31
Dehydrating EOR Recycle Gas… Is There a Better Way? December 6, 2012 Midland, Texas [email protected] / [email protected]

Dehydrating EOR Recycle Gas… Is There a Better Way?

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dehydrating EOR Recycle Gas… Is There a Better Way?

Dehydrating EOR Recycle Gas…Is There a Better Way? 

December 6, 2012

Midland, Texas

[email protected] 

[email protected]

Page 2: Dehydrating EOR Recycle Gas… Is There a Better Way?

Never take your eye off the target

Page 3: Dehydrating EOR Recycle Gas… Is There a Better Way?

Who Are We?Who Are We?

Section 1

Page 4: Dehydrating EOR Recycle Gas… Is There a Better Way?

Gas Liquids Engineering – Acid Gas Injection

Oil & gas EPCM company formed in 1987 –

currently employ ~300 people

Started acid gas injection early – first project was in 1995

Worked on acid gas projects or provided training in 12 countries

outside of 

Canada, including 6 states in the US

Involved in about 25% of the Alberta acid gas injection projects

to date

Published 7 books and over 50 articles and technical papers relevant to acid 

gas and CO2

behavior, facility design, and injection operational issues

Patented a novel cost effective acid gas dehydration process

Page 5: Dehydrating EOR Recycle Gas… Is There a Better Way?

Why Dehydrate?Why Dehydrate?

Section 2

Page 6: Dehydrating EOR Recycle Gas… Is There a Better Way?

3 Reasons

CorrosionCorrosion

Hydrate FormationHydrate Formation

Imposed SpecsImposed Specs

Page 7: Dehydrating EOR Recycle Gas… Is There a Better Way?

Corrosion

+ = ACID !

Page 8: Dehydrating EOR Recycle Gas… Is There a Better Way?

Hydrate Formation

Page 9: Dehydrating EOR Recycle Gas… Is There a Better Way?

CO2

pipeline operators impose minimum quality requirements for corrosion 

control and hydrate prevention

Kinder Morgan CO2

Pipeline Spec (June 5, 2008)

Component

StandardPurity

95% mole percent of Carbon DioxideWater

no free water, not more than thirty (30) pounds of water per MMscf

in the vapor phaseOxygen

not more than ten (10) parts per million, by weight, of oxygenHydrogen Sulfide

not more than twenty (20) parts per million, by weight, of hydrogen sulfideTotal Sulfur

not more than thirty‐five (35) parts per million, by weight, of total sulfurNitrogen

not more than four mole percent (4%) of nitrogenTemperature

not exceed a temperature of 120°FHydrocarbons

not more than five mole percent (5%) of hydrocarbons; dew point not higher than ‐20°FOther

not contain more than 0.3 (three tenths) gallons of glycol per MMcf

and at no time shall 

such glycol be present in a liquid state at the pressure and temperature conditions of the 

pipeline

Pipeline Spec

Page 10: Dehydrating EOR Recycle Gas… Is There a Better Way?

DNV‐RP‐J202  ‐

“Design and Operation of CO2

Pipelines”

(April 2010)

4.8.3 Limitations on water content“…

ensure that no free water may occur at any location in the pipeline within the 

operational  and potential upset envelopes and modes, unless corrosion damage is 

avoided through material selection.”

normal operation pressure and temperature envelope• safety factor of 2 is recommended

shut‐in pressure combined with minimum ambient temperature

depressurization scenario• water dropout cannot be prevented without very stringent limits

Water content spec needs to be established according to the local 

transportation conditions

Piping across the plant site might only require 1,500 ppmV

Above ground piping in Arctic permafrost may require 250 ppmV

Pipeline Spec

Page 11: Dehydrating EOR Recycle Gas… Is There a Better Way?

How MuchHow Much Dehydration ?Dehydration ?

Section 3

Page 12: Dehydrating EOR Recycle Gas… Is There a Better Way?

Water Content ‐

AQUAlibrium

Page 13: Dehydrating EOR Recycle Gas… Is There a Better Way?

