62
Robust Control Systems Research with Applications 1 Prof. Rama K. Yedavalli Department of Aerospace Engineering The Ohio State University Columbus, OH April 27, 2010

Department of Aerospace Engineering The Ohio State University …beamdocs.fnal.gov/AD/DocDB/0036/003602/001/Yedavalli_Fermilabs... · Prof. Rama K. Yedavalli Department of Aerospace

Embed Size (px)

Citation preview

Ro

bu

st C

on

tro

l S

yst

ems

Res

earc

h

wit

h A

pp

lica

tio

ns

1

Prof. Rama K. Yedavalli

Dep

artm

ent

of

Aer

osp

ace

Engin

eeri

ng

The

Ohio

Sta

te U

niv

ersi

ty

Colu

mb

us,

OH

Ap

ril

27, 2010

TH

AN

KS

TO

FE

RM

I-LA

BS

FO

R T

HE

INV

ITA

TIO

N A

ND

HO

SP

ITA

LIT

Y

In p

art

icu

lar

to D

r. A

see

t M

uk

he

rje

e a

nd

Dr.

In

pa

rtic

ula

r to

Dr.

Ase

et

Mu

kh

erj

ee

an

d D

r.

Ste

ve H

olm

es

2

•In

tro

du

ctio

na

nd

Pe

rsp

ect

ive

on

Co

ntr

olSys

tem

sF

ield

•U

nce

rta

inty

an

dR

ob

ust

ne

ss:

Tim

eD

om

ain

Sta

teS

pa

cea

nd

Fre

qu

en

cyD

om

ain

Tra

nsf

er

Fu

nct

ion

Vie

wp

oin

ts

•R

ob

ust

Co

ntr

olD

esi

gn

Me

tho

ds

wit

hA

pp

lica

tio

ns

•O

verv

iew

of

OS

UR

ob

ust

Co

ntr

olG

rou

pR

ese

arc

h

•Fa

ult

Dia

gn

ost

ics

an

dC

on

tro

lD

esi

gn

for

Fau

ltTo

lera

nce

Outline

3

•Fa

ult

Dia

gn

ost

ics

an

dC

on

tro

lD

esi

gn

for

Fau

ltTo

lera

nce

•D

istr

ibu

ted

Co

ntr

olw

ith

Co

mm

un

ica

tio

nC

on

stra

ints

•C

on

tro

lo

fS

up

erc

on

du

ctin

gC

avit

ies:

Re

leva

nce

an

dA

pp

lica

bil

ity

of

ou

rre

sea

rch

•C

on

clu

sio

ns

an

dF

utu

reR

ese

arc

h

•P

oss

ible

Ave

nu

es

of

Re

sea

rch

Co

lla

bo

rati

on

wit

hFe

rmiL

ab

s

Co

ntr

ol

Sy

ste

m

Fre

qu

en

cy D

om

ain

Introduction and Perspective

4

Tim

e D

om

ain

Sta

te

Sp

ace

Re

pre

sen

tati

on

Fre

qu

en

cy D

om

ain

Tra

nsf

er

Fu

nct

ion

Re

pre

sen

tati

on

Co

ntr

ol

Sy

ste

ms

Control Systems Modeling

5

Co

nti

nu

ou

s T

ime

Sy

ste

ms

Dis

cre

te T

ime

Sy

ste

ms

Sa

mp

led

Da

ta

Sy

ste

ms

Dif

fere

nti

al

eq

ua

tio

ns

Dif

fere

nce

eq

ua

tio

ns

No

nli

ne

ar

Sy

ste

m

Mo

de

l

Lin

ea

r S

yst

em

Mo

de

l

Lin

ea

riza

tio

n

Standard Controller Design

Methodologies

6

Fre

qu

en

cy D

om

ain

Ap

pro

ach

Tim

e D

om

ain

Sta

te

Sp

ace

Ap

pro

ach

PID

Co

ntr

oll

ers

Lea

d L

ag

Ne

two

rks E

ige

nst

ruct

ure

Ass

ign

me

nt

Op

tim

al

Co

ntr

ol

Me

tho

ds

(LQ

R)

Un

cert

ain

ty:

Ine

vit

ab

le i

n r

ea

l li

fe p

rob

lem

s

Acc

om

mo

da

tin

g u

nce

rta

inty

is i

mp

ort

an

t

Ro

bu

stn

ess

: A

ne

cess

ary

fe

atu

re i

n A

na

lysi

s a

nd

De

sig

n o

f

Uncertainty and Robustness

in Control Systems

7

Ro

bu

stn

ess

: A

ne

cess

ary

fe

atu

re i

n A

na

lysi

s a

nd

De

sig

n o

f

fee

db

ack

Co

ntr

ol Sys

tem

s

Ma

in t

he

me

of

ou

r re

sea

rch

PE

RT

UR

BA

TIO

N O

R M

OD

ELI

NG

ER

RO

RS

Re

al

Pa

ram

ete

r N

eg

lect

ed

Uncertainty Characterization

8

Re

al

Pa

ram

ete

r

Va

ria

tio

ns

Un

mo

de

led

Dy

na

mic

s

Ne

gle

cte

d

No

nli

ne

ari

tie

s

Ne

gle

cte

d

Ext

ern

al

Dis

turb

an

ces

Re

al P

ara

me

ter

Va

ria

tio

ns

Tim

e D

om

ain

(Sta

te S

pa

ce)

Ma

trix

Fre

qu

en

cy D

om

ain

(Tra

nsf

er

Fu

nct

ion

)

Po

lyn

om

ial

Uncertainty Characterization

9

)(

)(

)(

)(

0

sr

sG

sG

sG

<∆

∆+

Ma

trix

Va

ria

tio

ns

Po

lyn

om

ial

Va

ria

tio

ns

Un

mo

de

led

Dy

na

mic

s•

Tim

e D

om

ain

??

