179
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 7483 Definition of Procedures for Coil Electrical Testing and Preparation for PF Transient Analysis (EFDA/06-1522) FU06-CT-2006-00470 CPM 801514 Final Report Version 26.05.2009 S. Fink, A. Winkler, W. Fietz, M. Noe Institut für Technische Physik Juli 2009

Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

  • Upload
    vudat

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Wissenschaftliche Berichte FZKA 7483

Definition of Procedures for Coil Electrical Testing and Preparation for PF Transient Analysis

(EFDA/06-1522) FU06-CT-2006-00470 CPM 801514

Final Report Version 26.05.2009 S. Fink, A. Winkler, W. Fietz, M. Noe Institut für Technische Physik

Juli 2009

Page 2: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing
Page 3: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Wissenschaftliche Berichte

Forschungszentrum Karlsruhe GmbH, Karlsruhe

2009

FZKA 7483

Definition of Procedures for Coil Electrical Testing

and Preparation for PF Transient Analysis

(EFDA/06-1522)

FU06-CT-2006-00470

CPM 801514

Final Report Version 26.05.2009

S. Fink, A. Winkler, W. Fietz, M. Noe

Institute for Technical Physics

Page 4: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)

ISSN 0947-8620

urn:nbn:de:0005-074831

Page 5: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

ii

Abstract

Three superconducting coil systems will be used at the ITER project. The 18 Toroidal Field coils (TF), will be used to confine the plasma in the plasma vessel. The main task of the 6 Poloidal Field coils (PF) is to control the position and the shape of the plasma during different operating scenarios. The Central Solenoid (CS) consisting of 6 CS coil modules will induce current in the plasma. During the lifetime of ITER all coils must withstand the high voltage stress because repairing or replacing a coil would cause considerable delay of the test pro-gram. Hence a verification of the high voltage design and a suitable definition of test voltages and test procedures are indispensable. This report presents the building-up of a model for the CS PF coil system with special consideration of the ability for a detailed voltage examina-tion of the PF 3 and PF 6 coils. In addition test voltages and procedures for the ITER TF coils are proposed.

For all superconducting coils the high voltage excitation, e. g. during a fast discharge after a quench can lead to overvoltages on terminals and on the different kinds of insulation within the coil, e. g. turn, layer or ground insulation. The calculations of transient electrical behav-iour of the coils provide a basis for high voltage insulation co-ordination and selection of test voltages. Such calculations are already available for ITER TF system [Fin04]. In contrast no models had been available for the investigation of PF coils. In the frame of this report such models are established for the coupled CS PF system. In addition the PF 3 and PF 6 coils were analysed in detail. PF 3 coil is the PF coil with the largest main radius and PF 6 coil is the PF coil with the largest number of turns.

The calculation strategy consists of calculations with Finite Element Method (FEM) program Maxwell2D and the network program PSpice. The Finite Element Method models of the coils were established with the specified geometry and materials. The values for frequency de-pendent inductances were calculated with FEM models. The values for frequency independ-ent capacitances were calculated analytically by formulas for cylindrical and parallel-plate capacitor. The calculated values were taken into network models as lumped elements and the first resonance frequency of the coil was calculated. Due to the frequency dependence of inductance a calculation loop was started to calculate the final resonance frequency, which gives the first benchmark in the investigation of the transient electrical behaviour of the PF 3 and PF 6 coils. The voltage excitation of the PF 3 and PF 6 coils will be calculated depending on the operating state, e. g. normal operation mode, fast discharge and two fault cases.

Test voltages and waveforms for the ITER TF coils are described based on the results of prior investigations on an existing model of the TF system and detailed models of a single TF coil [Fin04]. 10 hour DC and AC tests on conductor and radial plate insulation of the ITER TF Model Coil show that no relevant degradation occurs with the proposed test voltages taking into account the proposed test time. A proposal of the test sequence and test procedures for ITER TF is presented under special consideration of a Paschen test.

Page 6: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing
Page 7: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

iii

TABLE OF CONTENTS

1 Introduction ........................................................................................................................ 1

2 Overview about ITER CS PF Coil System ........................................................................ 4 2.1 Location and Size of PF and CS Coils .......................................................................... 4 2.2 PF Conductor Configuration ......................................................................................... 6 2.3 Power Supply Circuits of the PF and CS Coils ........................................................... 11

2.3.1 Fast Discharge Unit (FDU) .................................................................................. 13 2.3.2 Switching Network Unit (SNU) ............................................................................. 15

3 Finite Element Method CS and PF Models ..................................................................... 18 3.1 Simplified Finite Element Method Model of the CS PF Coil System ........................... 18 3.2 Detailed Finite Element Method Model of the PF 3 Coil ............................................. 22

3.2.1 Dimensions and Materials of the Detailed FEM Model of the PF 3 Coil at 4.5 K . 22 3.2.2 Results of the FEM Calculations for Detailed Model of the PF 3 Coil .................. 24

3.3 Detailed Finite Element Method Model of the PF 6 Coil ............................................. 29 3.3.1 Dimensions and Materials of the Detailed FEM Model of the PF 6 Coil at 4.5 K . 29 3.3.2 Results of the FEM calculations for detailed model of the PF 6 coil .................... 31

3.4 Finite Element Models of the Bus Bars for Power Supply .......................................... 36 3.4.1 Superconducting Bus Bars .................................................................................. 36 3.4.2 Water Cooled Bus Bars ....................................................................................... 37

3.5 Simplifications Used in the Finite Element Method Models ........................................ 39

4 Network Models of the CS and PF Coils ......................................................................... 40 4.1 Network Model of the CS PF Coil System .................................................................. 40 4.2 Detailed Network Model of the PF 3 Coil .................................................................... 50

4.2.1 Detailed Network Model of the PF 3 Coil without Instrumentation Cable ............ 50 4.2.2 Detailed Network Model of the PF 3 Coil with Instrumentation Cables................ 54

4.3 Detailed Network Model of the PF 6 Coil .................................................................... 55 4.3.1 Detailed Network Model of the PF 6 Coil without Instrumentation Cable ............ 55 4.3.2 Detailed Network Model of the PF 6 Coil with Instrumentation Cables................ 58

4.4 Simplifications Used in the Network Models ............................................................... 59

5 Results of Calculations in Frequency Domain for PF 3 and PF 6 ................................... 60

6 Test voltages and waveforms for TF coils ....................................................................... 65 6.1 TF coil, TF system and models description ................................................................ 65 6.2 Calculated fault cases ................................................................................................. 68 6.3 Calculated voltages for fast discharge and two fault cases ........................................ 68 6.4 Representative voltages ............................................................................................. 71 6.5 Test voltages .............................................................................................................. 72 6.6 Test arrangements ...................................................................................................... 73

6.6.1 Tests on ground insulation (G) ............................................................................ 74 6.6.2 Tests on radial plate insulation (R) ...................................................................... 74 6.6.3 Tests on conductor insulation (C) ........................................................................ 75 6.6.4 Tests with operation mode arrangement (O) ....................................................... 75

6.7 Power supply and high voltage extensions ................................................................. 76

Page 8: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

iv

6.8 Test criteria and additional information ....................................................................... 78 6.8.1 Criterion NB: no breakdown ................................................................................. 78 6.8.2 Criterion R: insulation resistance ......................................................................... 78 6.8.3 Criterion IC: constant charging current ................................................................ 78 6.8.4 Additional information PD: partial discharge activity ............................................ 79 6.8.5 Additional information DF: dissipation factor ....................................................... 79 6.8.6 Additional information SW: shape of the waveform ............................................. 79

6.9 Paschen test ............................................................................................................... 79 6.10 Long-term high voltage testing of conductor and radial plate insulation ..................... 80

6.10.1 Selection of insulation type .................................................................................. 81 6.10.2 First long term test series .................................................................................... 81 6.10.3 Second long term series ...................................................................................... 85 6.10.4 Burn out ............................................................................................................... 86 6.10.5 Conclusion of long-term high voltage test and burn out ...................................... 87

7 Test sequence and test procedure for ITER TF .............................................................. 88

8 Conclusion ....................................................................................................................... 91

9 References ...................................................................................................................... 92

10 IPR .................................................................................................................................. 96

Annex A Detailed Data of the FEM Models ........................................................................ 97 Annex A.1 FEM Model of CS PF Coil System .................................................................. 97 Annex A.2 FEM Models of the PF 3 Coil ........................................................................ 100 Annex A.3 FEM Models of the PF 6 Coil ........................................................................ 119 Annex A.4 FEM Models of the Bus Bars for Power Supply ............................................ 152

Annex B Detailed Data of the Network Models ................................................................ 154 Annex B.1 Network Model of CS PF Coil System .......................................................... 154 Annex B.2 Network Model of PF 3 Coil .......................................................................... 164 Annex B.3 Network Model of PF 6 Coil .......................................................................... 166

Page 9: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

LIST OF TABLES

Tab. 2-1 Location and size of PF and CS coils at 4.7 K [DDD06a] 5 Tab. 2-2 Data of the PF conductors [DDD06b] 7 Tab. 2-3 Insulation dimensions of PF coils [DDDD2] 9 Tab. 2-4 PF coil winding configuration [DDD06e] 10 Tab. 2-5 Power supply converter data [PAF6Ba], [PPS1a] 13 Tab. 2-6 Current dependence of the saturable inductor for all FDUs [PPSA1b] 14 Tab. 2-7 Main parameters of the switching components of FDU [PPSA1b] 14 Tab. 2-8 Data of fast discharge resistors [PAF6Bb] 15 Tab. 2-9 Data of the switches used in switch network unit (SNU) [PPS1b] 16 Tab. 3-1 FEM calculated DC values for self inductances with simplified CS and PF coil

models 19 Tab. 3-2 Mutual DC inductance between the CS and PF coils (H) 20 Tab. 3-3 Mutual DC inductance between the PF coils (H) 21 Tab. 3-4 Frequency dependence of the self inductance of the upper left conductor of PF 3

coil shown for single frequencies which are relevant for calculation of the resonance frequency of the coil 25

Tab. 3-5 Mutual inductance between the upper left conductors 1_1 and 2_1 of the PF 3 coil shown for single frequencies which are relevant for calculation of the resonance frequency of the coil 26

Tab. 3-6 Selected mutual inductances and coupling factors between the conductors in the upper pancake of PF 3 coil at DC 26

Tab. 3-7 Selected mutual inductances and coupling factors between the conductors in the upper pancake of the PF 3 coil at 295 kHz 27

Tab. 3-8 Frequency dependence of the cumulative inductance of the PF 3 conductor 1_1 27

Tab. 3-9 Frequency dependence of the self inductance of the upper inner conductor of PF 6 coil shown for single frequencies which are relevant for calculation of the resonance frequency of the PF 6 coil 32

Tab. 3-10 Mutual inductance between the upper inner conductors 1_1 and 2_1 of the PF 6 coil shown for single frequencies which are relevant for calculation of the resonance frequency 33

Tab. 3-11 Selected mutual inductances and coupling factors between the conductors in upper pancake at DC 33

Tab. 3-12 Selected mutual inductances and coupling factors between the conductors in upper pancake at 295 kHz 34

Tab. 3-13 Frequency dependence of the cumulative inductance of conductor 1_1 of PF 6 coil 34

Tab. 3-14 Dimensions of the PF and CS superconducting bus bars taken from [DDD06h] 37 Tab. 3-15 Results of FEM calculation for superconducting bus bars 37 Tab. 3-16 Results of FEM calculation for water cooled bus bars 38 Tab. 4-1 Length of the water cooled bus bars to SNU for CS, PF 1 and PF 6 coils derived

from [SLBD1] and [SLBa] 44 Tab. 4-2 Length of the water cooled bus bars to FDU for PF 2, PF 3, PF 4 and PF 5 coils

derived from [SLBD1] and [SLBa] 45

Page 10: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

vi

Tab. 4-3 Distances for superconducting bus bars and power cables for SNU and FDU derived from [SLBD1] and [SLBa] 49

Tab. 4-4 Length and capacitance values for the instrumentation cables of the PF 3 coil 54 Tab. 4-5 Length and capacitance values for the instrumentation cables of the PF 6 coil 58 Tab. 5-1 Calculated resonance frequencies of PF 3 coil with symmetrical grounding 62 Tab. 5-2 Calculated resonance frequencies of PF 6 coil with symmetrical grounding 63 Tab. 5-3 Calculated resonance frequencies of PF 3 coil with unsymmetrical grounding 64 Tab. 5-4 Calculated resonance frequencies of PF 6 coil with unsymmetrical grounding 64 Tab. 6-1 Overview about all calculated maximum voltages on ITER TF for all types of

insulation 70 Tab. 6-2 Calculated voltage and test voltages related to the case with failure of 2 adjacent

FDUs and earth fault at terminal with maximum voltage to ground. In case of the specific proposed impulse voltage test with a terminal voltage higher than 29.6 kV the internal voltage to ground is higher than 34 kV on a location which is not accessible for measurement. This value is depending on the test circuit. 73

Tab. 6-3 Proposal of pressure steps for Paschen test of ITER TF by considering the belonging gap lengths in air for reaching Paschen Minimum conditions. 80

Tab. 6-4 Test sequence on radial plate number 4. 82 Tab. 6-5 Test sequence for the grounded radial plate number 2. 86 Tab. 7-1 Test procedure for a complete acceptance test. AC voltages are given as rms

values. Row 2: O: operation mode, G: ground insulation, R: radial plate insulation, C: conductor insulation, I: impulse, ACS: AC excitation with Schering Bridge measurement. (Test arrangements O, G, R, C are explained in chapter 6.6. Power supplies I, DC, AC, ACS are explained in 6.7) Row 5: NB: no breakdown, R: insulation resistance, IC: constant charging current. (Criterions NB, R, IC are explained in chapter 6.8.) Row 6: PD: partial discharge, DF: dissipation factor, SW: shape of waveform. (Additional information PD, DF, SW are explained in chapter 6.8). 89

Page 11: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

vii

LIST OF FIGURES

Fig. 1-1 Scheme of ITER coil system with Toroidal Field, Poloidal Field and Central Solenoid coils 1

Fig. 1-2 Strategy for calculation of the resonance frequency of a coil and voltage stress within a coil 2

Fig. 2-1 Cross section of the ITER CS PF coil system 4 Fig. 2-2 Dimensions of the PF conductors (mm) [DDDD1] 8 Fig. 2-3 Conductor and insulation dimensions of PF 6 coil (mm) [DDDD2] 9 Fig. 2-4 Concept of two-in-hand double pancake winding [CDA4a] 10 Fig. 2-5 Scheme of coil circuit for CS3U, CS3L, CS2U, CS2L, PF 1 and PF 6 derived from

[PAF6Ba] 11 Fig. 2-6 Scheme of coil circuit for CS1U and CS1L derived from [PAF6Ba] 12 Fig. 2-7 Scheme of coil circuit for PF 2, PF 3, PF 4 and PF 5 derived from [PAF6Ba] 12 Fig. 2-8 Scheme of the fast discharge unit (FDU) derived from [PPSD1] 13 Fig. 2-9 Scheme of the switching network unit (SNU) derived from [PPSD1] 16 Fig. 3-1 Simplified FEM model of the CS PF coil system in Maxwell 2D 18 Fig. 3-2 Detailed FEM model of a cross section of the PF 3 coil in Maxwell 2D. The

rotation axis (not shown in the figure) of the complete space is on the left side of the cross section. The zoomed area shows the outer lower corner of the PF 3 coil model 22

Fig. 3-3 FEM model of a cross section of the half of PF 3 coil with even line symmetry axis. The rotation axis is on the left side (not shown in the figure) 24

Fig. 3-4 FEM model of a cross section of one pancake of PF 3 coil 24 Fig. 3-5 Detailed FEM model of the cross section of the PF 6 coil in Maxwell 2D. The

rotation axis (not shown in the figure) is on the left side of the cross section. The zoomed area shows the outer lower corner 29

Fig. 3-6 Detailed FEM model of the half cross section of the PF 6 coil with line symmetry axis. The rotation axis is on the left side (not shown in the figure) 31

Fig. 3-7 FEM model of one pancake of PF 6 coil 31 Fig. 3-8 FEM Model of the superconducting bus bar 36 Fig. 3-9 FEM Model of the water cooled bus bar for power supply of the coils 37 Fig. 4-1 Network models of the electrical circuits of the CS and PF coils 41 Fig. 4-2 Network model of the electrical circuit of the PF 6 coil with the parts which are

shown in detail in Fig. 4-3, Fig. 4-4, Fig. 4-5 and Fig. 4-6 43 Fig. 4-3 Network model of the power supply of the PF 6 coil with water cooled bus bars 44 Fig. 4-4 Network model of the SNU of the PF 6 coil 46 Fig. 4-5 Network model of the FDU of the PF 6 coil 47 Fig. 4-6 Network model of the simplified PF 6 coil with superconducting bus bars and

symmetrical grounding 48 Fig. 4-7 Detailed network model of the PF 3 coil 52 Fig. 4-8 Zoomed right upper part of the detailed network model of the PF 3 coil 53 Fig. 4-9 Detailed network model of the PF 6 coil 56 Fig. 4-10 Zoomed right upper part of the detailed network model of the PF 6 coil 57 Fig. 5-1 Strategy for calculation of resonance frequency on example of PF 3 coil 60

Page 12: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Introduction

viii

Fig. 5-2 Voltage answer on the excitation for the conductors P01_C08, P08_C02 and P16_C08 in a frequency range lower than 3.5 kHz for a terminal excitation with 1 V and DC values of the PF 3 coil elements. 61

Fig. 5-3 Voltage answer on the excitation for the conductors P01_C08, P08_C02 and P16_C08 in a frequency range lower than 0.9 kHz for a terminal excitation with 1 V and DC values of the PF 3 coil elements. 61

Fig. 6-1 D-shaped steel case, cross section of this steel case in the mid plane of the straight section (inboard leg) and the design of the conductor insulation of the ITER TF coils. 66

Fig. 6-2 Simplified analogue circuit of the TF coil system during fast discharge (power supply already disconnected). 67

Fig. 6-3 Arrangement G for ground insulation tests. Although the pancakes are within the radial plates they are drawn outside for better visibility. 74

Fig. 6-4 Arrangement R for tests on radial plate insulation. 74 Fig. 6-5 Arrangement C for tests of conductor insulation. 75 Fig. 6-6 Arrangement O for tests in operation mode arrangement. 75 Fig. 6-7 Power supply for DC tests (internal current and voltage indication not shown) 76 Fig. 6-8 AC power supply (low voltage variable transformer T_LV and high voltage

transformer T_HV) with external high voltage dividers for voltage measurements. The detection impedance, coupling capacitance CK and resistor RV are added for partial discharge measurement (and in case of RV for current limitation). 77

Fig. 6-9 Power supply and Schering Bridge ACS. CITER represents a TF coil. 77 Fig. 6-10 Impulse generator I containing a capacitor bank CS, a damping resistor Rd and a

fast switch (e. g. ignitron, spark gap, thyristor). 78 Fig. 6-11 DC test circuit. Only one radial plate is grounded. 82 Fig. 6-12 Measured DC current during the 11 kV test depending on the time. The short-

term oscillations of the current up to 1 µA at t = 3600 s were caused by the control of the DC power supply. The voltage at the high capacitive sample was not affected by these oscillations within the accuracy of the voltage measurement. 83

Fig. 6-13 AC test circuit. Only one radial plate is grounded. 84 Fig. 6-14 Apparent charge vs. time between hour 9 and 10 of testing with 7.78 kV, i. e.

measurement duration for this figure is 1 h and t = 0.0 corresponds to hour 9. The test was stopped after the breakdown (corresponds to 9 h 39 min). 85

Fig. 6-15 Flash above the second tube counted from top at the inner upper slot of the helium inlet tubes. 87

Page 13: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Introduction

1

1 Introduction

Three superconducting coil systems will be used at the ITER project. The 18 Toroidal Field coils (TF) will confine the plasma in the plasma vessel. The 6 Poloidal Field coils (PF) will control the position and the shape of the plasma. The Central Solenoid (CS) consisting of 6 CS coil modules will induce current in the plasma. The scheme of the ITER coil system is shown in Fig. 1-1.

Fig. 1-1 Scheme of ITER coil system with Toroidal Field, Poloidal Field and Central So-

lenoid coils

The transient voltage excitations in large superconducting coils can lead to high voltage stress on different kinds of insulation within the coils, e. g. turn, layer or ground insulation, which may even exceed the terminal to terminal voltage of the coil. Because of the large di-mensions, coil main diameter up to 24 m, and large number of turns in the coils, up to 549 turns, non linear voltage distribution may appear. Large internal voltages may especially ap-pear, if an excitation contains relevant parts of the resonance frequency of the coil. The cal-culations of the transient electrical behaviour of the coils provide a basis for high voltage in-sulation co-ordination and selection of test voltages.

This report presents the building-up of a model for the CS PF coil system with special con-sideration of the ability for a detailed internal voltage investigation of the PF 3 and PF 6 coils. In addition test voltages and procedures for the ITER TF coils are proposed.

Most detailed calculations are made for the ITER PF 3 coil because it is the coil with the largest coil diameter and for the PF 6 coil because it is the PF coil with largest number of

Page 14: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Introduction

2

turns. For both coils low resonance frequencies have been expected. With the established models it will be possible to investigate in a future task the transient electrical behaviour of the PF 3 and PF 6 coils for the case of a fast discharge, for the normal operation scenario and also for possible failure cases in electrical components of the circuit.

The strategy of the calculation of the voltage stress within the coil was also used in earlier projects in the Forschungszentrum Karlsruhe, e. g. [Fin04], in which the calculations were made for the ITER TF coils. The calculation strategy is shown in the flow chart in Fig. 1-2. At the beginning of the calculation the FEM model of the coil is established with specified ge-ometry and materials from [DDD06]. The values for inductances are calculated with the FEM model. The values for capacitances are calculated with formulas for parallel plate and cylin-der capacitor. The calculated values are taken as lumped elements into the network model of the coils. Further calculations are separated in two parts. Part one is the calculations in fre-quency domain. In frequency domain the resonance frequency of PF 3 and PF 6 coil is cal-culated, which gives the first benchmark for the calculation of voltage stress within the coils. Part two is the calculations in time domain which will be in the scope of a future report. In time domain the voltage stress on different kinds of insulation within the coil will be calcu-lated. First the excitation voltage on the PF 3 and PF 6 coils will be calculated in a simplified CS PF coil system, in which the electrical and magnetic couplings between the coils are con-sidered. Then the voltage stresses within the coils will be calculated with the network models of the PF 3 and PF 6 coils.

Fig. 1-2 Strategy for calculation of the resonance frequency of a coil and voltage stress

within a coil

In the following chapters the calculation according this strategy will be described in detail. The overview about the ITER CS PF coil system is given in chapter 2. The detailed and sim-plified Finite Element Method (FEM) models of the coils are described in chapter 3. In chap-ter 4 the network model of the coil power supplies and network models of the PF 3 and PF 6 coils are shown in detail. The results of the calculation in frequency domain are discussed in chapter 5. The detailed data and results of the FEM calculation and network calculations for ITER PF are given in Annex A respectively in Annex B.

Page 15: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Introduction

3

Test voltages and waveforms for the ITER TF coils are described in chapter 6 based on the calculated results of [Fin04] which was performed in the framework of a previous EFDA task [Con03]. In addition tests were performed which are not contained within this previous task. 10 hour DC and AC tests on conductor and radial plate insulation of the ITER TF Model Coil show that no relevant degradation occurs with the proposed test voltages taking into account the proposed test time. Chapter 7 presents a proposal of the test sequence and test proce-dures for ITER TF derived from the calculations and confirmed by the tests.

Page 16: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

4

2 Overview about ITER CS PF Coil System

A detailed knowledge of the projected system is necessary for detailed investigation of the internal voltage of the coils. This chapter describes the dimensions of the CS PF coil system, the internal design of the PF coils and the materials which will be used for the coil construc-tion.

2.1 Location and Size of PF and CS Coils

The rotational symmetry of the CS and PF coils can be used to build two dimensional models of the CS PF coil system. Fig. 2-1 shows the cross section of the ITER CS PF coil system with the axis of rotational symmetry and the magnet centre line. The magnet centre line is defined between the upper and the lower CS coil modules. The dimensions of the coils in Z-direction are specified with relation on the magnet centre line in [DDD06]. Further information about ITER can be taken from [ITER01].

Fig. 2-1 Cross section of the ITER CS PF coil system

At the calculations of transient behaviour of the PF coils, the TF coils can be neglected, be-cause the magnetic field caused by TF coils is orthogonal to the magnetic field of CS and PF coils. The CS coil has a conducting, hard grounded surface at the outside of each CS coil module [DDD06j]. The PF coils have protection covers, which are made from stainless steel [PPA3]. The magnetic coupling between the coils at higher frequencies will be weakened because of the metallic coil cases and other metallic parts between the coils. The eddy cur-rent which will be induced in these metallic parts reduces the coupling to negligible values at

Axis of rotational symmetry

Upper CS coil modules

Lower CS coil modules

Magnet centre line

PF 1 coil

PF 2 coil

PF 3 coil

PF 4 coil

PF 5 coil PF 6 coil

Page 17: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

5

higher frequencies. Thus at frequencies higher than 5 kHz every coil was considered as a coil without magnetic coupling to other coils which is explained in detail in 3.2.1.

The dimensions of the coils at 4.7 K are summarised in Tab. 2-1. The positions of the coil centres in Z-direction are specified from the magnet centre line of the coil system, which is shown in Fig. 2-1. Further information about ITER coils can be taken from [DDD06].

PF coil Position of coil centre Coil size without ground insulation and protector

Rc (m) Zc (m) ΔR (m) ΔZ (m)

PF 1 3.943 7.557 0.968 0.976

PF 2 8.319 6.530 0.649 0.595

PF 3 11.997 3.265 0.708 0.966*

PF 4 11.967 -2.243 0.649 0.966*

PF 5 8.395 -6.730 0.820 0.945

PF 6 4.263 -7.557 1.633 0.976

CS3U 1.722 5.355 0.719 2.092

CS2U 1.722 3.213 0.719 2.092

CS1U 1.722 1.071 0.719 2.092

CS1L 1.722 -1.071 0.719 2.092

CS2L 1.722 -3.213 0.719 2.092

CS3L 1.722 -5.355 0.719 2.092

* For PF 3 and PF 4 coils the dimensions in Z-direction in [DDD06a] are specified for the de-sign with separator plates which will not be used in the current design. The Z-dimensions of PF 3 and PF 4 coils were calculated with dimensions specified in [DDDD2] for room tempera-ture and scaled down with factor -0.29 % [DDD06g] to 4.5 K.

Tab. 2-1 Location and size of PF and CS coils at 4.7 K [DDD06a]

Page 18: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

6

2.2 PF Conductor Configuration

The design of all PF coils is described in this section although at the calculations of transient behaviour of ITER PF coils only the PF 3 and PF 6 coils will be analysed in detail.

All PF coils will be built with NbTi superconductor, which is cooled by liquid helium. The PF coils are designed for normal operation current of 45 kA at 5 K operation temperature. In the backup mode, when one of the damaged double pancakes of a coil will be disconnected and by-passed, the coil current will be increased to 52 kA. Although the PF 2 conductor is de-signed for 45 kA, the operating current at normal conditions is 41 kA. The PF 2 coil has only 5 double pancakes and in backup mode, with one double pancake less, the coil current is limited to 52 kA. Therefore the normal operating current has to be limited to 41 kA. Due to different magnetic fields on the conductors in normal and backup mode, there are three dif-ferent designs of the PF coil conductors. All relevant data for the PF coils are summarised in the Tab. 2-2.

Page 19: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

7

PF 1 & PF 6 PF 2, PF 3 & PF 4

PF 5

Coolant normal/backup Inlet 4.7 K/4.4 K Inlet 4.7 K Inlet 4.7 K

Type of strand NbTi NbTi NbTi

Operating current (kA) normal/backup 45 / 52 45* / 52 45 / 52

Nominal peak field (T) normal/backup 6.0 / 6.4 4.0 5.0

Operating temperature (K) normal/backup 5.0 / 4.7 5.0 5.0

IOP/IC (Ratio of operating current to critical current) normal/backup mode

0.127 / 0.144 0.365 / 0.422

0.264 / 0.305

Cable diameter (mm) 38.2 34.5 35.4

Central spiral outer x inner diameter (mm) 12 x 10 12 x 10 12 x 10

Conductor outer dimensions (mm) 53.8 x 53.8 52.3 x 52.3 51.9 x 51.9

Jacket material 316L 316L 316L

SC strand diameter (mm) 0.73 0.73 0.72

SC strand cu:non-cu ratio 1.6 6.9 4.4

Cabling pattern (+ is Cu core) 3x4x4x5x6 ((3x3x4+1)x4+1)x6

((3x3x4+1)x5+1)x6

SC strand number 1440 864 1080

Cu core 2/3/4 stage (mm) 0/0/0 0/1.8/3.5 0/1.2/2.7

Local void fraction (%) on strand bundle 34.5 34.2 34.3

SC strand weight/m of conductor (kg/m) 4.885 2.931 3.564

* For PF 2 coil the operation current at normal conditions is 41 kA.

Tab. 2-2 Data of the PF conductors [DDD06b]

The conductor in PF coils will be cooled by helium, which flows inside the cooling tube in the middle of the conductor. The cooling tube has a inner diameter of 10 mm and an outer di-ameter of 12 mm and is made as a spiral to get the helium easier into the superconducting

Page 20: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

8

cable. The superconducting cable is placed directly on the outside of the cooling tube. The cross section and relevant dimensions of the PF conductors are shown in Fig. 2-2. The su-perconducting cable consists of up to 1440 superconducting strands [DDD06b], which are separated in five stages of sub bundles, the cabling pattern for superconducting cable of each PF coil is given in Tab. 2-2. The sub bundles in each stage are twisted against each other to make the current density in the superconducting strands and sub bundles more ho-mogenous and avoid individual overload of one strand or bundle.

Fig. 2-2 Dimensions of the PF conductors (mm) [DDDD1]

The copper in superconducting cables is necessary to have a current path in case of the quench of superconductor. The superconducting strands have different copper non copper ratio, depending on the PF coil in which they will be used. Different sub bundles of the super-conducting cable have an additional copper strand, to enlarge the copper ratio of the cable Tab. 2-2. For mechanical stabilisation the superconducting cables are put into a square stainless steel jacket. For protection during the pull through into the jacket, the superconduct-ing cable is covered with 0.08 mm stainless steel wrap [DDD06c]. The outer dimensions of the jacket are between 51.9 mm and 53.8 mm, depending on the PF coil Fig. 2-2.

The insulation of the PF coils consists of several insulation types, the conductor, layer and ground insulation. Fig. 2-3 shows the dimensions of the insulation of the PF 6 coil, the di-mensions of all PF coils are summarised in Tab. 2-3. The conductor insulation consists of two insulation layers 1.5 mm each with a 0.2 mm metal screen in between [DDD06d]. It is build up of half overlapped interleaved polyimide film and dry glass. After the winding of the double pancakes the conductor insulation is vacuum impregnated by epoxy resin. After the impregnation the double pancake insulation is placed on the double pancake and 8 double pancakes, 5 for PF 2 coil, are stacked to one winding pack. The ground insulation with a compacted thickness of 8 mm is wrapped on the whole winding pack [DDD06d]. The ground insulation consists of 0.25 mm thick glass, 0.05 mm thick polyimide film and 0.25 mm thick glass wrapped in nine 50 % overlapped layers [DDD06d]. The total not compacted thickness of ground insulation is 9.9 mm. In the second impregnation step the ground insulation is also vacuum impregnated with epoxy resin. In addition to the ground insulation, a protective cover of 2 mm thickness made of pre-cured G10 glass epoxy composite is applied to the PF coils [DDD06d].

Page 21: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

9

Fig. 2-3 Conductor and insulation dimensions of PF 6 coil (mm) [DDDD2]

PF 1 / PF6 PF 2 PF 3 / PF 4 PF 5

Conductor insulation (mm) 3.2

Turn insulation (mm) 0.5

Distance between the windings centres (mm)

60.7 59.2 58.8 59.2

Layer insulation (mm) 0.5 0.5 1 0.5

Bonding layer (mm) 1 1 2 1

Ground insulation (mm) 8

Protection wrap (mm) 2

Tab. 2-3 Insulation dimensions of PF coils [DDDD2]

The PF coils are built as double pancake winding with the two-in-hand winding configuration. The two-in-hand winding scheme and stacking of double pancakes allows for all joints to be located at the pancake outer diameter, shown in Fig. 2-4.

Page 22: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

10

12

1111

1 1 122

2

2

2 22

JointCenter

He Inlet

ScreenSeparation

KY, 97-11-11, DDD11JDE.cv35

N 11 GR 197 97-11-20 W 0.1

Fig. 2-4 Concept of two-in-hand double pancake winding [CDA4a]

There is a joint between the two conductors within a double pancake (internal pancake joint), as well as joints between neighbouring double pancakes (external double pancake joints). Having all joints on the outer diameter gives the ability to bypass a double pancake in the event of a short by opening three joints and reconnecting two of the joints. Bypass is accom-plished by opening the joint between the two-in-hand sections in the faulted double pancake (internal pancake joint), thus the internal short circuit of the double pancake is open. The inlets of liquid helium are on the inner side of the double pancakes, thus the inner conductor of the coils get always colder coolant as the outer conductor. Further advantage of these windings configuration is that the possibility of a short circuit between the turns of the same conductor within the same pancake is strongly reduced because they are separated by the second conductor [CDA4].

The total number of turns, the winding configuration in the PF coils and the length of the con-ductor are given in Tab. 2-4.

PF coil Conductor length (m)

Conductor unit length (m)

Conductor in hand

Number of pancakes

Number of turns

NR x NZ Total

PF 1 6188 382 2 16 15.56 x 16 249

PF 2 5557 556 2 10 10.60 x 10 106

PF 3 13988 874 2 16 11.56 x 16 185

PF 4 12746 797 2 16 10.56 x 16 168

PF 5 11480 718 2 16 13.56 x 16 217

PF 6 11418 714 2 16 26.56 x 16 425

Tab. 2-4 PF coil winding configuration [DDD06e]

Centre External double pancake joint

External double pancake joint

Internal pancake joint

Page 23: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

11

2.3 Power Supply Circuits of the PF and CS Coils

The power supplies of the PF and CS coils will be connected to the high voltage grid, which is capable to deliver large pulsed power. The design of the coil circuits is different depending on the coil of the circuit, shown in Fig. 2-5, Fig. 2-6 and Fig. 2-7. Further information about the power supplies of the coils can be taken from [PPS1].

The coils CS3U, CS3L, CS2U, CS2L, PF 1 and PF 6 are placed as a single coil in the coil power supply circuit, shown in Fig. 2-5. The 12-pulsed thyristor AC/DC main converter con-verts the alternating current from the high voltage grid to the direct current needed for the coil operation. Variations of the coil voltage during the normal operation required for breakdown and plasma initiation, which can not be generated only by the converter, will be produced by the switching network unit (SNU). In case of a quench in one of the coils in the CS PF coil system the fast discharge of all CS and PF coils will be started simultaneously by the respec-tive fast discharge units (FDUs) in the coil circuits. Each coil terminal is symmetrically grounded by the grounding resistor network, consisting of two RTN and one RNG resistor. This will limit the terminal to ground voltage of the coils to the half, separated in equal positive and negative terminal voltage.

Fig. 2-5 Scheme of coil circuit for CS3U, CS3L, CS2U, CS2L, PF 1 and PF 6 derived

from [PAF6Ba]

The CS1U and CS1L coil circuits are switched in series, shown in Fig. 2-6. They consist of the same elements like it was described for single coil circuits but with different values for the fast discharge resistor of the fast discharge unit (FDU) of CS1U and CS1L coil.

SNU FDU

Coil

RTN

RTN

RNG

Main converter

Page 24: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

12

Fig. 2-6 Scheme of coil circuit for CS1U and CS1L derived from [PAF6Ba]

The PF 2, PF 3, PF 4 and PF 5 coils are connected in parallel in one electrical circuit, shown in Fig. 2-7. Due to requirement of fast control of the currents in these coils to stabilise the plasma vertical position, the vertical stabilisation converter is switched in parallel to the coil circuits of PF 2 - PF 5. The FDU and symmetrical resistor network for grounding have the same design like in other coil circuits but with different values for the fast discharge resistor of the FDU of each PF coil. The booster converters are used in the circuits of PF 2 – PF 5 coils instead of SNU in other coil circuits. The voltage on the PF 2 - PF 5 coils is higher than on the other coils due to cumulative voltage of main converter and the booster converter connected in series to each coil. A main converter and a booster converter are summarised to a branch converter (BRC), shown in Fig. 2-7. Detailed drawings of the power supplies of each coil can be taken from [PPSD1].