Water Content ‐

AQUAlibrium

Page 14: Dehydrating EOR Recycle Gas… Is There a Better Way?

How to Dehydrate ?How to Dehydrate ?

Section 4

Page 15: Dehydrating EOR Recycle Gas… Is There a Better Way?

Compression

Water content in vapour

is reduced as pressure is increased

Desiccant

Absorption

solid – calcium chloride

liquid

glycerin, glycols (TEG)

Adsorption –

gels, alumina, molecular sieve

Refrigeration – thermodynamic phase separation

External (closed)

A/C, car, refrigerator, arena, gas plant liquids recovery

Internal (auto‐refrigeration)

Choke plant dew point control

DexPro™

(patented)

Separation –

‘mechanical’

membrane permeation

Methods

Page 16: Dehydrating EOR Recycle Gas… Is There a Better Way?

Compression

Page 17: Dehydrating EOR Recycle Gas… Is There a Better Way?

Absorption

Simplified process overview ‐

glycol

CO2

flows from the bottom up through a 

contactor

‘dry’

glycol flows from the top down 

through the contactor

glycol absorbs water from the CO2

as it 

flows through the glycol

water, and other absorbed contaminants, 

are boiled out of the ‘wet’

glycol in a 

reboiler

‘dry’

glycol is recycled back to the contactor

Page 18: Dehydrating EOR Recycle Gas… Is There a Better Way?

Refrigeration ‐

external

Simplified process description

Condenser• refrigerant is condensed to liquid

Expansion• liquid refrigerant is expanded across 

a JT valve to desired temperature

Evaporator (chiller)• cold refrigerant absorbs heat from 

CO2

and evaporates refrigerant

Compressor• refrigerant vapour

is recompressed 

to desired cycle pressure and 

returned to condenser

Page 19: Dehydrating EOR Recycle Gas… Is There a Better Way?

Simplified process description ‐

DexPro™

TCV or JTV (Joule‐Thomson Valve)• Cools a small slip stream of Dry acid gas by reducing the pressure (expansion)

DexPro™

Module• Cold Dry Acid Gas mixes with Wet acid gas in the DexPro

Module

Stage 5 Suction Scrubber/Compressor/Cooler• Condensed water from the DexPro

Module is removed in suction scrubber• Cool Dry acid gas increases fluid compression efficiency

DexPro™

Page 20: Dehydrating EOR Recycle Gas… Is There a Better Way?

Compressor Performance vs. Inlet Temperature

Page 21: Dehydrating EOR Recycle Gas… Is There a Better Way?

DexPro™

Murphy Oil Tupper West (NE B.C. Canada – Feb. 2011)

Page 22: Dehydrating EOR Recycle Gas… Is There a Better Way?

DexPro™

Page 23: Dehydrating EOR Recycle Gas… Is There a Better Way?

How do they Compare ?How do they Compare ?

Section 5

Page 24: Dehydrating EOR Recycle Gas… Is There a Better Way?

Example Case – Carbon Capture

1,000 ton/day  17.25

MMscf/d

of dry CO2

water saturated at 120°F @ 20 psia

(~6 psig)

pipeline inlet design pressure  2,000 psig (~2,015 psia)

4 compression (centrifugal) stages

inter‐stage / after‐cooling between compressor stages• 95°F cooling water / 105°F process (CO2

)

30 lb / MMscf

dehydration requirement• ~‐10°F hydrate temperature

Page 25: Dehydrating EOR Recycle Gas… Is There a Better Way?

Process

PowerRegeneration

Still Vent

Glycol lossesMeOH losses

NoDehydration

TriethyleneGlycol

ExternalRefrigeration

DexPro™

Compression main hpgas 5,469.9 5,494.0 5,256.8 5,539.0

refrigerationhpgas 163.3total 5,470 5,494 5,420 5,539

0.44% ‐0.91% 1.26%Heat regenerator btu/hr 80,257Regenerator Vent CO2 t/yr 135.2

Water t/yr 280.6Glycol lb/yr 41.0

Glycol losses pipeline lb/yr 17,789vent lb/yr 41.0

Methanol losses pipeline bbl/d 2.0

Page 26: Dehydrating EOR Recycle Gas… Is There a Better Way?

