32
Design and status of the Mu2e crystal calorimeter Raffaella Donghia LNF-INFN and Roma Tre university On behalf of the Mu2e calorimeter group May , 2016 XVII LNF Spring School "Bruno Touschek”

Design and status of the Mu2e crystal calorimeter · Mu2e experiment design The Mu2e Calorimeter, R.Donghia 2 PS TS DS May 10, 2018 Detector Solenoid: stopping target and detectors

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Design and status of the Mu2e crystal calorimeter

    Raffaella Donghia LNF-INFN and Roma Tre university

    On behalf of the Mu2e calorimeter group

    May , 2016 XVII LNF Spring School

    "Bruno Touschek”

  • Talk overview

    Mu2e Electromagnetic calorimeter •  Requirements •  Components •  Single Channel Tests •  “Module-0” performance •  Production phase

    The Mu2e Calorimeter, R.Donghia 1 May 10, 2018

  • Mu2e experiment design

    The Mu2e Calorimeter, R.Donghia 2

    PS TS

    DS

    May 10, 2018

    Detector Solenoid: stopping target and detectors •  Stops μ- on Al foils

    •  Events reconstructed by detectors optimized for 105 MeV/c momentum

    •  CLFV strongly suppressed: Branching Ratio ≤10-54 à Observation would indicate New Physics

    •  CLFV@Mu2e:μ- e conversion in a nucleus field à discovery sensitivity to many NP models

    •  Goal: μ-e conversion in the presence of a nucleus

    < 8.4 x 10-17

    Nuclear captures of muonic Al atoms

    µe Al

    ECE = 104.97 MeV

    (@ 90% CL, with ~ 1018 stopped-µ)

  • Calorimeter requirements

    The Mu2e Calorimeter, R.Donghia 3 May 10, 2018

    •  σE/E = 𝓞(5%) for CE •  σT < 500 ps for CE •  σX,Y ≤ 1 cm

    •  Fast scintillation signals (τ

  • Calorimeter Design

    The Mu2e Calorimeter, R.Donghia

    2 annular disks with 674 undoped CsI (34 x 34 x 200) mm3

    square crystals/each disk

    o  RIN = 374 mm, ROUT = 660 mm o  Depth = 10 X0 (200 mm), Distance 70 cm o  Readout: 2 UV-extended SiPMs/crystal o  FEE on the SiPMs , Digital readout on crates o  RA source for energy calibration o  Laser system for monitoring

    4 May 10, 2018

    BETTER PICTURE!!

  • Simulated performance

    The Mu2e Calorimeter, R.Donghia 5 May 10, 2018

    Simulation of CsI+SiPM performanceSimulation includes full background and digitization and cluster-finding, with split-off and pileup recovery

    Energy resolution

    Dependence on LRUand photostatistics

    Specification is LRU

  • Small prototype: Test Beam

    The Mu2e Calorimeter, R.Donghia 6 May 10, 2018

    •  Small prototype tested @ BTF (Frascati) in April 2015, 80-120 MeV e-

    •  3×3 array of 30×30×200 mm2 undoped CsI crystals coupled to one Hamamatsu SiPM array (12x12) mm2 with Silicon optical grease

    •  DAQ readout: 250 Msps CAEN V1720 WF Digitizer

    JINST 12 (2017) P05007

    FOTO matrice

    Log-normal fit

  • 1 year long R&D phase for the final test of the option CsI + UV extended SiPM

    72 crystals + 150 SiPM + 150 FEE chips completed in 2016

    Small prototype: Time and Energy resolution

    The Mu2e Calorimeter, R.Donghia 7 May 10, 2018

    Significant leakage contribution due to block dimensions w.r.t. the shower

    σT ~ 110 ps at 100 MeV σE ~ 6.5% at 100 MeV

    JINST 12 (2017) P05007

    PRE-PRODUCTION

    hEntries 0Mean 0RMS 0

    Energy [GeV]0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

    [ns]

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    hEntries 0Mean 0RMS 0

    / ndf 2χ 38 / 17a 0.00015± 0.0049 b 0.0033± 0.087

    / ndf 2χ 38 / 17a 0.00015± 0.0049 b 0.0033± 0.087

    b⊕ = a/E tσ

    Single crystal @ 0 degAll crystals above 10 MeV @ 0 deg

    CosmicsNeighboring crystals @ 50 degSingle crystal @ 50 deg

    Most energetic crystal @ 50 degAll crystals above 10 MeV @ 50 deg

    Figure 24. Time resolution summary plot.

    leakage due to the small dimensions of the prototype. The time resolution �t as a function of theenergy deposition has been measured using three di�erent techniques that consistently show that�t ranges from 250 ps at 22 MeV to about 120 ps above 50 MeV. These results satisfy the Mu2erequirements and also significantly improve the timing resolution achievable when using undopedCsI at these low energies compared to present results in literature [6, 7] thanks to the use of SiPMand high frequency waveform digitizer boards.

