46
Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society, Berlin FHI-aims Developers’ and Users’ Meeting, July 10, 2018 H. H. Shang (FHI) DFPT in FHI-aims July 10 1 / 20

Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Density Functional Perturbation Theory in FHI-aims

Honghui Shang

Fritz Haber Institute of the Max Planck Society, Berlin

FHI-aims Developers’ and Users’ Meeting, July 10, 2018

H. H. Shang (FHI) DFPT in FHI-aims July 10 1 / 20

Page 2: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why perturbations?

neutron

phonon

PRB,43,7231 (1991)

electric field

dielectricconstants

www.insifindia.com

magnetic field

magneticresonance

radiopaedia.org

ice and fire

thermoelectricity

en.wikipedia.org

Perturbations⇓

Physical Properties

H. H. Shang (FHI) DFPT in FHI-aims July 10 2 / 20

Page 3: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why perturbations?

neutron

phonon

PRB,43,7231 (1991)

electric field

dielectricconstants

www.insifindia.com

magnetic field

magneticresonance

radiopaedia.org

ice and fire

thermoelectricity

en.wikipedia.org

Perturbations⇓

Physical Properties

H. H. Shang (FHI) DFPT in FHI-aims July 10 2 / 20

Page 4: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why perturbations?

neutron

phonon

PRB,43,7231 (1991)

electric field

dielectricconstants

www.insifindia.com

magnetic field

magneticresonance

radiopaedia.org

ice and fire

thermoelectricity

en.wikipedia.org

Perturbations⇓

Physical Properties

H. H. Shang (FHI) DFPT in FHI-aims July 10 2 / 20

Page 5: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why perturbations?

neutron

phonon

PRB,43,7231 (1991)

electric field

dielectricconstants

www.insifindia.com

magnetic field

magneticresonance

radiopaedia.org

ice and fire

thermoelectricity

en.wikipedia.org

Perturbations⇓

Physical Properties

H. H. Shang (FHI) DFPT in FHI-aims July 10 2 / 20

Page 6: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why perturbations?

neutron

phonon

PRB,43,7231 (1991)

electric field

dielectricconstants

www.insifindia.com

magnetic field

magneticresonance

radiopaedia.org

ice and fire

thermoelectricity

en.wikipedia.org

Perturbations⇓

Physical Properties

H. H. Shang (FHI) DFPT in FHI-aims July 10 2 / 20

Page 7: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why perturbations?

neutron

phonon

PRB,43,7231 (1991)

electric field

dielectricconstants

www.insifindia.com

magnetic field

magneticresonance

radiopaedia.org

ice and fire

thermoelectricity

en.wikipedia.org

Perturbations⇓

Physical Properties

H. H. Shang (FHI) DFPT in FHI-aims July 10 2 / 20

Page 8: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why density-functional perturbations theory?

Physical properties are related to total energy derivatives

atomic displacement⇒ mixed ⇐ electric fielduI εI

1st order∂E

∂uI

∂E

∂εI(force) (dipole moment)

2ed order∂ 2E

∂uI∂uJ

∂ 2E

∂uI∂εJ

∂ 2E

∂εI∂εJ(force constants) (IR intensity) (polarizability)

(Born effective charges) (dielectric constant)

3rd order∂ 3E

∂uI∂uJ∂ ∆V

∂ 3E

∂εI∂εJ∂uK

∂ 3E

∂εI∂εJ∂εK(Gruneisen parameters) (Raman intensity) (hyper-polarizability)

H. H. Shang (FHI) DFPT in FHI-aims July 10 3 / 20

Page 9: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why density-functional perturbations theory?

Physical properties are related to total energy derivativesAnalytic evaluation of total energy derivatives

1H. F. Schaefer and Y. Yamaguchi, J. Mol. Struct. THEOCHEM 135, 369 (1986).H. H. Shang (FHI) DFPT in FHI-aims July 10 3 / 20

Page 10: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Why density-functional perturbations theory?

