24
AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 745 *Author for correspondence E-mail: [email protected] Design and synthesis of calixarene Y K Agrawal* J P Pancholi and J M Vyas Institute of Research and Development, Gujarat Forensic Sciences University, Sector 18A, Gandhinagar 382 007, India Received 06 October 2008; revised 01 June 2009; accepted 16 June 2009 Calixarenes are versatile macromolecules in the field of supramolecules because of its synthetic feasibility and extensive analytical applications. This paper reviews synthesis of calixarenes and related derivatives containing heterocycles, polymers, crown-ethers, and fullerenes. Various analytical applications of calixarenes are discussed. Keywords: Calixarenes, Crown-ethers, Fullerenes, Polymers Introduction Calixarene is a macrocycle or cyclic oligomer based on a hydroxyl alkylation product of phenols and aldehydes 1 . Calixarenes have hydrophobic cavities that can hold smaller molecules or ions and belong to the class of cavitands known as host-guest chemistry. In 1940s, Zinke & Ziegler 2 discovered base-induced reaction of p-alkylphenols with formaldehyde, which yields cyclic oligomers. Then, synthesis of cyclic oligomers was reported 3 . Calixarenes can be used as ion sensitive electrodes or sensors 4 , optical sensors 5 , chiral recognition devices for solid phase extraction, as a stationary phase and modifiers 6 . Several books 7- 12 and reviews 13-17 covered synthesis, properties and applications of calixarenes. Some studies 18-20 reported structures and properties of calixarene. This review presents five types of calixarenes. I. Modified Calixarenes There are two places (phenolic hydroxyl groups and p-positions) for modification of calixarenes. Methylene bridges may be substituted with aromatic system of phenolic units as a whole or may lead to replacement of OH-function by other groups. Functional groups introduced in a first step may be further modified by subsequent reactions including migration. Usually upper rim substitution of calixarene is carried out by de-t- butylation of p-tert-butyl group followed by subsequent reaction. Substitution of hydroxamic acid group 21-24 and bromination 25 is reported. Similarly, p-bromination of calix[4]arenemethylether 26 and bromination of tetra- methoxycalix[4]arene is also reported 27 . Ipso - bromination 28 has been carried out under a variety of reaction parameters. Optimized conditions give p- bromocalixarenes and methylene bridge brominated calix[n]arene directly 28 . Single step, one-pot procedure is also given (Scheme 1) for conversion of p- tert- butylcalix[n]arenes (Table 1) to their p-acyl derivatives; thus (2) and (3) has been prepared 29 . Ipso-substitution is also possible with more than one substitution (Table 2) 30 . Calixarenes having larger cavity size like calix[8]arenes can also be ipso substituted 31 . Calixarenes of varying cavity size can form variety of host-guest type of inclusion complexes similar to cyclodextrins. However, calixarene host molecules have a unique composition that include benzene groups, which provide À-À interaction and hydroxyl groups for hydrogen bonding, which is generally water insoluble. Shinkai et al synthesized water-soluble calixarenes having sulfonate groups 32 . Calixarene cavity is capable for molecular recognition in solution, and can be applid in remediation of contaminated groundwater and industrial effluents. Intercalation of water-soluble p-sulfonated calix[4]arene (CS 4 ) in interlayer of Mg-Al and Zn-Al lactate dehydrogenase (LDHS) (M2+/Al = 3) by co-precipitation method 33 showed adsorption ability for benzyl alcohol (BA) and p-nitrophenol (NP) in aqueous solutions, which Journal of Scientific & Industrial Research Vol. 68, September 2009, pp. 745-768

Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 745

*Author for correspondenceE-mail: [email protected]

Design and synthesis of calixarene

Y K Agrawal* J P Pancholi and J M Vyas

Institute of Research and Development, Gujarat Forensic Sciences University, Sector 18A, Gandhinagar 382 007, India

Received 06 October 2008; revised 01 June 2009; accepted 16 June 2009

Calixarenes are versatile macromolecules in the field of supramolecules because of its synthetic feasibility and extensiveanalytical applications. This paper reviews synthesis of calixarenes and related derivatives containing heterocycles, polymers,crown-ethers, and fullerenes. Various analytical applications of calixarenes are discussed.

Keywords: Calixarenes, Crown-ethers, Fullerenes, Polymers

Introduction

Calixarene is a macrocycle or cyclic oligomer basedon a hydroxyl alkylation product of phenols andaldehydes1. Calixarenes have hydrophobic cavities thatcan hold smaller molecules or ions and belong to theclass of cavitands known as host-guest chemistry. In1940s, Zinke & Ziegler2 discovered base-inducedreaction of p-alkylphenols with formaldehyde, whichyields cyclic oligomers. Then, synthesis of cyclicoligomers was reported3. Calixarenes can be used asion sensitive electrodes or sensors4, optical sensors5,chiral recognition devices for solid phase extraction,as a stationary phase and modifiers6. Several books7-

12 and reviews13-17 covered synthesis, properties andapplications of calixarenes. Some studies18-20 reportedstructures and properties of calixarene. This reviewpresents five types of calixarenes.

I. Modified Calixarenes

There are two places (phenolic hydroxyl groupsand p-positions) for modification of calixarenes.Methylene bridges may be substituted with aromaticsystem of phenolic units as a whole or may lead toreplacement of OH-function by other groups. Functionalgroups introduced in a first step may be further modifiedby subsequent reactions including migration. Usually

upper rim substitution of calixarene is carried out by de-t-butylation of p-tert-butyl group followed by subsequentreaction. Substitution of hydroxamic acid group21-24 andbromination25 is reported. Similarly, p-bromination ofcalix[4]arenemethylether26 and bromination of tetra-methoxycalix[4]arene is also reported27. Ipso-bromination28 has been carried out under a variety ofreaction parameters. Optimized conditions give p-bromocalixarenes and methylene bridge brominatedcalix[n]arene directly28. Single step, one-pot procedureis also given (Scheme 1) for conversion of p-tert-butylcalix[n]arenes (Table 1) to their p-acyl derivatives;thus (2) and (3) has been prepared29. Ipso-substitution isalso possible with more than one substitution (Table 2)30.

Calixarenes having larger cavity size like calix[8]arenescan also be ipso substituted31.

Calixarenes of varying cavity size can form varietyof host-guest type of inclusion complexes similar tocyclodextrins. However, calixarene host molecules havea unique composition that include benzene groups, whichprovide À-À interaction and hydroxyl groups for hydrogenbonding, which is generally water insoluble. Shinkai et alsynthesized water-soluble calixarenes having sulfonategroups32. Calixarene cavity is capable for molecularrecognition in solution, and can be applid in remediationof contaminated groundwater and industrial effluents.Intercalation of water-soluble p-sulfonated calix[4]arene(CS

4) in interlayer of Mg-Al and Zn-Al lactate

dehydrogenase (LDHS) (M2+/Al = 3) by co-precipitationmethod33 showed adsorption ability for benzyl alcohol(BA) and p-nitrophenol (NP) in aqueous solutions, which

Journal of Scientific & Industrial ResearchVol. 68, September 2009, pp. 745-768

Page 2: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

746 J SCI IND RES VOL 68 SEPTEMBER 2009

are also larger in Zn-Al/CS4/LDH than in Mg-Al/CS

4/

LDH because of effective use of parallel arranged cavityonly in Zn-Al/CS

4/LDH. CS

4/LDHs have possibility as

new organic-inorganic hybrid adsorbents.Makha & Rasston34 synthesized water soluble

calixarenes using p-phenyl calix[n]arene and sulfonatederivatives (Scheme 2), which have exciting possibilitiesas a phase transfer catalyst in transport processes. Toincrease size of a hydrophobic cavity, calix[n]arenas(Scheme 3) consist of different bulky groups. Functionalgroups present in adamantine fragment (9) and (10)

Table 1—Substitutions for p-acyl derivatives prepared from p-t-butylcalixarene

R1 R2 R3 R4 (3) R4 (4)

OH H CO-C6H5 CO-C6H5 CO-C6H5

OH t –Bu CO-C(CH3)

3CO-C(CH

3)

3CO-C(CH

3)