?

??

?

Fre

qu

en

cy D

om

ain

Tim

e D

om

ain

(Sta

te S

pa

ce)

A+

E

Fre

qu

en

cy D

om

ain

||

ΔG

(jω

)||

< r

(jω

)|

Multiplicative

ΔG

(s)

+

Unstructured Uncertainty

(Norm Bounded)

10

A0

+ E

||

E|

| <

rG

0(s

)

G(s)

= G

0(s) [I +

∆G(s) ]

+

Additive

ΔG

(s)

G0(s

)+

G(s)

= G

0(s)

+ ∆

G(s)

qE

A+⇓

0)

(

Tim

e D

om

ain

(Sta

te S

pa

ce)

Fre

qu

en

cy D

om

ain

(Tra

nsf

er

Fu

nct

ion

)

Δ1

Δ2

(1)

Structured Uncertainty

Re

al S

tru

ctu

red

Un

cert

ain

ty

11

i

r iii

ii

Eq

A

qq

q

qE

A

∑=

+

<<+

10

0)

(…

Δn

(2)

K

Complex Structured Uncertainty

P(s

, q)=

N(s

, q)/

D(s

, q)

Real Structured Uncertainty

qE

A+⇓

)(

Tim

e D

om

ain

(Sta

te S

pa

ce)

E(t)

Time varying uncertainty

Lya

pu

no

vM

atr

ix

Th

eo

ry A

pp

roa

ch

Structured Uncertainty

Re

al S

tru

ctu

red

Un

cert

ain

ty

12

i

r iii

ii

Eq

A

qq

q

qE

A

∑=

+

<<+

10

0)

(

E=constant

Time invariant uncertainty

Th

eo

ry A

pp

roa

ch

Kro

ne

cke

rM

atr

ix T

he

ory

Ap

pro

ach

STABILITY (Fundamental)

Stability Robustness

Op

en

Le

ft H

alf

Pla

ne

System Specifications

13

PERFORMANCE

Performance Robustness

Tra

nsi

en

t R

esp

on

se

Ste

ad

y S

tate

Re

spo

nse

Tra

ckin

g &

Re

gu

lati

on

Dis

turb

an

ce R

eje

ctio

nD

-sta

bil

ity

an

d

Eig

en

stru

ctu

re

Ass

ign

me

nt

Ap

pro

ach

U

nce

rta

inty

Ca

teg

ory

C

on

trib

uto

rs

(1)

µ-S

yn

the

sis

(Str

uct

ure

d S

ing

ula

r

Va

lue

, M

ult

iva

ria

ble

Sta

bil

ity

reg

ion

s)

Str

uct

ure

d a

nd

Un

stru

ctu

red

(Fre

qu

en

cy d

om

ain

)

Tit

s, S

afo

no

va

nd

Co

lle

ag

ue

s

(2)

Qu

an

tita

tive

fe

ed

ba

ck C

on

tro

lS

tru

ctu

red

fre

qu

en

cy

Ho

row

itz,

Nw

oka

h,

Wie

Major Approaches

14

(2)

Qu

an

tita

tive

fe

ed

ba

ck C

on

tro

lS

tru

ctu

red

fre

qu

en

cy

Do

ma

in

Ho

row

itz,

Nw

oka

h,

Wie

an

d C

oll

ea

gu

es

(3)

Th

eo

ry

(LQ

G/L

QR

)U

nst

ruct

ure

d

Fre

qu

en

cy D

om

ain

Ath

an

s, S

tein

,

Be

rnst

ein

, H

ad

da

d,

an

d C

oll

ea

gu

es

2H

Ap

pro

ach

U

nce

rta

inty

Ca

teg

ory

C

on

trib

uto

rs

(4)

H2/

H∞

H-i

nf

Th

eo

ryU

nst

ruct

ure

d F

req

ue

ncy

do

ma

in

Za

me

s, G

love

r, F

ran

cis,

Ten

ne

nb

au

ma

nd

Co

lle

ag

ue

s

(5)

Kh

ari

ton

ov

ba

sed

Po

lyn

om

ial

me

tho

ds

Str

uct

ure

d,

rea

l

Pa

ram

ete

r Tr

an

sfe

r

Fu

nct

ion

ba

sed

Kh

ari

ton

ov,

Ba

rmis

h,

Bh

att

ach

ary

a,

Ace

rma

nn

,

Bo

se a

nd

Co

lle

ag

ue

s

Major Approaches

15

Fu

nct

ion

ba

sed

Bo

se a

nd

Co

lle

ag

ue

s

(6)

Lya

pu

no

v K

ron

eck

er

ba

sed

Ma

trix

Me

tho

ds

Str

uct

ure

d,

rea

l

Pa

ram

ete

r, T

ime

do

ma

in

Yed

ava

lli,

Qiu

&D

av

iso

n,

Jua

ng

, H

inq

ich

&

Rit

cha

rd,

Ba

rmis

ha

nd

Co

lle

ag

ue

s

(7)

Mix

ed

H2/

H∞

Th

eo

ry

Co

mb

ine

d U

nce

rta

inty

,

Sta

te S

pa

ce

Be

rnst

ein

& H

ad

da

d,

Ba

nd

a,

Kh

arg

on

eka

r, a

nd

Co

lle

ag

ue

s

Ma

ny

con

trib

uti

on

sb

yo

the

rre

sea

rch

ers

are

cove

red

inva

rio

us

bo

oks

an

dm

on

og

rap

hs:

On

ere

leva

nt

an

du

sefu

lre

fere

nce

is

“Re

cen

tA

dva

nce

sin

Ro

bu

stC

on

tro

l”E

dit

ed

by

Pe

ter

Do

rato

an

d

R.K

.Ye

da

vall

i,IE

EE

Pre

ss,

19

90

Literature in the Field

16

R.K

.Ye

da

vall

i,IE

EE

Pre

ss,

19

90

LLRF Control Systems

17

Blo

ck d

iag

ram

of

the

LLR

F c

on

tro

l sy

ste

m.