    Acknowledgment

    The authors express their sincere thanks to the operating sta� of the Beam Test Facility in Frascati(Italy), for providing us a good quality electron beam, and the technical sta� of the participatinginstitutions. This work was supported by the US Department of Energy; the Italian Istituto Nazionaledi Fisica Nucleare; the US National Science Foundation; the Ministry of Education and Science ofthe Russian Federation; the Thousand Talents Plan of China; the Helmholtz Association of Germany;and the EU Horizon 2020 Research and Innovation Program under the Marie Sklodowska-CurieGrant Agreement No.690385.

    References

    [1] L. Bartoszek et al., Mu2e Technical Design Report, 3rd ed. arXiv:1501.05241 [physics.ins-det],2014.

    [2] N. Atanov et al., Design and status of the Mu2e electromagnetic calorimeter, NIM A 824, 695 - 698,2016.

    [3] K. A. Olive et al, Review of Particle Physics, Chin. Phys. 14, 2014.

    Total energy [GeV]0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105

    /E [%

    ]Eσ

    44.5

    55.5

    66.5

    77.5

    88.5

    9

    / ndf 2χ 2.866 / 3a 0.3253± 1.38 b 1.092± 4.911

    / ndf 2χ 2.866 / 3a 0.3253± 1.38 b 1.092± 4.911

    data

    Monte Carlo

    b⊕ E [GeV]

    a = EEσ

    Figure 17. Energy resolution obtained from the data (black) taken at 0 degrees compared with the MonteCarlo (red).

    Figure 18. Distribution of reconstructed energy obtained from the data overlaid with the Monte Carlo forthe run with beam energy of 100 MeV and 50 degrees incidence angle. Blue line represents a fit to the datawith a log-normal function.

    obtained with this technique, Method 1 was used to measure the time resolution in the same events.Figure 22 shows the time residual between tcrystal(1,1) and tscint. Subtracting in quadrature the tscintjitter of 100 ps results in a time resolution of about 209 ps that is compatible with the result obtainedwith Method 3.

  • /MeVpeN100 110 120 130 140 150 160 170 180 190 200

    Entr

    ies

    0

    2

    4

    6

    8

    10

    LRU (%)0 1 2 3 4 5 6 7 8 9 10

    Entr

    ies

    0

    2

    4

    6

    8

    10

    12

    (%)µ/σ10 11 12 13 14 15 16 17 18 19 20

    Entr

    ies

    0

    2

    4

    6

    8

    1012

    14

    16 SICCAS

    Amcrys

    Saint Gobain

    F/T (%)60 65 70 75 80 85 90 95 100 105

    Entr

    ies

    0

    2

    4

    6

    8

    10

    12

    14

    Pre-production Crystals

    The Mu2e Calorimeter, R.Donghia 8 May 10, 2018

    •  24 crystals from three different vendors: SICCAS, Amcrys, Saint Gobain •  Optical properties tested with 511 keV γ’s along the crystal axis •  Crystals wrapped with 150 µm of Tyvek and coupled to an UV-extended PMT

    Energy resolution

    Light Yield Longitudinal Resp. Uniformity

    Q(200 ns)/Q(3000 ns)

    RMS/MEAN of Light

    Output values

    along axis

    Fast/Total

    Un-doped CsI crystals perform well

    •  Excellent LRU and LY: -100 pe/MeV with PMT readout -LRU < 5% §  τ of 30 ns with small slow component

    §  Radiation hardness OK

    Smaller than 40% LY loss @ 100 krad

  • Entries 102900Mean 90.04Mean y 33.18RMS 63.51RMS y 33.26

    Time [ns]0 50 100 150 200

    Am

    plitu

    de [m

    V]