3

OMe t –Bu CO-CH3 t-Bu CO-4-NO2C6H4

CO-CH3CH

2t-Bu

Table 2—ipso-substitution group for calix[4]arene

Compound R1

R2

R3

R4

1 H H H H

2 H H H Me

3 H COMe H Me

4 H H H COMe

5 Me COMe H H

6 Me H H COMe

7 Me H H CoMe

R1

R2

n

OR3

R4

n

OH

R4

nRCOCl

AlCl3

(1)(2) (3)

n= 4, 8, 6

Scheme 1

OH OH n OH

SO3H

H2SO4

ClSO3H

H2CO

KOH

n

(4) (5) (6)

n=4,5,6,8

Scheme 2

OH

RnCH3

CH3

OH

CF3COOH

R

CH3OH

CH3

OH

R

OH

CH3CH3

+

+

(7) (8) (9) (10)

n-1

n

Scheme 3

Page 3: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 747

R1CH2BR

R2CH2BR

Na2CO3 CH3CN

K2CO3, Na2CO3,CH3CN

R2= m-MeC6H4R1= p-MeC6H4

(11)

(12)

(13)

OHOH HOOH

OHOH OO

OHOH OOH

R1 R1

R2

EtOH, reflux

EtOH, reflux EtOH, re flux

R=CH2CH2CH3

R=CH2(CH2)8CH3

HNO3 HOAc

HNO3 HOAc

SnCl2, 2H2O

CH2Cl2, r.t., 3h

CH2Cl2, r. t., 3h

SnCl2, 2H2O

SnCl2, 2H2O

+

(14) (15)(16)

(17)(18)

(19)(20)

OO OO

R R RR

OO OO

R R RR

NO2

OO OO

R R RR

NH2

OO OO

R R RR

NO2 N O2

OO OO

R R RR

NO2 NO2

OO OO

R R RR

NH2 NH2

OO OO

R R RR

NH2 NH2

Scheme 5

Scheme 4

Page 4: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

748 J SCI IND RES VOL 68 SEPTEMBER 2009

should provide possibility for further modification andconformational organization of molecule35-37. Self-assembly of tetradentate ligand 5,5-bipyrimidine withc-methyl calix[4]resorcinarene is reported38,39. Itmodulates volume and periphery of cavity in a predictablefashion by changing size, flexibility and composition ofspacer between pyrimidyl units.

Introduction of bulky substituents as m-methylbenzyl groups incorporate and remove protective groupsin synthesis of calixarenes with three differentsubstituents in molecule. In presence of sodium andpotassium carbonates, reaction of calixarene with p andm-methyl benzyl bromides gives compounds (12) and(13) that affect composition, current conformations, andyield of products (Scheme 4)40-43. Calix[4]arenenucleoside base (19) and (20) receptors provide ionpairing complex44 (Scheme 5). Novel bis (8-hydroxyquinoline)calix[4]arene (23) is a versatile buildingblock of supramolecular chemistry (Scheme 6). Thisligand is specially designed for photo physical applicationsin metalo-supramolecular chemistry45-47. Liu et al48

synthesized bis(azo-phenol)calix[4]arenes (27), which

K 2C O 3

B r(C H 2)3 B r

K 2C O 3

N

O H

C H 3C N

O

B rB r

OO

N N(2 3)

(2 1)

(22)

O HO H O

O HO H H OO H

O HO H OO

possesses multiple chromogenic donors (Scheme 7) andis useful for alkali metal ions Na+, K+, Rb+ and Cs+. Bisand tetrakistetrazole derivatives of calix[4]arene (32)

have ability to bind cations of transition metals(Scheme 8). Result of structural investigation ofmacrocycle and its complex with palladium dichloride isalso reported49-51.

Separation of amino acids is a key technology fordownstream processing in bio-industrial complex. Tabaksiet al52 carried out a reaction of p-tert-butylcalix[4]areneand p-h-calix[4]arene with (S)-(-)-1-phenylethylamine(37) (Scheme 9), which forms useful host molecule forquantitative extraction of ±-amino acid methyl esters and±-phenylethylamines in a liquid–liquid extraction system.Specified applications of calixarenes can be possible bysubstitution of selected groups either on upper or lowerrim. Several picoline binding groups at upper or lowerrim of calix[n]arenes (39) (n = 4, 6, 8) have beensynthesized for extraction of actinides (Scheme 10)53.Fluorescence chemosensors, calix[4]arene containingtetraamide derivative (43) (Scheme 11)54, exhibit highselectivity for H

2PO

4– over a wide range of anions;

Scheme 6

Page 5: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749

selectivity for H2PO

4– is more than 2700-fold higher than

for F–.Fluorescence-labeled calix[4]arene substituted with

peptides serve as a useful platform to produce artificialreceptors using peptides and various types of otherbuilding blocks55.Upper rim, c-linked and cbz-protectedcone calix[4]arene bis-l-alanyl derivative have beensynthesized to prepare self-assembled nanotubes in solidstate through a two-dimensional network of hydrogenbonds between amide chains of adjacent conformers56.A new type of inherently chiral calix[5]arene has beenobtained from significant inherently chiral calix[5]arenederivatives using (R)-BINOL and their racemates(Scheme 12)57-59. Calix[8]quinone derivative (48) hasalso been synthesized (Scheme 13) through a protection-deprotection procedure60.

Two polyether moieties, two urea sites, and twobipyridine units containing novel multi-responsive host(54) has been synthesized and its ion binding sites are

LIA l H 4

a nh y d ro u s T H F

a n hy d ro u s T H F

R

O H C O H

NN

C lC H 2C N

an h y d ro u s ac eto n e

(2 4) (2 5 )(2 6 )

(2 7 )

C N N CN H 2

H 2N

N N

C HO H

N

N

C HH O

N

N

OHO H H O

t-B ut -B u

t -B u

O H

t-B u

O HO H O

t-B ut-B u

t-B u

O

t-B u

O HO H O

t-B ut-B u

t -B u

O

t- B u

O HO H O

t-B ut -B u

t -B u

O

t-B u

Scheme 7— (THF, Tetrahydrofuran)

arranged on calix[4]arene skeleton61. Compound (54)

(Scheme 14) recognizes Na+ and Ag+ simultaneously aswell as quantitatively and captures an anionic guest.Ability of (54) to recognize anions including CF

3SO

3-

and BF4- remarkably increases using Na+ and Ag+. Yang

et al62 and Tilki et al63 synthesized oxo-calixarenes (57),

(58) (Scheme 15), which have unique applications inmolecular recognition studies and for enhancement of Ag+

and Hg+ ion selectivity by minimizing side arm effect.However, extraction results of bisazocalix[4]arenes showno selectivity toward heavy metal ions but effect of bis-structure on color and selectivity of bisazocalix[4]areneshave been discussed; dyeing behavior, performance onsolvent and framework effect are assessed63-65.

II. Bridged Calixarenes

Remarkable regio-selectivities have been observedin bridging reactions of calixarenes. If a bridge containsfunctional groups like S, N, O, then it is easy to get

Page 6: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

750 J SCI IND RES VOL 68 SEPTEMBER 2009

ArC(O)Cl PCl5

Me2Sn3 SnCl4

Ar=p-Cl-C6H4

(28) (29) (30)

(31)(32)

HN NH

Ar O Ar O

N N

NN

N

Ar

NN N

Ar

OO HO

H2NNH2

OH

Pr PrOO HOOH

Pr Pr

HN NH

Ar Cl Ar Cl

OO HOOH

Pr Pr

N N

ArN

ArN

OO HOOH

Pr Pr

OO HOOH

Pr Pr

O

OC2H5OO

O OC2H5

OO

C2H5O

O

OH

O

HO OHHO

O

OTsTsO OTsTsO

O

NH

HCH3

O

NHH CH3

O

NHH CH3

O

HNH

CH3

ethylbromoacetate

K2CO3/Acetone LiAlH4/THF

TsCl Pyridine

THF

R=t-Butyl

R=H

(33)

(34)(35)

(36)

(37)

(S)-(-)-1-phenylethylamine

OH OHOH HO

RR R

R

O OO

R R RR

OO

RR R

R

O OO

RR R

R

RR R

R

Scheme 9— (THF, Tetrahydrofuran)

Scheme 8

Page 7: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 751

*

R

O

N

O

O

nN

O

O

Br

R

NaH, dry DMF

R= H or OBn

R= H, OBn, or t -Bu

(38)

(39)m= 4, 6, 8

m-3

m-3OH

Scheme 10— (DMF, Dimethyl formamide)

OH OH

O

O

t-Bu

t-But-Bu

t-Bu

OCl

ClO

H2N NHBoc

SO2Cl SO2Cl

OH OH

O

O

t-Bu

t-But-Bu

t-Bu

NHHN

O

RHN

O

NHR

OH OH

O

O

t-Bu

t-But-Bu

t-Bu

NHHN

O

H3+N

O

NH3+

Et3N\ DCM

DCM TFA

Et3N\ DCM

OH OH

O

O

t-Bu

t-Bu

t-Bu

t-Bu

NHHN

OO

NH

SO2

HN

O2S

(40) (41)