Fig. 2-7 Scheme of coil circuit for PF 2, PF 3, PF 4 and PF 5 derived from [PAF6Ba]

All CS and PF coils, despite PF 2 coil, have the same current during the normal operation of 45 kA. The current of the PF 2 coil during the normal operation is 41 kA. The no load, on load voltage and converter current are shown in Tab. 2-5.

SNU FDU

SNU FDU

CS1U

CS1L

FDU FDU

FDU FDU

BRC BRC

BRC BRC

Main converter

Vertical stabilisation converter

PF 2 PF 3

PF 4 PF 5

Main converter

Page 25: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

13

Maximal no load voltage

Maximal on load voltage

Converter opera-tion current

Main converter 2 kV 1.5 kV 45 kA

Booster converter 2 x 2.8 kV 2 x 2.1 kV 10 kA

Vertical stabilisation converter 2 x 4 kV 2 x 3 kV 45 kA

Tab. 2-5 Power supply converter data [PAF6Ba], [PPS1a]

2.3.1 Fast Discharge Unit (FDU)

The FDU will be used for fast discharge of the coils, e. g. if a quench will be detected in the coils. The equivalent time constant for fast discharge for CS coils is 11.5 s. It consists of time for quench detection, 2 s action time of switching procedure and 7.5 s for current discharge time constant [DDD06f]. For PF coils the equivalent time constant for fast discharge is 18 s, separated in time for quench detection, 2 s action time and 14 s for current discharge time constant [DDD06c]. Fig. 2-8 shows the schematic drawing of the fast discharge unit.

Fig. 2-8 Scheme of the fast discharge unit (FDU) derived from [PPSD1]

The FDU consists of the snubber circuit (SC), the discharge resistor (DR), the current com-mutation unit (CCU) and pyrobreaker (PB). The snubber circuit, which will limit the high fre-quency voltage oscillations caused by the FDU, consists of a resistor R = 0.15 Ω and a ca-pacitor C = 0.35 mF [PPSA1a]. The current commutation unit commutates the current from the free wheeling path to a discharge resistor during the fast discharge of the coils. The CCU consists of bypass switch (BPS), the vacuum circuit breaker (VCB), the saturable inductor (Ls), the counterpulse capacitor (C) and the discharge thyristor switch (TH). The pyrobreaker (PB) will be used to switch the current to the DR if the CCU will not work correctly.

SC

DR

PB BPS

VCB

TH

Ls

C CCU

Page 26: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

14

At the beginning of the fast discharge the power supply of the coils will be disconnected from the coil circuit and a free wheeling path for coil current will be created by a switch. Then the BPS will be opened and the coil current commutates to the parallel placed VCB. After the commutation is completed the VCB will be opened and an arc will appear inside the VCB for some ms. To erase the arc in the VCB the counterpulse capacitor will be discharged by the discharge thyristor. The counterpulse capacitor with capacity of 1.8 mF will be charged to a voltage of 7 kV [PPSA1a]. During the discharge of the capacitor the coil current through the VCB will be extinguished and then the coil current will commutate to the discharge resistor of the coil. The current commutation procedure to the discharge resistor is completed when the discharge resistor current reaches the same value as the coil current.

The saturable inductor (Ls) of the FDU is a non linear inductor depending on the current, which flows through the element. The saturable inductor is used to limit the current variation at low current values. The current dependence of the saturable inductor is shown in Tab. 2-6.

Current (A) 0 800 1200 1800 5000 20000

Inductance (µH) 156 110 77 39 10 2

Tab. 2-6 Current dependence of the saturable inductor for all FDUs [PPSA1b]

During the normal operation the BPS and VCB switched in parallel but the main current flows through BPS due to the 60 times higher resistance of the VCB. All relevant parameters of BPS, VCB and PB are taken from [PPS1], shown in Tab. 2-7.

BPS VCB PB

Resistance at main contacts 1 µΩ 60 µΩ 10 µΩ

Opening time 230 ms 30 ms 0.2 ms

Continuous current 68 kA 3.5 kA 68 kA

Pulsed current (duration) 250 kA (0.1 s) 68 kA (0.4 s) 100 kA (1 s)

Tab. 2-7 Main parameters of the switching components of FDU [PPSA1b]

Due to the different values for energy stored in each coil the fast discharge resistors have different values to reach the time constant suggested for the coils. Data of fast discharge resistors are summarised in Tab. 2-8. Further data of the FDU components can be taken from [PPS1] and [PPSA1].

Page 27: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

15

Coils Max. FDU design energy (GJ)

Initial value of fast discharge resistor at 20 °C (Ω)

Maximum value for fast discharge resistor at 235 °C (Ω)

CS3U 1.01 0.090 0.212

CS2U 1.15 0.103 0.242

CS1U 1.14 0.102 0.240

CS1L 1.13 0.101 0.237

CS2L 1.15 0.103 0.242

CS3L 1.15 0.091 0.214

PF 1 1.03 0.046 0.108

PF 2 0.42 0.019 0.045

PF 3 1.80 0.080 0.188

PF 4 1.51 0.067 0.157

PF 5 1.59 0.071 0.167

PF 6 2.07 0.092 0.216

Tab. 2-8 Data of fast discharge resistors [PAF6Bb]

2.3.2 Switching Network Unit (SNU)

The resistors of the switching network unit provide the voltage, which is necessary for the breakdown and plasma initiation. They remain in the coil circuits during the ramp-up phase while the extraction of the stored energy continues. The relatively high breakdown voltage has to be provided at different currents between 40 % and 100 % of the nominal value. Therefore several resistor branches are switched in parallel to reach the required voltage, shown in Fig. 2-9.

Page 28: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

16

Fig. 2-9 Scheme of the switching network unit (SNU) derived from [PPSD1]

The current commutation unit (CCU) is needed to bypass the SNU during the charging of the coils. The CCU is designed for arc less commutation from BPS to the SNU resistors. The detailed function of the CCU is described in section 2.3.1. Additionally the CCU of SNU has two counterpulse capacitors (C1) and (C2) and a vacuum switch (VS). The C1 with 20 mF will be charged to 1 kV and C2 with 0.8 mF will be charged to 8 kV [PPSA1a]. The diode (D1) and thyristor (TH2) are summarised to thyristor circuit breaker (TCB). The explosively acti-vated protective make switch (EPMS) is connected in parallel with the CCU. The snubber circuit (SC) is also placed in parallel to CCU and limits the high frequency voltage oscilla-tions, caused by SNU. The components of SC are C with 0.1 mF and R with 0.2 Ω [PPSA1a]. The protective make switches (PMS1 and PMS2) are built with parallel BPS and VCB. PMS1 will be used to make the free wheeling circuit for coil current during the fast discharge (not shown in Fig. 2-9). The PMS2 will be used to bypass the SNU during the fast discharge. The fast make switches (MS) will be used to switch additional resistances parallel to achieve the required voltages during the plasma breakdown and ignition. All relevant data of the switches used in SNU are summarised in Tab. 2-9.

BPS TCB MS EPMS

Rated current (kA) 60 45 (for 10 ms) 60 68

Closing time (ms) 4.5 n/a 0.1 0.012

Resistance at main contacts (µΩ) 5 n/a 1 3

Tab. 2-9 Data of the switches used in switch network unit (SNU) [PPS1b]

SC R3

R2

R1

MS2

MS1

BPS S2 S1 TH1

D1

C1

TH2

C2 VS

EPMS

PMS2

CCU

Page 29: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Overview about ITER CS PF Coil System

17

The resistance network of the SNU consists of 9 modules switched in parallel to 3 module groups (R1, R2 and R3). The module group R3 is directly connected to the terminals. R1 and R2 can be switched with MS1 and MS2 in parallel to reduce the total resistance of SNU. The rated values for the resistor module for all CS coils and PF 1 is 10 Ω and for PF 6 13.6 Ω [PPS1b].

Page 30: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

18

3 Finite Element Method CS and PF Models

The Finite Element Method (FEM) models will be described in this chapter. The simplified FEM model of the CS PF coil system is presented in section 3.1. The detailed FEM models of PF 3 and PF 6 coil are described in section 3.2 respectively 3.3.

3.1 Simplified Finite Element Method Model of the CS PF Coil System

For the models in Finite Element Method (FEM) program Maxwell2D [Max99], the rotational symmetry of the coil system was used to establish two dimensional models of the coils. First a simplified model of the CS PF coil system was established, which is shown in Fig. 3-1. The coils are shown as rectangles which have in cross section the outer dimensions of the coils. The positions of the coil centres and dimensions in Z- and R-directions were taken from [DDD06a] and are summarised in Tab. 2-1.

Fig. 3-1 Simplified FEM model of the CS PF coil system in Maxwell 2D

The self and mutual inductances of the simplified models of the coils were calculated with FEM program Maxwell 2D for DC. Copper was chosen as material for the rectangles which were equivalent to the cross section of the calculated coils. Vacuum was chosen as material for the space between the coils. Further the coil cross sections were defined as stranded conductor, which means that skin and proximity effects did not appear in the cross sections. The boundary of the model was set in Z-direction to ±30 m and in R-direction to 40 m. The boundaries were defined as magnetic neutral with magnetic zero potential which is infinitely far away from the model. The currents in the CS and PF coils were set to 45 kA. Triangular elements were used for the meshing of the model. Further information about the FEM model

Page 31: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

19

of the CS PF coil system in Maxwell 2D are summarised in Annex A.1. As a calculation result the inductance for each cross section of the modelled coils was calculated. To obtain the results for the self inductance of the coils, the calculated value for inductance of the coil cross section have to be multiplied with the squared number of turns of the coil, calculated with formula (3.1).

CSC LwL ⋅= 2 (3.1)

:CL Inductance of the coil :w Number of turns of the coil

:CSL Inductance of the coil cross section calculated with FEM program

The calculated results for self inductances of CS and PF coils are summarised in Tab. 3-1. Due to the small coil diameter of CS coils compared with coil diameters of PF coils, the cross section of CS coil have relatively low inductance. But the CS coils have larger number of turns than the PF coils, thus the self inductance of the CS coils is higher than of the PF 1 and PF 2 coils, despite lower inductance of the cross section of the CS coil.

Coil Name CS PF 1 PF 2 PF 3 PF 4 PF 5 PF 6

FEM inductance of coil cross section (µH)

2.58 11.38 36.35 53.42 53.79 33.1 11.16

Number of turns 549 249 106 185 168 217 425

Calculated DC self inductance of the coil (H)

0.778 0.705 0.408 1.828 1.536 1.559 2.016

Tab. 3-1 FEM calculated DC values for self inductances with simplified CS and PF coil models

The mutual inductances between the coils were calculated first between the cross sections of the coils. The calculated values were multiplied one time with the number of turns of the first coil and one time with the number of turns of the second coil, calculated with formula (3.2). For example to calculate the mutual inductance between CS1U and PF 3 coil, the value for mutual inductance calculated by Maxwell 2D was multiplied with the number of turns of the CS1U and with the number of turns of the PF 3 coils.

Page 32: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

20

212121 SCSCCCCC MwwM −− ⋅⋅= (3.2)

:21 CCM − Mutual inductance between coil 1 and coil 2

:1Cw Number of turns of coil1

:2Cw Number of turns of coil2

:21 CSCSM − Mutual inductance between the cross section 1 and cross section 2

The calculated values for mutual DC inductances between CS and PF coils are given in Tab. 3-2 and Tab. 3-3.

CS3U CS2U CS1U CS1L CS2L CS3L

CS3U

CS2U 0.241

CS1U 0.052 0.241

CS1L 0.018 0.052 0.241

CS2L 0.008 0.018 0.052 0.241

CS3L 0.004 0.008 0.018 0.052 0.241

PF 1 0.136 0.061 0.028 0.014 0.008 0.005

PF 2 0.041 0.033 0.024 0.017 0.011 0.008

PF 3 0.048 0.050 0.048 0.042 0.034 0.027

PF 4 0.028 0.035 0.041 0.045 0.046 0.042

PF 5 0.015 0.022 0.033 0.048 0.066 0.081

PF 6 0.010 0.016 0.028 0.052 0.108 0.227

Tab. 3-2 Mutual DC inductance between the CS and PF coils (H)

Page 33: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

21

PF 1 PF 2 PF 3 PF 4 PF 5

PF 1

PF 2 0.104

PF 3 0.100 0.220

PF 4 0.049 0.094 0.448

PF 5 0.024 0.043 0.182 0.358

PF 6 0.014 0.024 0.093 0.166 0.437

Tab. 3-3 Mutual DC inductance between the PF coils (H)

Page 34: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

22

3.2 Detailed Finite Element Method Model of the PF 3 Coil

The establishing of the detailed Finite Element Method (FEM) model of the PF 3 coil at 4.5 K is described in this chapter. The dimensions and materials of the detailed FEM model of the PF 3 coil are shown in the first section. The results of the FEM calculation for the PF 3 coil are discussed in the second section.

3.2.1 Dimensions and Materials of the Detailed FEM Model of the PF 3 Coil at 4.5 K

For the calculation of the voltage stress within the coils the values for the elements of the network models have been calculated by the detailed FEM models of these coils. For each turn of the PF 3 coil the values for frequency dependent inductances were calculated with the detailed FEM model. The FEM models of the PF 3 coils consist of the cooling tube, the su-perconducting cable, the stainless steel jacket and the insulation shown in Fig. 3-2.

Fig. 3-2 Detailed FEM model of a cross section of the PF 3 coil in Maxwell 2D. The rota-tion axis (not shown in the figure) of the complete space is on the left side of the cross section. The zoomed area shows the outer lower corner of the PF 3 coil model

The outer diameter of the cooling tube is 12 mm. Liquid helium has a permittivity of εr = 1.05 [Fas70a] and a permeability of µr = 1. Hence vacuum was selected as material instead of the definition of a new material in the FEM program. The thickness of the cooling tube wall and its metallic properties can be neglected for the calculations of inductances and capacitances because the cooling tube is placed inside the current leading superconducting cable and thus has no influence on the outer magnetic and electric fields of the conductor.

The superconducting cable of PF 3 coil consists of 864 superconducting strands, Tab. 2-2, thus the superconducting cable in FEM was defined as stranded conductor which means that the skin and proximity effects in the cable will not appear and thus the uniform current den-sity at the whole cable cross section is defined. The copper with the conductivity of 6.4E9 S/m at 4.5 K [DRGAa] was chosen as the material for the superconducting cable in the FEM models. The superconducting cable has an outer diameter of 34.4 mm which means a contraction of -0.29 % [DDD06g] compared to room temperature dimensions of the cable [DDDD1] due to the cooling down at 4.5 K. The value of -0.29 % contraction is given for the

Cooling tube Superconducting cable Stainless steel jacket Insulation

Page 35: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

23

stainless steel jacket, because of the stranded structure of the superconducting cable the stainless steel jacket have strong influence on the cable dimensions at 4.5 K. The stainless steel protection wrap of 0.08 mm with 50 % overlapping [DDD06c], is used to protect the cable during the pull through processes through the stainless steel jacket. The thickness of the protection wrap was added to the stainless steel jacket in the FEM model of the PF 3 coil.

The stainless steel jacket will be used to give the superconducting cable mechanical stability during the manufacturing and operation of the coils. The outer dimensions of the jacket are 52.1 mm which means a contraction of -0.29 % compared to dimensions at room tempera-ture which are given in Fig. 2-2. The conductivity of stainless steel was set to 1.88E6 S/m at 4.5 K which is given in [DRGAa].

The different kinds of insulation e. g. turn, layer and ground insulation were summarised to one insulation type because of the similar permittivity of about εr = 4 [DRG1a].

Each conductor has 3.2 mm conductor insulation. Further there is a turn insulation of 0.5 mm between two turns of the same pancake. Hence the total insulation between two turns in the same pancake is 6.9 mm. The insulation in Z-direction depends on the location of the con-ductors in the coil. The layer insulation in one double pancake is 1 mm, thus the total insula-tion between two layers in one double pancake is 7.4 mm. An additional insulation layer called bounding layer is placed between the double pancakes and has a thickness of 2 mm. The total insulation between the conductors of two different double pancakes is 9.4 mm [DDDD2].

The ground insulation of 8 mm and outer protection layer of 2 mm, which cover all conduc-tors of the PF 3 coil, were summarised to an outer insulation with a thickness of 10 mm. The total dimensions of the PF 3 coil with ground insulation are 728 mm in R-direction and 986 mm in Z-direction. Compared with the values for coil dimensions which are given for 4.7 K with 708 mm and 966 mm without ground insulation in Tab. 2-1, there is additionally 10 mm of ground insulation on both sides of the coil which were considered in the detailed FEM model of the PF 3 coil.

The detailed FEM model of the PF 3 coil shown in Fig. 3-2 was used for FEM calculations at DC. With increasing frequencies of the FEM models two additional FEM models of the PF 3 coil were used because the models at higher frequencies need more memory but Maxwell2D can not manage more than 2 GB of the memory. At frequencies higher than DC and lower than 5 kHz a FEM model of the PF 3 coil with even line symmetry was used, which is shown in Fig. 3-3. Using of the even line symmetry in Maxwell 2D allows to draw only the upper half of the whole model. With the definition of the even line symmetry the lower part of the model will be considered at the calculations of the magnetic fields and also in the impedance matrix. The only difference between the FEM model shown in Fig. 3-2 and Fig. 3-3 is that the model in Fig. 3-3 is the half of the real PF 3 coil. All other dimensions of the coil remain the same.

Page 36: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

24

Fig. 3-3 FEM model of a cross section of the half of PF 3 coil with even line symmetry axis. The rotation axis is on the left side (not shown in the figure)

With the increasing frequency of the calculations the value for the inductance of the conduc-tor is decreasing due to the higher currents which are induced in the stainless steel jacket of each conductor. The induction of the eddy currents in the stainless steel jacket means that both the self inductance of one conductor and the mutual inductance between two conduc-tors are decreasing. For frequencies higher than 5 kHz the magnetic coupling between the conductors is lower than 1 % of the value for the self inductance of the conductor. Thus the mutual inductance between the conductors was neglected. For frequencies higher than 5 kHz the FEM model of only one pancake of the PF 3 coil was used, which is shown in Fig. 3-4.

Fig. 3-4 FEM model of a cross section of one pancake of PF 3 coil

The dimensions of the conductors and insulation between them were the same like in the models in Fig. 3-2 and Fig. 3-3. The values for the inductance of each conductor in one pan-cake were calculated and were used for other pancakes.

3.2.2 Results of the FEM Calculations for Detailed Model of the PF 3 Coil

The detailed results of the FEM calculations of the PF 3 coil are summarised in Annex A.2. In this section only a part of the results will be shown to explain the different mechanisms of the frequency dependence of the inductances in PF 3 coil.

The inductance of a conductor is the factor which shows the connection between the current of the conductor and the magnetic energy which is stored in the space around and in the conductor, which is caused by this current. The self inductance of each conductor is the sum of the inner and the outer inductance of it. The inner inductance defines the connection be-tween the current and the magnetic energy which is stored in the space which is in the con-ductor. The outer inductance is the connection between the current and the magnetic energy which is stored in the space around the conductor. The inner inductance of a conductor stays the same over the whole frequency range if the skin and proximity effects do not appear in this conductor. The superconducting cables used in PF coils consist of many thin filaments which have low dependence on skin and proximity effects. Thus the inner inductance of the superconducting cable stays the same over the relevant frequency range.

Even symmetry line

Upper half of the detailed FEM model of the PF 3 coil

Page 37: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

25

The outer inductance of the conductor depends on the design of the conductor and has strong frequency dependence for the PF coils. The eddy currents which are induced in the stainless steel jacket of the conductor decrease the magnetic field around the conductors and thus the magnetic energy which is used for calculation of the outer inductance. With in-creasing frequency the eddy currents in the stainless steel jacket are also increasing and thus the outer inductance of the conductor is decreasing. The frequency dependence of the self inductance of the upper left conductor (i. e. turn) is shown in Tab. 3-4. The upper left conductor has the number 1_1. The first number stands for the conductor number from the inner side of the coil, the second for the pancake number. So the next conductor in the same pancake has the number 2_1, the next one 3_1 and so on. The first left conductor of the next pancake has the number 1_2. The calculated values for the self inductance of the conductor were taken from the calculations which were made for the frequencies relevant for the calcu-lation of resonance frequency of the PF 3 coil shown in chapter 5.

In Tab. 3-4 the strongest drop of self inductance is between DC and 0.42 kHz with the factor of 11.3. At 0.42 kHz the induced eddy currents in the stainless steel jacket which are weak-ening the outer magnetic field of the conductor are very strong compared to no eddy currents at DC. The value of the outer inductance is decreasing with increasing frequency and at 295 kHz only the inner inductance of the conductor is relevant for calculation of the self in-ductance.

Frequency (kHz) 0 0.42 9.5 20.7 200 295

Self inductance of the conductor 1_1 (H)

9.88e-05 8.68e-06 4.55e-06 4.03e-06 3.32e-06 3.26e-06

Relative factor to the self inductance of the conductor 1_1 at DC

1 0.088 0.046 0.041 0.034 0.033

Tab. 3-4 Frequency dependence of the self inductance of the upper left conductor of PF 3 coil shown for single frequencies which are relevant for calculation of the resonance frequency of the coil

The cable in conduit design of the PF coil conductor has also strong influence on the fre-quency dependence of the mutual inductance between the conductors shown in Tab. 3-5. The eddy currents which are induced in the stainless steel jacket of the conductors of the PF coils weaken the mutual inductance between the conductors. With increasing frequency the mutual inductance between two conductors is decreasing. The mutual inductance continues its strong decreasing also at very high frequencies compared to the self inductance of the conductor, which reaches a convergence value of inner inductance at a frequency of about 295 kHz.

Page 38: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

26

Frequency (kHz) 0 0.42 9.5 20.7 200 295

Mutual inductance between the con-ductors 1_1 and 2_1 (H)

7.80e-05 1.35e-06 1.25e-09 4.75e-11 1.20e-18 2.22e-19

Coupling factor between the con-ductors 1_1 and 2_1

0.786 0.148 2.7e-04 1e-5 4e-18 7e-19

Tab. 3-5 Mutual inductance between the upper left conductors 1_1 and 2_1 of the PF 3 coil shown for single frequencies which are relevant for calculation of the reso-nance frequency of the coil

With increasing distance between the conductors their mutual inductance is decreasing. At DC this effect is lower, for example the mutual inductance between conductor 1_1 and 2_1 is 7.80e-05 H and between 1_1 and 12_1 is 4.43E-05 H, there is only a factor of 1.76 between these values. Selected mutual inductances between conductors of the upper pancake at DC are shown in Tab. 3-6. For frequency of 295 kHz the mutual inductance between conductor 1_1 and 2_1 is 2.22e-19 H and between 1_1 and 12_1 is only 7.55E-22 H, the factor be-tween these values is 294. Selected mutual inductances between conductors of the upper pancake at 295 kHz are shown in Tab. 3-7.

2_1 4_1 6_1 8_1 10_1 12_1

Mutual inductance to conduc-tor 1_1 (H)

7.80E-05 6.23E-05 5.51E-05 5.04E-05 4.70E-05 4.43E-05

Coupling factor to conductor 1_1

0.786 0.625 0.55 0.5 0.46 0.43

Tab. 3-6 Selected mutual inductances and coupling factors between the conductors in the upper pancake of PF 3 coil at DC

Page 39: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

27

2_1 4_1 6_1 8_1 10_1 12_1

Mutual inductance to conduc-tor 1_1 (H)

2.22E-19 4.16E-21 9.81E-22 1.42E-21 9.00E-22 7.55E-22

Coupling factor to conductor 1_1

7e-14 1e-15 3e-16 4e-16 2e-16 2e-16

Tab. 3-7 Selected mutual inductances and coupling factors between the conductors in the upper pancake of the PF 3 coil at 295 kHz

The cumulative inductance of each conductor was calculated by the summarising of all mu-tual inductances of a conductor to all other conductors of the PF 3 coil and addition of the self inductance of this conductor. The value for cumulative inductance for DC of the conduc-tor 1_1 is 8.9e-3 H. This value is very high compared to the self inductance of the same con-ductor of 9.88e-05 H. This high cumulative inductance is the result of the high values of the mutual inductances between the conductors at DC shown in Tab. 3-6. With increasing fre-quency the value for mutual inductance decreases faster than for the self inductance shown in Tab. 3-4 and Tab. 3-5. Thus for frequencies higher than 5 kHz the mutual inductances between the conductors were neglected because their values were lower than 1 % of the self inductance and only self inductance of the conductors was take in to account. The frequency dependence of the cumulative inductance of the conductor 1_1 is shown in Tab. 3-8. The values for relevant frequencies of the cumulative inductance of each conductor of PF 3 coil are summarised in Annex A.2(d).

Frequency (kHz) 0 0.42 9.5 20.7 200 295

Cumulative induc-tance of conductor 1_1 (H)

8.90E-03 1.20E-05 4.55E-06 4.03E-06 3.32E-06 3.26E-06

Tab. 3-8 Frequency dependence of the cumulative inductance of the PF 3 conductor 1_1

The total inductance for the PF 3 coil, which was calculated with the detailed FEM model, was compared with the inductance of the PF 3 coil, which was calculated with the simplified model of CS PF coil system. The comparison was made for the total inductances at DC be-cause the inductance calculation with the simplified model of the coil system was only made for DC. To calculate the total inductance of the detailed FEM model of PF 3 coil, all cumula-tive inductances of each conductor were summarised. The total inductance of the PF 3 coil calculated with detailed FEM model is 1.94 H. The total inductance of PF 3 coil calculated with simplified model of the CS PF coil system is 1.83 H. The difference between the results

Page 40: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

28

is 5.6 %. Further the self inductance of the PF 3 coil was calculated with formula given in [Gro62] for DC. The value for self inductance calculated with this formula is 1.8 H. The rela-tive difference to the value calculated by detailed FEM model of the PF 3 coil is 7.2 %. The relative difference to the inductance of the PF 3 coil calculated with simplified model of the CS PF coil system is 1.6 %.

Page 41: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

29

3.3 Detailed Finite Element Method Model of the PF 6 Coil

The establishing of the detailed Finite Element Method (FEM) model of the PF 6 coil at 4.5 K is described in this chapter. The dimensions and materials of the detailed FEM model of the PF 6 coil are shown in the first section. The results of the FEM calculation for the PF 6 coil are discussed in the second section.

3.3.1 Dimensions and Materials of the Detailed FEM Model of the PF 6 Coil at 4.5 K

The calculations of the frequency dependent inductances for the PF 6 coil was made with the same strategy as for the PF 3 coil, despite of it, all relevant information for the establishing of the detailed model of the PF 6 coil are described in detail in this section.

For each conductor of the PF 6 coil the values for frequency dependent inductances were calculated with the detailed FEM model. The FEM models of the PF 6 coils consist of the cooling tube, the superconducting cable, the stainless steel jacket and the insulation shown in Fig. 3-5.

Fig. 3-5 Detailed FEM model of the cross section of the PF 6 coil in Maxwell 2D. The rotation axis (not shown in the figure) is on the left side of the cross section. The zoomed area shows the outer lower corner

The outer diameter of the cooling tube is 12 mm. Liquid helium has a permittivity of εr = 1.05 [Fas70a] and a permeability of µr = 1. Hence vacuum was selected as material instead of the definition of a new material in the FEM program. The thickness of the cooling tube wall and its metallic properties can be neglected for the calculations of inductances and capacitances because the cooling tube is placed inside the current leading superconducting cable and thus has no influence on the outer magnetic and electric fields of the conductor.

The superconducting cable of PF 6 coil consists of 1440 superconducting strands, Tab. 2-2, thus the superconducting cable in FEM was defined as stranded conductor which means that the skin and proximity effects in the cable will not appear and thus the uniform current den-sity is defined at the whole cable cross section. The copper with the conductivity of 6.4E9 S/m at 4.5 K [DRGAa] was chosen as the material for the superconducting cable in the FEM models. The superconducting cable has an outer diameter of 38.1 mm which means a

Cooling tube Superconducting cable Stainless steel jacket Insulation

Page 42: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

30

contraction of -0.29 % [DDD06g] compared to room temperature dimensions of the cable [DDDD1] due to the cooling down at 4.5 K. The value of -0.29 % contraction is specified for the stainless steel jacket, because of the stranded structure of the superconducting cable the stainless steel jacket have strong influence on the dimensions at 4.5 K. The stainless steel protection wrap of 0.08 mm with 50 % overlapping [DDD06c] is used to protect the cable during the pull through processes through the stainless steel jacket. The thickness of the protection wrap was added to the stainless steel jacket in the FEM model of the PF 6 coil.

The stainless steel jacket will be used to give the superconducting cable mechanical stability during the manufacturing and operation of the coils. The outer dimensions of the jacket are 53.6 mm which means a contraction of -0.29 % compared to dimensions at room tempera-ture which are given in Fig. 2-2. The conductivity of stainless steel was set to 1.88E6 S/m at 4.5 K which is given in [DRGAa].

The different kinds of insulation e. g. turn, layer and ground insulation were summarised to one insulation type because of the similar permittivity of about εr = 4 [DRG1a].

Each conductor has 3.2 mm conductor insulation. Further there is a turn insulation of 0.5 mm between two turns in the same pancake of the coil. In the sum the total insulation between two turns in one pancake is 6.9 mm. The insulation in Z-direction depends on the location of the conductors in the coil. The layer insulation in one double pancake is 0.5 mm, thus the total insulation between two layers in one double pancake is 6.9 mm. An additional insulation layer called bounding layer is placed between the double pancakes and has a thickness of 1 mm. The total insulation between the conductors of two different double pancakes is 7.9 mm.

The ground insulation of 8 mm and outer protection layer of 2 mm which cover all conductors of the PF 6 coil were summarised to an outer insulation with a thickness of 10 mm. The total dimensions of the PF 6 coil with ground insulation are 996 mm in Z-direction and 1653 mm in R-direction. Compared with the values for coil dimensions which are specified for 4.7 K with 976 mm and 1633 mm without ground insulation in Tab. 2-1, there is additionally 10 mm of ground insulation on both sides of the coil which were considered in the detailed FEM model of the PF 6 coil.

The detailed FEM model of the PF 6 coil shown in Fig. 3-5 was used for FEM calculations at DC. With increasing frequencies of the FEM models two additional FEM models of the PF 6 coil were used because the models at higher frequencies need more memory but Maxwell2D can not mange more than 2 GB of the memory. At frequencies higher than DC and lower than 5 kHz a FEM model of the PF 6 coil with even line symmetry was used, which is shown in Fig. 3-6. Using of the even line symmetry in Maxwell 2D allows to draw only the upper half of the whole model. With the definition of the even line symmetry the lower part of the model will be considered at the calculations of the magnetic fields and also in the impedance matrix. The only difference between the FEM model shown in Fig. 3-5 and Fig. 3-6 is that the model in Fig. 3-6 is the half of the cross section of the PF 6 coil. All other dimensions of the coil re-main the same.

Page 43: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

31

Fig. 3-6 Detailed FEM model of the half cross section of the PF 6 coil with line symmetry axis. The rotation axis is on the left side (not shown in the figure)

With the increasing frequency of the calculations the value for the inductance of the conduc-tor is decreasing due to the higher currents which are induced in the stainless steel jacket of each conductor. The inducing of the eddy current in the stainless steel jacket means that both the self inductance of one conductor and the mutual inductance between two conduc-tors is decreasing. For frequencies higher than 5 kHz the magnetic coupling between the conductors is lower than 1 % of the value for the self inductance of the conductor. Thus the mutual inductance between the conductors was neglected. For frequencies higher than 5 kHz the FEM model of only one pancake of the PF 6 coil were used, which is shown in Fig. 3-7.

Fig. 3-7 FEM model of one pancake of PF 6 coil

The dimensions of the conductors and insulation were the same like in the models in Fig. 3-5 and Fig. 3-6. The values for the inductance of each conductor in one pancake were calcu-lated and were used for other pancakes.

3.3.2 Results of the FEM calculations for detailed model of the PF 6 coil

The detailed results of the FEM calculations of the PF 6 coil are summarised in Annex A.3(d). In this section only a part of the results will be shown to explain the different mecha-nisms of the frequency dependence of the inductances in PF 6 coil.

The inner inductance of the conductor stays the same over the whole frequency range if the skin and proximity effects do not appear in the conductor. The superconducting cable has due to the multi filament design low influence of skin and proximity effects and thus no reduc-tion of the inner inductance appears in the relevant frequency range. The eddy currents which are induced in the stainless steel jacket of the conductor decrease the magnetic field around the conductors and also decrease the magnetic energy which is used for calculation of the outer inductance. With increasing frequency the eddy currents in the stainless steel jacket are also increasing and thus the outer inductance of the conductor is decreasing. The frequency dependence of the self inductance of the upper left conductor (i. e. turn) with con-ductor number 1_1 is shown in Tab. 3-9. The values for the self inductance of the conductor were taken from the calculations which were made for the frequencies relevant for the calcu-lation of resonance frequency of the PF 6 coil shown in chapter 5.

Page 44: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

32

The strongest drop of self inductance is between DC and 0.5 kHz with the factor of 10.3. At 0.5 kHz the induced eddy currents in the stainless steel jacket which are weaken the outer magnetic field of the conductor are very strong compared to no eddy currents at DC. The value of the outer inductance is decreasing with increasing frequency and at 295 kHz only the inner inductance of the conductor is relevant for calculation of the self inductance.

Frequency (kHz) 0 0.5 12.9 28.6 200 295

Self inductance of the conductor 1_1 (H)

2.40e-05 2.34e-06 1.28e-06 1.16e-06 1.00e-06 9.88e-07

Relative factor to the self inductance of the conductor 1_1 at DC

1 0.098 0.05 0.048 0.042 0.041

Tab. 3-9 Frequency dependence of the self inductance of the upper inner conductor of PF 6 coil shown for single frequencies which are relevant for calculation of the resonance frequency of the PF 6 coil

The cable in conduit design of the PF coil conductor has also strong influence on the fre-quency dependence of the mutual inductance between the conductors shown in Tab. 3-10. The eddy currents which are induced in the stainless steel jacket of the conductors of the PF coils weakening the mutual inductance between the conductors. With increasing frequency the mutual inductance between two conductors is decreasing. The mutual inductance contin-ues its strong decreasing also at very high frequencies compared to the self inductance of the conductor, which reaches a convergence value of inner inductance at frequency of about 295 kHz.

Page 45: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

33

Frequency (kHz) 0 0.5 12.9 28.6 200 295

Mutual inductance between the con-ductors 1_1 and 2_1 (H)

1.82e-05 3.35e-07 2.07e-10 7.60e-12 3.73e-18 1.81e-20

Coupling factor between the con-ductors 1_1 and 2_1

0.76 0.14 1.6e-4 6e-6 4e-12 2e-14

Tab. 3-10 Mutual inductance between the upper inner conductors 1_1 and 2_1 of the PF 6 coil shown for single frequencies which are relevant for calculation of the reso-nance frequency

With increasing distance between the conductors the mutual inductance between them is decreasing. At DC this effect is lower, for example the mutual inductance between conductor 1_1 and 2_1 is 1.82E-05 H and between 1_1 and 27_1 is 5.84E-06 H with a factor of 3.1 between the values. Selected mutual inductances between conductors of the upper pancake at DC are shown in Tab. 3-11. For frequency of 295 kHz the mutual inductance between conductor 1_1 and 2_1 is 1.81E-20 H and between 1_1 and 27_1 is only 4.83E-22 H with a factor of 37 between the values. Selected mutual inductances between conductors of the upper pancake at 295 kHz are shown in Tab. 3-12.