    020406080

    100120140160

    Entries 102900Mean 90.04Mean y 33.18RMS 63.51RMS y 33.26

    Entries 102900Mean 90.09Mean y 60.63RMS 63.51RMS y 110.6

    Time [ns]0 50 100 150 200

    Am

    plitu

    de [m

    V]

    0

    100

    200

    300

    400

    500 Entries 102900Mean 90.09Mean y 60.63RMS 63.51RMS y 110.6

    Pre-production test: SiPMs (1)

    The Mu2e Calorimeter, R.Donghia 9 May 10, 2018

    Gain spread – vendor 1

    • Relative spread at the level of 2%• All tested devices satisfy the requirement

    6/19/2017G. Pezzullo @ Calorimeter CRR for CsI and SiPMs14

    Vop spread – vendor 1

    • 35 devices tested• Relative spread at the level of 0.07%• All Mu2e SiPMs from this vendor satisfy this requirement

    6/19/2017G. Pezzullo @ Calorimeter CRR for CsI and SiPMs4

    150 sensors: 3×50 Mu2e pre-production SiPMs from Hamamatsu, SenSl and AdvanSiD •  3×35 were fully characterized for all six cells in the array

    Operating Voltage

    Gain

    Mu2e custom silicon photosensors: à 2 arrays of 3 6 x 6 mm2 UV-extended SiPMs: total area (12x18) mm2 The readout series configuration reduces the overall capacitance and allows us to generate faster signals

    ~ 150 V

    i1≈ i2 ≈ i3Ctot ≈ C1/3

    6x6 mm2

    K1

    A1

    A1-1

    A1-2

    Single cell of 6 x 6 mm2

    Series of 3 cells

  • Module 0

    • The outer shell has been initially machined in Lecce. Now in INFN Padova where they have EDM

    • Front plate in Lecce• FEE plate in Pisa• FEE holders order out• Crystals being wrapped• SiPM tested• FEE on the way

    FabioHappacher7

    Module 0

    The Mu2e Calorimeter, R.Donghia 10 May 10, 2018

    Large EMC prototype: 51 crystals, 102 SiPMs, 102 FEE boards

    Mechanics and cooling system similar to the final ones! Goals:

    •  Integration and assembly procedures •  Test beam May 2017, 60-120 MeV e-

    (beam perpendicular and @ 50°)

    •  Work under vacuum, low temperature, irradiation test

    3/29-30/2017Fabio Happacher | MDR Review14

  • 1.91335e+06

    128053 93017.6

    81310.4

    99920.4112888

    135539

    67022.8 102991 98354.5

    103895

    108076

    123601

    151623128720130298

    94299.6

    88138.3

    86969.5

    136475 79070.2 127412 110208

    103408

    134562

    111132

    134589

    103162

    10689712596287092.6103181

    26479

    100319

    122841

    104284

    120963

    97679.7

    76132.1

    106792

    79394.9

    104968

    104676

    96822.4107369

    98298.7

    108205

    121208

    101734

    122820

    107887

    x [mm]200− 150− 100− 50− 0 50 100 150 200

    y[m

    m]

    200−

    150−

    100−

    50−

    0

    50

    100

    150

    200

    Entries 663136Mean x 0.01988Mean y 0.1337− Std Dev x 62.82Std Dev y 55.23 0 0 0 0 0 0 0 0 0

    1

    10

    210

    310

    410

    510

    610

    Entries 663136Mean x 0.01988Mean y 0.1337− Std Dev x 62.82Std Dev y 55.23 0 0 0 0 0 0 0 0 0

    Module 0 Energy resolution

    The Mu2e Calorimeter, R.Donghia 11 May 10, 2018

    σE ~ 5.4 % (entire matrix)

    @ Ebeam = 100 MeV

    §  Calibration - cosmic rays - beamàcompleted for second

    ring around central crystal §  Data quality good,

    resolution in agreement with 3x3 prototype

    Entries 1811

    / ndf 2χ 4.943 / 4

    η 0.104± 0.277

    σ 0.240± 5.075

    µ 0.34± 93.14

    N 104.1± 3168

    E [MeV]50 60 70 80 90 100 110 120

    Ent

    ries/

    2 M

    eV

    0

    50

    100

    150

    200

    250Entries 1811

    / ndf 2χ 4.943 / 4

    η 0.104± 0.277

    σ 0.240± 5.075

    µ 0.34± 93.14

    N 104.1± 3168

    Orthogonal runEbeam=100 MeV

    Orthogonal runEbeam=100 MeV

  • Module 0 Time resolution

    The Mu2e Calorimeter, R.Donghia 12 May 10, 2018

    TimeHist / ndf 2 106.6 / 20

    0.0444 0.6526 1.21 17.12 0.7 216.6

    N 640.2 8782

    t [ns]0 200 400 600 800 1000

    Am

    plitu

    de [m

    V]