(42)(43)

Scheme 11— (DCM, Dichloromethane; TFA, Trifluoroacetic acid)

Page 8: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

752 J SCI IND RES VOL 68 SEPTEMBER 2009

OH

OH

HO

HO

HO

OHOH

OH

BrBr

OH

OH

HO

O

HOOH

OH

O

OMe

OMe

MeO

O

MeO

OMeOMe

O

OMe

OMe

MeO

HO

MeO

OMeOMe

OHOMe

OMe

MeO

MeO

OMeOMe

O OO

(48)

ACETONE,CS2CO3

Ti(CF3COO)3 H2/Pd, CH2Cl2,

(44) (45)

(46)

(47)

CF3COOH/EtOH, r.t. 12h

MeI, reflux, 48h

DMF,CS2CO3, 40h

r.t. 1hO

Scheme 13— (DMF, Dimethyl formamide; MeI, Methyl iodide)

CH2

HO OOH

OO

CH3

OO O OEt

O

iii

CH2

HO OOH

OO

CH3

OO O OH

O

CH2

HO OOH

OO

CH3

OO O O

OOH

(49)

(51)

(50)

(i) Me4N+ OH- THF, 8h (ii) (R)- BINOL,DCC,DMAP, rt, 10h

Scheme 12— (DCC, Dicyclohexyl carbodimide; DMAP, 4-

Dimethylaminopyridine)

Page 9: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 753

N3 OTs

O

O

O

N3N3

O

O

O

MeO2C CO2Me

K2CO3, CH3CN,reflux

R=H

R=CH2CO2Me

PPh3, CO2,Toluene/DMF, rt

O

O

O

HN

HN

O

NN

NH

O

O

NHO

N N

(52)

(53)

(54)

N N NH2

OHOH HOOH

O ROOR

O O

O

O

O

O

O

O

NO2

NO2

NO2

R3R3

O O

OO

NO2 NO2

OHOH

FF

NO2

Pyridine ( highly dilute)

CuI , K2CO3 , reflux 1day

+

+

(55) (56) (57)(58)

sterically shielded reagents. Size of macrocycles affectsselectivity towards metal ions. Bigger cavity sizecalixarenes are more selective to heavy metal ions thanother calixarenes. Calix[5]arene and calix[8]arene reactwith bis(bromomethyl)-substituted heterocyclic such as1,10-phenanthroline to give [2+1] dicalixarenes (59) and

[1+1] condensation products (60). Resulting heterocyclesare selective ligand for copper (I) ions and also showremarkable synthetic selectivity66-68. These compoundsdue to bulky group inside cavity could not be muchelongated but elongation of calix[8]arenes could bepossible by bridging such calixarenes with ethers,

Scheme 14

Scheme 15

NN

O OOH

OH

HO

HO

R

RR

R

R

HO

HO

OH

OH

R

RR

R

R

OH

OH

HO

O

HOOH

OH

NNO

(59) (60)

R=t-Bu

R=H

Page 10: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

754 J SCI IND RES VOL 68 SEPTEMBER 2009

OH

OH

HO

HOOH

OH

H OOH

OHO

H O

OHOH

H OO H

OHO

O

OHOH

OH

OHO

O

O H

OO

O

OO

O

O

O

O

BrCH2Cl

CS2CO3

Cs 2CO3

BrCH2Cl

63)

62)

(64) (65) (66)

+ +

+

DMF 80o

D MF 80 o

C

C

(61)

O

O

O

O

OO

O

OP+

Cl

P

Cl

ClCl

P+

Cl

OH

OH

HO

HO

HOOH

OH

OH

CH3

CH3

O

OH

O

O

OO

O

O P

O

P

OH

OHO

P

O

O

O

O

O

OO

O

O P

O

P P

O

OEt

O

O

O

O

O

O

O

O

O P

O

P P

OEtO

O

PCl5

CH2Cl2

H2O

CH2(OEt)3

(67)

(70)(71)

(68)

(69)

+

2PCl36-

Scheme: 16

Scheme:17

Page 11: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 755

O

R

Br

OH

R

OH

R

O

R

Br

OH

R

OH

R

SeSe

O

R

O

R

OHR

OHROH R

OH R

SeO

R

SeO

R

Se OR

SeO

R

i

(74)

R=H

R=t-Bu

(72)

(73)

i= Disodium salts of 1, 3 propanediol, ethanol ,THF, reflux 6h

+

t-Bu

O N

t-Bu

ON

t-Bu

O N

t-Bu

ON

t-Bu

O

NH

t-Bu

O

t-Bu

HO

t-Bu

HO

HO t-BuOHt-Bu

HO t-BuOHt-Bu

CH3

O O

N

=

(75)(76)

+

O

ROMe

OMe

O OMe

OMe

R

O

O

MeO

MeO

MeO

R

R

OMe

HCHO

or(MeO)2CH2, HOAc

reflux

R=PhR= 4-Br-C6H4R=CMe3

(79)

(80)

R=PhR= 4-Br-C6H4

R=CMe3

+

O OMe

OMe

R

O

O

MeO

MeO

MeO

R

R

OMe

(81)

Scheme:18

Scheme:19

Scheme:20

Page 12: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

756 J SCI IND RES VOL 68 SEPTEMBER 2009

O

ROMe

OMe

O OMe

OMe

R

O

O

MeO

MeO

MeO

R

R

OMe

HCHO

or(MeO)2CH2, HOAc

reflux

R=PhR= 4-Br-C6H4R=CMe3

(79)

(80)

R=PhR= 4-Br-C6H4

R=CMe3

+

O OMe

OMe

R

O

O

MeO

MeO

MeO

R

R

OMe

(81)

O CH2OH

R

OMe

MeO

O

R

O

R

O

R

MeO

MeO

OMe

OMe

MeO

MeO

(82)

(83)

(84)

K10 Clay +

R

I Ph

II CMe3

O

R

O

R

O

R

MeO

MeO

OMe

OMe

MeO

MeO

OO OO

HNHN

HNNH

Me

Me

Me

Me

t-But-Bu

t-But-Bu

O

MeO

4Methansulfonic acid

EtOH/CH2Cl2

NH

(85) (86)

Scheme 21

Scheme 22

Scheme 23

Page 13: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 757

HO

OOH

O

R

R

X XS

S

SnBu3

HO

OOH

O

R

R

S

SS

S

KI for X=Br and L ICl for X=I

Pd2dba3, P(t-Bu)3, NMP

R=CH 3, X =I

R= n-C3H7, X=Br

(87)

(88)

(89) R=CH3

(90) R= n-C3H7

OH

OHO

O

R

R

S

SS

S

CH3

HO

OOH

O

R

R

S

SS

S

OH

OHO

O

R

R

S

SS

S

HO

OOH

O

R

R

S

SS

S

n

Scheme 24— (NMP, N-methylpyrolidine)

phosphoryls and aza groups. Depending on length andnature of bridges, they possess better encapsulatingproperties toward alkali metal ions, rare earths and heavymetal ions. Such calixarenes have been prepared fromp-tert-butylcalix[8]arenes by using two step alkylationprocedure69-74.

Mono to tetra-dioxamethylene bridged calix[8]arenederivatives75 [(64), (65), (66)] have been synthesized(Scheme 16). p-tert-Butylcalix[8]arene (67) with 5equivalent of PCl

5 in CH

2Cl

2 gives compound (68) whose

subsequent hydrolysis gives compound (69) (Scheme17)76. Series of tweezer-like calix[4]arene derivativescontaining S, N and O atoms exhibit a good Ag+

selectivity against interfering ions. Zeng et al synthesizedtwo calix[4](diseleno)crown ethers (74) from compound(72) and (73) (Scheme 18)77-79. Selenium schiff base81

and hydroxamic acid80 containing bis-calixarenes areversatile compounds in calixarene chemistry, and showsilver-ion selectivity by two-phase extraction andtransportation. Bis-calix[4]arene (76) forms silver-

Page 14: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

758 J SCI IND RES VOL 68 SEPTEMBER 2009

selective PVC membrane due to electrostatic interactionbetween metal ion and aza crown cavity composed ofoxygen and nitrogen atoms as donors (Scheme 19)81.