•Am

pli

tud

e

Co

ntr

ol

•Ph

ase

Co

ntr

ol

•Sig

nif

ica

nt

Lit

era

ture

a

nd

In

tere

st i

n E

uro

pe

an

d

Asi

a a

nd

ou

r U

S G

ov

tLa

bs

No

min

al S

NS

RF

Co

ntr

ol

Sys

tem

•Lo

s A

lam

os

an

d O

ak

Rid

ge

la

bs

are

act

ive

in

RF

Co

ntr

ol

Sys

tem

s R

ese

arc

h

•A

Lin

ea

r K

lyst

ron

mo

de

l a

rou

nd

ea

ch

op

era

tin

g p

oin

t ca

n b

e o

bta

ine

d

op

era

tin

g p

oin

t ca

n b

e o

bta

ine

d

•A

n S

RF

Ca

vit

y l

ine

ar

mo

de

l ca

n b

e o

bta

ine

d b

y

eq

uiv

ale

nt

circ

uit

of

the

ca

vit

y (

as

an

RF

ge

ne

rato

r w

ith

a t

ran

smis

sio

n l

ine

) a

pp

roa

ch. 1

8

No

min

al

RF

Co

ntr

ol

Syst

em

Mo

de

lin

g

•S

tate

va

ria

ble

s:

Co

mp

lex

Ca

vit

y V

olt

ag

e R

ea

l

an

d I

ma

gin

ary

pa

rts

•C

on

tro

l V

ari

ab

les:

Ge

ne

rato

r C

urr

en

t R

ea

l a

nd

Ima

gin

ary

pa

rts

Ima

gin

ary

pa

rts

•M

atl

ab

an

d S

imu

lin

kca

n b

e u

sed

to

sim

ula

te

the

co

ntr

ol

syst

em

be

ha

vio

r

Imp

ort

an

t to

co

nsi

de

r P

ert

urb

ati

on

s a

nd

acc

om

mo

da

te t

he

m i

n c

on

tro

l d

esi

gn

19

Uncertainty Characterization in

LINAC LLRF Control

•U

nce

rta

inty

in R

F c

om

po

ne

nts

(l

ike

RF

sw

itch

, d

ire

ctio

na

l co

up

ler

etc

) a

nd

ca

bli

ng

: to

be

mo

de

led

as

mu

ltip

lica

tive

u

nce

rta

inty

•H

igh

Vo

lta

ge

Po

we

r su

pp

ly r

ipp

le t

o b

e m

od

ele

d a

s a

dd

itiv

e

dis

turb

an

ce

20

dis

turb

an

ce

•Lo

ren

tz f

orc

e d

etu

nin

g f

req

ue

ncy

an

d m

icro

ph

on

ics

can

be

m

od

ele

d a

s ti

me

va

ryin

g,

rea

l u

nce

rta

in p

ara

me

ters

•B

ea

m c

urr

en

t I

is m

od

ele

d a

s a

tim

e in

vari

an

t re

al

un

cert

ain

p

ara

me

ter

wit

hin

a b

ou

nd

ed

se

t.

Pe

rtu

rba

tio

n m

od

eli

ng

in

RF

Co

ntr

ol

Syst

em

s•

4 µ

se

con

d d

ela

y o

bse

rve

d i

n R

F C

on

tro

l Sys

tem

s o

f T

ES

LA T

est

Fa

cili

ty

•T

ime

de

lay

in

cre

ase

s th

e p

ha

se s

hif

t b

etw

ee

n in

pu

t a

nd

ou

tpu

t si

gn

als

an

d

thu

s li

mit

s th

e m

axi

mu

m a

llo

wa

ble

ga

in.

All

th

ese

p

ert

urb

ati

on

s ca

use

ph

ase

an

d a

mp

litu

de

dis

tort

ion

s.

We

ne

ed

to

de

sig

n c

on

tro

lle

rs w

hic

h a

re r

ob

ust

to

th

ese

We

ne

ed

to

de

sig

n c

on

tro

lle

rs w

hic

h a

re r

ob

ust

to

th

ese

Pe

rtu

rba

tio

ns.

Bo

th T

ime

Do

ma

in S

tate

Sp

ace

an

d F

req

ue

ncy

Do

ma

in

ap

pro

ach

es

ne

ed

to

be

pu

rsu

ed

.

.

21

MIM

O F

req

ue

ncy

Do

ma

in

Me

tho

ds

Robust Control Design Methods

22

_

∆ ∆∆∆P(s)

C(s)

G(s)