    0

    50

    100

    150

    200

    250

    300

    350 TimeHist / ndf 2 106.6 / 20

    0.0444 0.6526 1.21 17.12 0.7 216.6

    N 640.2 8782

    Entries 1531

    / ndf 2 19.56 / 15

    Constant 7.6 240.9

    Mean 0.0049 0.1664

    Sigma 0.0035 0.1874

    t [ns] 1.5 1 0.5 0 0.5 1 1.5

    Ent

    ries

    / (0.

    075

    ns)

    0

    50

    100

    150

    200

    250Entries 1531

    / ndf 2 19.56 / 15

    Constant 7.6 240.9

    Mean 0.0049 0.1664

    Sigma 0.0035 0.1874

    Fit Example Central crystal time distribution

    (TSiPM 1 – TSiPM2)

    σ (T1+T2)/2 ~ 94 ps @ Ebeam = 100 MeV

    •  Selection on single particle •  Log-normal fit on leading edge •  Constant Fraction method used à CF = 5%

    Δ

    ησµ

  • Module 0 Results

    The Mu2e Calorimeter, R.Donghia 13 May 10, 2018

    Test Beam data analysis results satisfy Mu2e requirements à @ 100 MeV

    •  σE ~ 5.44 ± 0.25 % •  σT < 100 ps, both @ 1 GHz and 250

    MHz sampling rate à MC simulation still on going

    Energy [MeV]0 20 40 60 80 100

    [ns]

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    / ndf 2χ 1.506 / 4a 0.2903± 6.217 b 0.009087± 0.08504

    / ndf 2χ 1.506 / 4a 0.2903± 6.217 b 0.009087± 0.08504

    / ndf 2χ 1.997 / 2a 0.4899± 4.449 b 0.007553± 0.07

    / ndf 2χ 1.997 / 2a 0.4899± 4.449 b 0.007553± 0.07

    Perpendicular Beam

    Beam at 50°

    0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 [MeV]depE

    0123456789

    10

    [%]

    dep

    /Eσ

    a 0± 0.6

    b 0.02119± 0.3277

    c 0.2454± 4.006

    a 0± 0.6

    b 0.02119± 0.3277

    c 0.2454± 4.006

    �EE

    =apE

    � bE

    � c

    σT = a/E + b

  • Calorimeter Assembly status

    The Mu2e Calorimeter, R.Donghia 14 May 10, 2018

    New laboratory built at FNAL. QA tests of all components started on march 2018

  • Summary and Conclusions

    The Mu2e Calorimeter, R.Donghia 15 May 10, 2018

    •  The Mu2e calorimeter has concluded its prototyping phase satisfying the Mu2e requirements:

    •  Un-doped CsI crystals perform well §  Excellent LRU and LY 100 pe/MeV ( PMT+Tyvek wrapping ) §  τ of 30 ns with negligible slow component §  Radiation hardness OK for our purposes: 40% LY loss at 100 krad

    •  Mu2e SiPMs quality OK, high gain, high PDE, small Idark, small spread inside array •  SiPM performance after irradiation OK •  SiPM MTTF > 0.6 million hours

    •  Single calorimeter channel: timing resolution of 215 ps /MIP •  Small prototype tested with e- beam

    §  Good time and energy resolution achieved @ 100 MeV •  Module 0 built and first tests done.

    •  TB data analysis results satisfies the requirements •  Good time and energy resolution achieved @ 100 MeV, in agreement with the small prototype

    •  Calorimeter production phase started •  Detector installation expected for beginning of 2020

  • Spares

    Raffaella Donghia LNF-INFN and Roma Tre university

    On behalf of the Mu2e calorimeter group

    May , 2016 XVII LNF Spring School

    "Bruno Touschek”

  • Charged Lepton Flavor Violation

    The Mu2e Calorimeter, R.Donghia 17 May 10, 2018

    •  CLFV strongly suppressed in SM: Branching Ratio ≤10-54 à Observation would indicate New Physics

    •  CLFV@Mu2e:μ- e conversion in a nucleus field à discovery sensitivity to many NP models