2_1 7_1 12_1 17_1 22_1 27_1

Mutual inductance to conduc-tor 1_1 (H)

1.82E-05 1.09E-05 8.69E-06 7.39E-06 6.50E-06 5.84E-06

Coupling factor to conductor 1_1

0.76 0.45 0.36 0.31 0.27 0.24

Tab. 3-11 Selected mutual inductances and coupling factors between the conductors in upper pancake at DC

Page 46: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

34

2_1 7_1 12_1 17_1 22_1 27_1

Mutual inductance to conduc-tor 1_1 (H)

1.81E-20 1.91E-23 7.47E-24 4.64E-24 3.14E-24 4.83E-22

Coupling factor to conductor 1_1

2e-14 2e-17 7e-18 5e-18 3e-18 5e-16

Tab. 3-12 Selected mutual inductances and coupling factors between the conductors in upper pancake at 295 kHz

The cumulative inductance of each conductor was calculated by the summarising of all mu-tual inductances of a conductor to all other conductors of the PF 6 coil and addition of the self inductance of this conductor. The value for cumulative inductance for DC of the conduc-tor 1_1 is 3.29E-03 H, which is very high compared to the self inductance of the same con-ductor of 2.40e-05 H. This high value is the result of the high values of the mutual induct-ances between the conductors at DC shown before. With increasing frequency the value for mutual inductance decreases faster than for the self inductance shown in Tab. 3-9 and Tab. 3-10. Thus for frequencies higher than 5 kHz the mutual inductances between the conduc-tors were neglected because their values were lower than 1 % of the self inductance and only self inductances of the conductors were taken in to account. The frequency dependence of the cumulative inductance of the conductor 1_1 is shown in Tab. 3-13. The values for rele-vant frequencies of the cumulative inductance for each conductor of PF 6 coil are summa-rised in Annex A.3(d).

Frequency (kHz) 0 0.5 12.9 28.6 200 295

Cumulative induc-tance of conductor 1_1 (H)

3.29E-03 2.81E-06 1.28E-06 1.16E-06 1.00E-06 9.88E-07

Tab. 3-13 Frequency dependence of the cumulative inductance of conductor 1_1 of PF 6 coil

The result of the calculation of the total inductance for the PF 6 coil, which was calculated with detailed FEM model, was compared with the inductance of the PF 6 coil, which was cal-culated with the simplified model of CS PF coil system. The comparison was made for total inductances at DC because the inductance calculation with the simplified model of the coil system was only made for DC. To calculate the total inductance of the detailed FEM model

Page 47: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

35

of PF 6 coil, all cumulative inductances of each conductor were summarised. The total induc-tance of the PF 6 coil calculated with detailed FEM model is 2.06 H. The total inductance of PF 6 coil calculated with simplified model of the CS PF coil system is 2.016 H. The difference between the results was 2.1 %. Further the self inductance of the PF 6 coil was calculated with formula given in [Gro62] for DC. The value for self inductance calculated with this for-mula is 2 H. The relative difference to the inductance value calculated by detailed FEM model of the PF 6 coil is 2.9 %. The relative difference to the inductance of the PF 6 coil cal-culated with simplified model of the CS PF coil system is 0.8 %.

Page 48: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

36

3.4 Finite Element Models of the Bus Bars for Power Supply

For the network model of the CS PF coil system the values for the resistances, inductances and capacitances to ground of the bus bars for the power supplies of the coils had to be cal-culated. These values were not given for superconducting bus bars in [DDD06] and [DDD01]. The values for the resistance of the water cooled bus bars in [PPSA1] are given with 2.97 mΩ/m, the inductance with 1 µH/m. This values were controlled by the FEM calculation of water cooled bus bars.

3.4.1 Superconducting Bus Bars

The superconducting bus bars will be used to connect the coil terminals with the Coil Termi-nal Box (CTB), which will be located outside of the vacuum vessel and the coil cryostat [DDD06i]. The FEM model of the cross section of a superconducting bus bar is shown in Fig. 3-8.

Fig. 3-8 FEM Model of the superconducting bus bar

Vacuum was used as the material for the cooling tube because of the similar magnetic prop-erties as helium. The inner diameter of the cooling tube and its metallic structure was ne-glected for the FEM model of the superconducting bus bar, because the cooling tube is in-side of the current leading superconducting cable and has no influence on its inductance and capacitance to the ground.

The cable of the superconducting bus bar which consists of 1800 superconducting filaments [DDD06h] was defined in the FEM model of the bus bar as stranded conductor. This means that in the cable the current density is uniform and the skin and proximity effects do not ap-pear. Copper with conductivity of 6.4E9 S/m at 4.5 K [DRGAa] was defined as the material for the FEM model of the superconducting cable.

The insulation of the superconducting bus bars is made from polyimide film-glass impreg-nated with epoxy resin and has the same dielectric constant as the insulation of PF coils with εr = 4 [DRG1a]. The stainless steel jacket surrounding the cable was specified with the con-ductivity of 1.88E6 S/m at 4.5 K which is given in [DRGAa]. All relevant dimensions of super-conducting bus bars are summarised in Tab. 3-14.

The results of the FEM calculation for the superconducting bus bars are summarised in Tab. 3-15. The resistance of the superconducting bus bars which was calculated by FEM model was ignored and was set to 1 pΩ/m, because the superconducting filaments of the bus bars have no electrical resistivity during the normal operation. The value of 1 pΩ/m was needed for the network model, because it does not work without any resistance in the circuit. To cal-

Cooling tube Superconducting cable Insulation Stainless steel jacket

Page 49: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

37

culate the inductance, resistance and capacitance to the ground these values will be multi-plied with the length of bus bars for each coil of the system.

Bus bar dimension Size

Cooling tube outer diameter 8 mm

Cable space diameter 41 mm

Conductor outer diameter 47 mm

Jacket thickness 3 mm

Tab. 3-14 Dimensions of the PF and CS superconducting bus bars taken from [DDD06h]

Inductance 1.4 µH/m

Capacitance to ground 1.79 nF/m

Tab. 3-15 Results of FEM calculation for superconducting bus bars

3.4.2 Water Cooled Bus Bars

Water cooled bus bars are needed as the connection of the FDU and SNU with the power supply of the coils. The FEM model of the cross section of the water cooled bus bar is shown in Fig. 3-9. The bus bar has a height of 106 mm and width of 200 mm. The diameter of the water cooling tubes is 20 mm. The location of their centre is 50 mm from the left and right side and 27 mm from the upper and lower side of the bus bar. These dimensions were taken from [PPSD2]. The material for the bus bar is aluminium with a conductivity of 3.3e7 S/m at continuous operation temperature of 60°C, which was derived from [DRGAb]. Because of the location inside the current leading bus bar the cooling tubes have no influence on the induc-tance and capacitance of the bus bar. For the cooling tubes vacuum was chosen as the ma-terial because the properties of the cooling liquid have no influence.

Fig. 3-9 FEM Model of the water cooled bus bar for power supply of the coils

Water cooling tube Aluminium

Page 50: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

38

The results of the FEM calculations are shown in Tab. 3-16. To calculate the inductance, resistance and capacitance to the ground these values will be multiplied with the length of bus bars for each coil of the system.

Inductance at DC 1.39 µH/m

Resistance at DC 1.39 µΩ/m

Capacitance to ground 13 pF/m

Capacitance to the parallel bus bar 35 pF/m

Tab. 3-16 Results of FEM calculation for water cooled bus bars

Compared to the values which are specified for the water cooled bus bars in [PPSA1] for the resistance 2.97 mΩ/m, the calculated value of the resistance with FEM is lower more than 2000 times. For the further calculations the calculated value for the resistance 1.39 µΩ/m was used. Compared to the value of the inductance of the water cooled bus bars which was given in [PPSA1] with 1 µH/m, the calculated value of 1.39 µH/m has a relative difference of 40 %. For the further calculations the calculated value for the inductance 1.39 µH/m was used.

Page 51: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Finite Element Method CS and PF Models

39

3.5 Simplifications Used in the Finite Element Method Models

- The crossover of the conductors between the pancakes and double pancakes are ig-nored, the conductors have only rotational symmetry.

- The cooling tube with 10 mm inner and 12 mm outer diameter with its metallic proper-ties was replaced with a tube with an outer diameter of 12 mm. Liquid helium has a permittivity of εr = 1.05 [Fas70a] and a permeability of µr = 1. Hence vacuum was se-lected as material instead of the definition of a new material in the FEM program.

- The superconducting cable of PF coils is made of up to 1440 superconducting strands, which means that the influence of skin and proximity effects in the cables is very low. Further the stranded and twisted design allows uniform current density in the whole cross section of the cable. To consider the cable design in the FEM model of the superconducting cable the cross section of the cable, excluding the cross sec-tion of the cooling tube, was defined as stranded copper conductor with a conductivity of 6.4E9 S/m at 4.5 K. Because of the stranded superconducting cable model no skin and proximity effects do appear in the cable. The jacket has still the skin and prox-imity effect.

- In the FEM model outer corners of the jacket are rectangular, which is in contradiction to the specified rounding of 3 mm radius.

- Several layers of insulation were summarised to one insulation layer with homogene-ous permittivity of εr = 4 [DRG1a].

- At FEM calculations with frequencies higher than 5 kHz one layer FEM model of the coil was used to manage the memory problems of the Maxwell2D. The magnetic cou-pling between the conductors for these frequencies are lower than 1 % and can be neglected

- The sub cable have a 0.1 mm thin stainless steel wrap with 50 % coverage to allow the helium penetration [PAC1]. Further there is a stainless steel final cable wrap with total 0.2 mm thickness with 50 % overlapping for protection of the cable during the pull through the jacket. The superconducting cable and the stainless steel jacket were taken into model as separated and insulated parts. The stainless steel wrap were added to the stainless steel jacket in the detailed FEM models of the PF 3 and PF 6 coil.

- The value for the water cooled bus bars specified in [PPSA1] for the resistance 2.97 mΩ/m and the inductance 1 µH/m were not used in network models. Instead of them the FEM calculated values for resistance 1.39 µΩ/m and inductance 1.39 µH/m were used in further calculations.

Page 52: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

40

4 Network Models of the CS and PF Coils

In this chapter the network models of the coils are described. The network model of the com-plete CS PF coil system with FDU, SNU and power supply is shown in section 4.1. The de-tailed network models of the PF 3 and PF 6 coils with and without instrumentation cables are described in section 4.2 and 4.3. The network calculations were made with the program PSpice [Orc07].

4.1 Network Model of the CS PF Coil System

The network model of the CS PF coil system will be used to calculate the voltage behaviour on the coil terminals for PF 3 and PF 6 coils. These calculated voltages will be used in de-tailed network models of the coils as excitation voltages and thus the voltage stress between each conductor of the PF 3 and PF 6 coils will be calculated. The settings of the network model of CS PF coil system are given in Annex B.1.

The network model of the CS PF coil system consists of the parts of the electrical circuits of the CS and PF coils which were shown in section 2.3 with simplifications which will be de-scribed in detail in this section and summarised in section 4.4.

The overview about the network models of all CS and PF coil circuits is shown in Fig. 4-1. Due to the high amount of parts in the network models of the CS PF coils system the over-view figure can not be shown closer. The details of the circuits are shown in the following figures.

The circuits of the CS3U, CS2U, CS2L, CS3L, PF 1 and PF 6 coils are single coil electrical circuits which consist of power supply, SNU, FDU and the simplified network model of the coil. The coils CS1U and CS1L are switched in series in one electrical circuit, which consists of one power supply, two FDUs, two SNUs and the simplified network models of the CS1U and CS1L coils. The PF 2, PF 3, PF 4 and PF 5 coils are switched in parallel in one electrical circuit which consists of four power supplies, four FDUs and the simplified network models of the PF 2 – PF 5 coils. The magnetic coupling between all the coils which were calculated with the simplified FEM model of the CS PF coil system described in section 3.1 is also con-sidered in the network model.

The coils in the CS PF coil system have partly different winding direction of the turns. The winding direction of the PF 2 – PF 5 coils is specified in [PAF6Ba]. The PF 2 and PF 3 coils have the same winding direction. The PF 4 and PF 5 coils have also the same winding direc-tion, but different to PF 2 and PF 3 coils. The winding direction for other coils, PF 1, PF 6 and all CS coils, is not explicitly specified in the documentation. In [DDDD3] the winding direction of the CS coils, PF 3 and PF 6 coil is drawn for upper and lower pancake of the double pan-cake one and also in a side view of these coils. The winding direction of CS, PF 3 and PF 6 coils are the same in these drawings, thus the winding direction of PF 1 was assumed to be the same like PF 3 coil. Only PF 4 and PF 5 coils are winded in opposite direction to other PF and all CS coils.

Page 53: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

41

Fig. 4-1 Network models of the electrical circuits of the CS and PF coils

0

0

0

00

0

0

00

0

00

0

0

0

000

0

0

00

0

0

0

0

0

0

0

0

00

0

000

0

00

0

0

0

0

00

0

00

00

0

00 0

0

00

00

0

00

0

00

0

0

00

00

0

00

0

0

00

00

0

00

0

0

00

00

0

0

0

00 00

0

0

0

00

00

00

0

0

0

0

V+

V-

I

I

IV+ V-

I

I

Cw

cbbP

F51.

05e-

9C

wcb

bPF5

1.05

e-9

Csc

-SN

U-P

F1

0.1e

-3

Csc

-SN

U-P

F1

0.1e

-3

Lscb

b-PF

6

35e-

6

Lscb

b-PF

6

35e-

6

12

VS-S

NU

-PF1

20

VS-S

NU

-PF1

20 12

Ck2

-CS2

L

40e-

9

Ck2

-CS2

L

40e-

9

Dbr

eak

D2-

SNU

-PF1

Dbr

eak

D2-

SNU

-PF1

Rw

cbb-

2CS2

U

43.3

e-6

Rw

cbb-

2CS2

U

43.3

e-6

MS1

-SN

U-C

S3L

20

MS1

-SN

U-C

S3L

20 12

Rw

cbb-

1PF5

42e-

6

Rw

cbb-

1PF5

42e-

6

Csc

bb+C

S3L

66e-

9C

scbb

+CS3

L66

e-9

Csc

-FD

U-P

F1

0.35

e-3

Csc

-FD

U-P

F1

0.35

e-3

Cw

cbb-

1PF3

0.4e

-9C

wcb

b-1P

F30.

4e-9

RD

-PF2

-MAX

1.03

RD

-PF2

-MAX

1.03

12

TH-F

DU

-CS2

L

1.02

7

TH-F

DU

-CS2

L

1.02

7

12

Csc

-SN

U-C

S2U

0.1e

-3

Csc

-SN

U-C

S2U

0.1e

-3

Lwcb

b-2C

S2U

43.3

e-6

Lwcb

b-2C

S2U

43.3

e-6

12

Csc

-FD

U-P

F6

0.35

e-3

Csc

-FD

U-P

F6

0.35

e-3

Lk6+

PF6

150e

-9Lk

6+PF

615

0e-9

12

LS-F

DU

-CS2

L

10e-

6

LS-F

DU

-CS2

L

10e-

61

2

RD

-CS3

L-M

AX

1.03

RD

-CS3

L-M

AX

1.03

12

LS-F

DU

-PF4

10e-

6

LS-F

DU

-PF4

10e-

61

2

RD

-CS3

U

90e-

3

RD

-CS3

U

90e-

3

LS-F

DU

-PF1

10e-

6

LS-F

DU

-PF1

10e-

61

2

Cw

cbb-

2CS3

U0.

4e-9

Cw

cbb-

2CS3

U0.

4e-9

Csc

-FD

U-C

S1L

0.35

e-3

Csc

-FD

U-C

S1L

0.35

e-3

Lwcb

b-1C

S1L

42e-

6Lw

cbb-

1CS1

L42

e-6

12

Rsc

bb-C

S1L

40e-

12R

scbb

-CS1

L40

e-12

RD

-PF1

-MAX

1.03

RD

-PF1

-MAX

1.03

12

Rtn

2-PF

21kR

tn2-

PF2

1k

VS-S

NU

-PF6

20

VS-S

NU

-PF6

20 12

Ck6

-CS2

U

158e

-9

Ck6

-CS2

U

158e

-9

EPM

S-SN

U-P

F6

20

EPM

S-SN

U-P

F6

20 12

Lwcb

b-1C

S2U

41.7

e-6

Lwcb

b-1C

S2U

41.7

e-6

12

Rtn

1-C

S1L

1kRtn

1-C

S1L

1k

Rk2

-CS2

U1.

175e

-3R

k2-C

S2U

1.17

5e-3

Rsc

bb-P

F2

25e-

12

Rsc

bb-P

F2

25e-

12

Csc

-FD

U-P

F3

0.35

e-3

Csc

-FD

U-P

F3

0.35

e-3

VCB2

-FD

U-P

F5

1.02

718

VCB2

-FD

U-P

F5

1.02

718

12

C2-

SNU

-CS3

U

0.8e

-3

C2-

SNU

-CS3

U

0.8e

-3

R2-

CS3

L

0.22

R2-

CS3

L

0.22

R3-

PF1

0.22

R3-

PF1

0.22

Lk6-

CS3

L30

0e-9

Lk6-

CS3

L30

0e-9

12

MS1

-SN

U-P

F1

20

MS1

-SN

U-P

F1

20 12

Lscb

b+C

S2U

50.4

e-6

Lscb

b+C

S2U

50.4

e-6

12

PB-F

DU

-PF3

100

PB-F

DU

-PF3

100

12

Rsc

bb-C

S3L

37e-

12

Rsc

bb-C

S3L

37e-

12

Rsc

-FD

U-P

F5

0.15

Rsc

-FD

U-P

F5

0.15

LS-F

DU

-CS3

U

10e-

6

LS-F

DU

-CS3

U

10e-

61

2

C2-

SNU

-CS3

L

0.8e

-3

C2-

SNU

-CS3

L

0.8e

-3

VCB1

-CS1

U1.

02VC

B1-C

S1U

1.02

1 2

Rsc

bb+P

F1

25e-

12

Rsc

bb+P

F1

25e-

12

R1-

CS1

L0.

22R

1-C

S1L

0.22

VCB1

-CS1

L1.

02VC

B1-C

S1L

1.02

1 2

PMS1

-CS2

L1.

001

PMS1

-CS2

L1.

001

12

Ck6

-CS1

U20

9e-9

Ck6

-CS1

U20

9e-9

Cc-

FDU

-PF4

1.8e

-3

Cc-

FDU

-PF4

1.8e

-3

Rk6

+CS1

U

483e

-6

Rk6

+CS1

U

483e

-6

Lk2+

PF2

1.35

e-6

Lk2+

PF2

1.35

e-6

12

Ck2

+CS2

L

40e-

9

Ck2

+CS2

L

40e-

9

Cw

cbb-

2PF2

0.4e

-9C

wcb

b-2P

F20.

4e-9

Lwcb

b+PF

2

42e-

6

Lwcb

b+PF

2

42e-

6

12

Dbr

eak

D2-

SNU

-CS2

U

Dbr

eak

D2-

SNU

-CS2

U

VCB1

-FD

U-P

F2

1.02

VCB1

-FD

U-P

F2

1.02

12

Rng

-CS1

L

1kRng

-CS1

L

1k

Ck2

+CS2

U

56.4

e-9

Ck2

+CS2

U

56.4

e-9

Rsc

bb+C

S3U

34e-

12

Rsc

bb+C

S3U

34e-

12

LS-F

DU

-CS1

U10

e-6

LS-F

DU

-CS1

U10

e-6

1 2

Rw

cbb+

CS3

U

41.7

e-6

Rw

cbb+

CS3

U

41.7

e-6

VCB1

-FD

U-C

S3U

1.02

VCB1

-FD

U-C

S3U

1.02

12

R1-

CS3

U

0.22

R1-

CS3

U

0.22

Cc-

FDU

-CS2

L

1.8e

-3

Cc-

FDU

-CS2

L

1.8e

-3

Cw

cbbP

F31.

05e-

9C

wcb

bPF3

1.05

e-9

2.01

PF6

2.01

PF6

S1-S

NU

-CS2

L

20 S1-S

NU

-CS2

L

20 12

MS2

-SN

U-C

S1L

20MS2

-SN

U-C

S1L

20

1 2

TH2-

SNU

-PF6

20

TH2-

SNU

-PF6

20 12

Csc

bb+P

F644

.75e

-9C

scbb

+PF6

44.7

5e-9

VS-S

NU

-CS1

L20VS

-SN

U-C

S1L

20

1 2

Rng

-CS1

U

1kRng

-CS1

U

1k

Cw

cbb+

PF6

0.39

e-9

Cw

cbb+

PF6

0.39

e-9

Ck6

+CS3

L

72e-

9

Ck6

+CS3

L

72e-

9

Cw

cbbC

S2L

1.05

e-9

Cw

cbbC

S2L

1.05

e-9

Rk6

-PF6

83.3

e-6

Rk6

-PF6

83.3

e-6

VCB2

-FD

U-C

S2L

1.02

718

VCB2

-FD

U-C

S2L

1.02

718

12

VCB2

-FD

U-C

S1U

1.02

718

VCB2

-FD

U-C

S1U

1.02

718

1 2

RD

-CS1

L-M

AX1.

03R

D-C

S1L-

MAX

1.03

1 2

Dbr

eak

D-F

DU

-CS3

U

Dbr

eak

D-F

DU

-CS3

U

Cc-

FDU

-CS1

L1.

8e-3

Cc-

FDU

-CS1

L1.

8e-3

R3-

CS1

U0.

22R

3-C

S1U

0.22

EPM

S-SN

U-C

S1U

20EPM

S-SN

U-C

S1U

20

1 2

S2-C

S3L

1.00

2

S2-C

S3L

1.00

2

12

Csc

bb+C

S1U

72e-

9

Csc

bb+C

S1U

72e-

9

TH-F

DU

-CS3

L

1.02

7

TH-F

DU

-CS3

L

1.02

7

12

Lscb

b-C

S2L

54.6

e-6

Lscb

b-C

S2L

54.6

e-6

12

Rsc

bb-P

F4

27e-

12

Rsc

bb-P

F4

27e-

12

S2-P

F6

1.00

2

S2-P

F6

1.00

2

12

Csc

bb+P

F448

e-9

Csc

bb+P

F448

e-9

Lk2+

CS2

L1.

48e-

6Lk

2+C

S2L

1.48

e-6

12

R2-

CS2

U

0.22

R2-

CS2

U

0.22

Rsc

-FD

U-C

S2U

0.15

Rsc

-FD

U-C

S2U

0.15

Rw

cbb+

PF5

42e-

6

Rw

cbb+

PF5

42e-

6

PB-F

DU

-CS1

U10

0PB

-FD

U-C

S1U

100

1 2

Ck6

-CS3

U

130e

-9

Ck6

-CS3

U

130e

-9

Rk2

-CS3

U0.

975e

-3R

k2-C

S3U

0.97

5e-3

S1-S

NU

-CS1

U20S1

-SN

U-C

S1U

20

1 2

Cw

cbb-

1CS2

L0.

4e-9

Cw

cbb-

1CS2

L0.

4e-9

MS1

-SN

U-C

S2U

20

MS1

-SN

U-C

S2U

20 12

Rsc

bb+P

F2

25e-

12

Rsc

bb+P

F2

25e-

12

Rw

cbb-

1PF6

41.7

e-6

Rw

cbb-

1PF6

41.7

e-6

Lk2+

PF4

0.9e

-6Lk

2+PF

40.

9e-6

12

VCB1

-FD

U-P

F5

1.02

VCB1

-FD

U-P

F5

1.02

12

Rw

cbb+

CS3

L

41.7

e-6

Rw

cbb+

CS3

L

41.7

e-6

Lscb

b-PF

3

32e-

6

Lscb

b-PF

3

32e-

6

12

Rw

cbb-

2CS3

U

43.3

e-6

Rw

cbb-

2CS3

U

43.3

e-6

Ck2

-CS3

U

46.8

e-9

Ck2

-CS3

U

46.8

e-9

S2-P

F1

1.00

2

S2-P

F1

1.00

2

12

Rsc

bb+C

S1U

40e-

12R

scbb

+CS1

U40

e-12

TH1-

SNU

-PF1

20

TH1-

SNU

-PF1

20 12

Rtn

2-PF

61kR

tn2-

PF6

1k

Cw

cbb+

PF2

0.4e

-9C

wcb

b+PF

20.

4e-9

VS-S

NU

-CS2

L

20

VS-S

NU

-CS2

L

20 12

EPM

S-SN

U-C

S2L

20

EPM

S-SN

U-C

S2L

20 12

TH-F

DU

-PF3

1.02

7

TH-F

DU

-PF3

1.02

7

12

I-PF3

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

I-PF3

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

Csc

-SN

U-C

S3U

0.1e

-3

Csc

-SN

U-C

S3U

0.1e

-3

Lwcb

b-2C

S3U

43.3

e-6

Lwcb

b-2C

S3U

43.3

e-6

12

Ck2

+CS3

L

36e-

9

Ck2

+CS3

L

36e-

9

RD

-CS2

U

103e

-3

RD

-CS2

U

103e

-3

Rk2

-PF4

1e-3

Rk2

-PF4

1e-3

Csc

bb-P

F546

e-9

Csc

bb-P

F546

e-9

TH2-

SNU

-CS1

U20TH

2-SN

U-C

S1U

20

1 2

Rk2

+CS1

U

475e

-6

Rk2

+CS1

U

475e

-6

Rng

-CS2

L

1kRng

-CS2

L

1k

Cc-

FDU

-CS3

L

1.8e

-3

Cc-

FDU

-CS3

L

1.8e

-3

Lk6-

CS2

U66

0e-9

Lk6-

CS2

U66

0e-9

12

S1-S

NU

-CS3

L

20 S1-S

NU

-CS3

L

20 12

TH-F

DU

-PF6

1.02

7

TH-F

DU

-PF6

1.02

7

12

Rsc

bb-C

S1U

40e-

12R

scbb

-CS1

U40

e-12

Rng

-PF2

1kRng

-PF2

1k

RD

-CS3

U-M

AX

1.03

RD

-CS3

U-M

AX

1.03

12

C2-

SNU

-CS2

U

0.8e

-3

C2-

SNU

-CS2

U

0.8e

-3

Rk2

+PF4

500e

-6R

k2+P

F450

0e-6

VCB2

-FD

U-C

S3L

1.02

718

VCB2

-FD

U-C

S3L

1.02

718

12

Rk2

+PF3

875e

-6R

k2+P

F387

5e-6

Rw

cbb-

1PF1

41.7

e-6

Rw

cbb-

1PF1

41.7

e-6

Lk2-

CS2

L1.

48e-

6Lk

2-C

S2L

1.48

e-6

12

Cw

cbb-

1CS2

U0.

4e-9

Cw

cbb-

1CS2

U0.

4e-9

TH2-

SNU

-CS2

L

20

TH2-

SNU

-CS2

L

20 12

Rsc

bb+C

S1L

40e-

12R

scbb

+CS1

L40

e-12

Lscb

b-PF

2

35e-

6

Lscb

b-PF

2

35e-

6

12

Cw

cbb+

CS2

L0.

4e-9

Cw

cbb+

CS2

L0.

4e-9

C2-

SNU

-PF1

0.8e

-3

C2-

SNU

-PF1

0.8e

-3

Rsc

-FD

U-P

F4

0.15

Rsc

-FD

U-P

F4

0.15

Lk2+

CS3

U1.

75e-

6Lk

2+C

S3U

1.75

e-6

12

Cw

cbb-

1PF4

0.4e

-9C

wcb

b-1P

F40.

4e-9

Rw

cbb-

2PF1

43.3

e-6

Rw

cbb-

2PF1

43.3

e-6

Dbr

eak

D2-

SNU

-CS3

U

Dbr

eak

D2-

SNU

-CS3

U

Ck2

+CS3

U

46.8

e-9

Ck2

+CS3

U

46.8

e-9

I-CS2

LTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

I-CS2

LTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

Csc

-SN

U-C

S1L

0.1e

-3C

sc-S

NU

-CS1

L0.

1e-3

Dbr

eak

D2-

SNU

-CS1

LD

brea

kD

2-SN

U-C

S1L

Csc

bb-P

F644

.75e

-9C

scbb

-PF6

44.7

5e-9

C1-

SNU

-PF1

20e-

3

C1-

SNU

-PF1

20e-

3

MS1

-SN

U-C

S1U

20MS1

-SN

U-C

S1U

20

1 2

Rk6

+CS2

U36

6e-6

Rk6

+CS2

U36

6e-6

PMS1

-CS3

L1.

001

PMS1

-CS3

L1.

001

12

PMS1

-PF2

1.00

1PM

S1-P

F21.

001

1 2

Lscb

b+C

S1U

56e-

6Ls

cbb+

CS1

U56

e-6

12

Rk6

-CS1

U

483e

-6

Rk6

-CS1

U

483e

-6

Lwcb

b+PF

6

41.7

e-6

Lwcb

b+PF

6

41.7

e-6

12

PMS1

-PF6

1.00

1PM

S1-P

F61.

001

12

PMS1

-PF3

1.00

1PM

S1-P

F31.

001

1 2

Dbr

eak

D1-

SNU

-PF1

Dbr

eak

D1-

SNU

-PF1

Lscb

b+PF

3

32e-

6

Lscb

b+PF

3

32e-

6

12

PB-F

DU

-PF6

100

PB-F

DU

-PF6

100

12

Lk6-

PF1

150e

-9Lk

6-PF

115

0e-9

12

Dbr

eak

D1-

SNU

-CS1

UD

brea

kD

1-SN

U-C

S1U

BPS-

FDU

-PF6

1.00

3

BPS-

FDU

-PF6

1.00

31

2

Cc-

FDU

-PF6

1.8e

-3

Cc-

FDU

-PF6

1.8e

-3

PB-F

DU

-CS2

U

100

PB-F

DU

-CS2

U

100

12

S1-S

NU

-PF6

20 S1-S

NU

-PF6

20 12

VS-S

NU

-CS3

L

20

VS-S

NU

-CS3

L

20 12

EPM

S-SN

U-C

S3L

20

EPM

S-SN

U-C

S3L

20 12

Rng

-PF5

1kRng

-PF5

1k

TH1-

SNU

-CS2

U

20

TH1-

SNU

-CS2

U

20 12

LS-F

DU

-PF2

10e-

6

LS-F

DU

-PF2

10e-

61

2

0.7

PF1

0.7

PF1

Csc

bb-C

S2L

69.8

e-9

Csc

bb-C

S2L

69.8

e-9

Rtn

2-C

S2L

1kRtn

2-C

S2L

1k

Rsc

bb+C

S2U

36e-

12

Rsc

bb+C

S2U

36e-

12

Rsc

bb-C

S3U

34e-

12

Rsc

bb-C

S3U

34e-

12Ls

cbb-

CS3

L

51.8

e-6

Lscb

b-C

S3L

51.8

e-6

12

Rw

cbb+

CS2

U

41.7

e-6

Rw

cbb+

CS2

U

41.7

e-6

Dbr

eak

D-F

DU

-PF2

Dbr

eak

D-F

DU

-PF2

VCB1

-FD

U-C

S2U

1.02

VCB1

-FD

U-C

S2U

1.02

12

S2-P

F5

1.00

2

S2-P

F5

1.00

2

12

Lscb

b-PF

5

30e-

6

Lscb

b-PF

5

30e-

6

12

Lk2+

PF5

0.9e

-6Lk

2+PF

50.

9e-6

12

Csc

-FD

U-P

F4

0.35

e-3

Csc

-FD

U-P

F4

0.35

e-3

Rsc

bb-P

F3

23e-

12

Rsc

bb-P

F3

23e-

12

Rtn

1-C

S2L

1kRtn

1-C

S2L

1k

Ck2

-PF5

13e-

9

Ck2

-PF5

13e-

9

Dbr

eak

D3-

SNU

-PF6

Dbr

eak

D3-

SNU

-PF6

R2-

PF6

0.3

R2-

PF6

0.3

Lwcb

b-1P

F6

41.7

e-6

Lwcb

b-1P

F6

41.7

e-6

12

RD

-PF3

-MAX

1.03

RD

-PF3

-MAX

1.03

12

TH2-

SNU

-CS3

L

20

TH2-

SNU

-CS3

L

20 12

Lk2+

PF1

0.9e

-6Lk

2+PF

10.

9e-6

12

Cw

cbb+

CS3

L0.

4e-9

Cw

cbb+

CS3

L0.

4e-9

Rk6

+CS3

U30

0e-6

Rk6

+CS3

U30

0e-6

PMS1

-PF1

1.00

1PM

S1-P

F11.

001

12

Lk6+

CS2

U66

0e-9

Lk6+

CS2

U66

0e-9

12

R3-

PF6

0.3

R3-

PF6

0.3

S1-P

F61.

001

S1-P

F61.

001

12

I-CS3

LTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

I-CS3

LTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

Rk6

+CS3

L16

7e-6

Rk6

+CS3

L16

7e-6

PB-F

DU

-PF1

100

PB-F

DU

-PF1

100

12

Rsc

-FD

U-P

F3

0.15

Rsc

-FD

U-P

F3

0.15

Dbr

eak

D1-

SNU

-CS3

U

Dbr

eak

D1-

SNU

-CS3

U

Ck2

+CS1

L60

e-9

Ck2

+CS1

L60

e-9

Lk6-

CS3

U54

0e-9

Lk6-

CS3

U54

0e-9

12

Csc

bb+P

F341

e-9

Csc

bb+P

F341

e-9

VCB1

-FD

U-P

F4

1.02

VCB1

-FD

U-P

F4

1.02

12

I-PF4

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

I-PF4

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

R2-

CS1

L0.

22R

2-C

S1L

0.22

Rw

cbb-

1CS3

U

41.7

e-6

Rw

cbb-

1CS3

U

41.7

e-6

Lk2+

PF3

1.57

e-6

Lk2+

PF3

1.57

e-6

12

Rng

-CS3

L

1kRng

-CS3

L

1k

Ck6

+PF6

36e-

9

Ck6

+PF6

36e-

9

Rtn

2-PF

51kR

tn2-

PF5

1k

TH1-

SNU

-CS1

L20TH

1-SN

U-C

S1L

20

1 2

VCB2

-FD

U-P

F4

1.02

718

VCB2

-FD

U-P

F4

1.02

718

12

Ck6

+CS2

L

101e

-9

Ck6

+CS2

L

101e

-9

C2-

SNU

-CS1

L0.

8e-3

C2-

SNU

-CS1

L0.

8e-3

Rk2

+CS2

L0.

825e

-3R

k2+C

S2L

0.82

5e-3

Rng

-PF1

1kRng

-PF1

1k

VCB2

-FD

U-P

F2

1.02

718

VCB2

-FD

U-P

F2

1.02

718

12

Csc

bb+P

F245

e-9

Csc

bb+P

F245

e-9

R2-

PF1

0.22

R2-

PF1

0.22

Csc

bb-C

S1U

72e-

9

Csc

bb-C

S1U

72e-

9

Rsc

-FD

U-C

S1U

0.15

Rsc

-FD

U-C

S1U

0.15

Lwcb

b+C

S2L

41.7

e-6

Lwcb

b+C

S2L

41.7

e-6

12

Cw

cbb-

2PF5

0.59

e-9

Cw

cbb-

2PF5

0.59

e-9

0.77

6C

S3L

0.77

6C

S3L

Rng

-PF6

1kRng

-PF6

1k

RD

-PF3

80e-

3

RD

-PF3

80e-

3

VCB2

-FD

U-C

S3U

1.02

718

VCB2

-FD

U-C

S3U

1.02

718

12

Rw

cbb-

1CS3

L

41.7

e-6

Rw

cbb-

1CS3

L

41.7

e-6

Lscb

b-C

S1L

56e-

6Ls

cbb-

CS1

L56

e-6

12

BPS-

SNU

-CS2

L

20 BPS-

SNU

-CS2

L

20 12

Dbr

eak

D-F

DU

-PF4

Dbr

eak

D-F

DU

-PF4

RD

-PF2

19e-

3

RD

-PF2

19e-

3

Lscb

b+C

S1L

56e-

6Ls

cbb+

CS1

L56

e-6

12

Lwcb

b-1P

F2

42e-

6

Lwcb

b-1P

F2

42e-

6

12

Csc

-FD

U-C

S2L

0.35

e-3

Csc

-FD

U-C

S2L

0.35

e-3

BPS-

FDU

-CS2

L

1.00

3

BPS-

FDU

-CS2

L

1.00

3

12

Csc

bb-C

S3L

66e-

9C

scbb

-CS3

L66

e-9

Lk2-

PF6

2.11

e-6

Lk2-

PF6

2.11

e-6

12

Ck2

+PF4

6e-9

Ck2

+PF4

6e-9

LS-F

DU

-PF3

10e-

6

LS-F

DU

-PF3

10e-

61

2

INC

LUD

E: K

oppl

ung_

reel

.txt

INC

LUD

E: K

oppl

ung_

reel

.txt

Rtn

2-C

S3L

1kRtn

2-C

S3L

1k

Rsc

-FD

U-P

F1

0.15

Rsc

-FD

U-P

F1

0.15

Lwcb

b-2P

F1

43.3

e-6

Lwcb

b-2P

F1

43.3

e-6

12

Rtn

1-PF

11kR

tn1-

PF1

1k

Ck2

+PF3

10.5

e-9

Ck2

+PF3

10.5

e-9

MS2

-SN

U-P

F6

20

MS2

-SN

U-P

F6

20 12

R1-

PF1

0.22

R1-

PF1

0.22

Ck6

-CS2

L

101e

-9

Ck6

-CS2

L

101e

-9R

k6-C

S2L

233e

-6R

k6-C

S2L

233e

-6

C2-

SNU

-CS1

U0.