+

∆1

C

G1

G2

rz 1

uz 4

w2

w1z 2

z 3w3

y

MIM

O T

ime

Do

ma

in S

tate

Sp

ace

Me

tho

ds

Lin

ea

r P

ara

me

ter

Va

ryin

g

Ric

cati

ba

sed

Ro

bu

st C

on

tro

l Ly

ap

un

ov

ba

sed

LM

I

Robust Control Design Methods

23

Lin

ea

r P

ara

me

ter

Va

ryin

g

Me

tho

d

Ric

cati

ba

sed

Ro

bu

st C

on

tro

l

De

sig

n M

eth

od

s

Lya

pu

no

vb

ase

d L

MI

me

tho

ds

Ro

bu

st C

on

tro

l fo

r Li

ne

ar

Inte

rva

l P

ara

me

ter

Ma

trix

-

fam

ilie

s

Gu

ara

nte

ed

Co

st C

on

tro

lR

ob

ust

Co

ntr

ol

for

Ult

ima

te

Bo

un

de

dn

ess

Ro

bu

st C

on

tro

l o

f Li

ne

ar

Inte

rva

l P

ara

me

ter

Sy

ste

ms

in S

tate

Sp

ace

fra

me

wo

rk

24

PE

RT

UR

BA

TIO

N O

R M

OD

ELI

NG

ER

RO

RS

Ne

gle

cte

d

Uncertainty Characterization

Pa

ram

ete

r

25

Un

mo

de

led

Dy

na

mic

s

Ne

gle

cte

d

No

nli

ne

ari

tie

s

Ne

gle

cte

d

Ext

ern

al

Dis

turb

an

ces

Pa

ram

ete

r

Va

ria

tio

ns

Cx

y

Bu

Ax

x

=

+=

&

Co

nsi

de

r th

e s

yste

m

wit

h t

he

co

ntr

ol la

w g

ive

n b

y

Linear State Feedback Control Design

Using Perturbation Bound Analysis

26

Gx

u=

wit

h t

he

co

ntr

ol la

w g

ive

n b

y

Let

us

ass

um

e t

ha

t w

e c

an

de

term

ine

a G

su

ch t

ha

t th

e

no

min

al c

lose

d l

oo

p s

yste

m m

atr

ix A

+B

G is

sta

ble

.

ebb

eaa

UB

UA

=∈∆

=∈∆

the

capture

and

matrices

the

and

B,

and

A

matrices

the

in

expected

deviations

absolute

maximum

the

denote

and

,

where

UU

ba

∈∈

Let

us

ass

um

e p

ert

urb

ati

on

s in

th

e A

an

d B

ma

tric

es

wit

h t

he

foll

ow

ing

str

uct

ure

:

Perturbation Bound Analysis

27

meb

bea

am

GU

UBG

A∈

+=∈

∆+

∆=

by

given

is

of

control

nominal

with

system

the

of

matrix

system

loop

closed

linear

onin

perturbati

Total

y.

uncertaint

the

of

structure

the

capture

and

matrices

the

and

B,

and

A

matrices

the

in

Gx

u

UU

ebea

=

1

ifan

dby

bounded

ons

per

turb

ati

al

lfo

r

stab

le

is sy

stem

linea

r

per

turb

ed

The

:T

heo

rem

ba

µ=

<∈

∈∈

Perturbation Bound Analysis

28

equat

ion

mat

rix

L

yap

unov

t

he

of

solu

tion

t

he

is

wher

e

and

)](

[

1

max

P

GU

UP

b

sm

ebea

ma

µ

µσ

µ∈<

=∈

+<

02

)(

)(

=+

++

+n

TI

PBG

ABG

AP

De

fin

e

Sta

bil

ity

Ro

bu

stn

ess

In

de

x β

SR

as

foll

ow

s:

Ca

se a

) C

he

ckin

g s

tab

ilit

y f

or

giv

en

pe

rtu

rba

tio

n r

an

ge

:

For

this

c

ase

Stability Robustness Index and Control

Design Algorithm

29

aSR

∈−

=∆

µβ

µβ

∆ =SR

For

this

c

ase

Ca

se b

) S

pe

cify

ing

th

e b

ou

nd

: Fo

r th

is c

ase

KB

RG

T

c

1

0

1−

−=

ρ

01

0=

+−

+−

QK

BR

KB

KA

KA

T

c

T

ρ

Bu

ild

a c

on

tro

l ga

in v

ia L

QR

me

tho

d:

Let

the

co

ntr

ol

ga

in G

be

va

rie

d v

ia a

sca

lar

me

asu

re g

ive

n b

y

Stability Robustness Index and Control

Design Algorithm

30

2/

1

0

2/

1

0

max

])

([

])

([

or

)(

dt

Gx

Gx

dt

uu

J

GG

J

TT

Ten

sen

∫∫

∞∞

==

==

σ

Let

the

co

ntr

ol

ga

in G

be

va

rie

d v

ia a

sca

lar

me

asu

re g

ive

n b

y

Plo

t β

SR

v.s.

Je

n a

nd

se

lect

a g

ain

wh

ich

ke

ep

s β

SR

po

siti

ve

an

d/o

r m

ax

imu

m

0)

0()

()

(x

xu

BB

xA

Ax

=∆

++

∆+

=

&

by

given

are

vector

control

and

vector

state

of

components

The

→2

4R

uR

x

Ap

pli

cati

on

to

Ve

rtic

al Ta

keo

ff a

nd

La

nd

ing

Air

cra

ft

Application to Flight Control

31

control

pitch

cyclic"

al

longitudin

"

control

pitch

"collective

ees)

angle(degr

pitch

e/second)

rate(degre

pitch

nots)

velocity(k

vertical

nots)

velocity(k

horizontal

by

given

are

vector

control

and

→→→→→→

214321

24

"

uuxxxx

Ru

R

−−

−−

=

01

00

42

00

.1

707

.0

36

81

.0

10

02

.0

02

08

.4

00

24

.0

01

.1

04

82

.0

45

55

.0

01

88

.0

02

71

.0

03

66

.0

A

17

61

.0

44

22

.0

Application to Flight Control

32

]0

5.