    •  Goal: 104 improvement w.r.t. current limit (SINDRUM II)

    (@ 90% CL, with ~ 1018 stopped muons in 3 years of running)

    μ-e conversion in the presence of a nucleus

    < 8.4 x 10-17

    Nuclear captures of muonic Al atoms

    µe

    Al

    ECE = mμc2 – Eb – Erecoil= = 104.97 MeV

  • Mu2e experiment design

    The Mu2e Calorimeter, R.Donghia 18

    25 m Production Solenoid / Target •  Protons hitting target and

    producing mostly π

    Transport Solenoid •  Selects and transports low

    momentum μ-

    PS

    TS

    DS

    May 10, 2018

    1.  Generate low momentum μ- beam

    2.  Stop the muons in an Al target à trapped in orbit around the nucleus 3.  Look for an excess around 105 MeV/c in the electron spectrum

    Detector Solenoid: stopping target and detectors •  Stops μ- on Al foils •  Events reconstructed by detectors optimized

    for 105 MeV/c momentum

  • Mu2e

    Charged Lepton Flavor Violation

    The Mu2e Calorimeter, R.Donghia 19 May 10, 2018

    •  CLFV strongly suppressed in SM: BR ≤10-54 à Observation indicates New Physics

    •  CLFV@Mu2e:μ- e conversion in a nucleus field à discovery sensitivity on many NP models

    •  Goal: 104 improvement w.r.t. current limit (SINDRUM II)

    (@ 90% CL, with ~ 1018 stopped muons in 3 years of running)

    Contact dominated

    Loop dominated

    μ-e conversion in the presence of a nucleus

    < 8 x 10-17

    Nuclear captures of muonic Al atoms

    µe

    Al

    arXiv: 1303.4907

  • Pre-production test: SiPMs (2)

    The Mu2e Calorimeter, R.Donghia 20 May 10, 2018

    •  1 sample per vendor has been exposed to neutron flux up to 8.5×1011 n1MeVeq/cm2 (@ 20 °C)

    •  5 samples per vendor have been used to estimate the mean time to failure value Requirement: obtain an MTTF of 1 million hours when operating at 0 °C

    ]2/cm1MeV

    Integrated flux [n0 100 200 300 400 500 600 700 800

    910

    I [m

    A]

    0

    10

    20

    30

    40

    50

    60

    •  MTTF evaluated operating SiPMs @ 50 °C for 3.5 months

    •  No dead channels observed MTTF ≥ 6×105 hours

    •  SiPMs will operate @ 0 °C: a decrease of 10 ˚C in SiPMs temperature corresponds to a Id decrease of 50%

    •  Lower Vop also helps to decrease the Id

    MTTF Neutron test

    HamamatsuSenSl AdvanSiD

  • SG crystal + Hamamatsu SiPM + FEE Optical coupling in air. •  22Na source

    -  TRG: small scintillator readout by a PMT -  Study distance effect for air-coupling

    Single channel slice test

    The Mu2e Calorimeter, R.Donghia 21 May 10, 2018

    h1Entries 4443222

    Mean 145.5

    Mean y 10.67

    RMS 43.59

    RMS y 12.41

    Time [ns]80 100 120 140 160 180 200 220

    Am

    plitu

    de [m

    V]

    0

    5

    10

    15

    20

    25

    h1Entries 4443222

    Mean 145.5

    Mean y 10.67

    RMS 43.59

    RMS y 12.41

    h2Entries 4375308

    Mean 500

    Mean y 2.651

    RMS 288.4

    RMS y 5.918

    h3Entries 4128348

    Mean 500

    Mean y 2.812

    RMS 288.4

    RMS y 5.987

    Hamamatsu 4 - DIstance from Crystal0 mm1 mm2 mm

    onda3-1.3:time {tmean2-tmean3>-40 && tmean2-tmean3120 && charge2

  • Single channel Cosmic Rays Test

    The Mu2e Calorimeter, R.Donghia 22 May 10, 2018

    •  TRG time resolution ~ 170 ps •  Constant fraction method used •  Pulse height correction applied (slewing)

    After jitter subtraction: SiPM 1 – σT ~ 330 ps SiPM 2 – σT ~ 340 ps

    T(SiPM1 - SiPM2)/2 à ~ 215 ps @ ~ 23 MeV energy deposition

    (MIP energy scale from Na22 source peak)

    Timing result well compares with old tests: à  Reduced light output/SiPM

    (22 vs 30 pe/MeV) à 2 SiPMs/crystal à  LY of 44 vs 30 à 215 ps (now) vs 250 ps (old).