8e-3

C2-

SNU

-CS1

U0.

8e-3

Rk6

-CS2

U36

6e-6

Rk6

-CS2

U36

6e-6

I-PF6

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

I-PF6

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

Rsc

bb+P

F4

27e-

12

Rsc

bb+P

F4

27e-

12

RD

-CS2

U-M

AX

1.03

RD

-CS2

U-M

AX

1.03

12

Ck2

+PF2

36e-

9

Ck2

+PF2

36e-

9

Cw

cbb-

2PF4

0.59

e-9

Cw

cbb-

2PF4

0.59

e-9

Rw

cbb+

PF4

42e-

6

Rw

cbb+

PF4

42e-

6

S1-P

F11.

001

S1-P

F11.

001

12

BPS-

FDU

-PF4

1.00

3

BPS-

FDU

-PF4

1.00

3

12

RD

-PF4

-MAX

1.03

RD

-PF4

-MAX

1.03

12

Rsc

-SN

U-C

S2L

0.2

Rsc

-SN

U-C

S2L

0.2

Cw

cbb-

2PF3

0.4e

-9C

wcb

b-2P

F30.

4e-9

Cw

cbb-

1PF5

0.4e

-9C

wcb

b-1P

F50.

4e-9

Csc

-FD

U-C

S3U

0.35

e-3

Csc

-FD

U-C

S3U

0.35

e-3

Lk6+

CS3

U54

0e-9

Lk6+

CS3

U54

0e-9

12

C1-

SNU

-CS1

L20

e-3

C1-

SNU

-CS1

L20

e-3

BPS-

SNU

-CS1

U20BP

S-SN

U-C

S1U

20

1 2

PB-F

DU

-CS3

L

100

PB-F

DU

-CS3

L

100

12

Cw

cbb-

2CS2

L0.

59e-

9C

wcb

b-2C

S2L

0.59

e-9

S2-C

S2U

1.00

2

S2-C

S2U

1.00

2

12

PMS1

-PF4

1.00

1PM

S1-P

F41.

001

1 2

Dbr

eak

D3-

SNU

-CS2

L

Dbr

eak

D3-

SNU

-CS2

L

0.77

6C

S2U

0.77

6C

S2U

Dbr

eak

D-F

DU

-CS2

U

Dbr

eak

D-F

DU

-CS2

U

Rsc

bb-C

S2U

36e-

12

Rsc

bb-C

S2U

36e-

12

RD

-CS1

L10

1e-3

RD

-CS1

L10

1e-3

VS-S

NU

-CS3

U

20

VS-S

NU

-CS3

U

20 12

EPM

S-SN

U-C

S3U

20

EPM

S-SN

U-C

S3U

20 12

Cw

cbbP

F21.

05e-

9C

wcb

bPF2

1.05

e-9

Ck6

+CS1

U20

9e-9

Ck6

+CS1

U20

9e-9

S1-S

NU

-PF1

20 S1-S

NU

-PF1

20 12

R3-

CS2

L

0.22

R3-

CS2

L

0.22

S1-C

S2L

1.00

1S1

-CS2

L1.

001

12

Lscb

b-C

S3U

47.6

e-6

Lscb

b-C

S3U

47.6

e-6

12

S1-P

F51.

001

S1-P

F51.

001

1 2

Csc

bb+P

F546

e-9

Csc

bb+P

F546

e-9

Lk6+

CS1

U

870e

-9

Lk6+

CS1

U

870e

-91

2

Lk6-

CS1

U

870e

-9

Lk6-

CS1

U

870e

-91

2

Rk6

+PF1

83.8

e-6

Rk6

+PF1

83.8

e-6

Ck2

+PF1

24e-

9

Ck2

+PF1

24e-

9

Rtn

1-C

S3L

1kRtn

1-C

S3L

1k

Cw

cbb+

CS1

U

0.4e

-9

Cw

cbb+

CS1

U

0.4e

-9

TH-F

DU

-PF4

1.02

7

TH-F

DU

-PF4

1.02

7

12

Dbr

eak

D3-

SNU

-CS1

LD

brea

kD

3-SN

U-C

S1L

Ck2

-CS1

U21

2e-9

Ck2

-CS1

U21

2e-9

Lscb

b+PF

6

35e-

6

Lscb

b+PF

6

35e-

6

12

Ck2

-CS2

U

56.4

e-9

Ck2

-CS2

U

56.4

e-9

BPS-

SNU

-CS3

L

20 BPS-

SNU

-CS3

L

20 12

Rtn

1-PF

61kR

tn1-

PF6

1k

TH2-

SNU

-CS3

U

20

TH2-

SNU

-CS3

U

20 12

Cw

cbb-

1PF6

0.39

e-9

Cw

cbb-

1PF6

0.39

e-9

Csc

bb+C

S3U

61e-

9C

scbb

+CS3

U61

e-9

Rw

cbb+

CS1

U42

e-6

Rw

cbb+

CS1

U42

e-6

Lwcb

b+C

S1U

42e-

6Lw

cbb+

CS1

U42

e-6

12

Cw

cbb+

CS3

U0.

39e-

9C

wcb

b+C

S3U

0.39

e-9

Csc

-FD

U-C

S3L

0.35

e-3

Csc

-FD

U-C

S3L

0.35

e-3

Cc-

FDU

-PF3

1.8e

-3

Cc-

FDU

-PF3

1.8e

-3

1.56

PF5

1.56

PF5

LS-F

DU

-CS3

L

10e-

6

LS-F

DU

-CS3

L

10e-

61

2

BPS-

FDU

-CS3

L

1.00

3

BPS-

FDU

-CS3

L

1.00

3

12

Rk6

-CS3

U30

0e-6

Rk6

-CS3

U30

0e-6

Lk6+

PF1

150e

-9Lk

6+PF

115

0e-9

12

TH-F

DU

-CS2

U

1.02

7

TH-F

DU

-CS2

U

1.02

7

12

Cw

cbb-

1PF2

0.4e

-9C

wcb

b-1P

F20.

4e-9

Rk6

-CS3

L16

7e-6

Rk6

-CS3

L16

7e-6

Rtn

2-PF

31kR

tn2-

PF3

1k

Ck2

-PF4

12.6

e-9

Ck2

-PF4

12.6

e-9

LS-F

DU

-CS2

U

10e-

6

LS-F

DU

-CS2

U

10e-

61

2

Lwcb

b-2P

F2

43e-

6

Lwcb

b-2P

F2

43e-

6

12

Csc

bb-P

F448

e-9

Csc

bb-P

F448

e-9

MS2

-SN

U-C

S2L

20

MS2

-SN

U-C

S2L

20 12

Rsc

-SN

U-C

S3L

0.2

Rsc

-SN

U-C

S3L

0.2

S2-P

F2

1.00

2

S2-P

F2

1.00

2

12

Cw

cbbP

F61.

05e-

9C

wcb

bPF6

1.05

e-9

Lwcb

b-1C

S3U

41.7

e-6

Lwcb

b-1C

S3U

41.7

e-6

12

Csc

bb-C

S2U

64e-

9C

scbb

-CS2

U64

e-9

TH1-

SNU

-PF6

20

TH1-

SNU

-PF6

20 12

Rk2

+CS3

L0.

75e-

3R

k2+C

S3L

0.75

e-3

Rtn

1-PF

51kR

tn1-

PF5

1k

Lk2+

CS3

L1.

35e-

6Lk

2+C

S3L

1.35

e-6

12

Lwcb

b+C

S3L

41.7

e-6

Lwcb

b+C

S3L

41.7

e-6

12

BPS-

FDU

-PF1

1.00

3

BPS-

FDU

-PF1

1.00

31

2C

scbb

+PF1

44.7

5e-9

Csc

bb+P

F144

.75e

-9

Ck2

-PF3

10.5

e-9

Ck2

-PF3

10.5

e-9

R1-

CS2

L

0.22

R1-

CS2

L

0.22

0.40

8PF

20.

408

PF2

TH-F

DU

-PF5

1.02

7

TH-F

DU

-PF5

1.02

7

12

S2-P

F3

1.00

2

S2-P

F3

1.00

2

12

Lwcb

b-1C

S3L

41.7

e-6

Lwcb

b-1C

S3L

41.7

e-6

12

VCB1

-FD

U-P

F1

1.02

VCB1

-FD

U-P

F1

1.02

12

Dbr

eak

D-F

DU

-PF1

Dbr

eak

D-F

DU

-PF1

VCB2

-FD

U-C

S1L

1.02

718

VCB2

-FD

U-C

S1L

1.02

718

1 2

PB-F

DU

-CS2

L

100

PB-F

DU

-CS2

L

100

12

Rw

cbb-

2CS2

L

63e-

6

Rw

cbb-

2CS2

L

63e-

6

MS2

-SN

U-C

S1U

20MS2

-SN

U-C

S1U

20

1 2

PMS1

-CS2

U1.

001

PMS1

-CS2

U1.

001

12

VS-S

NU

-CS1

U20VS

-SN

U-C

S1U

20

1 2

Rsc

-FD

U-P

F6

0.15

Rsc

-FD

U-P

F6

0.15

Csc

bb+C

S1L

72e-

9

Csc

bb+C

S1L

72e-

9

Rw

cbb-

1PF2

42e-

6

Rw

cbb-

1PF2

42e-

6

BPS-

SNU

-PF6

20 BPS-

SNU

-PF6

20 12

0.77

6C

S2L

0.77

6C

S2L

Lk2-

CS3

L1.

44e-

6Lk

2-C

S3L

1.44

e-6

12

Lk2-

CS1

L

3.6e

-6

Lk2-

CS1

L

3.6e

-61

2

Rtn

2-C

S3U

1kRtn

2-C

S3U

1k

Lwcb

b-2P

F4

63e-

6

Lwcb

b-2P

F4

63e-

6

12

S1-C

S3L

1.00

1S1

-CS3

L1.

001

12

Cw

cbb-

2PF1

0.4e

-9C

wcb

b-2P

F10.

4e-9

S2-C

S1U

-CS1

L1.

002

S2-C

S1U

-CS1

L1.

002

1 2

Rsc

bb+P

F3

23e-

12

Rsc

bb+P

F3

23e-

12

BPS-

FDU

-CS1

L1.

003

BPS-

FDU

-CS1

L1.

003

1 2

TH-F

DU

-CS1

L1.

027

TH-F

DU

-CS1

L1.

027

1 2

Csc

-SN

U-C

S2L

0.1e

-3

Csc

-SN

U-C

S2L

0.1e

-3

MS1

-SN

U-P

F6

20

MS1

-SN

U-P

F6

20 12

Cc-

FDU

-CS2

U

1.8e

-3

Cc-

FDU

-CS2

U

1.8e

-3

Lwcb

b-2C

S2L

63e-

6

Lwcb

b-2C

S2L

63e-

6

12

S1-S

NU

-CS2

U

20 S1-S

NU

-CS2

U

20 12

Lwcb

b-2P

F5

63e-

6

Lwcb

b-2P

F5

63e-

6

12

VCB2

-FD

U-C

S2U

1.02

718

VCB2

-FD

U-C

S2U

1.02

718

12

S2-C

S3U

1.00

2

S2-C

S3U

1.00

2

12

S1-C

S1U

-CS1

L

1.00

1

S1-C

S1U

-CS1

L

1.00

1

12

Rsc

-FD

U-C

S1L

0.15

Rsc

-FD

U-C

S1L

0.15

Cw

cbbC

S3U

1.05

e-9

Cw

cbbC

S3U

1.05

e-9

S1-P

F41.

001

S1-P

F41.

001

1 2

R1-

CS1

U0.

22R

1-C

S1U

0.22

Rsc

-SN

U-P

F1

0.2

Rsc

-SN

U-P

F1

0.2

Ck6

-PF1

36e-

9

Ck6

-PF1

36e-

9

Rk2

-CS2

L0.

825e

-3R

k2-C

S2L

0.82

5e-3

Rk2

+PF1

0.5e

-3R

k2+P

F10.

5e-3

Dbr

eak

D-F

DU

-PF3

Dbr

eak

D-F

DU

-PF3

Cw

cbb-

2CS3

L0.

59e-

9C

wcb

b-2C

S3L

0.59

e-9

Rsc

-SN

U-P

F6

0.2

Rsc

-SN

U-P

F6

0.2

C1-

SNU

-PF6

20e-

3

C1-

SNU

-PF6

20e-

3

Dbr

eak

D-F

DU

-CS3

L

Dbr

eak

D-F

DU

-CS3

L

Rk2

+PF6

0.62

5e-3

Rk2

+PF6

0.62

5e-3

Ck6

+PF1

36e-

9

Ck6

+PF1

36e-

9

Rtn

2-C

S1L

1kRtn

2-C

S1L

1k

RD

-PF6

92e-

3

RD

-PF6

92e-

3

Lscb

b+C

S2L

54.6

e-6

Lscb

b+C

S2L

54.6

e-6

12

Lscb

b-C

S2U

50.4

e-6

Lscb

b-C

S2U

50.4

e-6

12

Cw

cbb-

2PF6

0.4e

-9C

wcb

b-2P

F60.

4e-9

Rk2

+PF2

750e

-6R

k2+P

F275

0e-6

Rtn

2-PF

41kR

tn2-

PF4

1k

Lk2+

CS2

U2.

11e-

6Lk

2+C

S2U

2.11

e-6

12

Lwcb

b+PF

3

42e-

6

Lwcb

b+PF

3

42e-

6

12

Lwcb

b-1P

F4

42e-

6

Lwcb

b-1P

F4

42e-

6

12

Cc-

FDU

-PF5

1.8e

-3

Cc-

FDU

-PF5

1.8e

-3

0.77

6C

S1U

0.77

6C

S1U

LS-F

DU

-CS1

L10

e-6

LS-F

DU

-CS1

L10

e-6

1 2

Dbr

eak

D2-

SNU

-CS2

L

Dbr

eak

D2-

SNU

-CS2

L

R3-

CS1

L0.

22R

3-C

S1L

0.22

TH2-

SNU

-PF1

20

TH2-

SNU

-PF1

20 12

EPM

S-SN

U-C

S1L

20EPM

S-SN

U-C

S1L

20

1 2

C2-

SNU

-PF6

0.8e

-3

C2-

SNU

-PF6

0.8e

-3

Lk2-

PF1

0.9e

-6Lk

2-PF

10.

9e-6

12

Rsc

bb-P

F1

25e-

12

Rsc

bb-P

F1

25e-

12

Csc

bb-C

S3U

61e-

9C

scbb

-CS3

U61

e-9

Csc

-FD

U-C

S1U

0.35

e-3

Csc

-FD

U-C

S1U

0.35

e-3

MS2

-SN

U-C

S3L

20

MS2

-SN

U-C

S3L

20 12

Csc

-FD

U-C

S2U

0.35

e-3

Csc

-FD

U-C

S2U

0.35

e-3

LS-F

DU

-PF5

10e-

6

LS-F

DU

-PF5

10e-

61

2

TH-F

DU

-CS1

U1.

027

TH-F

DU

-CS1

U1.

027

1 2

Ck6

-CS1

L18

0e-9

Ck6

-CS1

L18

0e-9

Rk6

+CS1

L

457e

-6

Rk6

+CS1

L

457e

-6

Rk6

-PF1

83.3

e-6

Rk6

-PF1

83.3

e-6

Ck2

-PF1

24e-

9

Ck2

-PF1

24e-

9

TH-F

DU

-PF2

1.02

7

TH-F

DU

-PF2

1.02

7

12

VS-S

NU

-CS2

U

20

VS-S

NU

-CS2

U

20 12

Rw

cbb+

PF3

42e-

6

Rw

cbb+

PF3

42e-

6

EPM

S-SN

U-C

S2U

20

EPM

S-SN

U-C

S2U

20 12

TH-F

DU

-CS3

U

1.02

7

TH-F

DU

-CS3

U

1.02

7

12

RD

-PF1

46e-

3

RD

-PF1

46e-

3

PB-F

DU

-PF2

100

PB-F

DU

-PF2

100

12

Rw

cbb-

1CS1

L42

e-6

Rw

cbb-

1CS1

L42

e-6

Lwcb

b-2C

S1L

63e-

6Lw

cbb-

2CS1

L63

e-6

12

BPS-

FDU

-CS3

U

1.00

3

BPS-

FDU

-CS3

U

1.00

3

12

0.77

6C

S1L

0.77

6C

S1L

RD

-PF4

67e-

3

RD

-PF4

67e-

3

Lwcb

b+PF

5

42e-

6

Lwcb

b+PF

5

42e-

6

12

Cc-

FDU

-CS3

U

1.8e

-3

Cc-

FDU

-CS3

U

1.8e

-3

S1-S

NU

-CS3

U

20 S1-S

NU

-CS3

U

20 12

Cc-

FDU

-PF1

1.8e

-3

Cc-

FDU

-PF1

1.8e

-3

Lscb

b+PF

5

36e-

6

Lscb

b+PF

5

36e-

6

12

Rk2

+PF5

500e

-6R

k2+P

F550

0e-6

Rtn

2-C

S1U

1kRtn

2-C

S1U

1k

Lk2+

CS1

U

0.85

e-6

Lk2+

CS1

U

0.85

e-6

12

Rng

-CS2

U

1kRng

-CS2

U

1k

R2-

CS2

L

0.22

R2-

CS2

L

0.22

Rsc

-FD

U-C

S2L

0.15

Rsc

-FD

U-C

S2L

0.15

Dbr

eak

D-F

DU

-PF6

Dbr

eak

D-F

DU

-PF6

Rk2

+CS1

L

1.25

e-3

Rk2

+CS1

L

1.25

e-3

Cw

cbb+

PF5

0.4e

-9C

wcb

b+PF

50.

4e-9

RD

-CS1

U10

2e-3

RD

-CS1

U10

2e-3

MS2

-SN

U-P

F1

20

MS2

-SN

U-P

F1

20 12

Csc

-SN

U-C

S1U

0.1e

-3C

sc-S

NU

-CS1

U0.

1e-3

Dbr

eak

D2-

SNU

-CS1

UD

brea

kD

2-SN

U-C

S1U

Dbr

eak

D-F

DU

-CS1

LD

brea

kD

-FD

U-C

S1L

Csc

-FD

U-P

F2

0.35

e-3

Csc

-FD

U-P

F2

0.35

e-3

Rw

cbb-

2PF2

43e-

6

Rw

cbb-

2PF2

43e-

6

LS-F

DU

-PF6

10e-

6

LS-F

DU

-PF6

10e-

61

2

Lk2-

CS2

U2.

11e-

6Lk

2-C

S2U

2.11

e-6

12

Cw

cbb-

1CS3

U0.

39e-

9C

wcb

b-1C

S3U

0.39

e-9

TH2-

SNU

-CS2

U

20

TH2-

SNU

-CS2

U

20 12

Rk2

-CS3

L0.

8e-3

Rk2

-CS3

L0.

8e-3

Cw

cbb+

CS2

U0.

4e-9

Cw

cbb+

CS2

U0.

4e-9

Dbr

eak

D-F

DU

-PF5

Dbr

eak

D-F

DU

-PF5

Lwcb

b+C

S3U

41.7

e-6

Lwcb

b+C

S3U

41.7

e-6

12

Rng

-PF4

1kRng

-PF4

1k

PMS1

-CS3

U1.

001

PMS1

-CS3

U1.

001

12

Cc-

FDU

-CS1

U1.

8e-3

Cc-

FDU

-CS1

U1.

8e-3

I-PF1

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

I-PF1

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

S1-S

NU

-CS1

L20S1

-SN

U-C

S1L

20

1 2

I-CS2

UTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

I-CS2

UTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

Rsc

bb+P

F6

25e-

12

Rsc

bb+P

F6

25e-

12

Rk2

-CS1

U

491e

-6

Rk2

-CS1

U

491e

-6

Rw

cbb+

PF6

41.7

e-6

Rw

cbb+

PF6

41.7

e-6

BPS-

FDU

-PF2

1.00

3

BPS-

FDU

-PF2

1.00

3

12

Cc-

FDU

-PF2

1.8e

-3

Cc-

FDU

-PF2

1.8e

-3

VCB1

-FD

U-P

F6

1.02

VCB1

-FD

U-P

F6

1.02

12

Rw

cbb-

2CS3

L

63e-

6

Rw

cbb-

2CS3

L

63e-

6

R1-

PF6

0.3

R1-

PF6

0.3

BPS-

FDU

-PF5

1.00

3

BPS-

FDU

-PF5

1.00

3

12

BPS-

FDU

-PF3

1.00

3

BPS-

FDU

-PF3

1.00

3

12

Rw

cbb+

PF2

42e-

6

Rw

cbb+

PF2

42e-

6

Dbr

eak

D1-

SNU

-CS2

L

Dbr

eak

D1-

SNU

-CS2

L

Csc

bb-P

F245

e-9

Csc

bb-P

F245

e-9

Dbr

eak

D2-

SNU

-CS3

L

Dbr

eak

D2-

SNU

-CS3

L

Dbr

eak

D1-

SNU

-CS2

U

Dbr

eak

D1-

SNU

-CS2

U

RD

-CS2

L

103e

-3

RD

-CS2

L

103e

-3

Rw

cbb-

2PF6

43.3

e-6

Rw

cbb-

2PF6

43.3

e-6

Ck2

-PF6

56.4

e-9

Ck2

-PF6

56.4

e-9

R3-

CS3

U

0.22

R3-

CS3

U

0.22

S1-C

S3U

1.00

1S1

-CS3

U1.

001

12

Rw

cbb-

2PF4

63e-

6

Rw

cbb-

2PF4

63e-

6

BPS-

SNU

-PF1

20 BPS-

SNU

-PF1

20 12

MS1

-SN

U-C

S1L

20MS1

-SN

U-C

S1L

20

1 2

Ck6

-CS3

L

72e-

9

Ck6

-CS3

L

72e-

9

Csc

-SN

U-P

F6

0.1e

-3

Csc

-SN

U-P

F6

0.1e

-3

Lscb

b+PF

4

38e-

6

Lscb

b+PF

4

38e-

6

12

Lwcb

b-2P

F6

43.3

e-6

Lwcb

b-2P

F6

43.3

e-6

12

Rw

cbb-

2PF5

63e-

6

Rw

cbb-

2PF5

63e-

6

Lk2-

PF4

1.89

e-6

Lk2-

PF4

1.89

e-6

12

I-PF5

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

I-PF5

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

Ck6

+CS3

U

130e

-9

Ck6

+CS3

U

130e

-9

VCB2

-FD

U-P

F1

1.02

718

VCB2

-FD

U-P

F1

1.02

718

12

Ck2

+PF5

6e-9

Ck2

+PF5

6e-9

Cw

cbbP

F11.

05e-

9C

wcb

bPF1

1.05

e-9

TH2-

SNU

-CS1

L20TH

2-SN

U-C

S1L

20

1 2

Rk2

-PF1

0.5e

-3R

k2-P

F10.

5e-3

Lscb

b+PF

2

35e-

6

Lscb

b+PF

2

35e-

6

12

Ck2

-CS3

L

38e-

9

Ck2

-CS3

L

38e-

9

Dbr

eak

D3-

SNU

-CS3

U

Dbr

eak

D3-

SNU

-CS3

U

Ck6

-PF6

36e-

9

Ck6

-PF6

36e-

9

Rtn

2-C

S2U

1kRtn

2-C

S2U

1k

Rk2

-PF6

1.17

5e-3

Rk2

-PF6

1.17

5e-3

R2-

CS3

U

0.22

R2-

CS3

U

0.22

Lscb

b+C

S3L

51.8

e-6

Lscb

b+C

S3L

51.8

e-6

12

VCB2

-FD

U-P

F3

1.02

718

VCB2

-FD

U-P

F3

1.02

718

12

1.83

PF3

1.83

PF3

Cw

cbb-

1CS3

L0.

4e-9

Cw

cbb-

1CS3

L0.

4e-9

Rk6

+CS2

L23

3e-6

Rk6

+CS2

L23

3e-6

I-CS1

U-C

S1L

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

0000

TR =

1

I-CS1

U-C

S1L

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

0000

TR =

1

Lk2-

CS3

U1.

75e-

6Lk

2-C

S3U

1.75

e-6

12

Rk2

-PF3

875e

-6R

k2-P

F387

5e-6

Rtn

1-C

S2U

1kRtn

1-C

S2U

1k

Rng

-PF3

1kRng

-PF3

1k

PB-F

DU

-PF5

100

PB-F

DU

-PF5

100

12

Lk2-

CS1

U

0.88

5e-6

Lk2-

CS1

U

0.88

5e-6

12

Lk2+

PF6

1.12

5e-6

Lk2+

PF6

1.12

5e-6

12

I-PF2

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

I-PF2

TD =

10e

-6TF

= 1

e-3

PW =

2e-

3PE

R =

I1 =

0I2

= 4

5000

TR =

1

MS2

-SN

U-C

S3U

20

MS2

-SN

U-C

S3U

20 12

Lscb

b-PF

1

35e-

6

Lscb

b-PF

1

35e-

6

12

Dbr

eak

D2-

SNU

-PF6

Dbr

eak

D2-

SNU

-PF6

Ck2

+PF6

30e-

9

Ck2

+PF6

30e-

9

R3-

CS3

L

0.22

R3-

CS3

L

0.22

I-CS3

UTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

I-CS3

UTD

= 1

0e-6

TF =

1e-

3PW

= 2

e-3

PER

=I1

= 0

I2 =

450

00TR

= 1

BPS-

FDU

-CS1

U1.

003

BPS-

FDU

-CS1

U1.

003

1 2

Lwcb

b-1P

F3

42e-

6

Lwcb

b-1P

F3

42e-

6

12

Lwcb

b-2P

F3

43e-

6

Lwcb

b-2P

F3

43e-

6

12

Lk2-

PF3

1.57

e-6

Lk2-

PF3

1.57

e-6

12

Rk6

-CS1

L

417e

-6

Rk6

-CS1

L

417e

-6

R2-

CS1

U0.

22R

2-C

S1U

0.22

Ck2

-PF2

36e-

9

Ck2

-PF2

36e-

9

Lscb

b-C

S1U

56e-

6Ls

cbb-

CS1

U56

e-6

12

Cw

cbb+

PF4

0.4e

-9C

wcb

b+PF

40.

4e-9

PMS1

-PF5

1.00

1PM

S1-P

F51.

001

1 2

Lwcb

b+PF

1

41.7

e-6

Lwcb

b+PF

1

41.7

e-6

12

Rng

-CS3

U

1kRng

-CS3

U

1k

TH1-

SNU

-CS2

L

20

TH1-

SNU

-CS2

L

20 12

Rw

cbb-

2CS1

L63

e-6

Rw

cbb-

2CS1

L63

e-6

Rk2

-PF5

1e-6

Rk2

-PF5

1e-6

RD

-PF6

-MAX

1.03

RD

-PF6

-MAX

1.03

12

Dbr

eak

D1-

SNU

-CS1

LD

brea

kD

1-SN

U-C

S1L

S2-P

F4

1.00

2

S2-P

F4

1.00

2

12

Rw

cbb-

1CS2

L

41.7

e-6

Rw

cbb-

1CS2

L

41.7

e-6

Rsc

bb+C

S2L

39e-

12

Rsc

bb+C

S2L

39e-

12

Rw

cbb+

CS2

L

41.7

e-6

Rw

cbb+

CS2

L

41.7

e-6

Rk2

-PF2

750e

-6R

k2-P

F275

0e-6

Lk2+

CS1

L

2.25

e-6

Lk2+

CS1

L

2.25

e-6

12

VCB1

-FD

U-C

S2L

1.02

VCB1

-FD

U-C

S2L

1.02

12

Dbr

eak

D3-

SNU

-CS3

L

Dbr

eak

D3-

SNU

-CS3

L

Rw

cbb-

1PF4

42e-

6

Rw

cbb-

1PF4

42e-

6

Rsc

-FD

U-C

S3L

0.15

Rsc

-FD

U-C

S3L

0.15

Rw

cbb-

1CS2

U

41.7

e-6

Rw

cbb-

1CS2

U

41.7

e-6

Rk2

+CS2

U1.

175e

-3R

k2+C

S2U

1.17

5e-3

Lwcb

b+C

S2U

41.7

e-6

Lwcb

b+C

S2U

41.7

e-6

12

Rsc

bb-P

F5

26e-

12

Rsc

bb-P

F5

26e-

12

Csc

bb-C

S1L

72e-

9

Csc

bb-C

S1L

72e-

9

RD

-PF5

-MAX

1.03

RD

-PF5

-MAX

1.03

12

Rsc

bb-P

F6

25e-

12

Rsc

bb-P

F6

25e-

12

Ck2

+CS1

U20

5e-9

Ck2

+CS1

U20

5e-9

Lwcb

b-1P

F1

41.7

e-6

Lwcb

b-1P

F1

41.7

e-6

12

BPS-

SNU

-CS2

U

20 BPS-

SNU

-CS2

U

20 12

Cw

cbb+

PF3

0.4e

-9C

wcb

b+PF

30.

4e-9

Lwcb

b-1P

F5

42e-

6

Lwcb

b-1P

F5

42e-

6

12

BPS-

FDU

-CS2

U

1.00

3

BPS-

FDU

-CS2

U

1.00

3

12

Rtn

1-PF

31kR

tn1-

PF3

1k

Cw

cbb+

PF1

0.39

e-9

Cw

cbb+

PF1

0.39

e-9

Csc

bb-P

F341

e-9

Csc

bb-P

F341

e-9

1.54

PF4

1.54

PF4

Rsc

-SN

U-C

S1L

0.2

Rsc

-SN

U-C

S1L

0.2

Lk6+

CS2

L42

0e-9

Lk6+

CS2

L42

0e-9

12

TH1-

SNU

-CS1

U20TH

1-SN

U-C

S1U

20

1 2

R1-

CS3

L

0.22

R1-

CS3

L

0.22

Lscb

b-PF

4

38e-

6

Lscb

b-PF

4

38e-

6

12

Cw

cbbP

F41.

05e-

9C

wcb

bPF4

1.05

e-9

PB-F

DU

-CS1

L10

0PB

-FD

U-C

S1L

100

1 2

Dbr

eak

D1-

SNU

-CS3

L

Dbr

eak

D1-

SNU

-CS3

L

Csc

-FD

U-P

F5

0.35

e-3

Csc

-FD

U-P

F5

0.35

e-3

RD

-CS3

L

92e-

3

RD

-CS3

L

92e-

3

Rw

cbb+

PF1

41.7

e-6

Rw

cbb+

PF1

41.7

e-6

RD

-PF5

71e-

3

RD

-PF5

71e-

3

TH-F

DU

-PF1

1.02

7

TH-F

DU

-PF1

1.02

7

12

C1-

SNU

-CS2

L

20e-

3

C1-

SNU

-CS2

L

20e-

3

Cw

cbbC

S3L

1.05

e-9

Cw

cbbC

S3L

1.05

e-9

Rsc

-SN

U-C

S2U

0.2

Rsc

-SN

U-C

S2U

0.2

C1-

SNU

-CS2

U

20e-

3

C1-

SNU

-CS2

U

20e-

3

Ck6

+CS2

U

158e

-9

Ck6

+CS2

U

158e

-9

Dbr

eak

D1-

SNU

-PF6

Dbr

eak

D1-

SNU

-PF6

Cw

cbb-

2CS2

U0.

4e-9

Cw

cbb-

2CS2

U0.

4e-9

Csc

-SN

U-C

S3L

0.1e

-3

Csc

-SN

U-C

S3L

0.1e

-3

Lwcb

b-2C

S3L

63e-

6

Lwcb

b-2C

S3L

63e-

6

12

Dbr

eak

D3-

SNU

-CS2

U

Dbr

eak

D3-

SNU

-CS2

U

Lk6-

PF6

150e

-9Lk

6-PF

615

0e-9

12

Cw

cbbC

S1U

1.05

e-9

Cw

cbbC

S1U

1.05

e-9

Rtn

1-C

S1U

1kRtn

1-C

S1U

1k

TH1-

SNU

-CS3

U

20

TH1-

SNU

-CS3

U

20 12

Lscb

b+PF

1

35e-

6

Lscb

b+PF

1

35e-

6

12

Lk2-

PF5

1.89

e-6

Lk2-

PF5

1.89

e-6

12

S1-P

F21.

001

S1-P

F21.

001

1 2

MS1

-SN

U-C

S2L

20

MS1

-SN

U-C

S2L

20 12

Rtn

1-PF

21kR

tn1-

PF2

1k

Csc

bb+C

S2L

69.8

e-9

Csc

bb+C

S2L

69.8

e-9

TH1-

SNU

-CS3

L

20

TH1-

SNU

-CS3

L

20 12

Csc

bb+C

S2U

64e-

9C

scbb

+CS2

U64

e-9

PB-F

DU

-CS3

U

100

PB-F

DU

-CS3

U

100

12

R3-

CS2

U

0.22

R3-

CS2

U

0.22

S1-C

S2U

1.00

1S1

-CS2

U1.

001

12

Lscb

b+C

S3U

47.6

e-6

Lscb

b+C

S3U

47.6

e-6

12

Rsc

bb+C

S3L

37e-

12

Rsc

bb+C

S3L

37e-

12

Lwcb

b+PF

4

42e-

6

Lwcb

b+PF

4

42e-

6

12

Rtn

1-C

S3U

1kRtn

1-C

S3U

1kVC

B1-F

DU

-CS3

L

1.02

VCB1

-FD

U-C

S3L

1.02

12

PMS1

-CS1

U-C

S1L

1.00

1

PMS1

-CS1

U-C

S1L

1.00

1

12

Rsc

bb+P

F5

26e-

12

Rsc

bb+P

F5

26e-

12

C1-

SNU

-CS1

U20

e-3

C1-

SNU

-CS1

U20

e-3

S1-P

F31.

001

S1-P

F31.

001

1 2

PB-F

DU

-PF4

100

PB-F

DU

-PF4

100

12

RD

-CS2

L-M

AX

1.03

RD

-CS2

L-M

AX

1.03

12

Rk6

+PF6

83.8

e-6

Rk6

+PF6

83.8

e-6

Rk2

-CS1

L

2e-3

Rk2

-CS1

L

2e-3

Csc

bb-P

F144

.75e

-9C

scbb

-PF1

44.7

5e-9

MS1

-SN

U-C

S3U

20

MS1

-SN

U-C

S3U

20 12

Cw

cbbC

S2U

1.05

e-9

Cw

cbbC

S2U

1.05

e-9

VCB1

-FD

U-P

F3

1.02

VCB1

-FD

U-P

F3

1.02

12

Cw

cbb-

1CS1

L

0.4e

-9

Cw

cbb-

1CS1

L

0.4e

-9

Rw

cbb-

1PF3

42e-

6

Rw

cbb-

1PF3

42e-

6

Lk6+

CS1

L

825e

-9

Lk6+

CS1

L

825e

-91

2

S2-C

S2L

1.00

2

S2-C

S2L

1.00

2

12

Rsc

-SN

U-C

S1U

0.2

Rsc

-SN

U-C

S1U

0.2

Rw

cbb-

2PF3

43e-

6

Rw

cbb-

2PF3

43e-

6

Lk6-

CS1

L

750e

-9

Lk6-

CS1

L

750e

-91

2

Rtn

1-PF

41kR

tn1-

PF4

1k

Lk6-

CS2

L42

0e-9

Lk6-

CS2

L42

0e-9

12

Rsc

-FD

U-P

F2

0.15

Rsc

-FD

U-P

F2

0.15

Dbr

eak

D-F

DU

-CS2

L

Dbr

eak

D-F

DU

-CS2

L

0.77

6C

S3U

0.77

6C

S3U

Lk6+

CS3

L30

0e-9

Lk6+

CS3

L30

0e-9

12

RD

-CS1

U-M

AX1.