00

15

.0

85

.0[

)0(

00

49

.4

52

.5

59

22

.7

54

46

.3

17

61

.0

44

22

.0

−=

−=

Tx

B

is condition

initial

The

702

.3

544

.3

39

.3

53

.1

42

.1

31

.1

3817

.0

3681

.0

3545

.0

213432

≤=

≤=

≤=

≤ baa

Example

33

157

.0

11

.0

0136

.0

21

34

32

=∆

=∆

=∆

ba

a

5674

.1

106

.1

1363

.0

21

34

32

=∆

=∆

=∆

ba

a

Case I I

Case I

Example

34

OSU Robust Control Group Research

OSU Research

Activities

Goodrich Engine

Control

NASA

Dryden

US Army

Uncertain

Systems

Research

NSF

35

AFRL/PR

CCCS

Flow Control

NASA

Glenn / GEAE

Cu

rre

nt

Gra

du

ate

Stu

de

nts

•W

en

fei

Li (

M.S

./P

h.D

.)

•H

sun

-Hsu

nH

ua

ng

(P

h.D

.)

•N

ag

ini

De

vara

kon

da

(Ph

.D.)

•R

oh

itB

ela

pu

rka

r (M

.S./

Ph

.D)

•H

-In

fco

ntr

ol

wit

hR

eg

ion

al

Sta

bil

ity

Co

nst

rain

ts(L

iua

nd

Yed

ava

lli)

•T

ime

resp

on

seb

ou

nd

sfo

rLi

ne

ar

Un

cert

ain

syst

em

s(C

RA

sho

kK

um

ar

an

dYe

da

vall

i)

•S

tab

ilit

ya

nd

Ro

bu

stn

ess

for

Ma

trix

Se

con

dO

rde

rSys

tem

sw

ith

sma

rtst

ruct

ure

con

tro

la

pp

lica

tio

ns

(An

jali

Diw

eka

ra

nd

OSU Robust Control Group Research

36

wit

hsm

art

stru

ctu

reco

ntr

ol

ap

pli

cati

on

s(A

nja

liD

iwe

kar

an

dYe

da

vall

i)

•C

on

tro

lD

esi

gn

inR

eci

pro

cal

Sta

teS

pa

ceF

ram

ew

ork

(Tse

ng

an

dYe

da

vall

i)

•S

ma

rtD

efo

rma

ble

Win

gst

ruct

ure

sfo

rIm

pro

ved

Air

cra

ftR

oll

Ove

rm

an

eu

vers

(Kw

ak

an

dYe

da

vall

i)

•N

eu

ral

ne

two

rkb

ase

dn

on

lin

ea

rco

ntr

oll

ers

for

flig

ht

veh

icle

ap

pli

cati

on

s(S

ha

nka

ra

nd

Yed

ava

lli)

•Fa

ult

de

tect

ion

usi

ng

dy

na

mic

thre

sho

lda

pp

roa

chw

ith

air

cra

fte

ng

ine

ap

pli

cati

on

s(L

ia

nd

Yed

ava

lli)

•R

ob

ust

sta

bil

ity

an

dco

ntr

ol

of

mu

lti-

bo

dy

gro

un

dve

hic

les

OSU Robust Control Group Research

37

•R

ob

ust

sta

bil

ity

an

dco

ntr

ol

of

mu

lti-

bo

dy

gro

un

dve

hic

les

un

de

ru

nce

rta

inty

an

dfa

ilu

res

(Hu

an

ga

nd

Yed

ava

lli)

•E

colo

gic

al

sig

nst

ab

ilit

ya

nd

its

use

inro

bu

ste

ng

ine

eri

ng

syst

em

s(D

eva

rako

nd

aa

nd

Yed

ava

lli)

•D

istr

ibu

ted

en

gin

eco

ntr

ol

un

de

rco

mm

un

ica

tio

nco

nst

rain

ts(B

ela

pu

rka

ra

nd

Yed

ava

lli)

Dynamic

Inversion

Control

Allocation

SDRE

X-40 Dynamic Inversion Controller

Pra

ve

en

Sh

an

kar

38

•R

ob

ust

ne

ss A

na

lysi

s o

f th

e X

-40

A D

yn

am

ic I

nve

rsio

n C

on

tro

lle

r

•Im

ple

me

nta

tio

n o

f co

mb

ine

d D

yn

am

ic I

nve

rsio

n -

Sta

te

De

pe

nd

en

t R

icca

ti E

qu

ati

on

Te

chn

iqu

e

•S

tab

ilit

y D

om

ain

Est

ima

tio

n (

Re

gio

n o

f A

ttra

ctio

n)

•M

eth

od

of

Ve

cto

r N

orm

s

•S

um

of

Sq

ua

res

Pro

gra

mm

ing

SDRE

Redesign

Reference

Model

PI

Controller

Neural

Network

Dynamic

Inversion

Control

Allocator

δω

ωdes

F-1

5

A Neural Network Based Adaptive Observer

for Turbine Engine Parameter Estimation

Pra

ve

en

Sh

an

kar

39

•Im

ple

me

nta

tio

n o

f G

row

ing

Ra

dia

l Ba

sis

Fu

nct

ion

Ne

ura

l

Ne

two

rk t

o m

inim

ize

err

or

du

e t

o m

od

eli

ng

an

d f

ail

ure

s in

con

tro

l su

rfa

ces

•S

ucc

ess

full

y im

ple

me

nte

d f

or

F-1

5 D

yn

am

ic I

nve

rsio

n

Co

ntr

oll

er

an

d F

-18

Ro

bu

st L

QR

Tra

cke

r

•To

be

im

ple

me

nte

d o

n p

ilo

ted

sim

ula

tio

n a

t N

AS

A D

ryd

en

•R

ob

ust

Sta

bil

ity

an

d C

on

tro

l o

f

Mu

lti-

bo

dy

Gro

un

d V

eh

icle

s

un

de

r U

nce

rta

inty

an

d F

ail

ure

s

•G

rou

nd

Ve

hic

le D

yn

am

ics

–R

oll

ove

r st

ab

ilit

y

Robust Stability and Control of

Multi-body Ground Vehicles

Hsu

n-H

sun

Hu

an

g

–R

oll

ove

r st

ab

ilit

y

–R

ide

an

d H

an

dli

ng

Pe

rfo

rma

nce

–S

tab

ilit

y u

nd

er

fail

ure

s

•E

ffo

rts

to C

oll

ab

ora

te w

ith

TAR

DE

C in

Wa

rre

n,

MI

4/2

9/2

01

0

•A

pp

lica

tio

n o

f co

nce

pts

of

bio

log

y a

nd

lif

e s

cie

nce

to

en

gin

ee

rin

g s

yste

ms:

