of  table-top  FELs

Laser-Plasma accelerators: Laser-Plasma accelerators: “bubble acceleration”“bubble acceleration”

TW laser,5-50 fs

electron bunch: e.g. 170 MeV (LOA), 1.2 GeV (Berkeley)

Page 3: Design Considerations of  table-top  FELs

M. Geissler PIC code 5fs, a=5

Page 4: Design Considerations of  table-top  FELs

~4 cm

300 µm

electrodes

gas-filled capillary

Discharge capillary

yearyear laser laser pulse pulse energyenergy

PulsePulselengthlength

electronelectronenergyenergy

energyenergyspreadspread

divergencdivergencee

20042004 0.36 J0.36 J 40 fs40 fs 86 MeV86 MeV 2 %2 % 3 mrad3 mrad

2006*2006* 1.3 J1.3 J 33 fs33 fs 1.2 GeV1.2 GeV < 2%< 2% 1.6 mrad1.6 mrad* presented at Anomalous Absorpt. Conf., June 6, 2006; submitted to Science

MPQ: since two weeks 0.35 J in 37 fs, soon 1-2 J future (~2009): 5 J, 5 fs (=1 PW), 1 kHz

Leemanslaser-plasma-acceleration

Page 5: Design Considerations of  table-top  FELs

Improvement by capillaries

• discharge introduces parabolic electron density

• laser guiding beyond Rayleigh length → higher energies

• de-phasing: reducing energy spread

• ion-channel: reducing electron beam diameter and divergence

• possible scenario: bubble turns into linear wakefield → GeV- energies with ~0.1% energy spread

• started cooperation with Simon Hooker (Oxford)

de-phasing

Page 6: Design Considerations of  table-top  FELs

Important feature: ultra-high current

laser pulse

~ 2 µm only!!~ nC charge ~ 100

kA

typical length scale = plasma wavelength

Page 7: Design Considerations of  table-top  FELs

Principal possibility for Principal possibility for table-toptable-top FELs FELs

3/12

22

1

x

uu

A

A

I

I

current

beam diameter (optimal!)

: few 100kA (classical: 5 kA)

34ideal,

ugainL

und. period : few mm (class. few cm)

simplest estimate: ideal 1d Pierce parameter (no energy spread, emittance, diffraction, time-dependence)

)1(ideal,real, gain

XieMing LLgain

gainsat LL 15

Page 8: Design Considerations of  table-top  FELs

reduction in λu allows a reduction in γ, but needs ultra-high currentfor keeping ρ and also saturation power large enough

DESY flash (fs mode):λu= 27 mm (462 MeV)εn = 6 mm·mradΔE/E = 0.04 %

saturation length (Xie Ming)for SASE VUV FEL @ ~28nm

Λ (Xie Ming)

MPQ (GENESIS)λu= 3 mm (133 MeV)εn = 1 mm·mradΔE/E = 0.5 %

3/1~ I

!!

ideal,real,

4, :small keeping

)1(

u

gaingain LL

Constraints for Constraints for table-toptable-top FELs FELs

3/42

1

1~ usat IP

• not only table-top size, but sufficient output power:

Page 9: Design Considerations of  table-top  FELs

Start-to-End Start-to-End SimulationsSimulations

own 3d PIC code

electron bunchtransport/focusing/

filter FEL undulator

laser

GPT, Geant

CSRTrack, Spur;GENESIS 1.3

Page 10: Design Considerations of  table-top  FELs

A possible first VUV caseA possible first VUV case

ParameterParameter DESY DESY ((flashflash, fs-, fs-mode)mode)

MPQMPQ

CurrentCurrent 1.3 kA1.3 kA 160 kA160 kA

Norm. Emitt.Norm. Emitt.(rms)(rms)

6 mm6 mm·mrad·mrad 1 mm1 mm·mrad·mrad

EnergyEnergy 461.5 MeV461.5 MeV 130 MeV130 MeV

Energy spreadEnergy spread 0.04 %0.04 % 0.5 %0.5 %

WavelengthWavelength 30 nm30 nm 25 nm25 nm

Pierce par.Pierce par. 0.00160.0016 0.01170.0117

Sat. PowerSat. Power 0.66 GW0.66 GW 5 GW5 GW

Sat. LengthSat. Length 19 m19 m 45 cm45 cm

Page 11: Design Considerations of  table-top  FELs

International competition and International competition and a possible first table-top XFEL casea possible first table-top XFEL case

ParameterParameter Leemans Leemans (FEL2005 (FEL2005 conf.)conf.)100 TW, 33 fs100 TW, 33 fs

MPQ (TT-XFEL)MPQ (TT-XFEL)1 PW, 5 fs1 PW, 5 fs

CurrentCurrent 25 kA25 kA 160 kA160 kA

Norm. Emitt.Norm. Emitt.(rms)(rms)

1 mm1 mm·mrad·mrad 1 mm1 mm·mrad·mrad

EnergyEnergy 1 GeV1 GeV 0.9 – 1.2 GeV0.9 – 1.2 GeV

Energy spreadEnergy spread 1 %1 % 0.1 %0.1 %

Und. PeriodUnd. Period 10 mm10 mm 1.5 – 3 mm1.5 – 3 mm

WavelengthWavelength 2 nm2 nm 0.25 nm0.25 nm

Und. lengthUnd. length 4.7 m4.7 m 3 m3 m

Page 12: Design Considerations of  table-top  FELs

New Experimental StatusNew Experimental Status

undulator:60 periods, 5 mm period, 1.6 mm gap~1 T field on axis few days ago:

40 MeV electrons

Page 13: Design Considerations of  table-top  FELs

Critical Points ReviewCritical Points Review• space charge influence due to ultra-dense bunches

- HOMDYN (L. Serafini): for 1 GeV correlated energy spread 0.5 %, no debunching

- GPT/CSRtrack runs (see next talk)

- simple analytical estimates in agreement with GPT

- linear energy chirp can be compensated with tapering

• transverse coherence

- valid only for spontaneous source, here: gain guiding

- calculate growth rate of next higher mode with GENESIS

- transverse coherence important for focusing only?

• peak brilliance: 1032 @ 5 keV - comparable with LCLS! (1012 phts/0.1%BW, θ=15µrad, σx=30µm, τ=10fs)

4

Page 14: Design Considerations of  table-top  FELs

Cooperation with you…Cooperation with you…

• verify our GPT results with ASTRA

• verify entire feasibility study (publishing a joint paper)

• discuss beam features in detail (slice energy spread, etc.)

• for experiments: diagnostic methods (FROG)

• open questions, such as maximum photon energy

• what could you learn from us????