    Entries 727

    Constant 6.2± 133.6

    Mean 0.0161± 0.1234

    Sigma 0.012± 0.429

    Time [ns]-3 -2 -1 0 1 2 3

    Entr

    ies

    / 25

    ps0

    20

    40

    60

    80

    100

    120

    140

    Entries 727

    Constant 6.2± 133.6

    Mean 0.0161± 0.1234

    Sigma 0.012± 0.429

    SiPM 1 - SiPM 2Entries 727

    Constant 8.6± 185.7

    Mean 0.012± -0.297

    Sigma 0.0083± 0.3073

    Time [ns]-3 -2 -1 0 1 2 3

    Entr

    ies

    / 25

    ps

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Entries 727

    Constant 8.6± 185.7

    Mean 0.012± -0.297

    Sigma 0.0083± 0.3073

    /2Σ(SiPM1 + SiPM2)/2 -

  • Pre-production test: Crystals (2)

    The Mu2e Calorimeter, R.Donghia 23 May 10, 2018

    Few samples per vendor have been exposed both to ionizing dose and neutrons •  Irradiation test up to 100 krad •  Requirement:

    normalized LY after 10/100 krad > 85/60%

    •  Radiation Induced Noise (RIN) @ 1.8 rad/h required is < 0.6 MeV •  All 72 samples tested. All OK apart some Amcrys crystals that do not satisfy the required limit

    •  Negligible LY and LRU variation after 1.6 x 1012 n1MeV/cm2 integrared flux •  Neutron RIN is also smaller than the one from dose

    Most crystals have LY larger than 100 p.e./MeV after 100 krad

    (40% max. loss), promising a robust CsI calorimeter

    85%

    60%

  • PId

    The Mu2e Calorimeter, R.Donghia 24 May 10, 2018 24

    With a CRV inefficiency of 10-4 an additional rejection factor of ~ 200 is needed to have < 0.1 fake events from cosmics in the signal window

    A rejection factor of 200 can be achieved with ~ 95% efficiency for CE

  • Calibration source and laser

    25 May 10, 2018

    + cosmics

    •  Liquid source FC 770 + DT generator: 6 MeV + 2 escape peaks •  Laser system to monitor SiPM performance

    The Mu2e Calorimeter, R.Donghia

  • Calorimeter Trigger

    The Mu2e Calorimeter, R.Donghia 26 May 10, 2018

    •  Calo info can provide additional trigger capabilities in Mu2e: •  Calorimeter seeded track finder

    •  Factorized into 3 steps: hit pre-selection, helix serach and track fit •  ε ~ 95% for background rejection of 200

    •  Standalone calorimeter trigger that uses only calo info •  Ε ~ 65% for background rejection 200

  • Calorimeter seeded track finder

    The Mu2e Calorimeter, R.Donghia 27 May 10, 2018

  • Calorimeter radiation damage

    The Mu2e Calorimeter, R.Donghia 28 May 10, 2018

    •  Calorimeter radiation dose driven by beam flash (interaction of proton beam on target)

    •  Dose from muon capture is x10 smaller •  Dose is mainly in the inner radius •  Highest dose ~10 krad/year •  Highest n flux on crystals ~ 2×1011 n/cm2/year •  Highest n flux on SiPM ~ 1011 n1MeVeq/cm2/year • 

    •  Qualify crystals up to ~ 100 krad, 1012 n/cm2

    •  Qualify SiPM up to ~ 1012 n1MeVeq/cm2

    This includes a safety factor of 3 for a 3 year run

  • Calorimeter radiation damage

    The Mu2e Calorimeter, R.Donghia 29 May 10, 2018

  • Three years run Expectation by full Simulation

    The Mu2e Calorimeter, R.Donghia 30

    Mu2e Collaboration, November 2013

    May 10, 2018

  • CLFV Lagrangian

    The Mu2e Calorimeter, R.Donghia 31

    Mu2e Collaboration, November 2013

    μN→eN

    μ→eγ

    μ→eee

    Loops dominate for κ > 1

    κ

    μN→eN

    μ→eγ

    μ→eee

    Λ (

    TeV

    )

    May 10, 2018