Qu

ali

tati

ve (

sig

n)

sta

bil

ity

an

d

Ro

bu

st s

tab

ilit

y

Qualitative (Sign) Stability of Ecology

Na

gin

iD

eva

rako

nd

a

4/2

9/2

01

0

•A

pp

lica

tio

n o

f m

od

el

ba

sed

co

ntr

ol

stra

teg

ies

for

en

gin

e

con

tro

l

•A

pp

lica

tio

n o

f m

od

el

ba

sed

dia

gn

ost

ic t

ech

niq

ue

s

–S

en

sor

fau

lt d

ete

ctio

n a

nd

iso

lati

on

in

Tu

rbin

e E

ng

ine

si

mu

lati

on

mo

de

l u

sin

g N

eu

ral

Ne

two

rks

an

d b

an

k o

f

Fault Diagnostics for Aircraft Engines

With Uncertain Model Data

We

nfe

iLi

sim

ula

tio

n m

od

el

usi

ng

Ne

ura

l N

etw

ork

s a

nd

ba

nk

of

Ka

lma

n F

ilte

rs

•A

pp

lica

tio

n o

f m

od

el

ba

sed

pro

gn

ost

ic t

ech

niq

ue

s to

Tu

rbin

e

En

gin

e s

imu

lati

on

mo

de

l

4/2

9/2

01

0

•T

he

Ka

lma

n f

ilte

r is

co

mp

ose

d o

f a

no

nli

ne

ar

on

-bo

ard

en

gin

e m

od

el (O

BE

M)

an

d l

ine

ar

sta

te-s

pa

ce m

od

el.

•T

he

OB

EM

is

to g

en

era

te t

he

sta

te v

ari

ab

les

an

d s

en

sor

ou

tpu

ts,

run

nin

g i

n p

ara

lle

l w

ith

th

e a

ctu

al e

ng

ine

at

Kalman Filter Approach

ou

tpu

ts,

run

nin

g i

n p

ara

lle

l w

ith

th

e a

ctu

al e

ng

ine

at

the

est

ima

ted

he

alt

h c

on

dit

ion

.

4/2

9/2

01

0

Dy

na

mic

(A

da

pti

ve)

Th

resh

old

•C

urr

en

t a

pp

roa

che

s u

se C

on

sta

nt

Th

resh

old

–La

ckin

g g

uid

eli

ne

s fo

r o

pti

ma

l th

resh

old

se

lect

ion

–In

ap

pro

pri

ate

Th

resh

old

se

lect

ion

le

ad

s to

mo

re F

als

e

Ala

rms

an

d M

isse

d D

ete

ctio

ns

•D

yn

am

ic (

Ad

ap

tive

) T

hre

sho

ld A

pp

roa

ch•

Dy

na

mic

(A

da

pti

ve)

Th

resh

old

Ap

pro

ach

–A

cco

mm

od

ate

s u

nce

rta

inty

in

th

e M

od

els

–H

elp

s in

Re

du

cin

g F

als

e A

larm

s a

nd

Mis

sed

De

tect

ion

s

–Id

ea

alr

ea

dy

use

d i

n A

uto

mo

tive

ap

pli

cati

on

s

4/2

9/2

01

0

OBEM

Nonlinear/Linear

(CLM)

ucmd

zOBEM

xOBEM

Fault Detection System using

Dynamic Threshold Approach

4/2

9/2

01

0

Kalman Filter

zest

xest

Real Engine

(Component Level Model)

z

Residual/

Threshold

R=Z-Zest

Th=Zo-Zest

fault exists

or not

Engine Fault Detection System Scheme

+=

+=

vu

hx

gz

wu

hx

fx

),

,(

),

,(

&

•A

n a

ircr

aft

en

gin

e is

a n

on

lin

ea

r m

od

el:

Engine System Model

4/2

9/2

01

0

+

=v

uh

xg

z)

,,

(

wh

ere

x,

h,

u a

nd

z r

ep

rese

nt

sta

te v

ari

ab

les,

he

alt

h

pa

ram

ete

rs,

con

tro

l co

mm

an

d in

pu

ts,

an

d s

en

sor

ou

tpu

ts.

w

is t

he

pro

cess

no

ise

an

d v

is

the

se

nso

r n

ois

e.