Physical properties are related to total energy derivatives

Finite Difference1 DFPT/CPSCF234

⊕Easy to implement Hard to implement

Suffer from numerical accuracy ⊕Analytical calculation

Slower ⊕ Faster

1K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).2J. Gerratt and I. M. Mills, J. Chem. Phys. 49, 1719 (1968).3S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515

(2001).4X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).

H. H. Shang (FHI) DFPT in FHI-aims July 10 3 / 20

Page 11: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT for atomic displacement : concept

Scheme Reciprocal-space12 Real-space

dynamical matrix DIJ(q)

1. dynamical matrix with coarse q grids

DIJ(q) =1√

MIMJ∑m

∑n

d2Etot

dRImdRJnexp(iq · (Rm−Rn)) .

1S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515(2001).

2X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).H. H. Shang (FHI) DFPT in FHI-aims July 10 4 / 20

Page 12: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT for atomic displacement : concept

Scheme Reciprocal-space12 Real-space

dynamical matrix DIJ(q)↓

force constants ΦIm,J(Rm)

2. force constants

ΦIm,J =1

Nq∑q

√MIMJDIJ(q)exp(iq ·Rm) .

1S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515(2001).

2X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).H. H. Shang (FHI) DFPT in FHI-aims July 10 4 / 20

Page 13: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT for atomic displacement : concept

Scheme Reciprocal-space12 Real-space

dynamical matrix DIJ(q)↓

force constants ΦIm,J(Rm)↓

dynamical matrix DIJ(q′)

3. dynamical matrix with dense q grids

DIJ(q) =1√

MIMJ∑m

ΦIm,J exp(iq ·Rm) .

1S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515(2001).

2X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).H. H. Shang (FHI) DFPT in FHI-aims July 10 4 / 20

Page 14: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT for atomic displacement: concept

equilibrium density

density of distorted system

linear response density

∂n(r)

∂uIis localized

Perturbation inherently localize1F. Giustino, M. L. Cohen, and S. G. Louie . Phys. Rev. B 76, 165108 (2007)

H. H. Shang (FHI) DFPT in FHI-aims July 10 5 / 20

Page 15: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT for atomic displacement: concept

Bloch orbital Wannier orbital1

e-ph gqλ

n′nk = 〈n′k+q|∂λqVscf|nk〉 〈χµ0|∂κRpVscf |χνR〉

1F. Giustino, M. L. Cohen, and S. G. Louie . Phys. Rev. B 76, 165108 (2007)H. H. Shang (FHI) DFPT in FHI-aims July 10 5 / 20

Page 16: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT for atomic displacement: concept

Bloch orbital Wannier orbital1

e-ph gqλ

n′nk = 〈n′k+q|∂λqVscf|nk〉 〈χµ0|∂κRpVscf |χνR〉

⇓Bloch orbital Atomic orbital

e-ph gqλ

n′nk = 〈n′k+q|∂λqVscf|nk〉 〈χµ0|∂κRpVscf |χνR〉

1F. Giustino, M. L. Cohen, and S. G. Louie . Phys. Rev. B 76, 165108 (2007)H. H. Shang (FHI) DFPT in FHI-aims July 10 5 / 20

Page 17: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-Space DFPT: atomic displacement

Scheme Reciprocal-space Real-space 1

dynamical matrix DIJ(q)↓

force constants ΦIm,J(Rm) ΦIm,J(Rm)↓

dynamical matrix DIJ(q′)

2. force constants directly from real-space

ΦIm,J =d2Etot

dRImdRJ=− dFJ

dRIm.