III. Hetero Calixarenes

Heterocalixarenes or calixhetarenes are built fromheterocyclic moieties. Another class is heteracalixarenes(aza, oxa and thia-calixarenes), in which bridges betweenphenol units contain heteroatoms (N, O or S). This reviewreports hetero-calixarenes built from benzofuran moietiesand from other heterocycles. Formation of coneconformers of calix[3]indoles has been discussed82. Anisomeric series has also been obtained with combinationof an indole with bis (hydroxymethyl)-2, 2’-di-indolylmethane (Scheme 20)83.

3-Substituted 4, 6-dimethoxyindoles possess tworeactive sites for electrophilic substitution, and can reactwith aryl aldehydes in presence of phosphoryl chlorideto give calix[3]indoles (77). As a part of expanding rangeof calixarenes from outher activated heterocycles, calix[3]benzofurans have been prepared from 3-substituted4,6-dimethoxybenzofurans(79) (Scheme 21) and 2-7-hydroxymethylbenzofurans (82) (Scheme 22) withformaldehyde and arly- aldeydes in prence of acetic acidand phosphoryl chloride84-85

Like indoles and furans, pyridines and pyrroles canplay a major role in heterocyclic calixarene chemistry.Calix(4)pyrroles are effective and selective receptorsfor anions and neutral guest species and find applicationsas coordination complexes, catalytic materials, nano-sponges, molecular machines, nano entities and semi

conducting materials86. Bipyridyl group containingcalixarenes are useful for binding various metal ions.Bipyridyl containing calixarenes87 are extensively usedto form complexes with various metal ions88-93. Two newmeso-indanyl-substituted calix[4]pyrrole receptors havebeen synthesized94 using MCM-41. For expansion ofcalixarenes, pseudo-dimer (86) of calix[4]arene andcalix[4]pyrroles (Scheme 23) have been synthesized asa good anion receptors95.

IV. Polymeric Calixarenes

Polymer supported calixarenes have variety ofapplications. Polyethyleneimine supported calix[6]arenescan extract uranium from seawater96, polyacryloylchloride and chloromethyl polystyrene supportedcalix[4]arenes have been used to extract iron97 andlead98. Methacrylate99 acrylonitrile and styrene100 derivedcalix[4]arenes have been polymerized to make calixareneoligomers. Proton-doped segmented polymers, Poly(89)

and Poly(90), are based upon a calix[4]arene scaffoldand increase conductivity of calixarene polymers(Scheme24)101. These compounds are attractive candidates fordesign of sensing and actuating materials102.

Utility of calix[4]arenes for phase transferreactions, adsorbents or for fabricating membranes andsensors, copolymer and homopolymer containingcalix[4]arene moieties on polymer backbone weresuccessfully synthesized from monomer and styrene103.Both polymers show good selectivity towards Hg+ ion.In a related study104, radical polymerization of styrenehas been carried out in presence of a novel calix[4]arene

OO OO

R1 R2

R3 R4 t-Bu

m n z

a.R1=R2=R3=R4=H

b.R1=R2=R3=Propyl, R4=H

c.R1=R2=R3=Propyl, R4=CH2C6H4CH=CH2

(92)

(91)

OO OO

Pr PrPr

Styrene,DVB,Bz2O,82 C,24h0

Scheme 25

Page 15: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 759

derivative bearing two distal benzyl-vinyl groups in lowerrim. Such terpolymer (92) exhibits good thermal stabilityand good yield (Scheme 25)105. Nitrile functionality atlower rim of calix[4]arenas, synthesized via nucleophilicsubstitution reactions, have an effective binding characterfor particular set of cations and can be useful forlaboratory, clinical, environmental, and industrial processanalysis106.

A novel benzyl-terminated dendron based sol-gelcoating has been developed for capillary micro extraction

P

a to c

Merrifield resin

(97) (98)

a= NaH, toluene, reflux

b= NaH, THF, refluxOO OO

R1R1 R1

R2

OO OO

R1R1 R1

R2c= Cs2CO3, DMF, 1000C

Scheme 27— (THF, Tetrahydrofuran; DMF, Dimethyl formamide)

OH

HCHONaOH

(95)

(96)

(93) (94)

O

HC

H2C

+

OH OHOH HO OH OHOR2 R2O

OHOH HO

Scheme 26

(CME). Characteristic branched design of dendronmakes them structurally superior extraction mediacompared to traditional linear polymeric counterparts107.Other higher molecular weight moieties that are alsouseful for many specialized applications like newpolymer-supported calix[6]arene hydroxamic acid havebeen synthesized108. Resin was used forchromatographic separation of U (VI), Th (IV) and Ce(IV). Versatile starting materials for synthesis ofpolymerizable calixarene derivatives (95) have been

Table 3—Substitution groups to prepare polymerizable calixarene derivatives

R1 R2

95a CH2CN CH2CN96a CH2CN CH2CN95b H CNC6H4NH2

96b CNC6H5NH2 CNC6H4NH2

95c H CNC6H4NH2

96c CNC6H5NH2 CNC6H4NH2

Table 4—Substitution groups for merrifield

resin containing calixarene

R1

R2

R1

R2

H CH2

H HCH

2CO

2Et CH

2Propyl H

CH2CO

2H CH

2CH

2CO

2Et CH

2CO

2Et

CH2CO

2Na CH

2CH

2CO

2H CH

2CO

2H

CH2CO

2H C(O)OCH

2Propyl H

Page 16: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

760 J SCI IND RES VOL 68 SEPTEMBER 2009

synthesized for extraction of cations as well as for anions(Table 3, Scheme 26). Depending on oxidative stability,it is observed that ionophore (95a) is selective for Hg2+,whereas ionophores [(95b) and (95c)] are selective forboth Cd2+ and Hg2+109. Immobilized calix[4]arene (98)

containing merrifield resin is a very useful polymericscaffold for synthesis of various lower rim derivatives(Table 4, Scheme 27) demonstrated with preparation oftriacid110.

Thio-ether functionalized calix[4]arene basedpolymeric resin compounds (102), which are versatilestarting materials for synthesis of polymerizablecalixarene derivatives111, are suitable for extraction of

toxic heavy metal cations as well as for dichromate anions(Scheme 28). In case of more than one functionalizationof polymeric groups on calix[4]arenes (107), bothligating and methoxy poly(ethylene glycol) groups areintroduced for formation of sulfonyl ester groups on widerim (Scheme 29), schiff base derivatives on narrow rim,and thioether groups on both wide and narrow rims112,which are non-toxic, non-flammable, biphasic andhydrophilic. It can also be potentially useful forsimultaneous extraction of both metals and organics thatare commonly present in soil and water. Cyclo-polymerizability of calix[4]arene monomer is also afavorable interaction that occurs between two vinyl benzyl

OH

t-Bu 4

OH

4

OH

N

OH

N3

OH

S

OH

S3

OH

S

O

S

HC

H2C

3

n

i ii iii

iv

(99)

(i). AlCl3, Toluene,Phenol

(ii).NH(CH3)2, THF,CH3COOH,HCHO

(iv). DMF,Merrifield's resin,NaI, NaH

(101) (102)(100)

(103)

(iii).N(C2H5)3,DMSO, CH3I, 1-Propanethiol

Scheme 28 — (DMSO, Dimethylsulfoxide; DMF, Dimethyl formamide)

O

CH2

R

O

S OO

Cl

4

O

CH2

R

O

S OO

O

GEP

OMe

4

Meo-PEG-OH

NaH

-HCl

104b.R=NEt2

O

CH2

R

O

S OO

Cl

4 O

CH2

R

O

S OO

HN

PEG

OMe

4

Meo-PEG-NH2

-HCl

106d.R=NEt2

Et3N

(104) (105) (106) (107)

104a. R=OEt 106c. R=OEt

Scheme 29— (PEG, Polyethyleneglycol)

Page 17: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 761

O

n

BPO

THF, heat

(108) (109)

Poly 1

OHOH O

OHOH OO

CHO

O O

O

O

O

OO O

O

O

O

O

O

O

O

OHOHO

O O

OO

OH

O

O OH

OHC

OH

OHOHC

Cs2CO3, MeCN

TsCl, NaOH

THF, H2O

Ts(OCH2CH2)2OH

K2CO3, MeCN

(112)

OO

OTs

O

O OTs

OHC

(110)(111)

(113)

(114)

Scheme 30— (BPO, Benzoyl peroxide)

Scheme 31

Page 18: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

762 J SCI IND RES VOL 68 SEPTEMBER 2009

units due to constrained conformation generated bycalixarene moiety, which in turn drive intermolecularcyclization. Poly1 (109) represents a new type of highlyorganized macromolecule useful for widespreadapplications associated with single-handed helicalpolymers113 (Scheme 30).