+

+=

wu

BAx

x)

(&

•O

bta

inin

g a

lin

ea

r st

ate

-sp

ace

mo

de

l a

t t

he

de

sire

d s

tea

dy

-sta

te p

oin

t:

Engine System Model

4/2

9/2

01

0

+

=v

Cx

z

•D

iscr

eti

zin

g t

he

lin

ea

r co

nti

nu

ou

s-ti

me

sys

tem

fo

r

de

sig

nin

g t

he

Ka

lma

n f

ilte

r:

++

+=

+

++

Ψ+

=+

)1(

)1(

)1(

)(

)(

),1

()

()

,1(

)1(

kv

xk

Ck

z

kw

ku

kk

kx

kk

kx

d

020

4060

80100

120140

160180

200306

4

3064.53065

3065.53066

input W

F36

time

WF36

u(1) uengine

(1)

248249250inpu

t AE24

AE24

u(2) uengine

(2)

2468

10

12

Fault Dectection Using Dynamic Threshold

residual XN2

residual threshold XN2 (z1)

constant threshold

5

10

15

20

residual XN25

residual threshold XN25 (z2)

constant threshold

No Fault

4/2

9/2

01

0

020

4060

80100

120140

160180

200247

time

020

4060

80100

120140

160180

20033343536

input ST

P25

time

STP25

u(3) uen

gine(3)

050

100

150

200

-20

0

50

100

150

200

0

010

20

30

40

50

60

70

80

90

0

0.51

1.5

010

20

30

40

50

60

70

80

90

0

0.51

1.5

020

4060

80100

120

140

160

180

200

3065

3070

3075

input WF36

time

WF36

u(1)

uengine(1)

248

249

250

input AE24

AE24

u(2)

uengine(2)

2468

10

Fault Dectection Using Dynamic Threshold

residual XN2

residual threshold XN2 (z1)

constant threshold

5

10

15

20

residual XN25

residual threshold XN25 (z2)

constant threshold

Fault in First Actuator

4/2

9/2

01

0

020

4060

80100

120

140

160

180

200

247

time

020

4060

80100

120

140

160

180

200

33343536input STP25

time

STP25

u(3)

uengine(3)

050

100

150

200

0

050

100

150

200

0

010

20

30

40

50

60

70

80

90

0

0.51

1.5

010

20

30

40

50

60

70

80

90

0

0.51

1.5

020

4060

80100

120

140

160

180

200

3064

3064.5

3065

3065.5

3066

input WF36

time

WF36

u(1)

uengine(1)

250

260

270

280

input AE24

AE24

u(2)

uengine(2)

02468

10

Fault Dectection Using Dynamic Threshold

residual XN2

residual threshold XN2 (z1)

constant threshold

05

10

15

20

residual XN25

residual threshold XN25 (z2)

constant threshold

Fault in Second Actuator

4/2

9/2

01

0

020

4060

80100

120

140

160

180

200

240

time

020

4060

80100

120

140

160

180

200

33343536input STP25

time

STP25

u(3)

uengine(3)

050

100

150

200

-2

050

100

150

200

-5

010

20

30

40

50

60

70

80

90

0

0.51

1.5

010

20

30

40

50

60

70

80

90

0

0.51

1.5

020

4060

80100

120

140160

180

200306

4

3064.5

3065

3065.5

3066

input WF

36

time

WF36

u(1)

uengine(1)

248

249

250

input AE24

AE24

u(2)

uengine(2)

2468

10

Fault Dectection Using Dynamic Threshold

residual XN2

residual threshold XN2 (z1)

constant threshold

5

10

15

20

25

residual XN25

residual threshold XN25 (z2)

constant threshold

Fault in Third Actuator

4/2

9/2

01

0

020

4060

80100

120

140160

180

200247

time

020

4060

80100

120

140160

180

20034.83535.2

35.4

35.6

input STP25

time

STP25

u(3)

uengine(3)

050

100

150

200

0

050

100

150

200

0

010

20

30

40

50

60

70

80

90

0

0.51

1.5

010

20

30

40

50

60

70

80

90

0

0.51

1.5

•D

yn

am

ic T

hre

sho

ld w

ork

s w

ell

•F

irst

an

d t

hir

d a

ctu

ato

r fa

ult

s e

asi

er

to d

ete

ct;

seco

nd

Fau

lt D

ete

ctio

n R

esu

lts

Fault Detection Summary

•F

irst

an

d t

hir

d a

ctu

ato

r fa

ult

s e

asi

er

to d

ete

ct;

seco

nd

act

ua

tor

fau

lt h

ard

er

to d

ete

ct.

•T

he

est

ima

tio

n e

rro

r in

th

e t

ran

sie

nt

ph

ase

re

lati

vely

larg

e.

Be

tte

r tu

nin

g o

f K

alm

an

fil

ter

ga

in d

esi

rab

le.

4/2

9/2

01

0

Dis

trib

ute

d E

ng

ine

Co

ntr

ol

Syst

em

(D

EC

)

•E

ach

se

nso

r/a

ctu

ato

r re

pla

ced

by

sma

rt s

en

sor/

act

ua

tor.

•S

ign

al p

roce

ssin

g d

on

e b

y s

ma

rt

mo

du

les.

•In

form

ati

on

tra

nsf

er

t

hro

ug

h

Ro

hit

Be

lap

urk

ar

53

•In

form

ati

on

tra

nsf

er

t

hro

ug

h

seri

al c

om

mu

nic

ati

on

.

•S

ma

rt m

od

ule

s in

clu

de

pro

cess

ing

cap

ab

ilit

y t

o p

erf

orm

he

alt

h

dia

gn

ost

ics

an

d m

an

ag

em

en

t

fun

ctio

ns.

•C

an

be

mo

de

led

as

Ne

two

rke

d

Co

ntr

ol S

yste

ms

FADEC based on Distributed Architecture

Ne

two

rke

d C

on

tro

l Sy

ste

ms

(NC

S)

Ba

sic

ele

me

nts

of

NC

S

1.

Se

nso

rs

2.

Act

ua

tors

3.

Co

mm

un

ica

tio

n n

etw

ork

4.

Co

ntr

oll

er

Ne

two

rk

Act

ua

tors

Pla

nt

Se

nso

rs 54

4.