1H. H. Shang, C. Carbogno, P. Rinke and M. Scheffler, Comput. Phys. Commun.215, 26 (2017)

H. H. Shang (FHI) DFPT in FHI-aims July 10 6 / 20

Page 18: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-Space DFPT: atomic displacement

2. force constants directly from real-space

ΦIm,J =d2Etot

dRImdRJ=− dFJ

dRIm.

centers unitcell

auxiliarysupercell

unitcell

Born-von Karman boundary condition

1H. H. Shang, C. Carbogno, P. Rinke and M. Scheffler, Comput. Phys. Commun.215, 26 (2017)

H. H. Shang (FHI) DFPT in FHI-aims July 10 6 / 20

Page 19: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-Space DFPT: atomic displacement

Scheme Reciprocal-space Real-space 1

dynamical matrix DIJ(q)↓

force constants ΦIm,J(Rm) ΦIm,J(Rm)↓ ↓

dynamical matrix DIJ(q′) DIJ(q′)

3. dynamical matrix with dense q grids

DIJ(q) =1√

MIMJ∑m

ΦIm,J exp(iq ·Rm) .

1H. H. Shang, C. Carbogno, P. Rinke and M. Scheffler, Comput. Phys. Commun.215, 26 (2017)

H. H. Shang (FHI) DFPT in FHI-aims July 10 6 / 20

Page 20: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: atomic displacement

1st-order density

1st-order potential

1st-order H matrix

1st-order wave fc

force constants

1 st-order S matrix

0 st-order density

dynimical matrix

DFPT

DFT 1. get DFT density

H. H. Shang (FHI) DFPT in FHI-aims July 10 7 / 20

Page 21: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: atomic displacement

1st-order density

1st-order potential

1st-order H matrix

1st-order wave fc

force constants

1 st-order S matrix

0 st-order density

dynimical matrix

DFPT

DFT 1. get DFT density

2. get first order overlap

+

+

H. H. Shang (FHI) DFPT in FHI-aims July 10 7 / 20

Page 22: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: atomic displacement

1st-order density

1st-order potential

1st-order H matrix

1st-order wave fc

force constants

1 st-order S matrix

0 st-order density

dynimical matrix

DFPT

DFT 1. get DFT density

2. get first order overlap

3. begin DFPT cycle

+

+

H. H. Shang (FHI) DFPT in FHI-aims July 10 7 / 20

Page 23: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: atomic displacement

1st-order density

1st-order potential

1st-order H matrix

1st-order wave fc

force constants

1 st-order S matrix

0 st-order density

dynimical matrix

DFPT

DFT 1. get DFT density

2. get first order overlap

3. begin DFPT cycle

H. H. Shang (FHI) DFPT in FHI-aims July 10 7 / 20

Page 24: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: atomic displacement

1st-order density

1st-order potential

1st-order H matrix

1st-order wave fc

force constants

1 st-order S matrix

0 st-order density

dynimical matrix

DFPT

DFT 1. get DFT density

2. get first order overlap

3. begin DFPT cycle

4. get force constants

5. get dynamical matrix

H. H. Shang (FHI) DFPT in FHI-aims July 10 7 / 20

Page 25: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: results

400 600 800 1000 1200 1400 1600

Inte

nsity

Frequency (cm)-1

finite-differenceDFPT

0 250 500 750 1000 1250 1500

Frequency (cm) 1

0.00

0.02

0.04

0.06

0.08

0.10

Inte

nsi

ty

finite-difference

DFPT

0

500

1000

1500

2000

2500

Γ K M Γ

Freq

uenc

y (c

m-1

)

Graphenefinite difference

DFPT-

0

200

400

600

Γ X W K Γ L

Freq

uenc

y (c

m-1

)Silicon

DFPTfinite-difference

H. H. Shang (FHI) DFPT in FHI-aims July 10 8 / 20

Page 26: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: scaling

Parallelization

real-space grid : Ref. [1]

matrix operation : MPI based ScaLapack

1

10

100

1000

10000

100000

8 14 50 98 194 542

Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of atoms

H(C2H4)nH molecules (n=1-90)

n(1)(r)Ves,tot

(1)(r)

H(1)

P(1)

Total (DFPT)

10

100

1000

6 12 24 48 72

Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of atoms in unit cell

Polyethylene Chain

n(1)(r)Ves,tot

(1)(r)

H(1)

P(1)

Total (DFPT)