V. Crown And Fullerene Bearing Calixarenes

Calix[n]crowns are macrocycles composed ofsubunits of a calix[n]arene and crown ether joined viaphenolic oxygen of calix component. Chen et al114

synthesized dendrimers from an excellent ionophore 1, 3calix[4]crown that gives multi metal recognition centraldendrimer (Scheme 31). Moreover, 2nd generationdendrimers have also been synthesized from 1,3calix[4]benzocrown-6 as repeat units115. 1,3-Calix[4]arene bis-crown-6 containing six oxygen donoratoms are also potential extractant for selective removalof cesium cation from radioactive liquid nuclear waste116.To increase complexation ability and for better analyticalapplications, one has to substitute calix[n]crown withdifferent hetero or bulky groups. Lee et al117 prepared a

NHCl

O

O

NH

O NH

O

NH

NH

O

O

NH ONH2NH NH2

K2CO3, NaI,CH3CN, N2

NHCl

O

K2CO3, NaI,CH3CN, N2

(115)

(118)

(117)

(119)

(116)

O

OO

CH3

OO

CH3

O O

NH

O

NH

NH

O

O

CH3CH3

O

NHO

O

NH OOH OH

Toluene/Ethanol(1), N2

OHOH OOH HO

OO

OO

OHOHO

n

TsOO

OTsn

NaH, DMF, Heat

(120)

O O

O

O

O

(121)

n= 1, 2, 3

OH OHOH HO

OH HO

Scheme 33— (DMF, Dimethyl formamide)

Scheme 32

Page 19: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 763

OX YO

O

On

K2CO3, N2, CH3CN

(124)

(122)

O

123a. n= 0, X=Br, Y=OTs

123b. n= 1, X=OTos, Y=OTs

n

OH OHOH HO

O OOH HO

O HOOH

O HOOH

O OO O

NO2 NO2

O

O

O

O

O

NO2O2N

HNCH3

OONHCH3

n

K2CO3, CH3CN NaH, CH3CN

TsO(CH2CH2O)5Ts

Raney NiH2NNH2.H2O

O2NBr

Cl

OO

Cl

CH2Cl2, Pyridine

(126)

(127)

(128)(129)

(125)

OHOH HOOH

OHOH OO

O OO

O

O

O

O

O

NH2H2N

O OOO

O

O

O

O

O OO

Scheme 34

Scheme 35

Page 20: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

764 J SCI IND RES VOL 68 SEPTEMBER 2009

new fluorogenic cone calix[4]triazacrown-5 (117) bearingtwo pyrene amide groups and its structural analogues(119) (Scheme 32). Such fluorescent chemosensors areeffective useful tool to analyze and clarify roles ofcharged chemical species in living system as well as tomeasure amount of metal ions from sourcescontaminated118,119.

OC12H25

OC12H25

I I

C12H25O

OC12H25

BocNH

BocNH

C12H25O

OC12H25

N+H3

H3+N Cl

O

OC12H25

C12H25O

NHO

NHO

CuCN, HMPA

Boc2O, NaOH

TFA CH2Cl2, 3h

(130)

(134)

(131)

(132) (133)

LiAlH4, THF, 12h

i-Pr2NEt, C6H5Br, 12h,

+

1500C, 3h

O

CH3

CH3

CH3

O

CH3

O

CH3

O

CH3

O

CH3

CH3

CH3

O

CH3

O

CH3

O

CH3

NMe

O

CH3

CH3

CH3

O

CH3

O

CH3

O

CH3

CHO

i, iiiii

(135)(136)

(137)

Scheme 36— (TFA, Trifluoroacetic acid)

i) NBS, acetone, rt, 24 h ; ii) n-Bu-Li, THF, -78°C, 1 h, then DMF, -78°C to rt; iii) C60, N-methylglycine, toluene, 16 hScheme —37 (NBS, n-Bromosuccinimide; THF, Tetrahydrofuran; DMF, Dimethyl formamide)

To perform selective extraction of metals,preparation of a series of p-sulfonated 1,2,3,4-calix[4]arene-biscrowns (121) are reported120 for Cs+/Na+ selectivity (Scheme 33). Kerdpaiboon et al121

synthesized three new calix[4]quinines [(123a)122,(123b)123, (124)124] from corresponding doublecalix[4]arenas and complexation studies were carried

Page 21: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 765

out with alkali metal ions such as Li+, Na+, K+, and Cs+

(Scheme 34). Substitution of oligomers increases liquidliquid extraction ability for calix[4]crown-6 monomers[(128) and (129)] (Scheme 35)125 while aza crown basedtwo new calix[4]arene ionophores increasescomplexation ablility with metal ions126. Apart fromcrown ethers, covalent assemblies of fullerene andcalixarenes have also been investigated to studypolymeric nature appeared in solid phase127,128 usingcalix[5]arenes (Scheme 36)129. Intramolecularassociation, self complexation and de-complexationproperties using tetra-o-alkylated cone calix[4]arene(137) skeleton have also been examined (Scheme37)130,131.

Conclusions

Calixarenes are easy to synthesize and modify, andcan form polymer, dendritic network particles and liquidcrystalline systems. Development of new catalysts, non-linear optics and removal of heavy metal ions and/or ura-nyl ion is on.

References1 David G C, Calixarenes (Royal Soc Chem, Cambridge) 1989, 1-

22.2 Zinke A & Ziegler E, Ber, B74 (1941) 1729-1805 idem Ibid 77

(1944) 264-272.3 Gutsche C D, Synthesis of calixarene and thiacalixarenes, in

Calixarene 2001, edited by M Z Asfari et al (Kluwer AcademicPublishers, Dordrecht) 2001, 1-25.

4 Egorov V V & Sin’kevich Y V, pH-ISEs with an expanded mea-suring range based on calix[4]arenes: specific features of thebehaviour and description of the electrode response, Talanta, 48

(1999) 23-28.5 Lynam C, Jennings K, Nolan K, Kane P, McKervey M A &

Diamond D, Tuning and enhancing enantioselective quenchingof calixarene hosts by chiral guest amines, Anal Chem, 74 (2002)59-66.

6 Mc Mohan G, O’Malley S & Nolan K, Important calixarenederivatives – their synthesis and applications, Arkivoc, 7 (2003)23-31.

7 Madolini L & Ungaro R, Calixarenes in Action (Imperial Col-lege Press, London) 2000, 1-95

8 Lumetta G J & Rogers R D, Calixarene Molecules for Separa-tions (American Chemical Society, Washington DC) 1999, 1-95.

9 Gutsche C D, Calixarenes Revisited (The Royal Society ofChemists, Cambridge) 1998, 10-39.

10 Gokel G W, Molecular Recognition: Receptors for CationicGuests, 1st edn (Pergamon Press, New York, Oxford) 1996, 1-20.

11 Vicensm J, Asfari Z & Harrowfield J M, Calixarenes 50th Anni-versary: Commemorative Issue (Kluwer Academic Publishers,Dordrecht, Holland) 1994, 15-85.

12 Wanda S & Cezary K, Calixarenes and Resorecinarenes (Wiley-VCH, London) 2009, 1-80.

13 Ludwig R, Calixarenes in analytical and separation chemistry,Fresenius J Anal Chem, 367 (2000) 103-128.

14 Diamond D & Nolan K, Calixarenes: Designer ligands for chemicalsensors, Anal Chem, (2001) 22 A-29 A.

15 Arnaud-Neu F & Schwing-Weill M J, Calixarenes, new selectivemolecular receptors, Synth Metals, 90 (1997) 157-164.

16 Roundhill D M, in Progr Inorg Chem, vol 43, edited by K DKarlin (Wiley, New York) (1995) 533-540.

17 Ludwig R, Review on Calixarene-Type Macrocycles and MetalExtraction Data (JAERI, JAERI-review) 95-022, 1995, 1-55.

18 Baldini L, Casnati A, Sansone F & Ungaro R, Calixarene basedmultiligands, Chem Soc Rev, 36 (2007) 254-266.

19 Vicens J & Harrowfleld J,, Calixarenes in the Nanoworld(Springer, Berlin) 2002, 1-395.

20 Gutsche C D, Calixarenes, Acc Chem Res, 16 (1983) 161-170.21 Agrawal Y K & Patadia R N, Microwave-assisted synthesis of

calix[4] resorcinarene hydroxamic acids, Synth Commun, 36(2006) 1083-1092.