03R

D-C

S1U

-MAX

1.03

1 2

Rsc

bb-C

S2L

39e-

12

Rsc

bb-C

S2L

39e-

12

C2-

SNU

-CS2

L

0.8e

-3

C2-

SNU

-CS2

L

0.8e

-3

Dbr

eak

D-F

DU

-CS1

UD

brea

kD

-FD

U-C

S1U

Dbr

eak

D3-

SNU

-PF1

Dbr

eak

D3-

SNU

-PF1

Ck2

-CS1

L96

e-9

Ck2

-CS1

L96

e-9

Rtn

2-PF

11kR

tn2-

PF1

1k

Rsc

-SN

U-C

S3U

0.2

Rsc

-SN

U-C

S3U

0.2

C1-

SNU

-CS3

U

20e-

3

C1-

SNU

-CS3

U

20e-

3

Rk2

+CS3

U0.

975e

-3R

k2+C

S3U

0.97

5e-3

BPS-

SNU

-CS1

L20BP

S-SN

U-C

S1L

20

1 2

Cw

cbb-

2CS1

L

0.59

e-9

Cw

cbb-

2CS1

L

0.59

e-9

Dbr

eak

D3-

SNU

-CS1

UD

brea

kD

3-SN

U-C

S1U

EPM

S-SN

U-P

F1

20

EPM

S-SN

U-P

F1

20 12

Lwcb

b-1C

S2L

41.7

e-6

Lwcb

b-1C

S2L

41.7

e-6

12

VCB2

-FD

U-P

F6

1.02

718

VCB2

-FD

U-P

F6

1.02

718

12

C1-

SNU

-CS3

L

20e-

3

C1-

SNU

-CS3

L

20e-

3

MS2

-SN

U-C

S2U

20

MS2

-SN

U-C

S2U

20 12

Lk2-

PF2

1.35

e-6

Lk2-

PF2

1.35

e-6

12

Rsc

-FD

U-C

S3U

0.15

Rsc

-FD

U-C

S3U

0.15

BPS-

SNU

-CS3

U

20 BPS-

SNU

-CS3

U

20 12

Ck6

+CS1

L19

8e-9

Ck6

+CS1

L19

8e-9

Cw

cbb-

1PF1

0.39

e-9

Cw

cbb-

1PF1

0.39

e-9

R1-

CS2

U

0.22

R1-

CS2

U

0.22

Page 54: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

42

The detailed discussion of a network model of a coil circuit will be made exemplary with the PF 6 coil, which is shown in Fig. 4-2. To show the details of the network model, it was sepa-rated in four parts: the power supply, the switching network unit, the fast discharge unit and the simplified model of the PF 6 coil which are shown in detail in Fig. 4-3, Fig. 4-4, Fig. 4-5 and Fig. 4-6.

The power supply of the PF 6 coil which is shown in Fig. 4-3 consists of the current source I-PF6 which supplies the coil circuit with current up to 45 kA. The free wheeling switch of the power supply S1-PF6 will be closed before the fast discharge of the coil will be started. First the free wheeling path of the coil current will be made by the switch PMS1-PF6. The switch S2-PF6 will separate, 1 ms after the closing of the PMS1-PF6 and S1-PF6, the power supply from the coil circuit during the fast discharge. In the network model the switching times of these three switches were set to 1 µs. In reality the switching times are much slower but this has no relevance for the calculation of the coil voltages.

The connection of the power supply with the PF 6 coil and its SNU will be made with the wa-ter cooled bus bars, the FEM model of which is shown in section 3.4.2. With the calculated values for resistance with 1.39 µΩ/m, inductance with 1.39 µH/m, the capacitance to the ground with 13 pF/m and capacitance between the water cooled bus bars with 35 pF/m and with the distances between the CTB of the coil, the power supply and the SNU, the values for the water cooled bus bars were calculated for positive and negative polarity of the connec-tions to the power supply. These distances were derived from [SLBD1] and [SLBa].

The bus bar with positive polarity was defined as the connection between the coil power supply and the SNU. Its length was estimated from site layouts ([SLBD1], [SLBa]) to 30 m for the PF 6 coil. The elements of the water cooled bus bar with positive polarity have the in-dexes “wcbb+PF6”. The bus bar with negative polarity was defined as the connection be-tween the CTB of the coil and the coil power supply. Its total length was estimated to 75 m. The first part of the water cooled bus bars with negative polarity is placed parallel to the posi-tive polarity for about 30 m. This distance is equal to the distance between SNU and power supply of the coils. The other part of the bus bar is placed between CTB and SNU and has only a bus bar in one direction for 31 m respectively 45 m, depending on the distance of the coil connection to the power supply. The elements of the water cooled bus bar with negative polarity which are placed in parallel to the bus bars with positive polarity have the indexes “wcbb-1PF6” and the part of the bus bars with negative polarity which have no parallel bus bar with positive polarity have the indexes “wcbb-2PF6”.

Page 55: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

43

Fig. 4-2 Network model of the electrical circuit of the PF 6 coil with the parts which are

shown in detail in Fig. 4-3, Fig. 4-4, Fig. 4-5 and Fig. 4-6

0

00

00

0

00 0

0

Ck6

+PF6

36e-

9

Ck6

+PF6

36e-

9

Rk2

+PF6

0.62

5e-3

Rk2

+PF6

0.62

5e-3

C1-

SN

U-P

F6

20e-

3

C1-

SN

U-P

F6

20e-

3

Rsc

-SN

U-P

F6

0.2

Rsc

-SN

U-P

F6

0.2

R1-

PF6

0.3

R1-

PF6

0.3

Rk6

+PF6

83.8

e-6

Rk6

+PF6

83.8

e-6

VC

B1-

FDU

-PF6

1.02

VC

B1-

FDU

-PF6

1.02

12

Csc

bb-P

F644

.75e

-9C

scbb

-PF6

44.7

5e-9

Rw

cbb+

PF6

41.7

e-6

Rw

cbb+

PF6

41.7

e-6

Rsc

bb+P

F6

25e-

12

Rsc

bb+P

F6

25e-

12

RD

-PF6

-MA

X

1.03

RD

-PF6

-MA

X

1.03

12

EP

MS

-SN

U-P

F6

20

EP

MS

-SN

U-P

F6

20 12

Rk2

-PF6

1.17

5e-3

Rk2

-PF6

1.17

5e-3

TH1-

SN

U-P

F6

20

TH1-

SN

U-P

F6

20 12

I-PF6

TD =

10e

-6TF

= 1

e-3

PW

= 2

e-3

PE

R =

I1 =

0I2

= 4

5000

TR =

1

I-PF6

TD =

10e

-6TF

= 1

e-3

PW

= 2

e-3

PE

R =

I1 =

0I2

= 4

5000

TR =

1

VS

-SN

U-P

F6

20

VS

-SN

U-P

F6

20 12

Cw

cbbP

F61.

05e-

9C

wcb

bPF6

1.05

e-9

Rtn

2-P

F61kR

tn2-

PF6

1k

Ck6

-PF6

36e-

9

Ck6

-PF6

36e-

9R

k6-P

F683

.3e-

6R

k6-P

F683

.3e-

6

MS

2-S

NU

-PF6

20

MS

2-S

NU

-PF6

20 12

VC

B2-

FDU

-PF6

1.02

718

VC

B2-

FDU

-PF6

1.02

718

12

Cw

cbb+

PF6

0.39

e-9

Cw

cbb+

PF6

0.39

e-9

Csc

bb+P

F644

.75e

-9C

scbb

+PF6

44.7

5e-9

TH2-

SN

U-P

F6

20

TH2-

SN

U-P

F6

20 12

S1-

PF6

1.00

1S

1-P

F61.

001

12

R3-

PF6

0.3

R3-

PF6

0.3

2.01

PF6

2.01

PF6

LS-F

DU

-PF6

10e-

6

LS-F

DU

-PF6

10e-

61

2

Rw

cbb-

1PF6

41.7

e-6

Rw

cbb-

1PF6

41.7

e-6

Lk2-

PF6

2.11

e-6

Lk2-

PF6

2.11

e-6

12

Lk6+

PF6

150e

-9Lk

6+P

F615

0e-9

12M

S1-

SN

U-P

F6

20

MS

1-S

NU

-PF6

20 12

S1-

SN

U-P

F6

20 S1-

SN

U-P

F6

20 12

Csc

-FD

U-P

F6

0.35

e-3

Csc

-FD

U-P

F6

0.35

e-3

Cc-

FDU

-PF6

1.8e

-3

Cc-

FDU

-PF6

1.8e

-3

BP

S-F

DU

-PF6

1.00

3

BP

S-F

DU

-PF6

1.00

31

2

Lwcb

b-2P

F6

43.3

e-6

Lwcb

b-2P

F6

43.3

e-6

12

Csc

-SN

U-P

F6

0.1e

-3

Csc

-SN

U-P

F6

0.1e

-3

PB

-FD

U-P

F6

100

PB

-FD

U-P

F6

100

12

C2-

SN

U-P

F6

0.8e

-3

C2-

SN

U-P

F6

0.8e

-3

Lwcb

b-1P

F6

41.7

e-6

Lwcb

b-1P

F6

41.7

e-6

12

Dbr

eak

D-F

DU

-PF6

Dbr

eak

D-F

DU

-PF6

TH-F

DU

-PF6

1.02

7

TH-F

DU

-PF6

1.02

7

12

Rsc

bb-P

F6

25e-

12

Rsc

bb-P

F6

25e-

12

Ck2

+PF6

30e-

9

Ck2

+PF6

30e-

9

BP

S-S

NU

-PF6

20 BP

S-S

NU

-PF6

20 12

Dbr

eak

D2-

SN

U-P

F6

Dbr

eak

D2-

SN

U-P

F6

Lk6-

PF6

150e

-9Lk

6-P

F615

0e-9

12

R2-

PF6

0.3

R2-

PF6

0.3

Rsc

-FD

U-P

F6

0.15

Rsc

-FD

U-P

F6

0.15

Dbr

eak

D3-

SN

U-P

F6

Dbr

eak

D3-

SN

U-P

F6

Rng

-PF6

1kRng

-PF6

1k

Lk2+

PF6

1.12

5e-6

Lk2+

PF6

1.12

5e-6

12

S2-

PF6

1.00

2

S2-

PF6

1.00

2

12

PM

S1-

PF6

1.00

1P

MS

1-P

F61.

001

12

Cw

cbb-

1PF6

0.39

e-9

Cw

cbb-

1PF6

0.39

e-9

Dbr

eak

D1-

SN

U-P

F6

Dbr

eak

D1-

SN

U-P

F6

Ck2

-PF6

56.4

e-9

Ck2

-PF6

56.4

e-9

Rw

cbb-

2PF6

43.3

e-6

Rw

cbb-

2PF6

43.3

e-6

Cw

cbb-

2PF6

0.4e

-9C

wcb

b-2P

F60.

4e-9

Lwcb

b+P

F6

41.7

e-6

Lwcb

b+P

F6

41.7

e-6

12

Rtn

1-P

F61kR

tn1-

PF6

1k

Lscb

b-P

F6

35e-

6

Lscb

b-P

F6

35e-

6

12

RD

-PF6

92e-

3

RD

-PF6

92e-

3

Lscb

b+P

F6

35e-

6

Lscb

b+P

F6

35e-

6

12

Sw

itchi

ng N

etw

ork

Uni

t

Sim

plifi

ed m

odel

of

the

PF

6 C

oil

Fast

Dis

char

ge U

nit

Pow

er S

uppl

y

Page 56: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

44

0

0

Rwcbb+PF6

41.7e-6

Rwcbb+PF6

41.7e-6

I-PF6TD = 10e-6TF = 1e-3PW = 2e-3PER =I1 = 0I2 = 45000TR = 1

I-PF6TD = 10e-6TF = 1e-3PW = 2e-3PER =I1 = 0I2 = 45000TR = 1

CwcbbPF61.05e-9CwcbbPF61.05e-9

Cwcbb+PF60.39e-9Cwcbb+PF60.39e-9

S1-PF61.001S1-PF61.001

1

2

Rwcbb-1PF6

41.7e-6

Rwcbb-1PF6

41.7e-6

Lwcbb-1PF6

41.7e-6

Lwcbb-1PF6

41.7e-6

12

S2-PF6

1.002

S2-PF6

1.002

1 2

PMS1-PF61.001PMS1-PF61.001

1

2

Cwcbb-1PF60.39e-9Cwcbb-1PF60.39e-9

Lwcbb+PF6

41.7e-6

Lwcbb+PF6

41.7e-6

12

Fig. 4-3 Network model of the power supply of the PF 6 coil with water cooled bus bars

The length of the water cooled bus bars for all coils are summarised in Tab. 4-1 and Tab. 4-2. Because the parallel coils PF 2, PF 3, PF 4 and PF 5 have no SNU in their electrical circuits the power supplies of these coils are directly connected to FDUs. The values of the resistances, inductances and capacitances used for water cooled bus bars in the network model of the CS PF coil system are given in Tab. B.1-1 in Annex B.1.

Coil Name Length of the connection from CTB to power supply

Length of the connection from power supply to SNU

CS3U 61 m 30 m

CS2U 61 m 30 m

CS1U 75 m 30 m

CS1L 75 m 30 m

CS2L 75 m 30 m

CS3L 75 m 30 m

PF 1 61 m 30 m

PF 6 61 m 30 m

Tab. 4-1 Length of the water cooled bus bars to SNU for CS, PF 1 and PF 6 coils derived from [SLBD1] and [SLBa]

Page 57: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

45

Coil Name Length of the connection from CTB to power supply

Length of the connection from power supply to FDU

PF 2 61 m 30 m

PF 3 61 m 30 m

PF 4 75 m 30 m

PF 5 75 m 30 m

Tab. 4-2 Length of the water cooled bus bars to FDU for PF 2, PF 3, PF 4 and PF 5 coils derived from [SLBD1] and [SLBa]

The network model of the SNU of the PF 6 coil is shown in Fig. 4-4. The values for the ele-ments of the SNU were taken from section 2.3.2 and established in the network model. The switching network resistors R1-PF6, R2-PF6 and R3-PF6 have all the same resistance value. The task of the switching network resistors is to deliver 10 kV voltages for ignition of the plasma at different currents through the coils [PAF6Bc]. To achieve this task the resis-tances R1-PF6 and R2-PF6 can be switched in and off from the SNU circuit by the main switches MS1-SNU-PF6 and MS2-SNU-PF6.

The power cables are used for the connection between the switching unit and the switching network resistors (SNR). These cables are made from copper with a cross section of 800 mm². The element values for one cable are taken from [Bar05]. The capacitance to ground is 0.6 nF/m, the inductance of one cable is 90 nH/m and the resistance is 50 µΩ/m. For connection of switching unit to SNR six parallel cables will be used because of the high currents which will flow to the SNR during the normal operation scenarios. The lengths of the connection with power cables between the SNU and SNR are given in Tab. 4-3. The values for the cables for the connection between SNU and SNR are given in Tab. B.1-2 in Annex B.1.

The snubber circuit which consists of a resistance Rsc-SNU-PF6 = 0.2 Ω and a capacitance Csc-SNU-PF6 = 0.1 mF will limit the high frequency voltage oscillations which will be caused by switching of the SNU. The explosively activated protective make switch EPMS-SNU-PF6 will be used to make the free wheeling path for the current and to bridge the SNU if other current switches are disabled.

The current will flow at the normal operation through the switch S1-SNU-PF6 and the bypass switch BPS-SNU-PF6. The switch TH1-SNU-PF6 will be used to make the free wheeling cur-rent path and to bridge the SNU during the normal operation. The diode D2-SNU-PF6 to-gether with the switch TH1-SNU-PF6 is used to simulate the function of a thyristor, which will be used. The diode D1-SNU-PF6 will be used to limit the current flow to one direction. The capacitor C1-SNU-PF6 = 20mF is charged to a voltage of 1 kV. The switch TH2-SNU-PF6 and the diode D3-SNU-PF6 simulate the thyristor which will be used to discharge the C1-SNU-PF6 and thus make the current free opening of the BPS-SNU-PF6. The capacitor C2-SNU-PF6 = 0.8 mF is charged to a voltage of 8 kV. The vacuum switch VS-SNU-PF6 will be

Page 58: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

46

used to discharge the C2-SNU-PF6 and to support the current less opening of the BPS-SNU-PF6.

00

Ck6+PF6

36e-9

Ck6+PF6

36e-9

C1-SNU-PF6

20e-3

C1-SNU-PF6

20e-3

Rsc-SNU-PF6

0.2

Rsc-SNU-PF6

0.2

R1-PF6

0.3

R1-PF6

0.3

Rk6+PF683.8e-6Rk6+PF683.8e-6

EPMS-SNU-PF6

20

EPMS-SNU-PF6

201 2

TH1-SNU-PF6

20

TH1-SNU-PF6

201 2

VS-SNU-PF6

20

VS-SNU-PF6

201 2

Ck6-PF6

36e-9

Ck6-PF6

36e-9Rk6-PF683.3e-6Rk6-PF683.3e-6

MS2-SNU-PF6

20

MS2-SNU-PF6

201 2

TH2-SNU-PF6

20

TH2-SNU-PF6

201 2

R3-PF6

0.3

R3-PF6

0.3

Lk6+PF6150e-9Lk6+PF6150e-9

1

2MS1-SNU-PF6

20

MS1-SNU-PF6

201 2

S1-SNU-PF6

20

S1-SNU-PF6

20

1 2

Csc-SNU-PF6

0.1e-3

Csc-SNU-PF6

0.1e-3

C2-SNU-PF6

0.8e-3

C2-SNU-PF6

0.8e-3

BPS-SNU-PF6

20

BPS-SNU-PF6

20

1 2

Dbreak

D2-SNU-PF6

Dbreak

D2-SNU-PF6

Lk6-PF6150e-9Lk6-PF6150e-9

1

2

R2-PF6

0.3

R2-PF6

0.3

Dbreak

D3-SNU-PF6

Dbreak

D3-SNU-PF6

Dbreak

D1-SNU-PF6

Dbreak

D1-SNU-PF6

Fig. 4-4 Network model of the SNU of the PF 6 coil

The FDU will be used to commutate the current to the fast discharge resistor (FDR) during the fast discharge of the coils. The network model of the FDU of the PF 6 coil is shown in Fig. 4-5. The fast discharge resistor of the PF 6 coil RD-FDU-PF6 has an initial value of 92 mΩ. During the fast discharge the value of the resistance is increasing due to the heating up of the resistor to 216 mΩ. This process is simulated with an additional switch RD-PF6-MAX. Its initial resistance is set to 1e-12 Ω. During the closing time the value of the resis-tance of the PD-PF6-MAX is increasing and reaches its maximum of 124 mΩ. The closing time of PD-PF6-MAX is selected to 13 s which corresponds to the equivalent discharge time constant of the PF 6 coil.

Page 59: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

47

The power cables which were used for connection from FDU to Fast Discharge Resistor (FDR) are made of copper with a cross section of 800 mm2. The values for one cable were taken from [Bar05]. The capacitance to ground is 0.6 nF/m, the inductance of one cable is 90 nH/m and the resistance is 50 µΩ/m. For the connection of FDU with FDR only two paral-lel cables were used because the currents to FDR will flow only during the fast discharge process. The lengths of the connection of power cables between FDU and FDR are summa-rised in Tab. 4-3. The values for the resistances, inductances and capacitances of the cables for the connection between FDU and FDR are given in Tab. B.1-3 in Annex B.1.

The switch BPS-FDU-PF6 will simulate the BPS of the FDU with the same switching times and resistances like the real BPS. The switches VCB1-FDU-PF6 and VCB2-FDU-PF6 will simulate the vacuum circuit breaker. The VCB1-FDU-PF6 will simulate the arcing in a real VCB of the FDU before the extinguishing of the arc starts. The VCB2-FDU-PF6 will simulate the extinguishing of the arc in a real VCB. The pyrobreaker PB-FDU-PF6 will commutate the current in case of the failure when the VCB does not work properly. The circuit with the ca-pacitance Cc-FDU-PF6 = 1.8 mF which is charged to a voltage of 7 kV, the switch TH-FDU-PF6 and the diode D-FDU-PF6 will be used to extinguish the arc in the VCB by discharging of the capacitor. TH-FDU-PF6 and D-FDU-PF6 will simulate the real thyristor of the circuit. The switching time of TH-FDU-PF6 was set to 2 µs [Dat1]. The snubber circuit which con-sists of a resistance Rsc-FDU-PF6 = 0.15 Ω and a capacitance Csc-FDU-PF6 = 0.35 mF will limit the high frequency voltage oscillations which will be caused by switching of the FDU.

00

Rk2+PF60.625e-3Rk2+PF60.625e-3

VCB1-FDU-PF6

1.02

VCB1-FDU-PF6

1.02

1 2

RD-PF6-MAX

1.03

RD-PF6-MAX

1.03

1 2

Rk2-PF61.175e-3Rk2-PF61.175e-3

VCB2-FDU-PF6

1.02718

VCB2-FDU-PF6

1.02718

1 2LS-FDU-PF6

10e-6

LS-FDU-PF6

10e-61 2

Lk2-PF62.11e-6Lk2-PF62.11e-6

1

2

Csc-FDU-PF6

0.35e-3

Csc-FDU-PF6

0.35e-3

Cc-FDU-PF6

1.8e-3

Cc-FDU-PF6

1.8e-3

BPS-FDU-PF6

1.003

BPS-FDU-PF6

1.0031 2

PB-FDU-PF6

100

PB-FDU-PF6

100

1 2

Dbreak

D-FDU-PF6

Dbreak

D-FDU-PF6TH-FDU-PF6

1.027

TH-FDU-PF6

1.027

1 2

Ck2+PF6

30e-9

Ck2+PF6

30e-9

Rsc-FDU-PF6

0.15

Rsc-FDU-PF6

0.15

Lk2+PF61.125e-6Lk2+PF61.125e-6

1

2

Ck2-PF6

56.4e-9

Ck2-PF6

56.4e-9

RD-PF6

92e-3

RD-PF6

92e-3

Fig. 4-5 Network model of the FDU of the PF 6 coil

The network model with simplified PF 6 coil, the superconducting bus bars and symmetrical grounding of the coil is shown in Fig. 4-6. The connection of the CTB with the PF 6 coil will be made with the superconducting bus bars, the FEM model of which is shown in section

Page 60: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

48

3.4.1. To simulate the superconductivity of the filaments the resistance of the superconduct-ing bus bars was set to 1 pΩ/m. With the calculated values for inductance 1.4 µH/m and the capacitance 1.79 nF/m and with the distances between the CTB and the coil which were de-rived from [SLBD1] and [SLBa], the values for the superconducting bus bars were calculated for positive and negative polarity of the connections of PF 6 coil, which have the same dis-tance of 25 m. The elements of the positive polarity of the superconducting bus bar have the indexes “scbb+PF6”. The elements of the negative polarity of the water cooled bus bar have the indexes “scbb-PF6”. The lengths of the connections with superconducting bus bars be-tween the CTB and the coil terminals are given in Tab. 4-3. The values for inductances and capacitances of the superconducting bus bars for the connection between CTB and the coil terminals are given in Tab. B.1-4 in Annex B.1. The symmetrical grounding of the coil [PAF6Bd] will be made with two identical terminal to neutral resistances Rtn1-PF6 and Rtn2-PF6 and the neutral to ground resistance Rng-PF6 with values of 1 kΩ each.

0

0

0

Cscbb-PF644.75e-9Cscbb-PF644.75e-9

Rscbb+PF6

25e-12

Rscbb+PF6

25e-12

Rtn2-PF61kRtn2-PF61k

Cscbb+PF644.75e-9Cscbb+PF644.75e-9

2.01PF62.01PF6

Rscbb-PF6

25e-12

Rscbb-PF6

25e-12

Rng-PF6

1k

Rng-PF6

1k

Rtn1-PF61kRtn1-PF61k

Lscbb-PF6

35e-6

Lscbb-PF6

35e-6

12

Lscbb+PF6

35e-6

Lscbb+PF6

35e-6

12

Fig. 4-6 Network model of the simplified PF 6 coil with superconducting bus bars and

symmetrical grounding

Page 61: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

49

Coil Name Distance from SNU to SNR with 6 parallel power cables

Distance from SNR to FDU with 6 parallel power cables

Distance from FDU to FDR with 2 parallel power cables

Distance from FDR to CTB with 2 parallel power cables

Distance from CTB to coil with superconducting bus bars

CS3U 36 m 36 m 39 m 39 m 34 m

CS2U 44 m 44 m 47 m 47 m 36 m

CS1U 58 m 58 m 19 m 20 m 40 m

CS1L 55 m 50 m 50 m 80 m 40 m

CS2L 28 m 28 m 33 m 33 m 39 m

CS3L 20 m 20 m 30 m 32 m 37 m

PF 1 10 m 10 m 20 m 20 m 25 m

PF 2 - - 30 m 30 m 25 m

PF 3 - - 35 m 35 m 23 m

PF 4 - - 20 m 40 m 27 m

PF 5 - - 20 m 40 m 26 m

PF 6 10 m 10 m 25 m 47 m 25 m

Tab. 4-3 Distances for superconducting bus bars and power cables for SNU and FDU derived from [SLBD1] and [SLBa]

Page 62: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

50

4.2 Detailed Network Model of the PF 3 Coil

The detailed network models of the PF 3 coil will be described in this chapter. The detailed network model of the PF 3 coil without instrumentation cables will be discussed in the first section. The influence of the instrumentation cables will be described in the second section.

4.2.1 Detailed Network Model of the PF 3 Coil without Instrumentation Cable

The detailed network models of the PF 3 coil were used to calculate the resonance fre-quency of the coil and also will be used for calculation of voltage stress between the conduc-tors of the PF 3 coil during the normal operation, fast discharge and failure cases. The net-work program settings of the detailed network model of the PF 3 coil are given in Annex B.2. The values for inductances, which were calculated with detailed FEM models of the PF 3 coil shown in section 3.2, were taken into the network model as lumped elements. The calcula-tion of the values for the capacitances of the PF 3 coil between the conductors and the outer conductors to ground was made with formulas (4.1) and (4.2).

Cylinder capacitor:

( )ia

crcyl rr

lC/ln

2 0επε= (4.1)

Parallel plate capacitor:

drrC ia

rpp−= επε0 (4.2)

cl = Height of the cylinder capacitor; ar = Outer radius of the capacitor;

d = Distance between the plates of the capacitor; ir = Inner radius of the capacitor. The values for capacitances between the conductors of one pancake vary between 19.7 nF and 20.7 nF, depending on the location of the conductors. The capacitances between the conductors of two pancakes in one double pancake vary from 18 nF to 19.3 nF. The capaci-tances between the conductors of two different double pancakes vary between 14 nF and 15 nF. The capacitances of the outer conductors to the ground vary between 9.6 nF and 20.5 nF. The detailed results of the calculations of the capacitances are given in Annex A.2(d).

The resistances of the conductors were set to 1e-12 Ω because of the superconducting cable which will be used in the coils. The overview about the detailed network model of the PF 3 coil is shown in Fig. 4-7. The zoomed right upper part of the network model is shown in Fig. 4-8.

The designations for the elements were given at following scheme: First letter is the element type, e. g. R for resistance. Next is the number of the pancake separated with an underline, e. g. P01. If the designation is given for an element which is placed between two pancakes, than the number of the second pancake is also given separated by an underline, e. g.

Page 63: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

51

P01_02. Next is the number of the conductor (i. e. turn) separated by underline, e. g. C01. If the designation is given for an element which is placed between two conductors the number of the second conductor is also given separated by an underline, e. g. C10_12. For example the capacitance between conductor 10 and 11 of the pancake 01 has the designation C_P01_C10_11. The capacitance of the conductor 12 between the pancake 01 and 02 has the designation C_P01_02_C12. For the outer conductors the capacitors to ground have an E which is placed between the pancake and conductor number, e. g. C_P01_E_C12 in Fig. 4-8.