1V. Havu, V. Blum, P. Havu, and M. Scheffler, J. Comput. Phys. 228, 8367 (2009).H. H. Shang (FHI) DFPT in FHI-aims July 10 9 / 20

Page 27: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: scaling

1

10

100

1000

10000

100000

8 14 50 98 194 542

Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of atoms

H(C2H4)nH molecules (n=1-90)

n(1)(r)Ves,tot

(1)(r)

H(1)

P(1)

Total (DFPT)

10

100

1000

6 12 24 48 72

Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of atoms in unit cell

Polyethylene Chain

n(1)(r)Ves,tot

(1)(r)

H(1)

P(1)

Total (DFPT)

T ∼ Nα H(C2H4)nH C2H4 chainα(DFT ) = 1.9 N N 6 24 N > 24

n(1) 2.0 1.7 2.0

V(1)es,tot 2.4 1.0 2.8

H(1) 2.0 1.4 2.0

P(1) 3.8 1.2 3.3

Total 2.6 1.3 2.5H. H. Shang (FHI) DFPT in FHI-aims July 10 9 / 20

Page 28: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: speedup

Parallel efficiency

efficiency = T (1)/[T (N)/N]

Using 1024 core, the parallel efficiency is 75%

10

100

32 64 128 512 1024Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

for

one

ato

ms

one

coor

d

Number of CPU cores

Extended Si system (1024 atoms in unit cell)

n(1)(r)

Ves,tot(1)(r)

H(1)

P(1)

Total (DFPT)ideal scaling

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

32 64 128 512 1024

Para

llel E

ffic

ienc

y

Number of CPU cores

Total (DFPT)ideal

Open Access

H. H. Shang (FHI) DFPT in FHI-aims July 10 10 / 20

Page 29: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: speedup

Parallel efficiency

efficiency = T (1)/[T (N)/N]

Using 1024 core, the parallel efficiency is 75%

10

100

32 64 128 512 1024Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

for

one

ato

ms

one

coor

d

Number of CPU cores

Extended Si system (1024 atoms in unit cell)

n(1)(r)

Ves,tot(1)(r)

H(1)

P(1)

Total (DFPT)ideal scaling

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

32 64 128 512 1024

Para

llel E

ffic

ienc

y

Number of CPU cores

Total (DFPT)ideal

Open Access

H. H. Shang (FHI) DFPT in FHI-aims July 10 10 / 20

Page 30: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: applications in electronic friction

The nonadiabatic coupling matrix is defined as

Z jkn,n′ =

⟨ψnk

∣∣∣∣ej ∂

∂R

∣∣∣∣ψn′k

⟩(1)

=ejcn′k(H

(1)k − εnkS

(1)Lk − εn′kS

(1)Rk )cnk

εn′k− εnk(2)

Interface with Coolvib by Reinhard J. Maurer(Vibrational cooling of adsorbates on metal surfaces)

1R. J. Maurer, M. Askerka, V. S. Batista, J. C. Tully, Phys. Rev. B. 94, 115432(2016)

H. H. Shang (FHI) DFPT in FHI-aims July 10 11 / 20

Page 31: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: applications in electronic friction

Optimized the DFPT code

LDA PBE0

1000

2000

3000

4000

5000

6000

CPU

tim

e (

s) Original

Optimized

Original

Optimized

lapack

21X25X

0

50

100

150

200

250

CPU

tim

e (

s)8X

LDA PBE

OriginalOptimized

Original

Optimized

scalapack

H. H. Shang (FHI) DFPT in FHI-aims July 10 12 / 20

Page 32: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: applications in electronic friction

Make it comparable with DFT computation

0.1

1

10

100

1000

14 50 98 194 542 770

CPU

tim

e pe

r ite

ratio

n (s

)

number of atoms

(C2H4)n line (n=8-128) aims.180126.scalacpk.mpi.x at DRACO

DFPTDFT

DFT-force

H. H. Shang (FHI) DFPT in FHI-aims July 10 12 / 20

Page 33: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: electron-phonon interaction

finite differences

∆εnk(T ) =1

Nq∑qλ

∂εn

∂nqλ (0)[nqλ (T ) +

1

2] (3)

=1

Nq∑qλ

}2ωqλMqλ

∂ 2εnk

∂z2[nqλ (T ) +

1

2]

(4)

here qλ is phonon index, nk is electric band index, phonon number is

n(qλ ) =1

exp(}ωj(q)/kBT )−1.