22 Gidwani M S, Menon S K & Agrawal Y K, Chelatingpolycalixarene for the chromatographic separation of Ga(III),In(III) and Tl(III), React Funct Polym, 53 (2002) 143-156.

23 Agrawal Y K & Thaker D N, Studies on Supramolecular As-semblies and their Applications, Rev Anal Chem, 26 (2007)229-311.

24 Agrawal Y K & Sharma K R, Speciation, liquid–liquid extrac-tion, sequential separation, preconcentration, transport and ICP-AES determination of Cr(III), Mo(VI) and W(VI) with calix-crown hydroxamic acid in high purity grade materials and envi-ronmental samples, Talanta, 67 (2005) 112-120.

25 Hwang K L, Ham S H & No K H, Fictionalization of calix[4]arenewith hydroxyl groupat upper ring, Bull Korean Chem Soc, 14

(1993) 79-81.26 a) Gutsche C D & Pagoria P F, Calixarenes.16, Functionalizized

calixarenes: the direct substitution route, J Org Chem, 50 (1985)5795-5802; b) Gutsche C D & Levine J A, Multicavitands IV:Synthesis of linear koilands obtained by fusion of calix[4]arenederivatives by silicon atoms, J Am Chem Soc, 104 (1982) 2652-2653.

27 Klenke B, Nather B & Friedrichsen W, Multicavitands IV: Syn-thesis of linear koilands obtained by fusion of calix[4]arene de-rivatives by silicon atoms, Tetrahedron Lett, 39 (1998) 8967-8968.

28 Kumar S, Chawla H M & Varadarajan R, One step facile syn-thesis of bromo calix[n]arenas, Tetrahedron Lett, 43 (2002) 7073-7075.

29 Kumar S, Chawla H M & Varadarajan R, A one-step, one-potsynthesis of p-acyl calix[n]arenas, Tetrahedron Lett, 43 (2002)2495-2498.

30 No K & Hong M, The synthesis of selectively substituted p-diacetylcalix[4]arene, J Chem Soc, Chem Commun (1990) 572-573.

31 Tsue H, Enyo K & Hirao K, ipso-Substitution Reaction in theConvergent Stepwise Synthesis of Calix[8]arene withRegioselectively Functionalized Upper Rim, Helv Chim Acta,84 (2001) 849-859.

32 Shinkai S, Mori S, Tsubaki T, Sone T & Manabe O, New water-soluble host molecules derived from calix[6]arene, TetrahedronLett, 25 (1984) 5315-5318.

33 Sasaki S, Aisawa S, Hriahara H, Sasaki A, Nakayama H & NaritaE, Synthesis of p-sulfonated calix[4]arene-intercalated layered

Page 22: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

766 J SCI IND RES VOL 68 SEPTEMBER 2009

double hydroxides and their adsorption properties for organicmolecules, J Eur Ceram Soc, 26 (2006) 655-659.

34 Makha M & Raston C L, Direct synthesis of calixarenes withextended arms: p-phenylcalix[4,5,6,8]arenes and their water-soluble sulfonated derivatives, Tetrahedron Lett, 42 (2001) 6215-6217.

35 Shokova E A, Khomich E V, Akhmetov N N, Vatsuro I, LuzikovN & Kovalev V V, Adamantylcalixarenes with CMPO groups atthe wide rim: synthesis and extraction of lanthanides and ac-tinides, Russ J Org Chem, 39 (2003) 368-383.

36 Kovalev V, Shokova E, Khomich A & Luzikov Y, First synthe-sis of adamantylated thiacalix[4]arenas, New J Chem, 20 (1996)483-492.

37 Shokova E, Khomich A & Kovalev V, Selective adamantylationof p-H-calix[4]arene in trifluoroacetic acid, Tetrahedron Lett, 37

(1996) 543-546.38 Charles C L & Bosch B E, The quest for chain link hydrogen-

bonded capsules:Self-Assembly of C-methyl calic[4]resorcerenewith 5,5’-bipyrimidine, Cryst Growth Des, 5 (2005) 1049-1053.

39 Timmerman P, Verboom W & Reinhoudt D N, Resorcinarene,Tetrahedron, 52 (1996) 2663-2704.

40 Alekseeva E A, Mazepa A V & Gren A I, Synthesis and Rh(I)-catalyzed polymerization of 1,3-diphenylyne-calix[4]arene com-pounds: Novel conjugated, calixarene-based polymers, Russ JGen Chem, 71 (2001) 11-13.

41 Casnati A, Platinum-catalyzed intermolecular hydroaminationof alkenes: halide-anion-promoted catalysis, Gazz Chim Ital,127 (1997) 6373-6376.

42 Gutsche C D & Reddy P A, Calix[4]arenes with siloxanes bridg-ing opposite rings, J Org Chem, 56 (1991) 4783-4791.

43 Alekseeva E A, Bacherikov V A & Gren A I, Synthesis of P-tertbutylcalix[4]arene containing Acrylpyrazole fragments, ZhObshch Khim, 72 (2002) 166-168.

44 Zeng C, Zheng Q, Ling Tang Y & Tang Huang Z, Synthesis ofnew calix[4]arenes containing nucleoside bases, Tetrahedron, 59

(2003) 2539-2548.45 Meallier P, Gudefin A, Ehlinger N & Perrin M, Photodegradation

of calixarenes, Dyes Pig, 68 (1989) 13-17.46 Li Z T, Ji G Z, Zhao C X, Yuan S D, Ding H, Haung C, Du AL

& Wei M, Self-assembling calix[4]arene [2]catenanes.preorganization, conformation, selectivity, and efficiency, J OrgChem, 64 (1999) 3572-3584.

47 Bagatin I A & Toma H E, A calix[4]arene receptor modifiedwith 8-hydroxyquinoline supramolecular energy transfer, New JChem, 24 (2000) 841-844.

48 Liu Y, Wang H, Wang L, Li Z, Zhang H & Zhang Q, Synthesis ofnovel p-tert-butyl-calix[4]arene derivatives and their cation bind-ing ability: chromogenic effect upon side arms binding, Tetrahe-dron, 59 (2003) 7967-7972.

49 Boyko V, Rodik R, Danylyuk O, Tsymbal L, Lampeka Y,Suwinska K, Lipkowski J & Kalchenko V, Calix[4]arenequinazolinones. Synthesis and structure, Tetrahedron, 63 (2007)11451-11457.

50 Grootenhuis P D J, Kollman P A & Groenen L C, Computa-tional study of the structural, energetic, and acid-base proper-ties of calix[4]arenas, J Am Chem Soc, 112 (1990) 4165-4176.

51 Arduini A, Fabbi M, Mantovani M, Mirone L, Pochini A, SecchiA & Ungaro R, Calix[4]arenes blocked in a rigid cone conforma-tion by selective functionalization at the lower rim, J Org Chem,60 (1995) 1454-1457.

52 Tabakci M, Tabakci B & Yilmaz M, Design and synthesis ofnew chiral calix[4]arenes as liquid phase extraction agents for ±-amino acid methylesters and chiral ±-amines, J Inclusion PhenomMacrocyclic Chem, 53 (2005) 51-56.

53 Casnati A, Ca N D, Fontanella M, Sansone F, Ugozzoli F, UngaroR, Liger K & Dozol J, Calixarene-based picolinamide extractantsfor selective An/Ln separation from radioactive waste, Eur JOrg Chem, (2005) 2338-2348.

54 Chen Q & Feng Chen C, A Highly Selective FluorescentChemosensor for H

2PO

4- Based on a Calix[4]arene Tetraamide

Derivative, Eur J Org Chem, (2005) 2468-2472.55 Hioki H, Ohnishi Y, Kubo M, Nashimoto E, Kinoshita Y,

Samejima M & Kodama M, Synthesis of calix[4]arene librarysubstituted with peptides at the upper rim, Tetrahedron Lett, 45

(2004) 561-56456 Baldini L, Sansone F, Casnati A, Ugozzoli F & Ungaro R,

Peptidocalix[4]arene self assembled nanotubes, J SupramolChem, 2 (2002) 219.

57 Li S, Zheng Q, Chen C & Huang Z, Preparation of enantio pureinherently chiral calix[5]arenas, Tetrahedron: Assymmetry, 16

(2005) 641-645.

58 Harada T & Shinkai S, Combined NMR spectroscopy and mo-lecular mechanics studies on the stable structures of calix[n]arenas,J Chem Soc, Perkin Trans 2, (1995) 2231-2242.

59 Thondorf I & Brenn J, Confirmation of calixarene-a molecularmechanics study, J Chem Soc, Perkin Trans 2, (1997) 2293-2300.