Page 64: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

52

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

L_Z15_L06_08L_Z15_L06_081 2

R_Z13_L09_11R_Z13_L09_11

C_Z08_L06_07C_Z08_L06_07

C_Z11_L01_02C_Z11_L01_02

R_Z05_Z06_L11R_Z05_Z06_L11

L_Z01_L02_Z02_L01L_Z01_L02_Z02_L01

1

2

L_Z11_L05_07L_Z11_L05_071 2

L_Z04_L01_03L_Z04_L01_031 2

L_Z14_L02_04L_Z14_L02_041 2

R_Z09_L10_12R_Z09_L10_12

R_Z08_L01_03R_Z08_L01_03

C_Z05_06_L03C_Z05_06_L03

C_Z15_L02_03C_Z15_L02_03

R_Z11_L01_Z12_L02R_Z11_L01_Z12_L02

C_Z15_L08_09C_Z15_L08_09

R_Z12_L08_10R_Z12_L08_10

C_Z14_L08_09C_Z14_L08_09

C_Z16_E_L12C_Z16_E_L12

L_Z05_L07_09L_Z05_L07_091 2

C_Z06_L02_03C_Z06_L02_03

R_Z11_L06_08R_Z11_L06_08

C_Z10_11_L06C_Z10_11_L06

L_Z04_L10_12L_Z04_L10_121 2

L_Z01_L05_07L_Z01_L05_071 2

R_Z10_L02_04R_Z10_L02_04

C_Z11_12_L12C_Z11_12_L12

C_Z13_14_L06C_Z13_14_L06

C_Z01_02_L09C_Z01_02_L09

R_Z08_L10_12R_Z08_L10_12

R_Z01_L01_Z02_L02R_Z01_L01_Z02_L02

C_Z06_07_L10C_Z06_07_L10

R_Z16_L03_05R_Z16_L03_05

C_Z10_L09_10C_Z10_L09_10

C_Z12_13_L04C_Z12_13_L04

L_Z05_L02_Z06_L01L_Z05_L02_Z06_L01

1

2

C_Z04_05_L03C_Z04_05_L03

C_Z12_L11_12C_Z12_L11_12

R_Z04_L05_07R_Z04_L05_07

C_Z15_16_L02C_Z15_16_L02

L_Z03_L04_06L_Z03_L04_061 2

C_Z01_E_L02C_Z01_E_L02

R_Z08_L06_08R_Z08_L06_08

C_Z01_02_L06C_Z01_02_L06

L_Z08_L05_07L_Z08_L05_071 2

L_Z09_L03_05L_Z09_L03_051 2

R_Z16_L12/2R_Z16_L12/2

C_Z13_E_L12C_Z13_E_L12

C_Z04_E_L12C_Z04_E_L12

L_Z13_L10_12L_Z13_L10_121 2

L_Z02_L10_12L_Z02_L10_121 2

C_Z14_15_L08C_Z14_15_L08

C_Z09_L06_07C_Z09_L06_07

C_Z14_15_L01C_Z14_15_L01

L_Z09_L04_06L_Z09_L04_061 2

C_Z16_E_L02C_Z16_E_L02

L_Z08_L01_03L_Z08_L01_031 2

L_Z16_L07_09L_Z16_L07_091 2

C_Z02_03_L04C_Z02_03_L04

C_Z11_12_L10C_Z11_12_L10

L_Z06_L02_04L_Z06_L02_041 2

R_Z02_L03_05R_Z02_L03_05

C_Z01_L03_04C_Z01_L03_04

C_Z08_F_E_L12C_Z08_F_E_L12

L_Z12_L08_10L_Z12_L08_101 2

C_Z11_L07_08C_Z11_L07_08

C_Z03_04_L09C_Z03_04_L09

L_Z11_L06_08L_Z11_L06_081 2

C_Z06_L08_09C_Z06_L08_09

C_Z10_11_L07C_Z10_11_L07

R_Z04_L07_09R_Z04_L07_09

C_Z03_L08_09C_Z03_L08_09

L_Z08_L10_12L_Z08_L10_121 2

C_Z05_06_L06C_Z05_06_L06

C_Z01_02_L04C_Z01_02_L04

C_Z13_L02_03C_Z13_L02_03

L_Z16_L03_05L_Z16_L03_051 2

R_Z02_L12/2R_Z02_L12/2

C_Z11_E_L01C_Z11_E_L01

C_Z12_13_L11C_Z12_13_L11

C_Z04_F_E_L12C_Z04_F_E_L12

C_Z01_L05_06C_Z01_L05_06

L_Z12_L03_05L_Z12_L03_051 2

C_Z09_10_L08C_Z09_10_L08

R_Z04_L03_05R_Z04_L03_05

C_Z02_L07_08C_Z02_L07_08

C_Z09_L03_04C_Z09_L03_04

C_Z08_09_L03C_Z08_09_L03

R_Z03_L02_04R_Z03_L02_04

C_Z04_E_L01C_Z04_E_L01

R_Z08_L05_07R_Z08_L05_07

C_Z13_L04_05C_Z13_L04_05

L_Z16_L12/2L_Z16_L12/21 2

R_Z13_L08_10R_Z13_L08_10

L_Z07_L04_06L_Z07_L04_061 2

C_Z05_E_L12C_Z05_E_L12

C_Z08_E_L12C_Z08_E_L12

L_Z05_L10_12L_Z05_L10_121 2

R_Z05_L09_11R_Z05_L09_11

R_Z04_L12/2R_Z04_L12/2

R_Z12_L06_08R_Z12_L06_08

C_Z07_F_E_L12C_Z07_F_E_L12

L_Z12_L05_07L_Z12_L05_071 2

C_Z03_04_L04C_Z03_04_L04

C_Z12_L06_07C_Z12_L06_07

C_Z07_08_L09C_Z07_08_L09

L_Z04_L07_09L_Z04_L07_091 2

C_Z01_E_L07C_Z01_E_L07

C_Z01_02_L05C_Z01_02_L05

R_Z08_L07_09R_Z08_L07_09

L_Z09_L05_07L_Z09_L05_071 2

R_Z16_L01_03R_Z16_L01_03

C_Z07_L08_09C_Z07_L08_09

C_Z04_L07_08C_Z04_L07_08

L_Z13_L12/2L_Z13_L12/21 2

L_Z02_L12/2L_Z02_L12/21 2

L_Z13_L01_03L_Z13_L01_031 2

C_Z05_L02_03C_Z05_L02_03

R_Z12_L01_03R_Z12_L01_03

C_Z10_F_E_L12C_Z10_F_E_L12

L_Z14_L04_06L_Z14_L04_061 2

R_Z09_L12/2R_Z09_L12/2

R_Z08_L03_05R_Z08_L03_05

R_Z07_L02_04R_Z07_L02_04

C_Z09_10_L12C_Z09_10_L12

C_Z08_E_L01C_Z08_E_L01

C_Z05_L04_05C_Z05_L04_05

C_Z14_L03_04C_Z14_L03_04

R_Z12_L10_12R_Z12_L10_12

R_Z05_L08_10R_Z05_L08_10

C_Z16_L06_07C_Z16_L06_07

L_Z04_L12/2L_Z04_L12/21 2

L_Z01_L07_09L_Z01_L07_091 2

R_Z10_L04_06R_Z10_L04_06

C_Z13_14_L05C_Z13_14_L05

C_Z14_15_L09C_Z14_15_L09

C_Z03_L11_12C_Z03_L11_12

R_Z08_L12/2R_Z08_L12/2

L_Z03_L09_11L_Z03_L09_111 2

C_Z06_07_L08C_Z06_07_L08

L_Z16_L05_07L_Z16_L05_071 2

C_Z06_07_L01C_Z06_07_L01

C_Z02_03_L05C_Z02_03_L05

R_Z13_L02_Z14_L01R_Z13_L02_Z14_L01

C_Z02_03_L11C_Z02_03_L11

C_Z10_L04_05C_Z10_L04_05

L_Z02_L03_05L_Z02_L03_051 2

C_Z07_08_L04C_Z07_08_L04

C_Z09_10_L01C_Z09_10_L01

C_Z01_E_L11C_Z01_E_L11

C_Z01_02_L07C_Z01_02_L07

L_Z08_L07_09L_Z08_L07_091 2

R_Z09_L03_05R_Z09_L03_05

L_Z16_L01_03L_Z16_L01_031 2

R_Z13_L10_12R_Z13_L10_12

R_Z15_L06_08R_Z15_L06_08

R_Z15_L01_03R_Z15_L01_03

L_Z12_L01_03L_Z12_L01_031 2

C_Z11_F_E_L12C_Z11_F_E_L12

C_Z08_L07_08C_Z08_L07_08

L_Z05_L12/2L_Z05_L12/21 2

L_Z05_L01_03L_Z05_L01_031 2

L_Z09_L01_Z10_L02L_Z09_L01_Z10_L02

1

2

L_Z01_L04_06L_Z01_L04_061 2

L_Z10_L08_10L_Z10_L08_101 2

C_Z14_15_L06C_Z14_15_L06

R_Z14_L02_04R_Z14_L02_04

L_Z09_L06_08L_Z09_L06_081 2

L_Z16_L09_11L_Z16_L09_111 2

L_Z06_L04_06L_Z06_L04_061 2

C_Z15_L09_10C_Z15_L09_10

L_Z12_L10_12L_Z12_L10_121 2

C_Z14_L09_10C_Z14_L09_10

C_Z01_F_E_L12C_Z01_F_E_L12

C_Z16_L11_12C_Z16_L11_12

C_Z06_L03_04C_Z06_L03_04

C_Z10_11_L05C_Z10_11_L05

R_Z04_L09_11R_Z04_L09_11

C_Z03_L10_11C_Z03_L10_11

L_Z03_L08_10L_Z03_L08_101 2

L_Z08_L12/2L_Z08_L12/21 2

C_Z05_06_L05C_Z05_06_L05

C_Z01_02_L03C_Z01_02_L03

C_Z06_07_L09C_Z06_07_L09

R_Z16_L05_07R_Z16_L05_07

C_Z07_L11_12C_Z07_L11_12

C_Z10_L10_11C_Z10_L10_11

R_Z15_L02_Z16_L01R_Z15_L02_Z16_L01

R_Z02_L01_03R_Z02_L01_03

L_Z13_L03_05L_Z13_L03_051 2

C_Z12_13_L03C_Z12_13_L03

R_Z15_Z16_L11R_Z15_Z16_L11

L_Z07_L09_11L_Z07_L09_111 2

R_Z05_L02_Z06_L01R_Z05_L02_Z06_L01

R_Z12_L05_07R_Z12_L05_07

L_Z11_L04_06L_Z11_L04_061 2

C_Z04_05_L02C_Z04_05_L02

C_Z12_E_L12C_Z12_E_L12

R_Z05_L10_12R_Z05_L10_12

C_Z02_E_L01C_Z02_E_L01

R_Z10_L06_08R_Z10_L06_08

C_Z14_15_L07C_Z14_15_L07

L_Z15_L01_Z16_L02L_Z15_L01_Z16_L02

1

2

C_Z09_L05_06C_Z09_L05_06

R_Z09_L04_06R_Z09_L04_06

C_Z16_E_L01C_Z16_E_L01

R_Z03_Z04_L11R_Z03_Z04_L11

C_Z06_07_L06C_Z06_07_L06

R_Z16_L07_09R_Z16_L07_09

C_Z02_03_L03C_Z02_03_L03

C_Z11_12_L09C_Z11_12_L09

R_Z06_L02_04R_Z06_L02_04

R_Z02_L05_07R_Z02_L05_07

R_Z12_L07_09R_Z12_L07_09

C_Z11_L08_09C_Z11_L08_09

C_Z06_L09_10C_Z06_L09_10

C_Z01_E_L12C_Z01_E_L12

L_Z01_Z02_L11L_Z01_Z02_L11

1

2

C_Z10_11_L12C_Z10_11_L12

C_Z13_14_L08C_Z13_14_L08

L_Z04_L09_11L_Z04_L09_111 2

R_Z10_L01_03R_Z10_L01_03

C_Z03_L09_10C_Z03_L09_10

C_Z15_E_L01C_Z15_E_L01

R_Z03_L01_03R_Z03_L01_03 L_Z03_L07_09L_Z03_L07_091 2

C_Z13_L03_04C_Z13_L03_04

R_Z08_L09_11R_Z08_L09_11

C_Z04_L02_03C_Z04_L02_03

C_Z07_L10_11C_Z07_L10_11

L_Z15_L02_Z16_L01L_Z15_L02_Z16_L01

1

2

L_Z07_L08_10L_Z07_L08_101 2

L_Z02_L01_03L_Z02_L01_031 2

L_Z15_Z16_L11L_Z15_Z16_L11

1

2

C_Z01_L06_07C_Z01_L06_07

R_Z15_L09_11R_Z15_L09_11

R_Z12_L03_05R_Z12_L03_05

L_Z05_L03_05L_Z05_L03_051 2

R_Z11_L02_04R_Z11_L02_04

C_Z12_E_L01C_Z12_E_L01

C_Z02_L08_09C_Z02_L08_09

C_Z01_02_L12C_Z01_02_L12

C_Z08_09_L02C_Z08_09_L02

C_Z13_L06_07C_Z13_L06_07

L_Z13_L04_06L_Z13_L04_061 2

R_Z12_L12/2R_Z12_L12/2

L_Z03_L10_12L_Z03_L10_121 2

L_Z03_Z04_L11L_Z03_Z04_L11

1

2

R_Z03_L09_11R_Z03_L09_11

C_Z06_07_L07C_Z06_07_L07

C_Z10_L05_06C_Z10_L05_06

C_Z11_12_L04C_Z11_12_L04

L_Z13_L05_07L_Z13_L05_071 2

R_Z07_Z08_L11R_Z07_Z08_L11

L_Z12_L07_09L_Z12_L07_091 2

C_Z01_L11_12C_Z01_L11_12

R_Z01_L08_10R_Z01_L08_10

C_Z12_L07_08C_Z12_L07_08

L_Z01_L09_11L_Z01_L09_111 2

C_Z01_E_L06C_Z01_E_L06

C_Z05_06_L08C_Z05_06_L08

L_Z08_L09_11L_Z08_L09_111 2

R_Z09_L05_07R_Z09_L05_07

C_Z07_L09_10C_Z07_L09_10

C_Z04_L08_09C_Z04_L08_09

R_Z13_L12/2R_Z13_L12/2

R_Z07_L01_03R_Z07_L01_03

C_Z05_L03_04C_Z05_L03_04

L_Z07_L07_09L_Z07_L07_091 2

C_Z08_L02_03C_Z08_L02_03

C_Z13_14_L12C_Z13_14_L12

C_Z03_04_L06C_Z03_04_L06

C_Z01_L07_08C_Z01_L07_08

R_Z14_L04_06R_Z14_L04_06

C_Z15_L04_05C_Z15_L04_05 C_Z15_L11_12C_Z15_L11_12

R_Z15_L04_06R_Z15_L04_06

C_Z05_L06_07C_Z05_L06_07

C_Z14_L04_05C_Z14_L04_05

L_Z12_L12/2L_Z12_L12/21 2

L_Z05_L04_06L_Z05_L04_061 2

C_Z16_L07_08C_Z16_L07_08

C_Z11_L11_12C_Z11_L11_12

L_Z11_L09_11L_Z11_L09_111 2

L_Z10_L06_08L_Z10_L06_081 2

R_Z10_L05_07R_Z10_L05_07

C_Z15_16_L07C_Z15_16_L07

C_Z03_E_L12C_Z03_E_L12

L_Z05_L05_07L_Z05_L05_071 2

L_Z03_L01_Z04_L02L_Z03_L01_Z04_L02

1

2

C_Z01_L10_11C_Z01_L10_11

C_Z04_05_L08C_Z04_05_L08

R_Z01_L02_04R_Z01_L02_04

C_Z04_05_L01C_Z04_05_L01

L_Z13_L01_Z14_L02L_Z13_L01_Z14_L02

1

2

C_Z02_L03_04C_Z02_L03_04

C_Z09_L01_02C_Z09_L01_02

L_Z14_L08_10L_Z14_L08_101 2

L_Z13_L06_08L_Z13_L06_081 2

R_Z15_L07_09R_Z15_L07_09

C_Z08_L08_09C_Z08_L08_09

R_Z05_L12/2R_Z05_L12/2

C_Z03_04_L11C_Z03_04_L11

C_Z09_10_L09C_Z09_10_L09

C_Z05_06_L12C_Z05_06_L12

R_Z09_L01_Z10_L02R_Z09_L01_Z10_L02

R_Z01_L02_Z02_L01R_Z01_L02_Z02_L01

L_Z10_L10_12L_Z10_L10_121 2

C_Z07_08_L06C_Z07_08_L06

C_Z03_L02_03C_Z03_L02_03

C_Z15_16_L09C_Z15_16_L09

C_Z14_15_L05C_Z14_15_L05

R_Z09_L06_08R_Z09_L06_08

R_Z16_L09_11R_Z16_L09_11

R_Z06_L04_06R_Z06_L04_06

C_Z15_L10_11C_Z15_L10_11

L_Z15_L04_06L_Z15_L04_061 2

C_Z01_L01_02C_Z01_L01_02

C_Z14_L10_11C_Z14_L10_11

R_Z12_L09_11R_Z12_L09_11

C_Z11_L10_11C_Z11_L10_11

C_Z06_L04_05C_Z06_L04_05

L_Z11_L08_10L_Z11_L08_101 2

C_Z03_04_L02C_Z03_04_L02

C_Z10_11_L04C_Z10_11_L04

L_Z01_L01_03L_Z01_L01_031 2

R_Z10_L03_05R_Z10_L03_05

C_Z03_L04_05C_Z03_L04_05

C_Z16_E_L10C_Z16_E_L10

R_Z03_L08_10R_Z03_L08_10

C_Z13_14_L01C_Z13_14_L01

C_Z07_E_L12C_Z07_E_L12

C_Z10_E_L12C_Z10_E_L12

L_Z07_L10_12L_Z07_L10_121 2

R_Z13_L03_05R_Z13_L03_05

L_Z07_Z08_L11L_Z07_Z08_L11

1

2

C_Z12_13_L02C_Z12_13_L02

L_Z15_L01_03L_Z15_L01_031 2

R_Z07_L09_11R_Z07_L09_11

SVterminal2

Implementation = PF3_Spannung SVterminal2

Implementation = PF3_Spannung

L_Z05_L01_Z06_L02L_Z05_L01_Z06_L02

1

2

C_Z01_02_L02C_Z01_02_L02

C_Z13_L05_06C_Z13_L05_06

R_Z13_L04_06R_Z13_L04_06

L_Z06_L08_10L_Z06_L08_101 2

L_Z05_L06_08L_Z05_L06_081 2

C_Z09_10_L10C_Z09_10_L10

R_Z11_Z12_L11R_Z11_Z12_L11

C_Z09_10_L04C_Z09_10_L04

C_Z07_08_L11C_Z07_08_L11

L_Z10_L07_09L_Z10_L07_091 2

C_Z15_16_L10C_Z15_16_L10

C_Z09_L07_08C_Z09_L07_08

C_Z14_15_L12C_Z14_15_L12

C_Z16_E_L07C_Z16_E_L07

R_Z14_L01_03R_Z14_L01_03

L_Z03_L01_03L_Z03_L01_031 2

R_Z16_L02_04R_Z16_L02_04

C_Z07_L02_03C_Z07_L02_03

C_Z06_07_L05C_Z06_07_L05

C_Z02_03_L02C_Z02_03_L02

C_Z01_02_L01C_Z01_02_L01

C_Z13_F_E_L12C_Z13_F_E_L12

L_Z15_L03_05L_Z15_L03_051 2

L_Z12_L09_11L_Z12_L09_111 2

C_Z11_L09_10C_Z11_L09_10

C_Z06_L10_11C_Z06_L10_11

R_Z11_L01_03R_Z11_L01_03 L_Z11_L07_09L_Z11_L07_091 2

C_Z09_E_L01C_Z09_E_L01

R_Z01_L10_12R_Z01_L10_12

C_Z12_L02_03C_Z12_L02_03

R_Z01_Z02_L11R_Z01_Z02_L11

C_Z10_11_L11C_Z10_11_L11

L_Z10_L03_05L_Z10_L03_051 2

C_Z07_08_L02C_Z07_08_L02

C_Z15_16_L06C_Z15_16_L06

L_Z09_L02_04L_Z09_L02_041 2

R_Z03_L07_09R_Z03_L07_09

C_Z07_L04_05C_Z07_L04_05

C_Z04_L03_04C_Z04_L03_04

C_Z02_03_L12C_Z02_03_L12

R_Z07_L08_10R_Z07_L08_10

C_Z05_06_L01C_Z05_06_L01

C_Z14_F_E_L12C_Z14_F_E_L12

R_Z05_L03_05R_Z05_L03_05

C_Z01_L09_10C_Z01_L09_10

C_Z04_05_L09C_Z04_05_L09

L_Z01_L02_04L_Z01_L02_041 2

L_Z10_L12/2L_Z10_L12/21 2

L_Z07_L01_Z08_L02L_Z07_L01_Z08_L02

1

2

C_Z02_L09_10C_Z02_L09_10

C_Z08_09_L08C_Z08_09_L08

R_Z03_L02_Z04_L01R_Z03_L02_Z04_L01

C_Z08_09_L01C_Z08_09_L01

R_Z14_L06_08R_Z14_L06_08

L_Z11_L10_12L_Z11_L10_121 2

L_Z11_Z12_L11L_Z11_Z12_L11

1

2

R_Z11_L09_11R_Z11_L09_11

L_Z10_L05_07L_Z10_L05_071 2

C_Z16_E_L08C_Z16_E_L08

R_Z03_L10_12R_Z03_L10_12

L_Z16_L02_04L_Z16_L02_041 2

C_Z06_07_L12C_Z06_07_L12

C_Z10_L06_07C_Z10_L06_07

R_Z06_L01_03R_Z06_L01_03

R_Z13_L05_07R_Z13_L05_07

L_Z07_L01_03L_Z07_L01_031 2

C_Z12_F_E_L12C_Z12_F_E_L12

L_Z01_L10_12L_Z01_L10_121 2

R_Z04_L02_04R_Z04_L02_04

C_Z12_L08_09C_Z12_L08_09

R_Z01_L09_11R_Z01_L09_11

R_Z15_L01_Z16_L02R_Z15_L01_Z16_L02

L_Z03_L02_04L_Z03_L02_041 2

C_Z01_E_L05C_Z01_E_L05

C_Z04_L09_10C_Z04_L09_10

C_Z15_L03_04C_Z15_L03_04

C_Z11_12_L06C_Z11_12_L06

R_Z15_L08_10R_Z15_L08_10

R_Z07_L07_09R_Z07_L07_09

C_Z08_L03_04C_Z08_L03_04

C_Z15_F_E_L12C_Z15_F_E_L12

C_Z01_L08_09C_Z01_L08_09

C_Z04_05_L10C_Z04_05_L10

R_Z10_L10_12R_Z10_L10_12

C_Z02_L01_02C_Z02_L01_02

C_Z08_09_L09C_Z08_09_L09

C_Z09_L10_11C_Z09_L10_11

L_Z14_L06_08L_Z14_L06_081 2

R_Z14_L05_07R_Z14_L05_07

L_Z03_L03_05L_Z03_L03_051 2

Rng

1k

Rng

1k

C_Z15_L06_07C_Z15_L06_07

R_Z07_L02_Z08_L01R_Z07_L02_Z08_L01

R_Z06_L06_08R_Z06_L06_08

R_Z02_L02_04R_Z02_L02_04

C_Z15_E_L12C_Z15_E_L12

C_Z05_L05_06C_Z05_L05_06

C_Z14_L05_06C_Z14_L05_06

R_Z05_L04_06R_Z05_L04_06

C_Z16_L08_09C_Z16_L08_09

C_Z15_16_L12C_Z15_16_L12

C_Z11_E_L12C_Z11_E_L12

C_Z13_L01_02C_Z13_L01_02

L_Z11_L01_Z12_L02L_Z11_L01_Z12_L02

1

2

C_Z10_L11_12C_Z10_L11_12

R_Z07_L10_12R_Z07_L10_12

C_Z12_13_L08C_Z12_13_L08C_Z12_13_L01C_Z12_13_L01

R_Z05_L05_07R_Z05_L05_07

C_Z04_05_L07C_Z04_05_L07

L_Z04_L02_04L_Z04_L02_041 2

C_Z13_14_L09C_Z13_14_L09

R_Z13_L01_Z14_L02R_Z13_L01_Z14_L02

L_Z10_L01_03L_Z10_L01_031 2

C_Z02_L04_05C_Z02_L04_05

L_Z14_L10_12L_Z14_L10_121 2

R_Z08_L02_04R_Z08_L02_04

C_Z04_L01_02C_Z04_L01_02

C_Z11_12_L11C_Z11_12_L11

R_Z13_L06_08R_Z13_L06_08

L_Z07_L02_04L_Z07_L02_041 2

R_Z15_L02_04R_Z15_L02_04

L_Z15_L09_11L_Z15_L09_111 2

C_Z16_F_E_L12C_Z16_F_E_L12

C_Z08_L09_10C_Z08_L09_10

C_Z11_L02_03C_Z11_L02_03

R_Z10_L08_10R_Z10_L08_10

C_Z03_L03_04C_Z03_L03_04

L_Z10_L09_11L_Z10_L09_111 2

C_Z15_16_L08C_Z15_16_L08

C_Z14_15_L04C_Z14_15_L04

C_Z08_09_L10C_Z08_09_L10

C_Z09_L09_10C_Z09_L09_10

R_Z14_L03_05R_Z14_L03_05

R_Z16_L04_06R_Z16_L04_06

R_Z09_L01_03R_Z09_L01_03

L_Z06_L06_08L_Z06_L06_081 2

C_Z11_12_L02C_Z11_12_L02

R_Z06_L05_07R_Z06_L05_07

L_Z07_L03_05L_Z07_L03_051 2

C_Z14_E_L12C_Z14_E_L12

C_Z11_L04_05C_Z11_L04_05

C_Z06_L05_06C_Z06_L05_06

R_Z11_L08_10R_Z11_L08_10

C_Z10_11_L02C_Z10_11_L02

R_Z01_L01_03R_Z01_L01_03

C_Z03_L05_06C_Z03_L05_06

C_Z15_16_L05C_Z15_16_L05

C_Z16_E_L09C_Z16_E_L09

C_Z13_14_L10C_Z13_14_L10

R_Z01_L07_09R_Z01_L07_09

R_Z10_L12/2R_Z10_L12/2

C_Z13_14_L04C_Z13_14_L04

C_Z02_L10_11C_Z02_L10_11

C_Z08_09_L07C_Z08_09_L07

L_Z08_L02_04L_Z08_L02_041 2

C_Z05_06_L09C_Z05_06_L09

R_Z05_L01_Z06_L02R_Z05_L01_Z06_L02

L_Z14_L07_09L_Z14_L07_091 2

L_Z09_Z10_L11L_Z09_Z10_L11

1

2

C_Z13_L07_08C_Z13_L07_08

L_Z06_L10_12L_Z06_L10_121 2

R_Z02_L04_06R_Z02_L04_06

C_Z08_L01_02C_Z08_L01_02

R_Z05_L06_08R_Z05_L06_08

C_Z16_L03_04C_Z16_L03_04

L_Z11_L01_03L_Z11_L01_031 2

R_Z10_L07_09R_Z10_L07_09

C_Z13_E_L01C_Z13_E_L01

C_Z09_L08_09C_Z09_L08_09

C_Z14_15_L11C_Z14_15_L11

C_Z16_E_L06C_Z16_E_L06

R_Z03_L12/2R_Z03_L12/2

L_Z14_L03_05L_Z14_L03_051 2

C_Z16_E_L11C_Z16_E_L11

L_Z16_L04_06L_Z16_L04_061 2

C_Z07_L03_04C_Z07_L03_04

C_Z06_07_L04C_Z06_07_L04

C_Z02_03_L01C_Z02_03_L01

C_Z10_L01_02C_Z10_L01_02

L_Z13_L02_04L_Z13_L02_041 2

R_Z06_L03_05R_Z06_L03_05

R_Z15_L03_05R_Z15_L03_05

C_Z06_E_L12C_Z06_E_L12

R_Z11_L07_09R_Z11_L07_09

L_Z01_L12/2L_Z01_L12/21 2

C_Z12_L03_04C_Z12_L03_04

R_Z04_L04_06R_Z04_L04_06

L_Z03_L02_Z04_L01L_Z03_L02_Z04_L01

1

2

C_Z01_E_L10C_Z01_E_L10

R_Z09_L02_04R_Z09_L02_04

L_Z14_L12/2L_Z14_L12/21 2

C_Z10_E_L01C_Z10_E_L01

C_Z01_E_L01C_Z01_E_L01

C_Z07_L05_06C_Z07_L05_06

C_Z04_L04_05C_Z04_L04_05

C_Z12_13_L09C_Z12_13_L09

C_Z05_L01_02C_Z05_L01_02

R_Z15_L10_12R_Z15_L10_12

C_Z01_L02_03C_Z01_L02_03

R_Z11_L02_Z12_L01R_Z11_L02_Z12_L01

L_Z09_L09_11L_Z09_L09_111 2

C_Z15_L05_06C_Z15_L05_06

L_Z02_L04_06L_Z02_L04_061 2

L_Z06_L07_09L_Z06_L07_091 2

C_Z05_L07_08C_Z05_L07_08

C_Z14_L06_07C_Z14_L06_07

L_Z15_L07_09L_Z15_L07_091 2

C_Z16_L02_03C_Z16_L02_03 C_Z16_L09_10C_Z16_L09_10

R_Z11_L10_12R_Z11_L10_12

L_Z01_L03_05L_Z01_L03_051 2

L_Z03_L12/2L_Z03_L12/21 2

C_Z05_E_L01C_Z05_E_L01

C_Z06_07_L11C_Z06_07_L11

C_Z10_L07_08C_Z10_L07_08

L_Z06_L03_05L_Z06_L03_051 2

R_Z07_L12/2R_Z07_L12/2

R_Z12_L02_04R_Z12_L02_04

L_Z05_L02_04L_Z05_L02_041 2

L_Z11_L02_04L_Z11_L02_041 2

C_Z09_10_L11C_Z09_10_L11

C_Z04_05_L05C_Z04_05_L05

R_Z01_L04_06R_Z01_L04_06

L_Z04_L04_06L_Z04_L04_061 2

C_Z12_L09_10C_Z12_L09_10

C_Z15_16_L11C_Z15_16_L11

C_Z01_E_L04C_Z01_E_L04

R_Z14_L10_12R_Z14_L10_12

R_Z08_L04_06R_Z08_L04_06

C_Z13_L10_11C_Z13_L10_11

C_Z04_L10_11C_Z04_L10_11

L_Z07_L02_Z08_L01L_Z07_L02_Z08_L01

1

2

L_Z06_L12/2L_Z06_L12/21 2

C_Z12_13_L10C_Z12_13_L10

L_Z02_L07_09L_Z02_L07_091 2

L_Z15_L10_12L_Z15_L10_121 2

C_Z08_L04_05C_Z08_L04_05

C_Z03_04_L07C_Z03_04_L07C_Z03_04_L05C_Z03_04_L05

L_Z11_L03_05L_Z11_L03_051 2

C_Z09_10_L02C_Z09_10_L02

C_Z03_04_L01C_Z03_04_L01

C_Z02_L02_03C_Z02_L02_03

C_Z09_L11_12C_Z09_L11_12

C_Z05_06_L10C_Z05_06_L10

L_Z14_L05_07L_Z14_L05_071 2

C_Z05_06_L04C_Z05_06_L04

R_Z03_L03_05R_Z03_L03_05

L_Z01_L08_10L_Z01_L08_101 2

C_Z10_11_L03C_Z10_11_L03

C_Z03_L06_07C_Z03_L06_07

R_Z03_L04_06R_Z03_L04_06

L_Z14_L01_03L_Z14_L01_031 2

L_Z07_L12/2L_Z07_L12/21 2

C_Z12_13_L07C_Z12_13_L07

L_Z12_L02_04L_Z12_L02_041 2

C_Z03_04_L03C_Z03_04_L03

C_Z04_05_L06C_Z04_05_L06 C_Z04_05_L12C_Z04_05_L12

C_Z12_L01_02C_Z12_L01_02

C_Z02_L05_06C_Z02_L05_06

C_Z15_16_L03C_Z15_16_L03

C_Z08_09_L05C_Z08_09_L05

R_Z14_L08_10R_Z14_L08_10

L_Z08_L04_06L_Z08_L04_061 2

L_Z14_L09_11L_Z14_L09_111 2

C_Z13_L09_10C_Z13_L09_10

R_Z06_L10_12R_Z06_L10_12

R_Z13_L01_03R_Z13_L01_03

L_Z02_L05_07L_Z02_L05_071 2

C_Z05_L10_11C_Z05_L10_11

C_Z08_L10_11C_Z08_L10_11

C_Z11_L03_04C_Z11_L03_04

C_Z07_08_L07C_Z07_08_L07C_Z07_08_L05C_Z07_08_L05

R_Z10_L09_11R_Z10_L09_11

C_Z14_15_L02C_Z14_15_L02

C_Z16_E_L04C_Z16_E_L04

L_Z09_L08_10L_Z09_L08_101 2

L_Z16_L06_08L_Z16_L06_081 2

C_Z07_08_L01C_Z07_08_L01

R_Z09_L07_09R_Z09_L07_09

Rtn21kRtn21k

L_Z06_L05_07L_Z06_L05_071 2

R_Z07_L03_05R_Z07_L03_05

R_Z15_L05_07R_Z15_L05_07

C_Z14_L11_12C_Z14_L11_12

C_Z16_L01_02C_Z16_L01_02

C_Z11_L05_06C_Z11_L05_06

C_Z06_L06_07C_Z06_L06_07

C_Z09_10_L07C_Z09_10_L07

C_Z15_L01_02C_Z15_L01_02

R_Z07_L04_06R_Z07_L04_06

L_Z06_L01_03L_Z06_L01_031 2

L_Z13_Z14_L11L_Z13_Z14_L11

1

2

L_Z02_L09_11L_Z02_L09_111 2

L_Z15_L12/2L_Z15_L12/21 2

C_Z05_F_E_L12C_Z05_F_E_L12

C_Z07_08_L03C_Z07_08_L03

C_Z02_L11_12C_Z02_L11_12

C_Z15_16_L04C_Z15_16_L04

C_Z08_09_L06C_Z08_09_L06 C_Z08_09_L12C_Z08_09_L12

R_Z14_L07_09R_Z14_L07_09

R_Z03_L05_07R_Z03_L05_07

R_Z09_Z10_L11R_Z09_Z10_L11

L_Z16_L10_12L_Z16_L10_121 2

C_Z13_L08_09C_Z13_L08_09

R_Z06_L08_10R_Z06_L08_10

L_Z02_L06_08L_Z02_L06_081 2

L_Z06_L09_11L_Z06_L09_111 2

C_Z05_L09_10C_Z05_L09_10

C_Z14_L01_02C_Z14_L01_02

C_Z16_L04_05C_Z16_L04_05

R_Z05_L01_03R_Z05_L01_03

C_Z03_04_L08C_Z03_04_L08

R_Z11_L12/2R_Z11_L12/2

C_Z09_10_L03C_Z09_10_L03

C_Z16_E_L05C_Z16_E_L05

L_Z09_L07_09L_Z09_L07_091 2

C_Z06_07_L02C_Z06_07_L02

C_Z02_03_L07C_Z02_03_L07

C_Z10_L02_03C_Z10_L02_03

R_Z13_L02_04R_Z13_L02_04

L_Z02_L02_04L_Z02_L02_041 2

C_Z14_E_L01C_Z14_E_L01

R_Z12_L04_06R_Z12_L04_06

L_Z15_L05_07L_Z15_L05_071 2

L_Z11_L02_Z12_L01L_Z11_L02_Z12_L01

1

2

C_Z06_L11_12C_Z06_L11_12

R_Z01_L06_08R_Z01_L06_08

C_Z10_11_L10C_Z10_11_L10

R_Z01_L12/2R_Z01_L12/2

C_Z12_L04_05C_Z12_L04_05

L_Z04_L06_08L_Z04_L06_081 2

C_Z01_E_L09C_Z01_E_L09

L_Z09_L02_Z10_L01L_Z09_L02_Z10_L01

1

2

R_Z14_L12/2R_Z14_L12/2

C_Z02_03_L10C_Z02_03_L10

C_Z07_L06_07C_Z07_L06_07

C_Z04_L05_06C_Z04_L05_06

C_Z03_L01_02C_Z03_L01_02

C_Z09_E_L12C_Z09_E_L12

L_Z09_L10_12L_Z09_L10_121 2

L_Z03_L05_07L_Z03_L05_071 2

L_Z16_L08_10L_Z16_L08_101 2

R_Z09_L09_11R_Z09_L09_11

C_Z15_L07_08C_Z15_L07_08

L_Z15_L02_04L_Z15_L02_041 2

R_Z06_L07_09R_Z06_L07_09

R_Z07_L05_07R_Z07_L05_07

C_Z05_L08_09C_Z05_L08_09

C_Z14_L07_08C_Z14_L07_08

C_Z16_L10_11C_Z16_L10_11

C_Z06_L01_02C_Z06_L01_02

R_Z03_L01_Z04_L02R_Z03_L01_Z04_L02

L_Z11_L12/2L_Z11_L12/21 2

C_Z13_14_L11C_Z13_14_L11

R_Z04_L08_10R_Z04_L08_10

R_Z01_L03_05R_Z01_L03_05

L_Z10_L02_04L_Z10_L02_041 2

C_Z07_08_L08C_Z07_08_L08

R_Z03_L06_08R_Z03_L06_08

C_Z01_02_L10C_Z01_02_L10

L_Z01_L01_Z02_L02L_Z01_L01_Z02_L02

1

2

C_Z02_03_L08C_Z02_03_L08

C_Z03_04_L12C_Z03_04_L12

C_Z10_L08_09C_Z10_L08_09

C_Z12_13_L05C_Z12_13_L05

L_Z12_L04_06L_Z12_L04_061 2

R_Z05_L02_04R_Z05_L02_04

C_Z06_E_L01C_Z06_E_L01

C_Z09_10_L06C_Z09_10_L06

C_Z04_05_L04C_Z04_05_L04

L_Z01_L06_08L_Z01_L06_081 2

C_Z12_L10_11C_Z12_L10_11

C_Z13_14_L02C_Z13_14_L02

C_Z01_E_L03C_Z01_E_L03

C_Z01_02_L11C_Z01_02_L11

L_Z08_L06_08L_Z08_L06_081 2

C_Z13_L11_12C_Z13_L11_12

C_Z15_16_L01C_Z15_16_L01

C_Z04_L11_12C_Z04_L11_12

C_Z11_12_L07C_Z11_12_L07C_Z11_12_L05C_Z11_12_L05

R_Z06_L12/2R_Z06_L12/2

R_Z02_L08_10R_Z02_L08_10

R_Z02_L07_09R_Z02_L07_09

L_Z13_L09_11L_Z13_L09_111 2

C_Z06_F_E_L12C_Z06_F_E_L12

C_Z08_L05_06C_Z08_L05_06

C_Z11_12_L01C_Z11_12_L01

C_Z03_F_E_L12C_Z03_F_E_L12

L_Z05_Z06_L11L_Z05_Z06_L11

1

2

R_Z11_L03_05R_Z11_L03_05

L_Z07_L05_07L_Z07_L05_071 2

C_Z11_L06_07C_Z11_L06_07

C_Z03_04_L10C_Z03_04_L10

R_Z11_L04_06R_Z11_L04_06

C_Z06_L07_08C_Z06_L07_08

C_Z10_11_L08C_Z10_11_L08C_Z10_11_L01C_Z10_11_L01

L_Z04_L08_10L_Z04_L08_101 2

R_Z07_L01_Z08_L02R_Z07_L01_Z08_L02

C_Z03_L07_08C_Z03_L07_08

C_Z05_06_L11C_Z05_06_L11

L_Z03_L06_08L_Z03_L06_081 2

R_Z08_L08_10R_Z08_L08_10

C_Z02_03_L09C_Z02_03_L09

C_Z11_12_L03C_Z11_12_L03

R_Z07_L06_08R_Z07_L06_08

C_Z12_13_L06C_Z12_13_L06

L_Z15_L08_10L_Z15_L08_101 2

C_Z12_13_L12C_Z12_13_L12

C_Z09_F_E_L12C_Z09_F_E_L12

C_Z01_L04_05C_Z01_L04_05

C_Z07_08_L12C_Z07_08_L12

C_Z03_E_L01C_Z03_E_L01

C_Z04_05_L11C_Z04_05_L11

L_Z04_L03_05L_Z04_L03_051 2

C_Z02_L06_07C_Z02_L06_07

C_Z09_L02_03C_Z09_L02_03

C_Z08_09_L04C_Z08_09_L04

R_Z14_L09_11R_Z14_L09_11

C_Z05_06_L02C_Z05_06_L02

R_Z16_L10_12R_Z16_L10_12

L_Z13_L08_10L_Z13_L08_101 2

L_Z02_L08_10L_Z02_L08_101 2

R_Z13_L07_09R_Z13_L07_09

C_Z05_L11_12C_Z05_L11_12

C_Z02_F_E_L12C_Z02_F_E_L12

C_Z08_L11_12C_Z08_L11_12

L_Z05_L09_11L_Z05_L09_111 2

C_Z13_14_L07C_Z13_14_L07

C_Z09_L04_05C_Z09_L04_05

C_Z14_15_L03C_Z14_15_L03

C_Z16_E_L03C_Z16_E_L03

R_Z09_L08_10R_Z09_L08_10

R_Z16_L06_08R_Z16_L06_08

C_Z07_L01_02C_Z07_L01_02

R_Z04_L06_08R_Z04_L06_08

C_Z07_08_L10C_Z07_08_L10

L_Z04_L05_07L_Z04_L05_071 2

C_Z01_E_L08C_Z01_E_L08

R_Z09_L02_Z10_L01R_Z09_L02_Z10_L01

L_Z08_L08_10L_Z08_L08_101 2

C_Z07_L07_08C_Z07_L07_08

C_Z04_L06_07C_Z04_L06_07

L_Z07_L06_08L_Z07_L06_081 2

R_Z02_L10_12R_Z02_L10_12

R_Z13_Z14_L11R_Z13_Z14_L11

R_Z02_L09_11R_Z02_L09_11

R_Z15_L12/2R_Z15_L12/2

R_Z11_L05_07R_Z11_L05_07

R_Z04_L01_03R_Z04_L01_03

C_Z13_14_L03C_Z13_14_L03

C_Z02_E_L12C_Z02_E_L12

C_Z07_E_L01C_Z07_E_L01

C_Z08_09_L11C_Z08_09_L11

L_Z09_L12/2L_Z09_L12/21 2

L_Z08_L03_05L_Z08_L03_051 2

L_Z09_L01_03L_Z09_L01_031 2

R_Z16_L08_10R_Z16_L08_10

C_Z11_12_L08C_Z11_12_L08

R_Z02_L06_08R_Z02_L06_08

R_Z06_L09_11R_Z06_L09_11

L_Z13_L07_09L_Z13_L07_091 2

C_Z14_L02_03C_Z14_L02_03

L_Z05_L08_10L_Z05_L08_101 2

C_Z16_L05_06C_Z16_L05_06

R_Z05_L07_09R_Z05_L07_09

R_Z04_L10_12R_Z04_L10_12

R_Z01_L05_07R_Z01_L05_07

L_Z10_L04_06L_Z10_L04_061 2

C_Z14_15_L10C_Z14_15_L10

C_Z05_06_L07C_Z05_06_L07

C_Z01_02_L08C_Z01_02_L08

Rtn11kRtn11k

C_Z06_07_L03C_Z06_07_L03

C_Z02_03_L06C_Z02_03_L06

L_Z13_L02_Z14_L01L_Z13_L02_Z14_L01

1

2

C_Z10_L03_04C_Z10_L03_04

L_Z12_L06_08L_Z12_L06_081 2

C_Z09_10_L05C_Z09_10_L05

C_Z10_11_L09C_Z10_11_L09

C_Z12_L05_06C_Z12_L05_06

Fig. 4-7 Detailed network model of the PF 3 coil

Zoomed part in Fig. 4-8

Page 65: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

53

0

C_Z01_02_L09C_Z01_02_L09

L_Z02_L10_12L_Z02_L10_121 2

R_Z02_L12/2R_Z02_L12/2 L_Z02_L12/2L_Z02_L12/21 2

L_Z01_L07_09L_Z01_L07_091 2

C_Z02_03_L11C_Z02_03_L11

C_Z01_E_L11C_Z01_E_L11 C_Z01_E_L12C_Z01_E_L12

L_Z01_Z02_L11L_Z01_Z02_L11

1

2

C_Z02_L08_09C_Z02_L08_09

C_Z01_02_L12C_Z01_02_L12

C_Z01_L11_12C_Z01_L11_12

R_Z01_L08_10R_Z01_L08_10

L_Z01_L09_11L_Z01_L09_111 2

C_Z01_L10_11C_Z01_L10_11

R_Z01_L10_12R_Z01_L10_12

R_Z01_Z02_L11R_Z01_Z02_L11

C_Z02_03_L12C_Z02_03_L12

C_Z01_L09_10C_Z01_L09_10

C_Z02_L09_10C_Z02_L09_10

L_Z01_L10_12L_Z01_L10_121 2

R_Z01_L09_11R_Z01_L09_11

C_Z01_L08_09C_Z01_L08_09

0909

C_Z02_L10_11C_Z02_L10_11

L_Z01_L12/2L_Z01_L12/21 2

C_Z01_E_L10C_Z01_E_L10

L_Z02_L07_09L_Z02_L07_091 2

L_Z01_L08_10L_Z01_L08_101 2

L_Z02_L09_11L_Z02_L09_111 2

C_Z02_L11_12C_Z02_L11_12

08082

R_Z01_L12/2R_Z01_L12/2

C_Z01_E_L09C_Z01_E_L09

C_Z02_03_L10C_Z02_03_L10

C_Z01_02_L10C_Z01_02_L10

C_Z02_03_L08C_Z02_03_L08

08082

C_Z01_02_L11C_Z01_02_L11

R_Z02_L08_10R_Z02_L08_10

0909

C_Z02_03_L09C_Z02_03_L09

L_Z02_L08_10L_Z02_L08_101 2

C_Z01_E_L08C_Z01_E_L08

R_Z02_L10_12R_Z02_L10_12

R_Z02_L09_11R_Z02_L09_11

C_Z02_E_L12C_Z02_E_L12

C_Z01_02_L08C_Z01_02_L08

Fig. 4-8 Zoomed right upper part of the detailed network model of the PF 3 coil

The coil terminals are on the right side of the PF 3 network model. The numbers for the con-ductors were given from left to the right, thus the connection of the voltage source is placed on the winding with the greatest number for conductor P01_C12. Due to the large dimen-sions of the windings all inductances and resistances of each conductor were separated in two parts. The number of the conductor was placed between these two parts, e.g. P01_C12 in Fig. 4-8. This point was also the connection for the capacitor to the neighbouring conduc-tors and for the capacitors to the ground.