H. H. Shang (FHI) DFPT in FHI-aims July 10 12 / 20

Page 34: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: electron-phonon interaction

analytical method

∆εAHCnk (T ) =

1

Nq∑qλ

∂εn

∂nqλ (0)[nqλ (T ) +

1

2] (5)

=1

Nq∑qλ

}2ωqλMqλ

∂ 2εnk

∂z2[nqλ (T ) +

1

2]

=1

Nq∑qλ ∑n′ [

2|gqλ

n′nk|2

εnk−εn′k+q−i0+ ][nqλ (T ) +1

2]

+1

Nq∑qλ < nk|hks|nk>(2) [nqλ (T ) +

1

2]

1P. B. Allen and V. Heine, J. Phys. C 9, 2305 (1976)2P. B. Allen and M. Cardona, Phys. Rev. B 23, 1495 (1981)

H. H. Shang (FHI) DFPT in FHI-aims July 10 13 / 20

Page 35: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Real-space DFPT: electron-phonon interaction

gqλ

n′nk =

⟨ψn′k+q

∣∣∣∣ dvscf

duλq

∣∣∣∣ψnk

⟩= ∑

µ,ν ,κ∑R,Rp

Cn′µ (k+q)Cnν (k)uλκ (q)eiqRpeikR〈χµ0|∂κRpvscf|χνR〉 (6)

Arbitrary q,k points by FT.

H. H. Shang (FHI) DFPT in FHI-aims July 10 14 / 20

Page 36: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT: electric field

1st-order density

1st-order Hamiltonian

1st-order expansion coefficients

electronic density

CPSCF/DFPT

DFT

1st-order density matrix

Polarizability

momentum matrix

1. get DFT density

2. get momentum matrix

3. begin DFPT cycle

4. get Polarizability

αIJ =∫

rI∂n(r)

∂ξJdr (7)

high frequency dielectricconstant:

ε∞IJ = δIJ +

Vuc

∫rI

∂n(r)

∂ξJdr (8)

= δIJ − (− 4π

Vuc

∫rI

∂n(r)

∂ξJdr)

H. H. Shang (FHI) DFPT in FHI-aims July 10 15 / 20

Page 37: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT: electric field

Exp.this work NCPP NCPP PAW PAW

(all 1991 1996 2006 2016electron)

LDA PBE LDA PBE

Si 12.1 13.2 12.9 13.6 - 13.3 13.1AlP 7.5 8.4 8.2 - 8.2 8.3 8.1AlAs 8.2 9.5 9.5 9.2 9.3 - 9.5AlSb 10.24 11.7 11.9 12.2 11.4 - 12.1GaP 9.0 10.6 10.6 - 10.0 - 10.6GaSb 14.44 16.0 15.5 18.1 16.7 - -

Tabelle: Comparison of the high-frequency dielectric constants of varioussemiconductors computed at the LDA/PBE level with literature values:Tight-default settings and basis sets as well as a 16× 16× 16 k-point mesh areused.

H. H. Shang (FHI) DFPT in FHI-aims July 10 16 / 20

Page 38: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT: electric field

0

2

4

6

8

10

12

14

minimal tier 1 tier 2 tier 3 tier 4

|α- α

(tier

4)|

[Boh

r3 ]

αxxαyyαzz

ethylene

0

2

4

6

8

minimal tier 1 tier 2 tier 3

|ε xx

- ε x

x(ti

er 3

)|

Si

Convergence behaviour of the polarizabilities αxx ,αyy ,αzz of ethylene andof the high-frequency dielectric constant ε∞

xx of bulk silicon (16×16×16k-points) with respect to the basis set size

H. H. Shang (FHI) DFPT in FHI-aims July 10 17 / 20

Page 39: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT: electric field

0.01

0.1

1

10

100

50 98 194 542 770Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of atoms

H(C2H4)nH molecules (n=8-128)

n(1)(r)Ves,tot

(1)(r)