60 Ferro R, Tedesco C, Gaeta C & Neri P, Synthesis and solid stateconfirmation of a calyx[8]arene 1,5diquinine derivative, J Inclu-sion Phenom Macrocyclic Chem, 52 (2005) 85.

61 Nabeshima T, Saiki T, Iwabuchi J & Akine S, Stepwise anddramatic enhancement of anion recognition with a triple-sitereceptor based on the calix[4]arene framework using two differ-ent cationic effectors, J Am Chem Soc, 127 (2005) 5507-5511.

62 Yang F, Yan L, Ma K, Yang L, Li J, Chen L & You J, Efficientsynthesis of a variety of new functionalized oxacalixarenes byullmann coupling reactions, Eur J Org Chem, (2006) 1109-1112.

63 Tilki T, Sener I, Karcý F, Gulce A & Deligoze H, An approachto the synthesis of chemically modified bisazocalix[4]arenesand their extraction properties, Tetrahedron, 61 (2005) 9624-9629.

64 Gutsche C D & Iqbal M, p-ter-Butylcalix[4]arene, Org Synth,68 (1990) 234-237.

65 Gutsche C D & Lin L G, Calixarenes 12: The synthesis offunctionalized calixarenes, Tetrahedron, 42 (1986) 1633-1640.

66 Konrad S, Näther C & Lüning U, Calix[5] & Calix[8]arenesBridged with Heterocycles, Eur J Org Chem, (2005) 2330.-2337.

67 Xie D & Gutsche C D, Synthesis and reactivity of calis[4]arene-based coppere complexes, J Org Chem, 63 (1998) 9270-9278.

68 Gutsche C D, Calixarenes, Aldrichimica Acta, 28 (1995) 3-9.

69 Gregoli L, Russo L, Steo I, Gaeta C, oise F, Neu A, Hubscher BV, Khazaeli P P, Geraci C & Neri P, Synthesis and complexingproperties of 1,5:3,7-doubly bridged calix[8]arenes with mixedspanning elements, Tetrahedron Lett, 45 (2004) 6277-6281.

70 Geraci C, Chessari G, Piattelli M & Neri P, Cation encapsula-tion within a ten-oxygen spheroidal cavity of conformationally

Page 23: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 767

pendants and study of its complexes with Cu(II) and Co(II),Tetrahedron Lett, 44 (2003) 5415-5418.

88 Beer P D, Martin J P & Drew M G B, Calix[4]arene cryptandand new 1,3-bis-pyridyl,-bipyridyl and -alkylthioethercalix[4]arenes designed to coordinate transition metal cations,Tetrahedron, 48 (1992) 9917-9928.

89 Cacciapaglia R, Casnati A, Mandolini L, Schiavone S & UngaroR, Barium(II)-ion assisted monodeacetylation of partial-conecalix[4]arene-crown-5 diacetate. A convenient preparation ofpartial-cone calix[4]arene-crown-5 monoacetate, J Chem Soc,Perkin Trans 2, (1993) 369-372.

90 Pellet R S, Regnouf de Vains J B, Lamartine R & Fenet B, Abithiazole-containing calix[4]arene podand as versatile ligand forcopper(I) and copper(II), Inorg Chem Commun, 2 (1999) 44-47.

91 Regnouf de Vains J B, Dalbavie J O, Lamartine R & Fenet, B,Quantitative solvent extraction from neutral aqueous nitrate mediaof silver(I) against lead(II) with a new calix[4]arene-basedbipyridine podand, Tetrahedron Lett, 42 (2001) 2681-2684.

92 Psychogios N & Regnouf de Vains J B, A new water-solubleligand based on a calix[4]arene substituted by 2,2'-bipyridinechelating units, Tetrahedron Lett, 42 (2002) 2799-2800.

93 Psychogios N & Regnouf de Vains J B, A new water-solublecalix[4]arene podand incorporating p-sulphonate groups and 2,2'-bipyridine chelating units, Tetrahedron Lett, 43 (2002) 77-80.

94 Ji X, Black D StC, Colbran S B, Craig D C, Edbey K M, HarperJ B & Willett G D, meso-Indanyl calix[4]pyrrole receptors,Tetrahedron, 61 (2005) 10705-10712.

95 Gale P A, Sessler J L, Lynch, V & Sansom P I, Synthesis of anew cylindrical calix[4]arene-calix[4]pyrrole pseudo dimer Tet-rahedron Lett, 37 (1996) 7881-7884.

96 Shinkai S, Kawagu H chi & Manabe O, The synthesis of sodiumand potassium complexes of two calix[4]arene derivatives, JPolym Sci, Part C: Polym Lett, 26 (1988) 391.

97 Yilmaz M, Solution state metal complexes of calixarene andpolymeric calixarenes in Handbook England Polymer Materi-als, editet by Cheremisinoff N P (Marcel Dekker, New York)1997, 339-342.

98 Alexandratos S D & Natesan S, Synthesis and ion binding affini-ties of calix[4]arenas immobilizedon a crosslinked polystyrene,Macromolecules, 34 (2001) 206 -210.

99 Harris S J, Barrett G & McKervey M A, Polymeric calixarenes:synthesis, polymerization and Na+ complexes of calix[4]arenemethacrylate, J Chem Soc, Chem Commun, (1991) 1224.

100 Blanda M T & Adou E, Synthesis and characterization of threevinyl copolymers containing pendant calix[4]arenes , Polymer,

39 (1998) 3821-3826.101 Hua Yu H, Xu B & Swager T M, A Proton-doped calix[4]arene-

based conducting polymer, J Am Chem Soc, 125 (2003) 1142-1143.

102 Osada Y & DeRossi D E, Polymer Sensors & Actuators (Springer,Germany) 2000, 20-35.

103 Uysal G, Memon S & Yilmaz M, Synthesis and binding prop-erties of polymeric calix[4]arene nitriles, React Funct Polym, 50

(2001) 77-84.104 Memon S, Tabakci M, Roundhill D M & Yilmaz M, A Useful

Approach in Calix[4]arenes Appended with a Polymer, Poly-mer, 46 (2005) 1553-1560.

105 Mendes A R, Grego rio C C, Barata P D, Costa A I & Prata J V,Linear and crosslinked copolymers of p-tert-butylcalix[4]arene

preorganized 1,5-3,7-calix[8]bis crown-3 derivative, ChemCommun, (1997) 921-922.

71 Geraci C, Bottino A, Piattelli M, Gavuzzo E & Neri P, Inter-play between cone and partial-cone geometry in doubly-bridgedcalix[8]arenes investigated by X-ray and 2D NMR, J Chem Soc,Perkin Trans 2, (2000) 185-188.

72 Geraci C, Piattelli M, Chessari G & Neri P, Singly bridgedcalix[8]crowns, J Org Chem, 65 (2000) 5143-5151.

73 Consoli L, Cunsolo F, Geraci C & Neri P, Calix[8]arene-basedglycoconjugates as multivalent carbohydrate-presenting systems,Org Lett, 3 (2001) 1605-1608.

74 Miyaji H,Duic M,Tucker J H R,Prokes I,Light M E,MursthouseM B,Stiber I & Lhotak P, Calix[8]arene-based glycoconjugatesas multivalent carbohydrate-presenting systems, TetrahedronLett, 43 (2002) 873-878.

75 Troisi F, Gaeta C & Neri P, Dioxamethylene intramolecularbridging of p-tert-butylcalix[8]arene, Tetrahedron Lett, 46 (2005)8041-8045.

76 Gloede J, Ozegowski S, Matt D & Cian A, Shaping calixareneframeworks. Synthesis and structure of a calix[8]arene contain-ing three bridging phosphate units, Tetrahedron Lett, 42 (2001)9139-9142.

77 Zeng X, Han X, Chen L, Li Q, Xu F, He X & Zhi Zhang Z, Thefirst synthesis of a calix[4](diseleno)crown ether as a sensor forion-selective electrodes, Tetrahedron Lett, 43 (2002) 131-134.

78 Zeng X, Han X, Chen L, Li Q, Xu F, He X & Zhang Z Z,, thefirst synthesis of a calyx[4](diseleno)crown ether as a sensor forion-selective electrodes, Tetrahedron Lett, 43 (2002) 141-134..

79 Zeng X, Chen L, Weng L, Leng X, Ju H, He X & Zhang Z Thesyntheses and Ag+-selective electrode properties ofbenzothiazolylthiaalkoxy functionalized calix[4]arenes: an in-vestigation of the structure–selectivity relationship in the iono-phore-based ISEs, Tetrahedron 58, (2002) 2647.

