15
Design and Fabrication of Air-core Inductors for Power Conversion Hoa Thanh Le a, b , Io Mizushima c , Peter Torben Tang c , Ziwei Ouyang b , Arnold Knott b , Flemming Jensen a , Anpan Han a a Danchip, b DTU Elektro Tech. Uni. Denmark, c IPU, Kgs. Lyngby, Denmark. e-mail: [email protected]

Design and Fabrication of Air-core Inductors for Power Conversionpwrsocevents.com/wp-content/uploads/2016-presentations/... · 2017-09-12 · Design and Fabrication of Air-core Inductors

  • Upload
    buidan

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Design and Fabrication of Air-core Inductors for Power Conversion

Hoa Thanh Le a, b, Io Mizushima c, Peter Torben Tang c, Ziwei Ouyang b, Arnold Knottb, Flemming Jensen a, Anpan Hana a Danchip, b DTU Elektro Tech. Uni. Denmark, c IPU, Kgs. Lyngby, Denmark. e-mail: [email protected]

2 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark 04/10/2016 Hoa Thanh Le

CMOS-compatible

Small footprint (~ 1-2 mm2)

High frequency (30–300 MHz)

Losses caused by eddy current effects

Electromagnetic inteference (EMI)

Q > 10, 1-100 nH, 1-2A

PwrSoC Inductor

Eddy current losses in substrate

Skin effect Proximity effect

Eddy current effects

04/10/2016 Hoa Thanh Le 3 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

2D & 3D inductor for PwrSoc

Spiral

Solenoid

Toroid for low EMI

Transformer

Universal core geometry

Custom inductor design

TSV & footprint

CMOS compatible

Robust

Our Aims

04/10/2016 Hoa Thanh Le 4 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Inductance and resistance are frequency dependent due to eddy current effects.

Indutance L = Lexternal + Linternal

Equations: Rectangular conductor current density (Jz)

Geometry coordinate

L = N2hμair

2πln

Ro

Ri+

Ro+Ri

2μ0 ln 8∙

Ro+Ri

Ro−Ri−2 +

𝛍𝟎𝟐

𝐇 𝟐𝐝𝐕

𝐉𝐝𝐒

𝐽𝑧 𝑥, 𝑦 = 𝐶 ∙ 𝐶𝑜𝑠ℎ 𝑘(𝑧) ∙ 𝑥 𝐶𝑜𝑠ℎ 𝑙(𝑧) ∙ 𝑦

𝑅𝐴𝐶=2𝜌 𝐽 2𝑑𝑉

𝐽 𝑑𝑆 𝛻 × 𝐽 = −𝜌μ0

𝜕𝐻

𝜕𝑡 𝑄 =

𝐼𝑚 (𝑍)

𝑅𝑒(𝑍)

W1 (µm)

50

-50

0

tCu (µm)

Jz(x,y) at 100 MHz

0.2

0.6

1.0

1.4

1.8

x109

𝐽𝑧 (A/m)

0 -15

15

Inductor Modeling

04/10/2016 Hoa Thanh Le 5 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Modeling Results

Comparison of calculated and simulated results. (a) Q, L and (b) RAC versus frequency.

(a) (b)

04/10/2016 Hoa Thanh Le 6 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Inductor model

Mask design

Fabrication Inputs Device

Q, L, RAC, η, fRS, size

Optimal geometry

Auto generated masks by a fully-parameterized Matlab script

Inductor Design Guideline

04/10/2016 Hoa Thanh Le 7 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

30µm

TSV Cu-filled TSV

Cu

200µm

Cu TSVs (Si wafer removed - KOH)

Fabrication Process

Deposition of Aluminum Oxide (Al2O3)

Photolithography + Al2O3

etching

DRIE etching + mask stripping

Copper electroplating

1

2

3

4

04/10/2016 Hoa Thanh Le 8 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Air-core toroidal inductor

Si-core toroidal inductor

Fabrication Process

Copper wet etching

Photolithography + Al2O3 etching

Inductor releasing

5

6

7

04/10/2016 Hoa Thanh Le 9 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

500 µm

500 µm

500 µm

300 µm

500 µm

Tranformer

Solenoid

Spiral

Toroidal inductor

”DTU” inductor

Fabrication Results

04/10/2016 Hoa Thanh Le 10 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

1.5 mm 2 mm

4 mm

Fabrication Results

04/10/2016 Hoa Thanh Le 11 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Q-factor

L

Rac

Preliminary results

Toroidal inductor is wire-bonded on PCB test board (N=20, Ro=1 mm, Ri=0.5 mm)

Characterization

04/10/2016 Hoa Thanh Le 12 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Ifusing = 5.5A (RDC = 0.52 Ω)

IRMS = 2A

Au bond wires

Temperature Rise

04/10/2016 Hoa Thanh Le 13 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

10

5

0

-5

-10

0.6

0.4

0.2

0

2

0

-2

30

20

10

0

6

4

2

0

80

60

40

0

20

VSW

VGS

VOUT

IL1 IL2

VCRES

0 0.5 1 1.5 2 2.5 3

Cycles

(b)

(a)

4.4 cm

4.8 cm

Inductor is wire-

bonded on PCB board

Gold bonding wire

(c)

Design of 100 MHz Class E Inverter

04/10/2016 Hoa Thanh Le 14 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Conclusion

Inductor Modeling

f-dependent Linternal, RAC

COMSOL

Design guideline

Customized Inductor

Number of turns

Inner & outer radius

Specs

Fabrication Process

CMOS-compatible

Cu-Si robust

2D & 3D air-core inductors

Through-Si Vias

Future Works

Test on SMPS

Packaging

Magnetics

04/10/2016 Hoa Thanh Le 15 National Center for Micro- and Nanofabrication (Danchip), DTU, Denmark

Acknowledgement

TinyPower Fund No. 67-2014-1