H(1)

P(1)

Total (DFPT) 0.01

0.1

1

10

100

1000

10000

64 128 256 512 1024Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of atoms

Diamond

n(1)(r)Ves,tot

(1)(r)

H(1)

P(1)

Total (DFPT)

H(C2H4)nH Diamond

n(1) 1.1 1.4

V(1)es,tot 1.6 1.4

H(1) 1.2 1.5

P(1) 2.5 2.6

Total 1.3 1.4

H. H. Shang (FHI) DFPT in FHI-aims July 10 18 / 20

Page 40: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT: electric field

Parallel efficiency

efficiency = T (1)/[T (N)/N]

Using 1024 core, the parallel efficiency is 85%

10

100

1000

64 128 512 1024Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of cores

Polyethylene Chain, 768 atoms in unit cell aims.180126.scalapack.mpi.x at DRACO

DFPT

DFTDFT-force

H. H. Shang (FHI) DFPT in FHI-aims July 10 19 / 20

Page 41: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

DFPT: electric field

Parallel efficiency

efficiency = T (1)/[T (N)/N]

Using 1024 core, the parallel efficiency is 85%

10

100

1000

64 128 512 1024Tim

e pe

r D

FPT

s.c

.f. i

tera

tion

(s)

number of cores

Polyethylene Chain, 768 atoms in unit cell aims.180126.scalapack.mpi.x at DRACO

DFPT

DFTDFT-force

H. H. Shang (FHI) DFPT in FHI-aims July 10 19 / 20

Page 42: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Summary

To summarise, we have derived and implemented DFPT formalism inFHI-aims

1 atomic displacement: vibration, phonon2 electric field: polarizability, dielectric constant

Todo benchmarks:

1 Born effective charge2 electron-phonon coupling

1H. H. Shang, C. Carbogno, P. Rinke and M. Scheffler, Comput. Phys. Commun.215, 26 (2017)

2H. H. Shang, N. Raimbault, P. Rinke, M. Scheffler, M. Rossi and C. Carbogno, NewJ. Phys. (2018) https://doi.org/10.1088/1367-2630/aace6d

H. H. Shang (FHI) DFPT in FHI-aims July 10 20 / 20

Page 43: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Acknowledgement

Many valuable discussions in DFPT@FHI-aims meetingsDr. Nathaniel Raimbault Dr. Raul LaasneDr.Christian Carbogno Dr. Mariana RossiDr. Danilo Brambila Dr. Reinhard J. Maurer

Dr. William Huhn Dr. Heiko AppelProf. Xinguo Ren Prof. Volker Blum

Continued supportsProf. Patrick Rinke Prof. Matthias Scheffler

H. H. Shang (FHI) DFPT in FHI-aims July 10 20 / 20

Page 44: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Summary

Thanks!

H. H. Shang (FHI) DFPT in FHI-aims July 10 20 / 20

Page 45: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Current Status

DFPT electricfield

polar

dielectric

atomicmove

phonon

reduceCPU

reduceme-

mory

vibrationreduceCPU

reduceme-

mory

H. H. Shang (FHI) DFPT in FHI-aims July 10 20 / 20

Page 46: Density Functional Perturbation Theory in FHI-aims · 2018-07-16 · Density Functional Perturbation Theory in FHI-aims Honghui Shang Fritz Haber Institute of the Max Planck Society,

Current Status

0

100

200

300

minimal tier 1 tier 2 tier 3

|ω- ω

(tie

r 3)|

[cm

-1]

3036 cm-1

2955 cm-1

1421 cm-1

1330 cm-1

785 cm-1

300 cm-1

H. H. Shang (FHI) DFPT in FHI-aims July 10 20 / 20