80 Agrawal Y K & Bhatt S K, Catalytic approach for the synthesisof bis-calixarenes, Synth Commun, 37 (2007) 553-559.

81 Kumar M, Mahajan R K, Sharma V, Singh H, Sharma N & KauraI, Synthesis of new bis-calix[4]arenes with imine linkages. Asearch for new silver-selective sensors, Tetrahedron Lett, 42

(2001) 5315-5318.82 Black D C, Craig D C, Kumar N & McConnell D B, Synthesis

and crystal structure of a calix[3]indole with cone conformation:A new molecular receptor, Tetrahedron Lett, 37 (1996) 241-244.

83 Black D C, Bowyer M C, Kumar N & Mitchell P S R,Calix[3]indoles, new macrocyclic tris(indolymethylene) com-pounds 2,7- linkages, J Chem Soc, Chem Commun, (1993) 819-821.

84 Black D C, Craig D C, Kumar N & Rezaie R, Preparation ofactivated benzofurans and their reactions with aldehydes, Tetra-hedron, 55 (1999) 4803-4814.

85 Black D C, Craig D C, Kumar N & Rezaie R, Acid-catalysedreactions of activated benzofuranylmethanols: formation ofcalixbenzofurans, Tetrahedron, 58 (2002) 5125-5134.

86 Ratson CL, Atwood J L, Nicholas P J & Sudria I B N, Supramo-lecular encapsulation of C60, Chem Commun (1996) 2615-2616.

87 Arena G, Contino A, Longo E, Sciotto D, Sgarlata C & Spoto G,Synthesis, characterization of a novel calixarene having dipyridyl

Page 24: Design and synthesis of calixarene - NISCAIRnopr.niscair.res.in/bitstream/123456789/5949/1/JSIR 68(9... · 2009-09-01 · AGRAWAL at al: DESIGN AND SYNTHESIS OF CALIXARENE 749 selectivity

768 J SCI IND RES VOL 68 SEPTEMBER 2009

derivatives and styrene: New synthetic approaches to polymer-bound calix[4]arenas, React Funct Polym, 65 (2005) 9-21.

106 Memon S, Og¡uz O, Yilmaz A, Tabakci M, Yilmaz M & Ertul S,Synthesis and extraction study of calix[4]arene dinitrile deriva-tives incorporated in a polymeric backbone with bisphenol-A, JPolym Environment, 9 (2001) 2-5.

107 Kabir A, Hamlet O C, Soo Yoo K, Newkome G & Malik A,Novel fiber coated with amide bridged-calix[4]arene used forsolid-phase microextraction of aliphatic amines, J ChromatograA, 1034 (2004) 1-11.

108 Agrawal Y K, Menon S K & Trivedi U V, Polymer supportedcalix[6]arene hydroxamic acid, a novel chelating resin, React FunctPolym, 50 (2002) 205-216.

109 Gungor O, Memon S, Yilmaz M & Roundhill M D Synthesis ofalkyl nitrile and alkyl benzonitrile derivatives of calix[4]areneand their polymer supported analogues: A comparative study intwo-phase extraction systems, React Funct Polym, 63 (2005) 1-9.

110 Barata P D, Costa A I ,Granja P & Prata J, The synthesis ofnovel polymer-bound calix[4]arenas, React Funct Polym, 61

(2004) 147-151.111 Diamond D & Mc Kervey M A, Calixarene based sensing agents,

Chem Soc Rev, 25 (1996) 15-24.112 Shen J, Fred Koch H & Max roundhill D, Synthesis and charac-

terization of calix[4]arene functionalized poly(ethylene glycol)derivatives, J Inclusion Phenom Macrocyclic Chem, 38 (2000)57-67.

113 Costa A I, Barata P D & Prata J V, Radical cyclopolymerizationof a divinylbenzyl-p-tert-butylcalix[4]arene derivative, ReactFunct Polym, 66 (2006) 465-470.

114 Casnati A, Pochini A, Ungaro R, Ugozzoli J F, Arnaud F, FanniS, Schwing M J, Egberink R J M, de Jong F & Reinhoudt D N,Synthesis, complexation, and membrane transport studies of1,3-alternate calix[4]arene-crown-6 conformers: A new class ofcesium selective ionophores, J Am Chem Soc, 117 (1995) 2767-2777.

115 Bu J, Zheng Q, Chen C & Huang Z, The synthesis ofcalix[4]crown based dendrimer, Tetrahedron, 61 (2005) 897-902.

116 Dozol H, Asfari Z, Vicens J, Thuery P, Jean F M N & DozolcO, Nitro derivatives of 1,3-calix[4]arene bis-crown-6. Synthe-sis, structure and complexing properties, Tetrahedron Lett, 42

(2001) 8285-8287.117 Lee J, Kim S, Jung J & Kim J, Bifunctional fluorescent

calix[4]arene chemosensor for both a cation and an anion, J OrgChem, 70 (2005) 1463-1466.

118 Vander V N J, Flink S, Egberink M A, Van V F C & ReinhoudtJ D N, Monolayer of a Na+-selective fluoroionophore on glass:connecting the fields of monolayers and optical detection ofmetal ions, J Am Chem Soc, 122 (2000) 6112-6113.

119 No K, Lee H J, Park K M, Lee S S, Noh K H, Kim S K, Lee J Y& Kim J S, Synthesis and crystal structure of novelcalix[4]azacrowns, J Heterocycl Chem, 41 (2004) 211.-219.

120 Mathieu A, Safari Z, Thue’ry P, Nierlich M, Faure S & VicensJ, Water-soluble para-sulfonated 1,2;3,4-calix[4]arene-biscrownsin the 1,2-alternate conformation, J Inclusion Phenom Macrocy-clic Chem, 40 (2001) 173.-181.

121 Kerdpaiboon N, Tomapatanaget B, Chailapakul O & TuntulaniT, Calix[4]quinones derived from double calix[4]arenes: synthe-sis, complexation, and electrochemical properties toward alkalimetal ions, J Org Chem, 70 (2005) 4797-4804.

122 Tomapatanaget B, Pulpoka B & Tuntulani T, Preparation ofdiaza dioxa dithia crown p-tert butylcalix[4]arene by s-alkyla-tion reactions:use of metallo-calix[4]arene complexes as reactiontemplates, Chem Lett, 27 (1998) 1037-1038.

123 Tantrakarn K, Ratanatawanate C, Pinsuk T, Chailapakul O &Tuntulani T, Synthesis of redox-active biscalix[4]quinones andtheir electrochemical properties, Tetrahedron Lett, 44 (2003)33-36.

124 Asfari Z, Weiss J, Pappalardo S & Vicens J, Synthesis and prop-erties of double-calix[4]-arenes, doubly-crowned calix[4]-arenes,and double-calix-crowns, Pure Appl Chem, 65 (1993) 585-590.

125 Tabakci M, Memon S, Yilmaz M & Max Roundhill D, Synthe-sis and evaluation of extraction ability of calix[4]-crown-6 coneconformer and its oligomeric analogue, React Funct Polym, 58

(2004) 27-34.126 Yilmaz A, Memon S & Yilmaz M, Synthesis and study of allos-

teric effects on extraction behavior of novel calixarene-baseddichromate anion receptors, Tetrahedron, 58 (2002) 7735-7740.

127 Southard G E & Curtis M D, Synthesis ofoligoferrocenylenearylenes and the X-ray structure of 1,4-bis(tricarbonylmethyltungstentetramethylcyclopentadienyl)benzene, Synthesis, (2002) 1177-1184.

128 Ito H, Tada T, Sudo M, Ishida Y, Hino T & Saigo K,Fullereneoacetyl chloride as a versatile precursor for fullerenederivatives:efficient ester formation with various alcohols, OrgLett, 5 (2003) 2643-2645.

129 Haino T, Matsumoto Y & Fukazawa Y, Supramolecular nanonetworks formed by molecular-recognition-directed self-assem-bly of ditopic calix[5]arene and dumbbell [60]fullerene, J AmChem Soc, 127 (2005) 8936-8937.

130 Gu T, Bourgogne C & Nierengarten J F, Synthesis and confor-mational analysis of a calix[4]arene–fullerene conjugate, Tetra-hedron Lett, 42 (2001) 7249-7252.

131 Gu T, Accorsi G, Armaroli N, Guillon D & Nierengarten J F,Calix[4]oligophenylene vinylene: a new rigid core for the designof À-conjugated liquid crystalline derivatives, Tetrahedron Lett,42 (2001) 2309-2312.