The values for the conductors at the beginning and the end of a double pancake stay with the values divided by two, e. g. R_P01_C12/2 and L_P01_C12/2 in Fig. 4-8. The resistance and inductance values for other conductors were summarised because of the switching in series of two resistances and two inductances, e. g. R_P01_C12/2 and R_P01_C10/2 were summarised to R_P01_C10_12; L_P01_C12/2 and L_P01_C10/2 were summarised to L_P01_C10_12. Thus the number of the elements of resistances and inductances could be reduced by a factor of nearly two.

The detailed network model of the PF 3 coil was used for calculation in frequency domain and in time domain. In the frequency domain the resonance frequency of the coil was calcu-lated. In time domain the voltage stress between the conductors will be calculated.

Page 66: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

54

4.2.2 Detailed Network Model of the PF 3 Coil with Instrumentation Cables

The influence of the instrumentation cables on the resonance frequency and the voltage dis-tribution within the PF 3 coil was analysed by consideration of the instrumentation cables in the detailed network model. The instrumentation cables will be placed on the joints between the double pancakes but the type of cables is not exactly defined in [CDA3]. Thus it was cal-culated with the same instrumentation cable type [Bau98] which was used for the ITER TF Model Coil (TFMC) [Ulb05]. The capacitance of these cables was calculated to 437 pF/m. The cables were taken into the network model as additionally capacitances on the double pancake joints. The designation “IC” was used for the capacitances of the instrumentation cables. The length of the instrumentation cables were derived from [CDA3] and [DDDD4]. The values for the length of the cables and their capacitances are summarised in Tab. 4-4.

Length (m) Capacitance (nF)

C_IC_E_P01 53 23

C_IC_E_P02_P03 45 19.6

C_IC_E_P04_P05 62 27

C_IC_E_P06_P07 45 19.6

C_IC_E_P08_P09 32 14

C_IC_E_P10_P11 46 20

C_IC_E_P12_P13 62 27

C_IC_E_P14_P15 46 20

C_IC_E_P16 60 26

Tab. 4-4 Length and capacitance values for the instrumentation cables of the PF 3 coil

Page 67: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

55

4.3 Detailed Network Model of the PF 6 Coil

In this chapter the detailed network models of the PF 6 coil will be described. The detailed network model of the PF 6 coil without instrumentation cables will be discussed in the first section. The influence of the instrumentation cables will be specified in the second section.

4.3.1 Detailed Network Model of the PF 6 Coil without Instrumentation Cable

The detailed network models of the PF 6 coil were used to calculate the resonance fre-quency of the coil and also will be used for calculation of voltage stress between the conduc-tors of the PF 6 coil during the normal operation, fast discharge and failure cases. The net-work program settings of the detailed network model of the PF 6 coil are given in Annex B.3. The values for inductances, which were calculated with detailed FEM models of the PF 3 coil shown in section 3.3, were taken into the network model as lumped elements. The calcula-tion of the values for the capacitances of the PF 6 coil between the conductors and the outer conductors to ground was made with formulas (4.1) and (4.2) with the procedure which was described in section 4.2.

The values for capacitances between the conductors of one pancake vary between 6.1 nF and 8.7 nF, depending on the location of the conductors. The capacitances between the conductors of two pancakes in one double pancake vary from 5.8 nF to 8.5 nF. The capaci-tances between the conductors of two different double pancakes vary between 5.1 nF and 7.4 nF. The capacitances of the outer conductors to the ground vary between 3.1 nF and 8.9 nF. The detailed results of the calculations of the capacitances are given in Annex A.3(d).

The resistances of the conductors were set to 1e-12 Ω because of the superconducting cable which will be used in the coils. The overview about the detailed network model of the PF 6 coil is shown in Fig. 4-9. The zoomed right upper part of the network model is shown in Fig. 4-10.

The designations for the elements were given at following scheme: First letter is the element type, e. g. R for resistance. Next is the number of the pancake separated with an underline, e. g. P01. If the designation is given for an element which is placed between two pancakes, than the number of the second pancake is also given separated by an underline, e. g. P01_02 or P10_11. Next is the number of the conductor separated by underline, e. g. C01. If the designation is given for an element which is placed between two conductors the number of the second conductor is also given separated by an underline, e. g. C25_26. For example the capacitance between conductor 25 and 26 of the pancake 01 has the designation C_P01_C25_26. The capacitance of the conductors 27 between the pancake 01 and 02 has the designation C_P01_02_C27. The capacitors to ground of the outer conductors have an E which is placed between the pancake and conductor number, e. g. C_P01_E_C27 in Fig. 4-10.

The detailed network model of the PF 6 coil was used for calculation in frequency domain and in time domain. In the frequency domain the resonance frequency of the coil was calcu-lated. In time domain the voltage stress between the conductors will be calculated.