Size

Lowest Weight

Lowest Area

Weight Weight30" Contactor 13,000 DexPro™ Module 700Still Column 400 Regulators 20Vent 400 Analyzer 150Flash Tank 1,000 Control Panel 130Reboiler/Surge 2,000 Pump/motor 100Piping 2,900 Frame 150Skid 3,400 Instruments 100Wiring 400 Wiring 400Glycol 6,000miscellaneous 500 miscellaneous 250

Total (lb.) 30,000 Total (lb.) 2,000ton 15.0 ton 1.0

Size SizeHeight 30 ft. Height 6 ft.Length 14 ft. Length 6 ft.Width 8 ft. Width 2 ft.

Footprint (ft2) 112 Footprint (ft2) 12

DexPro™TEG Dehy

Page 27: Dehydrating EOR Recycle Gas… Is There a Better Way?

NoDehydration

TriethyleneGlycol

ExternalRefrigeration

DexPro™

installed ‐$                      2,100,000$    1,350,000$    600,000$      

Compression $70/MWhr 2,502,206$      2,513,218$    2,479,409$    2,533,788$   Triethylene Glycol $1.00/lb ‐$                      843$               ‐$                     ‐$                    

Methanol $0.25/lb ‐$                      ‐$                     50,812$          ‐$                    210,000$        135,000$        6,000$           

2,502,206$     2,724,061$    2,665,221$    2,539,788$   

26,508,403$   28,858,740$  28,235,388$  26,906,550$ discount rate 7%term (years) 20

TOTAL NPV 26,508,403$   30,958,740$  29,585,388$  27,506,550$ 

difference ‐$                      4,450,337$    3,076,986$    998,147$      

Dehydration Capital Cost

Annual Operating Cost

Annual Maintenance CostTotal Annual Cost

Present Value of Operating Cost

Economics

Lowest CAPEX

Lowest OPEX

Best NPVDexPro™

capital cost does not reflect one time license fee

Page 28: Dehydrating EOR Recycle Gas… Is There a Better Way?

Typical ApplicationsTypical Applications

Carbon Capture & Storage / Sequestration (CCS)

Capital cost vs. Capacity

Acid Gas Injection

No fugitive emissions

CO2

Distribution

No chemicals, debottlenecking

Offshore

Significant size and weight advantage

EOR Solution Gas

Potential revenue from oil recovery

DexPro™

Applications

Page 29: Dehydrating EOR Recycle Gas… Is There a Better Way?

DexPro™

EOR Solution Gas

Additions to the basic Additions to the basic DexProDexPro™™

Gas‐Gas Exchanger / Low Temperature Separator

Gas‐Liquid Exchanger / Low Pressure Flash Tank

TriethyleneGlycol

ExternalRefrigeration

DexPro™EOR

installed $5,250,000 $7,097,500 $3,412,500

80% CO2 0 1,081 1,06385% CO2 0 590 58190% CO2 0 189 18595% CO2 0 0 0100% CO2 0 0 0

80% CO2 0 95 085% CO2 0 48 090% CO2 0 29 095% CO2 0 19 0100% CO2 0 19 0

100 MMscf/d EOR Recycle Gas

Dehydration Capital Cost

Incremental Oil Sales, Bbl/d

Methanol Consumption, Bbl/d

Page 30: Dehydrating EOR Recycle Gas… Is There a Better Way?

DexPro™

DexProDexPro™™ has a number of key advantages

Lowest capital cost (CAPEX)

Lowest operating cost (OPEX)

Best economics (NPV)

No rotating equipment

Simplicity of process and equipment

Extreme turndown

No fugitive emissions or off‐gas handling requirement

Very small environmental footprint

Very small physical footprint

Potential EOR revenue stream

Page 31: Dehydrating EOR Recycle Gas… Is There a Better Way?

QUESTIONS ?QUESTIONS ?

Wayne McKay, [email protected]

[email protected]

/ www.DexProDehy.com