Co

ntr

oll

er

Generic NCS Architecture

Co

mm

un

ica

tio

n C

on

stra

ints

to

co

nsi

de

r fo

r a

na

lysi

s

of

NC

S

•P

ack

et

Dro

po

ut

•N

etw

ork

in

du

ced

Tim

e D

ela

y

•C

ha

nn

el

Ba

nd

wid

th

Co

ntr

oll

er

Time Delay Systems

55

Decentralized Control System for

Multiple Klystrons

56

AP

T L

LRF

Co

ntr

ol

Sys

tem

Fu

nct

ion

ali

ty a

nd

arc

hit

ect

ure

-A

.H.

Re

ga

n,

A.S

. R

oh

lev,

C.D

. Z

iom

ek

Blo

ck d

iag

ram

of

fee

db

ack

co

ntr

ol sy

ste

m f

or

mu

ltip

le k

lyst

ron

s

Fau

lt T

ole

ran

t A

cce

lera

tor

57

Re

f:E

nh

an

cin

g A

cce

lera

tor

Re

lia

bil

ity

wit

h L

LRF

Dig

ita

l Te

chn

olo

gy

-Lu

cija

Lu

kova

c

Fa

ult

to

lera

nt

acc

ele

rato

r d

em

on

stra

ted

fro

m b

ea

m

dyn

am

ics

po

int

of

vie

w

Pro

po

sed

OS

U R

ese

arc

h T

op

ics

of

Re

leva

nce

to

Fe

rmi-

Lab

s

•LL

RF

Co

ntr

ol S

yste

ms:

No

min

al a

nd

Pe

rtu

rba

tio

n M

od

eli

ng

an

d a

pp

rop

ria

te R

ob

ust

Co

ntr

ol D

esi

gn

•Fa

ult

De

tect

ion

, I

sola

tio

n a

nd

Acc

om

mo

da

tio

n

58

•D

ece

ntr

ali

zed

, D

istr

ibu

ted

Co

ntr

ol w

ith

co

mm

un

ica

tio

n

con

stra

ints

/fa

ilu

res

take

n in

to c

on

sid

era

tio

n

Of

cou

rse

, e

ach

of

the

se t

op

ics

is o

f im

me

nse

sco

pe

an

d

use

fuln

ess

an

d r

eq

uir

e l

on

g t

erm

su

pp

ort

an

d c

oll

ab

ora

tio

n

RO

BU

ST

EN

GIN

EE

RIN

G

SY

ST

EM

S,

LLC

•Fo

un

de

d i

n 2

00

8 b

y P

rof.

R.

K.

Yed

ava

lli

•W

e u

nd

ert

ake

co

nsu

ltin

g p

roje

cts

in t

he

re

late

d f

ield

s o

f:

•R

ob

ust

Co

ntr

ol Sys

tem

s A

na

lysi

s a

nd

De

sig

n f

or

Un

cert

ain

Dy

na

mic

Sys

tem

s

•O

pti

miz

ati

on

of

Dy

na

mic

Sys

tem

s

•D

istr

ibu

ted

Co

ntr

ol Sys

tem

s

59

Co

ntr

oll

ing

Un

cert

ain

Sy

ste

ms

Wit

h C

ert

ain

ty

•D

istr

ibu

ted

Co

ntr

ol Sys

tem

s

•C

on

tro

l Ap

pli

cati

on

s in

V

ari

ou

s Sys

tem

s

•E

ma

il:

con

tact

@ro

bu

ste

ng

sys.

com

•W

eb

site

: w

ww

.ro

bu

ste

ng

sys.

com

Po

ssib

le A

ven

ue

s o

f C

oll

ab

ora

tio

n

Ve

ry m

uch

in

tere

ste

d i

n e

xplo

rin

g p

oss

ible

ave

nu

es

of

coll

ab

ora

tio

n w

ith

Ferm

i-La

bs

Th

ese

po

ten

tia

lly

ma

y i

ncl

ud

e

•P

I R

ese

arc

h s

po

nso

rsh

ip f

or

Re

sea

rch

to

be

ca

rrie

d o

ut

at

OS

U w

ith

mo

nit

ori

ng

of

pro

gre

ss b

y F

erm

i-La

bs

pe

rso

nn

el

•R

ese

arc

h S

po

nso

rsh

ip c

an

be

div

ide

d b

etw

ee

n R

ob

ust

En

gin

ee

rin

g

Sys

tem

s a

nd

OS

U

•P

oss

ible

In

tera

ctio

n w

ith

Oth

er

Go

vt.

La

bs

such

as

Los

Ala

mo

s a

nd

Oa

k

Rid

ge

•E

xch

an

ge

of

tech

nic

al

info

rma

tio

n t

hro

ug

h

sem

ina

rs

•O

the

rs?

60

Su

mm

ary

an

d C

on

clu

sio

ns

•M

od

ern

Ro

bu

st C

on

tro

l Sys

tem

s T

he

ory

ha

s

mu

ch t

o o

ffe

r in

th

e C

on

tro

l o

f

Su

pe

rco

nd

uct

ing

C

av

ity

ap

pli

cati

on

•A

mu

ltid

isci

pli

na

ry t

ea

m c

oll

ab

ora

tio

n a

A m

ult

idis

cip

lin

ary

te

am

co

lla

bo

rati

on

a

ne

cess

ity

fo

r a

co

mp

lex

pro

ject

su

ch a

s

AD

S/P

roje

ct X

•O

SU

/RE

S v

ery

mu

ch i

nte

rest

ed

in

co

ntr

ibu

tin

g

to A

DS

/Pro

ject

X

61

•T

ha

nk

yo

u v

ery

mu

ch f

or

you

r a

tte

nti

on

•Q

ue

stio

ns?

62

•Q

ue

stio

ns?