Page 68: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

56

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

V

V

V

C_P09_C02_03C_P09_C02_03

C_P08_09_C22C_P08_09_C22

R_P07_C23_25R_P07_C23_25

R_P01_P02_C26R_P01_P02_C26

C_P15_C25_26C_P15_C25_26

L_P11_C20_22L_P11_C20_221 2

C_P08_09_C07C_P08_09_C07

C_P07_C05_06C_P07_C05_06

R_P06_C24_26R_P06_C24_26

R_P11_C10_12R_P11_C10_12

R_P14_C05_07R_P14_C05_07

C_P07_08_C24C_P07_08_C24

C_P12_C07_08C_P12_C07_08

C_P12_13_C24C_P12_13_C24C_P12_13_C09C_P12_13_C09

R_P13_C02_P14_C01R_P13_C02_P14_C01

R_P08_C14_16R_P08_C14_16

R_P07_C12_14R_P07_C12_14

C_P09_C20_21C_P09_C20_21

R_P16_C14_16R_P16_C14_16

C_P10_C02_03C_P10_C02_03

C_P02_03_C08C_P02_03_C08

C_P08_C18_19C_P08_C18_19

R_P05_C15_17R_P05_C15_17

C_P02_C16_17C_P02_C16_17

R_P10_C19_21R_P10_C19_21

C_P09_10_C09C_P09_10_C09

C_P03_C09_10C_P03_C09_10

L_P10_C24_26L_P10_C24_261 2

R_P09_C18_20R_P09_C18_20

R_P08_C17_19R_P08_C17_19

R_P11_C02_P12_C01R_P11_C02_P12_C01

C_P15_16_C03C_P15_16_C03

L_P05_C27/2L_P05_C27/21 2

C_P10_C23_24C_P10_C23_24

R_P08_C20_22R_P08_C20_22

R_P16_C20_22R_P16_C20_22

C_P06_07_C04C_P06_07_C04

L_P02_C24_26L_P02_C24_261 2

L_P09_C15_17L_P09_C15_171 2

C_P01_E_C01C_P01_E_C01

L_P05_C01_03L_P05_C01_031 2

R_P09_C22_24R_P09_C22_24

C_P15_C04_05C_P15_C04_05

C_P01_C16_17C_P01_C16_17

C_P12_13_C11C_P12_13_C11

C_P15_16_C06C_P15_16_C06

C_P05_C25_26C_P05_C25_26

C_P13_C09_10C_P13_C09_10

C_P04_C16_17C_P04_C16_17

C_P16_E_C26C_P16_E_C26

C_P12_C26_27C_P12_C26_27

C_P06_E_C01C_P06_E_C01

C_P09_10_C15C_P09_10_C15

L_P10_C12_14L_P10_C12_141 2

R_P04_C15_17R_P04_C15_17

L_P09_C10_12L_P09_C10_121 2

C_P11_C09_10C_P11_C09_10

C_P14_C16_17C_P14_C16_17

R_P04_C18_20R_P04_C18_20

R_P08_C08_10R_P08_C08_10

C_P06_C03_04C_P06_C03_04

C_P02_03_C01C_P02_03_C01

C_P09_C14_15C_P09_C14_15

R_P16_C08_10R_P16_C08_10

C_P02_C23_24C_P02_C23_24

C_P10_11_C10C_P10_11_C10

R_P05_C01_P06_C02R_P05_C01_P06_C02

C_P16_E_C14C_P16_E_C14

C_P16_C07_08C_P16_C07_08

R_P05_C05_07R_P05_C05_07

C_P09_10_C23C_P09_10_C23

R_P10_C03_05R_P10_C03_05

R_P03_C15_17R_P03_C15_17

L_P10_C18_20L_P10_C18_201 2

R_P14_C18_20R_P14_C18_20

R_P09_C14_16R_P09_C14_16

C_P12_C16_17C_P12_C16_17

R_P08_C11_13R_P08_C11_13

C_P06_C24_25C_P06_C24_25

R_P16_C11_13R_P16_C11_13

R_P04_C24_26R_P04_C24_26

C_P10_C10_11C_P10_C10_11

L_P12_C27/2L_P12_C27/21 2

R_P01_C09_11R_P01_C09_11

R_P07_C02_04R_P07_C02_04

L_P16_C04_06L_P16_C04_061 2

L_P09_C01_P10_C02L_P09_C01_P10_C02

1

2

L_P10_C15_17L_P10_C15_171 2

C_P16_E_C20C_P16_E_C20

R_P14_C15_17R_P14_C15_17

R_P12_C12_14R_P12_C12_14

L_P15_C17_19L_P15_C17_191 2

R_P14_C24_26R_P14_C24_26

C_P11_C21_22C_P11_C21_22

C_P15_16_C24C_P15_16_C24C_P15_16_C14C_P15_16_C14

C_P04_C26_27C_P04_C26_27

R_P12_C15_17R_P12_C15_17

C_P04_C20_21C_P04_C20_21

L_P07_C25_27L_P07_C25_271 2

R_P13_C15_17R_P13_C15_17

C_P07_C22_23C_P07_C22_23

C_P01_E_C21C_P01_E_C21

R_P12_C18_20R_P12_C18_20

C_P04_05_C04C_P04_05_C04

C_P09_10_C12C_P09_10_C12

R_P15_C13_15R_P15_C13_15

C_P14_C26_27C_P14_C26_27C_P14_C20_21C_P14_C20_21

R_P04_C12_14R_P04_C12_14

C_P02_03_C21C_P02_03_C21

R_P11_C15_17R_P11_C15_17

R_P03_C10_12R_P03_C10_12

C_P14_15_C04C_P14_15_C04

C_P05_06_C04C_P05_06_C04

C_P09_10_C20C_P09_10_C20

L_P05_C09_11L_P05_C09_111 2

R_P09_C11_13R_P09_C11_13

R_P12_C24_26R_P12_C24_26

R_P06_C09_11R_P06_C09_11

C_P16_E_C06C_P16_E_C06

R_P04_C27/2R_P04_C27/2

R_P14_C12_14R_P14_C12_14

L_P05_C06_08L_P05_C06_081 2

R_P13_C10_12R_P13_C10_12

L_P03_C05_07L_P03_C05_071 2

C_P12_13_C04C_P12_13_C04

C_P06_07_C18C_P06_07_C18

C_P06_C10_11C_P06_C10_11

C_P02_E_C01C_P02_E_C01

C_P10_11_C12C_P10_11_C12

C_P01_02_C21C_P01_02_C21

C_P04_E_C01C_P04_E_C01

R_P07_C27/2R_P07_C27/2

C_P16_C17_18C_P16_C17_18

R_P14_C27/2R_P14_C27/2

C_P08_09_C02C_P08_09_C02

C_P03_C21_22C_P03_C21_22

C_P04_C03_04C_P04_C03_04

C_P01_C23_24C_P01_C23_24

L_P01_C27/2L_P01_C27/21 2

R_P04_C23_25R_P04_C23_25

L_P11_C27/2L_P11_C27/21 2

C_P14_E_C01C_P14_E_C01

C_P11_C25_26C_P11_C25_26

R_P09_C04_06R_P09_C04_06

C_P06_07_C25C_P06_07_C25

C_P06_C06_07C_P06_C06_07

C_P10_11_C19C_P10_11_C19

R_P15_C16_18R_P15_C16_18

C_P13_C21_22C_P13_C21_22

C_P14_C03_04C_P14_C03_04

C_P04_C24_25C_P04_C24_25

C_P09_C08_09C_P09_C08_09

C_P01_E_C14C_P01_E_C14

L_P11_C01_03L_P11_C01_031 2

R_P14_C23_25R_P14_C23_25

C_P01_02_C15C_P01_02_C15

C_P02_C01_02C_P02_C01_02

L_P13_C05_07L_P13_C05_071 2

L_P07_C17_19L_P07_C17_191 2

C_P03_C01_02C_P03_C01_02

C_P14_C24_25C_P14_C24_25

L_P05_C02_P06_C01L_P05_C02_P06_C01

1

2

C_P12_C03_04C_P12_C03_04

C_P10_C14_15C_P10_C14_15

C_P07_08_C27C_P07_08_C27

C_P02_03_C14C_P02_03_C14

C_P10_11_C26C_P10_11_C26

R_P11_C01_P12_C02R_P11_C01_P12_C02

R_P11_C05_07R_P11_C05_07

C_P13_C01_02C_P13_C01_02

C_P08_C04_05C_P08_C04_05

R_P02_C10_12R_P02_C10_12

R_P06_C03_05R_P06_C03_05

C_P12_E_C01C_P12_E_C01

R_P09_P10_C26R_P09_P10_C26

L_P08_C25_27L_P08_C25_271 2

C_P05_06_C12C_P05_06_C12

R_P07_C13_15R_P07_C13_15

R_P06_C06_08R_P06_C06_08

L_P01_C15_17L_P01_C15_171 2

C_IC_E_P16C_IC_E_P16

R_P08_C02_04R_P08_C02_04

C_P01_C04_05C_P01_C04_05

L_P15_C27/2L_P15_C27/21 2

C_P04_05_C11C_P04_05_C11

C_P07_C16_17C_P07_C16_17

R_P09_C03_05R_P09_C03_05

C_P04_05_C09C_P04_05_C09

C_P12_C24_25C_P12_C24_25

L_P03_C09_11L_P03_C09_111 2

L_P10_C06_08L_P10_C06_081 2

R_P04_C09_11R_P04_C09_11

L_P16_C05_07L_P16_C05_071 2

C_P14_15_C11C_P14_15_C11

C_P09_C24_25C_P09_C24_25

L_P03_C06_08L_P03_C06_081 2

C_P14_15_C09C_P14_15_C09

C_P02_C08_09C_P02_C08_09

C_P04_C11_12C_P04_C11_12

C_P15_C20_21C_P15_C20_21

L_P13_C09_11L_P13_C09_111 2

L_P10_C09_11L_P10_C09_111 2

R_P14_C09_11R_P14_C09_11

R_P05_C22_24R_P05_C22_24

C_P15_C09_10C_P15_C09_10

C_P08_E_C27C_P08_E_C27

R_P03_C01_P04_C02R_P03_C01_P04_C02

L_P16_C17_19L_P16_C17_191 2

L_P08_C05_07L_P08_C05_071 2

C_P14_C11_12C_P14_C11_12

C_P11_12_C04C_P11_12_C04

C_P10_11_C06C_P10_11_C06

L_P15_C08_10L_P15_C08_101 2

R_P06_C27/2R_P06_C27/2

L_P11_C09_11L_P11_C09_111 2

R_P12_C09_11R_P12_C09_11

R_P13_C01_P14_C02R_P13_C01_P14_C02

C_P04_05_C25C_P04_05_C25

C_P04_C06_07C_P04_C06_07

L_P15_C21_23L_P15_C21_231 2

C_P05_06_C15C_P05_06_C15

L_P13_C06_08L_P13_C06_081 2

C_P06_C15_16C_P06_C15_16

C_P09_10_C19C_P09_10_C19

R_P15_C12_14R_P15_C12_14

C_P14_15_C25C_P14_15_C25

C_P14_C06_07C_P14_C06_07

R_P04_C06_08R_P04_C06_08

C_P16_C25_26C_P16_C25_26

C_P08_09_C16C_P08_09_C16

L_P03_C02_P04_C01L_P03_C02_P04_C01

1

2

L_P06_C15_17L_P06_C15_171 2

C_P07_C10_11C_P07_C10_11

C_P01_E_C09C_P01_E_C09

L_P06_C18_20L_P06_C18_201 2

L_P11_C06_08L_P11_C06_081 2

C_P09_E_C27C_P09_E_C27

C_P12_C10_11C_P12_C10_11

C_P12_13_C18C_P12_13_C18

R_P07_C24_26R_P07_C24_26

R_P02_C15_17R_P02_C15_17

C_P10_C01_02C_P10_C01_02

C_P02_03_C09C_P02_03_C09

L_P05_C15_17L_P05_C15_171 2

R_P02_C03_05R_P02_C03_05

C_P02_C15_16C_P02_C15_16

L_P10_C23_25L_P10_C23_251 2

C_P08_09_C23C_P08_09_C23

C_P08_C07_08C_P08_C07_08

C_P05_06_C09C_P05_06_C09

R_P02_C16_18R_P02_C16_18

L_P01_P02_C26L_P01_P02_C26

1

2

C_P15_C24_25C_P15_C24_25

C_P08_09_C08C_P08_09_C08

R_P02_C04_06R_P02_C04_06

L_P06_C24_26L_P06_C24_261 2

R_P14_C06_08R_P14_C06_08

C_P12_C06_07C_P12_C06_07

C_P12_13_C25C_P12_13_C25

R_P07_C20_22R_P07_C20_22

L_P13_C02_P14_C01L_P13_C02_P14_C01

1

2

R_P02_C25_27R_P02_C25_27

L_P07_C12_14L_P07_C12_141 2

C_P05_06_C20C_P05_06_C20

R_P12_C03_05R_P12_C03_05

C_P04_05_C18C_P04_05_C18

L_P10_C19_21L_P10_C19_211 2

C_P11_12_C12C_P11_12_C12

R_P12_C06_08R_P12_C06_08

R_P10_C22_24R_P10_C22_24

C_P07_08_C06C_P07_08_C06

L_P09_C18_20L_P09_C18_201 2

L_P11_C02_P12_C01L_P11_C02_P12_C01

1

2

C_P01_C14_15C_P01_C14_15

C_P06_C18_19C_P06_C18_19

C_P09_C26_27C_P09_C26_27

C_P15_16_C08C_P15_16_C08

C_P01_02_C11C_P01_02_C11

C_P06_07_C05C_P06_07_C05

C_P04_C15_16C_P04_C15_16

C_P16_C12_13C_P16_C12_13

C_P01_E_C02C_P01_E_C02

L_P09_C22_24L_P09_C22_241 2

L_P06_C12_14L_P06_C12_141 2

C_P03_04_C04C_P03_04_C04

C_P01_02_C08C_P01_02_C08

L_P05_C10_12L_P05_C10_121 2

L_P03_C01_03L_P03_C01_031 2

C_P14_15_C18C_P14_15_C18

C_P16_C26_27C_P16_C26_27

R_P01_C01_03R_P01_C01_03

C_IC_E_P10_P11C_IC_E_P10_P11

C_P13_14_C04C_P13_14_C04

R_P11_C22_24R_P11_C22_24

C_P16_E_C13C_P16_E_C13

L_P15_C23_25L_P15_C23_251 2

C_P16_E_C27C_P16_E_C27

L_P13_C01_03L_P13_C01_031 2

C_P14_C15_16C_P14_C15_16

C_P05_C20_21C_P05_C20_21

C_P07_08_C16C_P07_08_C16

L_P05_C21_23L_P05_C21_231 2

C_P02_03_C02C_P02_03_C02

C_P09_C13_14C_P09_C13_14

C_P02_C22_23C_P02_C22_23

L_P06_C23_25L_P06_C23_251 2

C_P03_C25_26C_P03_C25_26

L_P10_C13_15L_P10_C13_151 2

C_P16_E_C21C_P16_E_C21

C_P11_12_C15C_P11_12_C15

C_P07_C04_05C_P07_C04_05

L_P10_C03_05L_P10_C03_051 2

R_P05_C18_20R_P05_C18_20

R_P10_C16_18R_P10_C16_18

L_P09_C14_16L_P09_C14_161 2

C_P12_C15_16C_P12_C15_16

C_P05_C26_27C_P05_C26_27

R_P15_C24_26R_P15_C24_26

C_IC_E_P04_P05C_IC_E_P04_P05

L_P08_C14_16L_P08_C14_161 2

C_P10_C09_10C_P10_C09_10

R_P12_C27/2R_P12_C27/2

C_P09_C19_20C_P09_C19_20

L_P16_C14_16L_P16_C14_161 2

L_P01_C09_11L_P01_C09_111 2

L_P07_C02_04L_P07_C02_041 2

R_P16_C02_04R_P16_C02_04

C_P08_C17_18C_P08_C17_18

L_P06_C19_21L_P06_C19_211 2

C_P09_10_C10C_P09_10_C10

L_P12_C18_20L_P12_C18_201 2

C_P04_05_C05C_P04_05_C05

C_P04_E_C27C_P04_E_C27

L_P08_C17_19L_P08_C17_191 2

R_P01_C21_23R_P01_C21_23

C_P01_02_C20C_P01_02_C20

L_P08_C20_22L_P08_C20_221 2

R_P15_C20_22R_P15_C20_22

L_P16_C20_22L_P16_C20_221 2

C_P13_C25_26C_P13_C25_26

R_P02_C09_11R_P02_C09_11

L_P12_C15_17L_P12_C15_171 2

R_P02_C22_24R_P02_C22_24

C_P01_E_C22C_P01_E_C22

C_P01_C21_22C_P01_C21_22

L_P04_C27/2L_P04_C27/21 2

R_P16_C27/2R_P16_C27/2

L_P15_C13_15L_P15_C13_151 2

L_P08_C01_03L_P08_C01_031 2

C_P06_07_C12C_P06_07_C12

L_P16_C01_03L_P16_C01_031 2

C_P02_C26_27C_P02_C26_27

C_P05_C14_15C_P05_C14_15

C_P02_03_C22C_P02_03_C22

L_P11_C15_17L_P11_C15_171 2

C_P06_07_C10C_P06_07_C10

C_P14_15_C05C_P14_15_C05

C_P11_12_C09C_P11_12_C09

C_P12_E_C27C_P12_E_C27

C_P05_06_C23C_P05_06_C23

L_P09_C11_13L_P09_C11_131 2

L_P12_C24_26L_P12_C24_261 2

L_P06_C09_11L_P06_C09_111 2

R_P05_C14_16R_P05_C14_16

C_P03_C02_03C_P03_C02_03

C_P12_C18_19C_P12_C18_19

R_P16_C23_25R_P16_C23_25

R_P10_C10_12R_P10_C10_12

C_P12_13_C05C_P12_13_C05

C_P07_08_C11C_P07_08_C11

C_P06_C11_12C_P06_C11_12

C_P10_11_C14C_P10_11_C14

C_P11_12_C20C_P11_12_C20

L_P08_C08_10L_P08_C08_101 2

L_P16_C08_10L_P16_C08_101 2

L_P07_C27/2L_P07_C27/21 2

C_P16_C16_17C_P16_C16_17

L_P14_C27/2L_P14_C27/21 2

L_P05_C01_P06_C02L_P05_C01_P06_C02

1

2

C_P08_09_C03C_P08_09_C03

C_P03_C20_21C_P03_C20_21

C_P04_C02_03C_P04_C02_03

C_P07_08_C03C_P07_08_C03

L_P03_C15_17L_P03_C15_171 2

R_P04_C19_21R_P04_C19_21

C_P15_C01_02C_P15_C01_02

C_P03_04_C09C_P03_04_C09

R_P07_C01_03R_P07_C01_03

L_P09_C04_06L_P09_C04_061 2

C_P09_10_C18C_P09_10_C18

L_P04_C24_26L_P04_C24_261 2

C_P06_07_C26C_P06_07_C26

C_P06_C05_06C_P06_C05_06

R_P03_C18_20R_P03_C18_20

C_P10_11_C20C_P10_11_C20

C_P15_16_C27C_P15_16_C27

C_P13_C20_21C_P13_C20_21

C_P14_C02_03C_P14_C02_03

C_P04_C23_24C_P04_C23_24

C_P09_C07_08C_P09_C07_08

C_P01_E_C15C_P01_E_C15

C_P13_C02_03C_P13_C02_03

L_P12_C12_14L_P12_C12_141 2

C_P15_C14_15C_P15_C14_15

L_P11_C10_12L_P11_C10_121 2

L_P14_C24_26L_P14_C24_261 2

L_P07_C13_15L_P07_C13_151 2

R_P13_C18_20R_P13_C18_20

L_P06_C06_08L_P06_C06_081 2

R_P15_C09_11R_P15_C09_11

R_P07_C05_07R_P07_C05_07

C_P11_C20_21C_P11_C20_21

C_P14_C23_24C_P14_C23_24

L_P11_C21_23L_P11_C21_231 2

R_P03_C22_24R_P03_C22_24

R_P09_C25_27R_P09_C25_27

L_P07_C16_18L_P07_C16_181 2

C_P02_03_C15C_P02_03_C15

C_P10_11_C27C_P10_11_C27

L_P12_C23_25L_P12_C23_251 2

C_P01_C02_03C_P01_C02_03

R_P05_C11_13R_P05_C11_13

L_P13_C15_17L_P13_C15_171 2

R_P14_C19_21R_P14_C19_21

L_P07_C21_23L_P07_C21_231 2

L_P02_C10_12L_P02_C10_121 2

C_P13_14_C09C_P13_14_C09

L_P09_P10_C26L_P09_P10_C26

1

2

C_P03_04_C23C_P03_04_C23

R_P10_C04_06R_P10_C04_06

C_P07_08_C14C_P07_08_C14

L_P04_C12_14L_P04_C12_141 2

C_P03_04_C15C_P03_04_C15

C_P08_C25_26C_P08_C25_26

L_P03_C10_12L_P03_C10_121 2

L_P12_C19_21L_P12_C19_211 2

C_P01_02_C03C_P01_02_C03

C_P16_C20_21C_P16_C20_21

C_P07_C15_16C_P07_C15_16

R_P11_C18_20R_P11_C18_20

C_P03_C14_15C_P03_C14_15

L_P09_C03_05L_P09_C03_051 2

C_P04_05_C10C_P04_05_C10

C_P11_C26_27C_P11_C26_27

R_P13_C22_24R_P13_C22_24

C_P15_16_C04C_P15_16_C04

L_P14_C12_14L_P14_C12_141 2

C_P13_14_C15C_P13_14_C15

R_P05_C04_06R_P05_C04_06

L_P04_C15_17L_P04_C15_171 2

R_P16_C15_17R_P16_C15_17

L_P13_C10_12L_P13_C10_121 2

R_P04_C03_05R_P04_C03_05

C_P06_07_C19C_P06_07_C19

L_P04_C18_20L_P04_C18_201 2

R_P03_C14_16R_P03_C14_16

C_P05_C08_09C_P05_C08_09

C_P05_E_C27C_P05_E_C27

C_P13_C14_15C_P13_C14_15

R_P15_C02_04R_P15_C02_04

C_P14_15_C10C_P14_15_C10

C_P02_C07_08C_P02_C07_08

C_P04_C10_11C_P04_C10_11

C_P13_14_C23C_P13_14_C23

L_P03_C01_P04_C02L_P03_C01_P04_C02

1

2

L_P16_C11_13L_P16_C11_131 2

R_P05_C25_27R_P05_C25_27

C_P11_C14_15C_P11_C14_15

C_P12_13_C10C_P12_13_C10

C_P14_C10_11C_P14_C10_11

C_P11_12_C23C_P11_12_C23

L_P12_C09_11L_P12_C09_111 2

L_P13_C01_P14_C02L_P13_C01_P14_C02

1

2

C_P16_C03_04C_P16_C03_04

L_P14_C15_17L_P14_C15_171 2

R_P05_P06_C26R_P05_P06_C26

R_P14_C03_05R_P14_C03_05

L_P14_C18_20L_P14_C18_201 2

R_P07_C09_11R_P07_C09_11

C_P12_13_C12C_P12_13_C12

R_P13_C14_16R_P13_C14_16

L_P08_C11_13L_P08_C11_131 2

R_P15_C01_03R_P15_C01_03

L_P07_C24_26L_P07_C24_261 2

C_P03_04_C12C_P03_04_C12

C_P10_C05_06C_P10_C05_06

L_P15_C12_14L_P15_C12_141 2

R_P07_C06_08R_P07_C06_08

L_P11_C01_P12_C02L_P11_C01_P12_C02

1

2

C_P16_C24_25C_P16_C24_25

R_P10_C25_27R_P10_C25_27

C_P08_09_C17C_P08_09_C17

C_P08_C12_13C_P08_C12_13

L_P05_C03_05L_P05_C03_051 2

C_P01_E_C10C_P01_E_C10

R_P11_C14_16R_P11_C14_16

C_P03_04_C20C_P03_04_C20

R_P03_C11_13R_P03_C11_13

R_P09_C08_10R_P09_C08_10

C_P12_C11_12C_P12_C11_12

L_P07_C20_22L_P07_C20_221 2

C_P05_C24_25C_P05_C24_25

L_P08_C02_04L_P08_C02_041 2

L_P02_C15_17L_P02_C15_171 2

C_P02_03_C10C_P02_03_C10

L_P02_C03_05L_P02_C03_051 2

C_P02_C14_15C_P02_C14_15

C_P13_14_C20C_P13_14_C20

C_P04_05_C12C_P04_05_C12

C_P08_09_C24C_P08_09_C24

L_P07_C23_25L_P07_C23_251 2

L_P02_C16_18L_P02_C16_181 2

R_P13_C11_13R_P13_C11_13

L_P02_C04_06L_P02_C04_061 2

C_P09_10_C13C_P09_10_C13

C_P13_14_C12C_P13_14_C12

C_P07_08_C08C_P07_08_C08

R_P01_C19_21R_P01_C19_21

R_P15_C01_P16_C02R_P15_C01_P16_C02

R_P15_C05_07R_P15_C05_07

C_P01_C12_13C_P01_C12_13

C_P12_C05_06C_P12_C05_06

C_P12_13_C26C_P12_13_C26

C_P14_15_C12C_P14_15_C12

C_P06_07_C06C_P06_07_C06

R_P11_C11_13R_P11_C11_13

R_P03_C04_06R_P03_C04_06

R_P07_C02_P08_C01R_P07_C02_P08_C01

C_P04_05_C19C_P04_05_C19

R_P10_C07_09R_P10_C07_09

C_P03_C08_09C_P03_C08_09

L_P12_C06_08L_P12_C06_081 2

R_P08_C05_07R_P08_C05_07

C_P06_C19_20C_P06_C19_20

R_P01_C17_19R_P01_C17_19

C_P10_C22_23C_P10_C22_23

R_P16_C05_07R_P16_C05_07

C_P14_15_C19C_P14_15_C19

L_P05_C19_21L_P05_C19_211 2

C_P13_C08_09C_P13_C08_09

C_P04_C14_15C_P04_C14_15

C_P16_C11_12C_P16_C11_12

C_P04_05_C26C_P04_05_C26

C_P01_E_C03C_P01_E_C03

C_P09_10_C26C_P09_10_C26

R_P13_C04_06R_P13_C04_06

R_P03_P04_C26R_P03_P04_C26

C_P15_16_C12C_P15_16_C12

C_P14_15_C26C_P14_15_C26

L_P04_C06_08L_P04_C06_081 2

C_P02_03_C03C_P02_03_C03

C_P09_C12_13C_P09_C12_13

C_P02_C21_22C_P02_C21_22

C_P05_C02_03C_P05_C02_03

L_P01_C01_03L_P01_C01_031 2

C_P16_E_C15C_P16_E_C15

C_P16_C06_07C_P16_C06_07

C_P07_C09_10C_P07_C09_10

R_P13_P14_C26R_P13_P14_C26

R_P11_C04_06R_P11_C04_06

R_P15_C15_17R_P15_C15_17

C_P12_13_C19C_P12_13_C19

R_P03_C03_05R_P03_C03_05

C_P11_C08_09C_P11_C08_09

C_P14_C14_15C_P14_C14_15

C_P06_C01_02C_P06_C01_02

C_P08_C16_17C_P08_C16_17

C_P01_02_C14C_P01_02_C14

C_P09_10_C02C_P09_10_C02

R_P06_C19_21R_P06_C19_21

R_P10_C21_23R_P10_C21_23

R_P11_P12_C26R_P11_P12_C26

C_P03_C24_25C_P03_C24_25

C_P16_E_C22C_P16_E_C22

R_P13_C03_05R_P13_C03_05

R_P06_C22_24R_P06_C22_24

L_P05_C18_20L_P05_C18_201 2

R_P11_C25_27R_P11_C25_27

C_P06_C23_24C_P06_C23_24

L_P14_C06_08L_P14_C06_081 2

L_P04_C09_11L_P04_C09_111 2

L_P15_C24_26L_P15_C24_261 2

L_P02_C25_27L_P02_C25_271 2

C_P09_C18_19C_P09_C18_19

L_P11_C03_05L_P11_C03_051 2

L_P02_C22_24L_P02_C22_241 2

C_P09_10_C05C_P09_10_C05

C_P01_E_C23C_P01_E_C23

C_P01_C25_26C_P01_C25_26

R_P09_C07_09R_P09_C07_09

C_P04_05_C06C_P04_05_C06

L_P14_C09_11L_P14_C09_111 2

L_P05_C22_24L_P05_C22_241 2

C_P01_C19_20C_P01_C19_20

R_P08_C15_17R_P08_C15_17

C_P01_02_C19C_P01_02_C19

R_P08_C18_20R_P08_C18_20

L_P15_C20_22L_P15_C20_221 2

R_P16_C18_20R_P16_C18_20

C_P13_C24_25C_P13_C24_25

L_P02_C09_11L_P02_C09_111 2

C_P09_10_C22C_P09_10_C22C_P09_10_C07C_P09_10_C07

C_P03_04_C19C_P03_04_C19

R_P07_C15_17R_P07_C15_17

L_P16_C27/2L_P16_C27/21 2

R_P06_C10_12R_P06_C10_12

C_P11_C24_25C_P11_C24_25

R_P08_C24_26R_P08_C24_26

R_P16_C24_26R_P16_C24_26

C_P05_C13_14C_P05_C13_14

C_P02_03_C23C_P02_03_C23

C_P14_15_C06C_P14_15_C06

L_P06_C13_15L_P06_C13_151 2

C_P01_02_C05C_P01_02_C05

C_P08_09_C04C_P08_09_C04

L_P06_C03_05L_P06_C03_051 2

C_P04_C01_02C_P04_C01_02

R_P06_C16_18R_P06_C16_18

L_P05_C14_16L_P05_C14_161 2

L_P04_C23_25L_P04_C23_251 2

C_P12_C19_20C_P12_C19_20

C_P15_C02_03C_P15_C02_03

C_P12_13_C06C_P12_13_C06

C_P06_C09_10C_P06_C09_10

C_P10_11_C13C_P10_11_C13

C_P05_C19_20C_P05_C19_20

C_P15_16_C15C_P15_16_C15

C_P08_C26_27C_P08_C26_27

C_P13_14_C19C_P13_14_C19

C_P08_C20_21C_P08_C20_21

R_P09_C19_21R_P09_C19_21

C_P16_C15_16C_P16_C15_16

C_P15_C13_14C_P15_C13_14

R_P08_C27/2R_P08_C27/2

R_P10_C01_03R_P10_C01_03

L_P10_C16_18L_P10_C16_181 2

L_P04_C19_21L_P04_C19_211 2

C_P09_10_C17C_P09_10_C17

C_P10_C19_20C_P10_C19_20

R_P04_C22_24R_P04_C22_24

L_P11_C19_21L_P11_C19_211 2

R_P08_C12_14R_P08_C12_14

C_P05_06_C19C_P05_06_C19

L_P03_C18_20L_P03_C18_201 2

C_P10_C08_09C_P10_C08_09

C_P10_11_C21C_P10_11_C21

L_P15_C16_18L_P15_C16_181 2

R_P07_C10_12R_P07_C10_12

R_P16_C12_14R_P16_C12_14

C_P14_C01_02C_P14_C01_02

C_P03_C26_27C_P03_C26_27

C_P09_C06_07C_P09_C06_07

L_P16_C02_04L_P16_C02_041 2

C_P01_02_C01C_P01_02_C01

R_P01_C03_05R_P01_C03_05

C_P01_E_C16C_P01_E_C16

L_P14_C23_25L_P14_C23_251 2

C_P05_06_C10C_P05_06_C10

C_P15_C19_20C_P15_C19_20

C_P16_E_C01C_P16_E_C01

R_P08_C23_25R_P08_C23_25

C_P05_06_C13C_P05_06_C13

L_P10_C22_24L_P10_C22_241 2

R_P14_C22_24R_P14_C22_24

L_P13_C18_20L_P13_C18_201 2

L_P01_C21_23L_P01_C21_231 2

L_P15_C09_11L_P15_C09_111 2

L_P07_C05_07L_P07_C05_071 2

R_P01_C10_12R_P01_C10_12

C_P13_C26_27C_P13_C26_27

C_P12_C01_02C_P12_C01_02

L_P03_C22_24L_P03_C22_241 2

C_P08_E_C01C_P08_E_C01

C_P02_03_C16C_P02_03_C16

C_P11_C02_03C_P11_C02_03

C_P05_06_C22C_P05_06_C22

C_P07_C21_22C_P07_C21_22

C_P09_10_C01C_P09_10_C01

L_P14_C19_21L_P14_C19_211 2

C_P08_C03_04C_P08_C03_04

C_P12_C23_24C_P12_C23_24

L_P13_C22_24L_P13_C22_241 2

C_P07_C01_02C_P07_C01_02

R_P05_C08_10R_P05_C08_10

R_P01_C12_14R_P01_C12_14R_P01_C08_10R_P01_C08_10

C_P06_07_C13C_P06_07_C13

C_P08_C24_25C_P08_C24_25

R_P12_C19_21R_P12_C19_21

R_P12_C22_24R_P12_C22_24

C_P15_E_C27C_P15_E_C27

L_P11_C18_20L_P11_C18_201 2

C_P03_C13_14C_P03_C13_14

C_P15_E_C01C_P15_E_C01

L_P10_C10_12L_P10_C10_121 2

L_P05_C04_06L_P05_C04_061 2

L_P04_C13_15L_P04_C13_151 2

C_P15_16_C09C_P15_16_C09

L_P04_C03_05L_P04_C03_051 2

C_P06_07_C20C_P06_07_C20

R_P04_C16_18R_P04_C16_18

L_P03_C14_16L_P03_C14_161 2

C_P05_C07_08C_P05_C07_08

C_P13_C13_14C_P13_C13_14

L_P15_C02_04L_P15_C02_041 2

C_P02_C06_07C_P02_C06_07

C_P04_C09_10C_P04_C09_10

L_P11_C22_24L_P11_C22_241 2

C_P03_C19_20C_P03_C19_20

C_P13_E_C27C_P13_E_C27

R_P14_C16_18R_P14_C16_18

L_P07_C09_11L_P07_C09_111 2

L_P13_C14_16L_P13_C14_161 2

R_P08_C09_11R_P08_C09_11

C_P03_04_C10C_P03_04_C10

R_P16_C09_11R_P16_C09_11

C_P06_C14_15C_P06_C14_15

C_P11_C13_14C_P11_C13_14

C_P06_07_C27C_P06_07_C27

C_P14_C09_10C_P14_C09_10

C_P13_C19_20C_P13_C19_20

R_P15_C06_08R_P15_C06_08

C_P08_09_C11C_P08_09_C11

R_P10_C13_15R_P10_C13_15

C_P16_C02_03C_P16_C02_03

L_P14_C13_15L_P14_C13_151 2

C_P08_09_C09C_P08_09_C09

L_P05_P06_C26L_P05_P06_C26

1

2

R_P12_C10_12R_P12_C10_12

L_P14_C03_05L_P14_C03_051 2

R_P06_C04_06R_P06_C04_06

L_P03_C11_13L_P03_C11_131 2

C_P12_C09_10C_P12_C09_10

C_P11_C19_20C_P11_C19_20

C_P01_C10_11C_P01_C10_11

R_P01_C06_08R_P01_C06_08

C_P10_C13_14C_P10_C13_14

C_P01_C07_08C_P01_C07_08

C_P09_C23_24C_P09_C23_24

L_P07_C06_08L_P07_C06_081 2

C_P16_C23_24C_P16_C23_24

C_P09_E_C01C_P09_E_C01

L_P12_C13_15L_P12_C13_151 2

C_P09_C03_04C_P09_C03_04

C_P08_C11_12C_P08_C11_12

L_P12_C03_05L_P12_C03_051 2

R_P05_C03_05R_P05_C03_05

R_P02_C08_10R_P02_C08_10

R_P12_C16_18R_P12_C16_18

C_P13_14_C10C_P13_14_C10

L_P11_C14_16L_P11_C14_161 2

C_P09_10_C25C_P09_10_C25

R_P07_C01_P08_C02R_P07_C01_P08_C02

R_P01_C14_16R_P01_C14_16

L_P01_C19_21L_P01_C19_211 2

L_P15_C01_P16_C02L_P15_C01_P16_C02

1

2

L_P15_C05_07L_P15_C05_071 2

C_P11_12_C19C_P11_12_C19

R_P04_C10_12R_P04_C10_12

C_P11_12_C10C_P11_12_C10

C_P02_C13_14C_P02_C13_14

C_P04_05_C14C_P04_05_C14

C_P08_09_C25C_P08_09_C25

C_P08_C06_07C_P08_C06_07

L_P13_C11_13L_P13_C11_131 2

R_P06_C07_09R_P06_C07_09

C_P05_06_C18C_P05_06_C18

L_P01_C17_19L_P01_C17_191 2

C_P10_C21_22C_P10_C21_22

C_P14_15_C14C_P14_15_C14

R_P08_C06_08R_P08_C06_08

C_P06_07_C07C_P06_07_C07

C_P10_11_C01C_P10_11_C01

C_P11_12_C22C_P11_12_C22

R_P16_C06_08R_P16_C06_08

L_P03_C04_06L_P03_C04_061 2

L_P07_C02_P08_C01L_P07_C02_P08_C01

1

2

C_P03_04_C18C_P03_04_C18

C_P04_05_C20C_P04_05_C20

C_P11_12_C13C_P11_12_C13

L_P10_C07_09L_P10_C07_091 2

C_P03_C07_08C_P03_C07_08

C_P15_C08_09C_P15_C08_09

R_P14_C10_12R_P14_C10_12

L_P13_C04_06L_P13_C04_061 2

L_P03_P04_C26L_P03_P04_C26

1

2

C_P13_14_C18C_P13_14_C18

R_P01_C11_13R_P01_C11_13

C_P14_15_C20C_P14_15_C20

R_P05_C19_21R_P05_C19_21

C_P05_C03_04C_P05_C03_04

C_P13_C07_08C_P13_C07_08

R_P09_C17_19R_P09_C17_19

R_P03_C25_27R_P03_C25_27

C_P16_C10_11C_P16_C10_11

C_P04_05_C27C_P04_05_C27

C_P01_E_C04C_P01_E_C04

R_P11_C08_10R_P11_C08_10

C_P16_E_C07C_P16_E_C07

C_P12_13_C13C_P12_13_C13

R_P16_C19_21R_P16_C19_21

C_P11_C07_08C_P11_C07_08

R_P13_C25_27R_P13_C25_27

R_P09_C21_23R_P09_C21_23

C_P14_15_C27C_P14_15_C27

R_P04_C04_06R_P04_C04_06

C_P02_03_C04C_P02_03_C04

C_P09_C11_12C_P09_C11_12

C_P05_06_C02C_P05_06_C02

C_P02_C20_21C_P02_C20_21

R_P06_C21_23R_P06_C21_23

C_P08_09_C18C_P08_09_C18

C_P09_10_C21C_P09_10_C21

C_P16_E_C16C_P16_E_C16

L_P13_P14_C26L_P13_P14_C26

1

2

L_P11_C04_06L_P11_C04_061 2

R_P09_C16_18R_P09_C16_18

C_P12_13_C20C_P12_13_C20

L_P03_C03_05L_P03_C03_051 2

C_P09_C17_18C_P09_C17_18

L_P02_C13_15L_P02_C13_151 2

C_P08_C15_16C_P08_C15_16

R_P02_C01_03R_P02_C01_03

L_P10_C21_23L_P10_C21_231 2

L_P11_P12_C26L_P11_P12_C26

1

2

R_P05_C07_09R_P05_C07_09

R_P02_C14_16R_P02_C14_16

C_P16_E_C23C_P16_E_C23

R_P02_C02_04R_P02_C02_04

L_P13_C03_05L_P13_C03_051 2

L_P06_C22_24L_P06_C22_241 2

C_P15_16_C20C_P15_16_C20

C_P07_08_C04C_P07_08_C04

R_P01_C16_18R_P01_C16_18

C_P01_C17_18C_P01_C17_18

C_P12_C14_15C_P12_C14_15

C_P06_C22_23C_P06_C22_23

L_P10_C04_06L_P10_C04_061 2

R_P14_C04_06R_P14_C04_06

L_P07_C01_03L_P07_C01_031 2

C_P12_13_C27C_P12_13_C27

R_P01_C04_06R_P01_C04_06

R_P02_C19_21R_P02_C19_21

R_P11_C03_05R_P11_C03_05

C_P05_06_C07C_P05_06_C07

C_P01_E_C24C_P01_E_C24

L_P09_C07_09L_P09_C07_091 2

C_P05_06_C26C_P05_06_C26

R_P12_C04_06R_P12_C04_06

L_P16_C15_17L_P16_C15_171 2

C_P01_02_C10C_P01_02_C10

C_IC_E_P08_P09C_IC_E_P08_P09

R_P03_C08_10R_P03_C08_10

R_P12_C07_09R_P12_C07_09

C_P07_C25_26C_P07_C25_26

C_P04_C05_06C_P04_C05_06

R_P04_C25_27R_P04_C25_27

C_P05_C12_13C_P05_C12_13

C_P02_03_C24C_P02_03_C24

L_P09_C19_21L_P09_C19_211 2

C_P16_C14_15C_P16_C14_15

R_P14_C25_27R_P14_C25_27

R_P06_C13_15R_P06_C13_15

C_P08_09_C05C_P08_09_C05

R_P06_C01_03R_P06_C01_03

L_P06_C16_18L_P06_C16_181 2

L_P15_C15_17L_P15_C15_171 2

C_P01_02_C18C_P01_02_C18

C_P11_12_C18C_P11_12_C18

L_P16_C23_25L_P16_C23_251 2

C_P05_06_C17C_P05_06_C17

L_P09_C08_10L_P09_C08_101 2

R_P13_C08_10R_P13_C08_10

C_P12_13_C07C_P12_13_C07

R_P05_C23_25R_P05_C23_25

C_P10_11_C15C_P10_11_C15

C_P05_C18_19C_P05_C18_19

C_P03_04_C13C_P03_04_C13

R_P15_C10_12R_P15_C10_12

C_P14_C05_06C_P14_C05_06

C_P05_06_C05C_P05_06_C05

L_P01_C03_05L_P01_C03_051 2

C_P01_E_C17C_P01_E_C17

C_P09_10_C24C_P09_10_C24

C_P15_C12_13C_P15_C12_13

L_P08_C27/2L_P08_C27/21 2

R_P10_C14_16R_P10_C14_16

C_P13_14_C13C_P13_14_C13

R_P09_C12_14R_P09_C12_14

R_P04_C07_09R_P04_C07_09

C_P10_C18_19C_P10_C18_19

R_P11_C19_21R_P11_C19_21

R_P02_C23_25R_P02_C23_25

R_P09_C23_25R_P09_C23_25

C_P10_11_C22C_P10_11_C22

C_P11_C03_04C_P11_C03_04

C_P10_11_C07C_P10_11_C07

C_P04_C22_23C_P04_C22_23

C_P09_C05_06C_P09_C05_06

L_P05_C11_13L_P05_C11_131 2

R_P02_C20_22R_P02_C20_22

C_P07_C20_21C_P07_C20_21

R_P10_C17_19R_P10_C17_19

C_P08_C02_03C_P08_C02_03

C_P15_C18_19C_P15_C18_19

C_P16_E_C02C_P16_E_C02

R_P14_C07_09R_P14_C07_09

C_P07_C02_03C_P07_C02_03

R_P10_C20_22R_P10_C20_22

C_P15_16_C23C_P15_16_C23

L_P01_C10_12L_P01_C10_121 2

L_P15_C01_03L_P15_C01_031 2

C_P14_C22_23C_P14_C22_23

C_P03_04_C26C_P03_04_C26

C_P02_03_C17C_P02_03_C17

C_P11_12_C02C_P11_12_C02

R_P12_C21_23R_P12_C21_23

R_P02_C07_09R_P02_C07_09

L_P12_C22_24L_P12_C22_241 2

C_P15_C23_24C_P15_C23_24

C_P03_C12_13C_P03_C12_13

L_P07_C15_17L_P07_C15_171 2

C_P12_C22_23C_P12_C22_23

C_P13_14_C26C_P13_14_C26

R_P08_C19_21R_P08_C19_21

L_P06_C10_12L_P06_C10_121 2

C_P07_08_C09C_P07_08_C09

L_P01_C12_14L_P01_C12_141 2

L_P01_C08_10L_P01_C08_101 2

L_P08_C24_26L_P08_C24_261 2

C_P06_07_C14C_P06_07_C14

R_P07_C18_20R_P07_C18_20

L_P16_C24_26L_P16_C24_261 2

C_P08_C23_24C_P08_C23_24

R_P11_C07_09R_P11_C07_09

C_P15_16_C19C_P15_16_C19

C_P03_C18_19C_P03_C18_19

R_P01_C18_20R_P01_C18_20

C_P03_04_C02C_P03_04_C02

R_P04_C21_23R_P04_C21_23

R_P10_C08_10R_P10_C08_10

R_P07_C22_24R_P07_C22_24

C_P06_07_C22C_P06_07_C22

R_P01_C02_04R_P01_C02_04

V1

1VacTRAN =

0VdcV1

1VacTRAN =

0Vdc

C_P05_C06_07C_P05_C06_07

C_P11_12_C07C_P11_12_C07

C_P13_C12_13C_P13_C12_13

C_P02_C05_06C_P02_C05_06

C_P11_12_C26C_P11_12_C26

C_P16_C01_02C_P16_C01_02

C_P08_09_C10C_P08_09_C10

C_P05_06_C25C_P05_06_C25

C_P01_02_C07C_P01_02_C07

C_P03_04_C05C_P03_04_C05

R_P15_C11_13R_P15_C11_13

C_P07_08_C23C_P07_08_C23

R_P03_C07_09R_P03_C07_09

R_P09_C02_04R_P09_C02_04

L_P05_C25_27L_P05_C25_271 2

C_P11_C12_13C_P11_C12_13

C_P01_C08_09C_P01_C08_09

L_P08_C12_14L_P08_C12_141 2

C_P07_08_C15C_P07_08_C15

C_P06_07_C01C_P06_07_C01

L_P07_C10_12L_P07_C10_121 2

C_P01_C05_06C_P01_C05_06

L_P16_C12_14L_P16_C12_141 2

C_P13_C18_19C_P13_C18_19

L_P15_C06_08L_P15_C06_081 2

C_P13_14_C02C_P13_14_C02

R_P06_C17_19R_P06_C17_19

R_P14_C21_23R_P14_C21_23

C_P07_C14_15C_P07_C14_15

R_P10_C11_13R_P10_C11_13

C_P11_12_C17C_P11_12_C17

L_P07_C01_P08_C02L_P07_C01_P08_C02

1

2

L_P01_C14_16L_P01_C14_161 2

L_P08_C15_17L_P08_C15_171 2

L_P06_C04_06L_P06_C04_061 2

C_P03_04_C07C_P03_04_C07 C_P03_04_C22C_P03_04_C22

R_P11_C23_25R_P11_C23_25

R_P08_C03_05R_P08_C03_05

C_P11_C18_19C_P11_C18_19

L_P01_C06_08L_P01_C06_081 2

R_P16_C03_05R_P16_C03_05

L_P08_C18_20L_P08_C18_201 2

L_P09_C25_27L_P09_C25_271 2

R_P07_C14_16R_P07_C14_16

C_P09_C22_23C_P09_C22_23

L_P16_C18_20L_P16_C18_201 2

C_P15_C26_27C_P15_C26_27

R_P12_C13_15R_P12_C13_15

C_P08_C10_11C_P08_C10_11

R_P12_C01_03R_P12_C01_03

C_P13_14_C05C_P13_14_C05

C_P05_06_C24C_P05_06_C24

L_P02_C08_10L_P02_C08_101 2

L_P12_C16_18L_P12_C16_181 2

R_P13_C07_09R_P13_C07_09

C_P10_E_C27C_P10_E_C27

C_P15_16_C13C_P15_16_C13

C_P11_12_C05C_P11_12_C05

C_P02_C12_13C_P02_C12_13

C_P04_05_C13C_P04_05_C13

C_P13_14_C07C_P13_14_C07 C_P13_14_C22C_P13_14_C22

R_P03_C19_21R_P03_C19_21

C_P01_C26_27C_P01_C26_27

R_P07_C11_13R_P07_C11_13

Rtn11kRtn11k

R_P09_C27/2R_P09_C27/2

R_P04_C01_03R_P04_C01_03

C_P07_08_C12C_P07_08_C12

R_P15_C18_20R_P15_C18_20

C_P14_15_C13C_P14_15_C13

L_P04_C16_18L_P04_C16_181 2

C_P10_11_C02C_P10_11_C02

C_P03_04_C17C_P03_04_C17

L_P11_C11_13L_P11_C11_131 2

R_P01_C05_07R_P01_C05_07

R_P13_C19_21R_P13_C19_21

C_P04_C19_20C_P04_C19_20

C_P04_05_C21C_P04_05_C21

C_P04_C08_09C_P04_C08_09

C_P06_E_C27C_P06_E_C27

C_P07_08_C20C_P07_08_C20

C_P03_C06_07C_P03_C06_07

C_P15_C07_08C_P15_C07_08

L_P14_C16_18L_P14_C16_181 2

L_P05_C08_10L_P05_C08_101 2

C_P03_04_C01C_P03_04_C01

C_P12_13_C14C_P12_13_C14

L_P16_C19_21L_P16_C19_211 2

C_P13_14_C17C_P13_14_C17

R_P15_C22_24R_P15_C22_24

C_P14_C19_20C_P14_C19_20

C_P05_C23_24C_P05_C23_24

L_P04_C22_24L_P04_C22_241 2

C_P06_C04_05C_P06_C04_05

L_P01_C11_13L_P01_C11_131 2

C_P14_15_C21C_P14_15_C21

C_P14_C08_09C_P14_C08_09

C_P05_E_C01C_P05_E_C01

C_P01_02_C13C_P01_02_C13

R_P06_C25_27R_P06_C25_27

C_P13_C06_07C_P13_C06_07

C_P08_09_C12C_P08_09_C12

L_P05_C13_15L_P05_C13_151 2

L_P09_C17_19L_P09_C17_191 2

C_P16_C09_10C_P16_C09_10

C_P01_E_C05C_P01_E_C05

L_P12_C10_12L_P12_C10_121 2

C_P16_E_C08C_P16_E_C08

R_P14_C01_03R_P14_C01_03

C_P05_06_C27C_P05_06_C27

R_P01_C23_25R_P01_C23_25

C_P12_13_C22C_P12_13_C22

Rtn21kRtn21k

C_P11_C06_07C_P11_C06_07

C_P10_C04_05C_P10_C04_05

R_P07_C04_06R_P07_C04_06

C_P02_03_C05C_P02_03_C05

C_P02_C19_20C_P02_C19_20

L_P10_C25_27L_P10_C25_271 2

C_P08_09_C19C_P08_09_C19

R_P09_C13_15R_P09_C13_15

C_P16_E_C17C_P16_E_C17

C_P13_14_C01C_P13_14_C01

C_P07_C08_09C_P07_C08_09

L_P14_C22_24L_P14_C22_241 2

R_P05_C12_14R_P05_C12_14

C_P09_10_C27C_P09_10_C27

C_P01_C15_16C_P01_C15_16

R_P07_P08_C26R_P07_P08_C26

C_P12_13_C01C_P12_13_C01

L_P01_C04_06L_P01_C04_061 2

L_P04_C10_12L_P04_C10_121 2

C_P09_C16_17C_P09_C16_17

R_P02_C13_15R_P02_C13_15

R_P12_C17_19R_P12_C17_19

C_P08_C14_15C_P08_C14_15

C_P11_12_C25C_P11_12_C25

C_P08_09_C26C_P08_09_C26

L_P02_C14_16L_P02_C14_161 2

L_P06_C07_09L_P06_C07_091 2

C_P16_E_C24C_P16_E_C24

L_P02_C02_04L_P02_C02_041 2

C_IC_E_P02_P03C_IC_E_P02_P03

L_P01_C16_18L_P01_C16_181 2

L_P11_C25_27L_P11_C25_271 2

R_P05_C27/2R_P05_C27/2

R_P10_C02_04R_P10_C02_04

L_P08_C06_08L_P08_C06_081 2

L_P02_C19_21L_P02_C19_211 2

Rng

1k

Rng

1k

L_P16_C06_08L_P16_C06_081 2

R_P05_C17_19R_P05_C17_19

C_P11_12_C24C_P11_12_C24

C_P01_E_C25C_P01_E_C25

L_P10_C05_07L_P10_C05_071 2

R_P05_C20_22R_P05_C20_22

L_P12_C04_06L_P12_C04_061 2

L_P14_C10_12L_P14_C10_121 2

R_P07_C03_05R_P07_C03_05

R_P04_C13_15R_P04_C13_15

L_P16_C13_15L_P16_C13_151 2

C_P05_C11_12C_P05_C11_12

C_P02_03_C25C_P02_03_C25

C_P15_16_C18C_P15_16_C18

C_P07_C24_25C_P07_C24_25

C_P04_C13_14C_P04_C13_14

C_P03_C23_24C_P03_C23_24

R_P14_C13_15R_P14_C13_15

R_P01_C20_22R_P01_C20_22

C_P03_E_C01C_P03_E_C01

C_P03_C03_04C_P03_C03_04

R_P16_C25_27R_P16_C25_27

C_P15_16_C02C_P15_16_C02

L_P08_C09_11L_P08_C09_111 2

L_P16_C09_11L_P16_C09_111 2

C_P03_04_C25C_P03_04_C25

C_P14_C13_14C_P14_C13_14

C_P05_C17_18C_P05_C17_18

C_P13_C23_24C_P13_C23_24

C_P09_C10_11C_P09_C10_11

C_P13_E_C01C_P13_E_C01

L_P06_C21_23L_P06_C21_231 2

R_P15_C25_27R_P15_C25_27

C_P13_C03_04C_P13_C03_04

C_P08_09_C06C_P08_09_C06

R_P09_C24_26R_P09_C24_26

C_P13_14_C25C_P13_14_C25

C_P15_16_C05C_P15_16_C05

C_P06_C08_09C_P06_C08_09

C_P10_11_C16C_P10_11_C16

L_P11_C13_15L_P11_C13_151 2

C_P10_11_C08C_P10_11_C08

C_P04_C21_22C_P04_C21_22

C_P01_E_C18C_P01_E_C18

C_P07_08_C19C_P07_08_C19

L_P05_C07_09L_P05_C07_091 2

C_P04_05_C01C_P04_05_C01

C_P11_12_C27C_P11_12_C27

C_P01_C22_23C_P01_C22_23

L_P11_C08_10L_P11_C08_101 2

R_P09_C20_22R_P09_C20_22L_P09_C12_14L_P09_C12_141 2

C_P11_C23_24C_P11_C23_24

L_P04_C07_09L_P04_C07_091 2

C_P12_C04_05C_P12_C04_05

C_P11_E_C01C_P11_E_C01

L_P02_C23_25L_P02_C23_251 2

C_P10_C07_08C_P10_C07_08

C_P10_11_C23C_P10_11_C23

R_P12_C25_27R_P12_C25_27

C_P14_15_C01C_P14_15_C01

L_P02_C07_09L_P02_C07_091 2

L_P02_C20_22L_P02_C20_221 2

C_P09_10_C06C_P09_10_C06

C_P08_C01_02C_P08_C01_02

C_P15_C17_18C_P15_C17_18

R_P11_C12_14R_P11_C12_14

C_P16_E_C03C_P16_E_C03

L_P14_C07_09L_P14_C07_091 2

L_P08_C23_25L_P08_C23_251 2

R_P03_C17_19R_P03_C17_19

C_P15_16_C10C_P15_16_C10

R_P15_P16_C26R_P15_P16_C26

C_P14_C21_22C_P14_C21_22

C_P02_03_C18C_P02_03_C18

L_P12_C07_09L_P12_C07_091 2

R_P13_C17_19R_P13_C17_19

C_P15_C22_23C_P15_C22_23

R_P03_C21_23R_P03_C21_23

C_P03_C11_12C_P03_C11_12

R_P11_C27/2R_P11_C27/2

L_P08_C19_21L_P08_C19_211 2

C_P03_04_C21C_P03_04_C21

R_P15_C03_05R_P15_C03_05

R_P08_C22_24R_P08_C22_24

C_P06_07_C15C_P06_07_C15

R_P01_C13_15R_P01_C13_15

L_P07_C18_20L_P07_C18_201 2

R_P16_C22_24R_P16_C22_24

R_P03_C16_18R_P03_C16_18

C_P07_C26_27C_P07_C26_27

C_P01_E_C11C_P01_E_C11

C_P02_C04_05C_P02_C04_05

C_P13_14_C21C_P13_14_C21

R_P11_C20_22R_P11_C20_22

C_P16_C05_06C_P16_C05_06

C_P03_C17_18C_P03_C17_18

L_P01_C18_20L_P01_C18_201 2

C_P01_02_C17C_P01_02_C17

R_P06_C14_16R_P06_C14_16

L_P04_C21_23L_P04_C21_231 2

R_P16_C21_23R_P16_C21_23

R_P13_C16_18R_P13_C16_18

C_P09_10_C16C_P09_10_C16

L_P07_C22_24L_P07_C22_241 2

C_P06_07_C21C_P06_07_C21

L_P01_C02_04L_P01_C02_041 2

R_P11_C17_19R_P11_C17_19

L_P15_C10_12L_P15_C10_121 2

R_P13_C21_23R_P13_C21_23

C_P05_C05_06C_P05_C05_06

L_P04_C04_06L_P04_C04_061 2

C_P01_C03_04C_P01_C03_04

C_P13_C11_12C_P13_C11_12

C_P05_06_C01C_P05_06_C01

L_P14_C21_23L_P14_C21_231 2

C_P07_C13_14C_P07_C13_14

R_P06_C20_22R_P06_C20_22

L_P10_C14_16L_P10_C14_161 2

L_P15_C11_13L_P15_C11_131 2

L_P03_C07_09L_P03_C07_091 2

L_P14_C04_06L_P14_C04_061 2

L_P09_C02_04L_P09_C02_041 2

C_P06_C13_14C_P06_C13_14

C_P10_C17_18C_P10_C17_18

C_P11_C11_12C_P11_C11_12

C_P02_03_C11C_P02_03_C11

R_P15_C14_16R_P15_C14_16

C_P13_C17_18C_P13_C17_18

C_P09_C04_05C_P09_C04_05

C_P07_C19_20C_P07_C19_20

L_P10_C17_19L_P10_C17_191 2

L_P13_C07_09L_P13_C07_091 2

L_P10_C20_22L_P10_C20_221 2

L_P08_C13_15L_P08_C13_151 2

C_P12_C08_09C_P12_C08_09

L_P08_C03_05L_P08_C03_051 2

R_P01_C02_P02_C01R_P01_C02_P02_C01

C_P11_C17_18C_P11_C17_18

L_P16_C03_05L_P16_C03_051 2

R_P08_C16_18R_P08_C16_18

L_P07_C14_16L_P07_C14_161 2

R_P16_C16_18R_P16_C16_18

L_P12_C21_23L_P12_C21_231 2

C_P16_C22_23C_P16_C22_23

C_P08_C09_10C_P08_C09_10

L_P03_C19_21L_P03_C19_211 2

L_P10_C01_03L_P10_C01_031 2

R_P06_C08_10R_P06_C08_10

C_P07_08_C10C_P07_08_C10

L_P03_C08_10L_P03_C08_101 2

L_P11_C07_09L_P11_C07_091 2

C_IC_E_P14_P15C_IC_E_P14_P15

L_P02_C01_03L_P02_C01_031 2

C_P02_C11_12C_P02_C11_12

C_P04_05_C15C_P04_05_C15C_P04_05_C07C_P04_05_C07

C_P03_C05_06C_P03_C05_06

C_P15_C06_07C_P15_C06_07

C_P09_10_C11C_P09_10_C11

L_P07_C11_13L_P07_C11_131 2

L_P10_C08_10L_P10_C08_101 2

R_P05_C02_04R_P05_C02_04

L_P13_C08_10L_P13_C08_101 2

C_P03_04_C24C_P03_04_C24

L_P09_C27/2L_P09_C27/21 2

L_P15_C18_20L_P15_C18_201 2

C_P14_15_C15C_P14_15_C15

R_P04_C14_16R_P04_C14_16

R_P03_C12_14R_P03_C12_14

C_P10_11_C03C_P10_11_C03

L_P01_C05_07L_P01_C05_071 2

L_P13_C19_21L_P13_C19_211 2

C_P04_C18_19C_P04_C18_19

R_P06_C11_13R_P06_C11_13

C_P04_05_C22C_P04_05_C22

R_P03_C23_25R_P03_C23_25

C_P15_C11_12C_P15_C11_12

C_P13_14_C24C_P13_14_C24

R_P05_C16_18R_P05_C16_18

R_P14_C14_16R_P14_C14_16

R_P04_C17_19R_P04_C17_19

C_P12_13_C15C_P12_13_C15

R_P13_C12_14R_P13_C12_14

C_P01_C13_14C_P01_C13_14

C_P15_16_C07C_P15_16_C07

L_P15_C22_24L_P15_C22_241 2

C_P14_C18_19C_P14_C18_19

C_P05_C22_23C_P05_C22_23

R_P04_C20_22R_P04_C20_22

R_P08_C10_12R_P08_C10_12

R_P05_C21_23R_P05_C21_23

C_P14_15_C22C_P14_15_C22

R_P13_C23_25R_P13_C23_25

C_P01_02_C02C_P01_02_C02

R_P16_C10_12R_P16_C10_12

C_P14_15_C07C_P14_15_C07

L_P06_C25_27L_P06_C25_271 2

C_P13_C05_06C_P13_C05_06

C_P08_09_C14C_P08_09_C14

R_P05_C13_15R_P05_C13_15

C_P09_10_C03C_P09_10_C03

C_P16_E_C11C_P16_E_C11

C_IC_E_P01C_IC_E_P01

C_P01_E_C06C_P01_E_C06

R_P09_C01_03R_P09_C01_03

R_P14_C20_22R_P14_C20_22

L_P09_C16_18L_P09_C16_181 2

C_P12_13_C21C_P12_13_C21

R_P02_C27/2R_P02_C27/2

C_P11_C05_06C_P11_C05_06

C_P11_E_C27C_P11_E_C27

L_P09_C21_23L_P09_C21_231 2

L_P07_C04_06L_P07_C04_061 2

C_P02_03_C06C_P02_03_C06

C_P07_08_C18C_P07_08_C18

C_P02_C18_19C_P02_C18_19

C_P08_09_C20C_P08_09_C20

L_P09_C13_15L_P09_C13_151 2

R_P14_C17_19R_P14_C17_19

R_P01_C22_24R_P01_C22_24

R_P09_C05_07R_P09_C05_07

R_P12_C14_16R_P12_C14_16

C_P07_C07_08C_P07_C07_08

C_P09_10_C14C_P09_10_C14

C_P12_C13_14C_P12_C13_14

C_P06_C21_22C_P06_C21_22

C_P10_C25_26C_P10_C25_26

L_P07_P08_C26L_P07_P08_C26

1

2

C_P06_07_C03C_P06_07_C03

R_P04_C08_10R_P04_C08_10

C_P09_C15_16C_P09_C15_16

C_P11_12_C01C_P11_12_C01

R_P07_C25_27R_P07_C25_27

R_P15_C02_P16_C01R_P15_C02_P16_C01

C_P07_E_C27C_P07_E_C27

C_P08_09_C27C_P08_09_C27

R_P12_C20_22R_P12_C20_22

L_P06_C05_07L_P06_C05_071 2

C_P16_E_C25C_P16_E_C25

R_P14_C08_10R_P14_C08_10

L_P07_C03_05L_P07_C03_051 2

R_P04_C11_13R_P04_C11_13

R_P08_C04_06R_P08_C04_06

L_P05_C17_19L_P05_C17_191 2

R_P03_C02_04R_P03_C02_04

C_P01_E_C26C_P01_E_C26

R_P15_C19_21R_P15_C19_21

R_P13_C02_04R_P13_C02_04

C_P05_C10_11C_P05_C10_11

C_P02_03_C26C_P02_03_C26

C_P15_16_C17C_P15_16_C17

C_P02_C25_26C_P02_C25_26

C_P16_C19_20C_P16_C19_20

L_P03_C25_27L_P03_C25_271 2

C_P16_C08_09C_P16_C08_09

C_P03_C22_23C_P03_C22_23

R_P09_C09_11R_P09_C09_11

L_P10_C11_13L_P10_C11_131 2

R_P14_C11_13R_P14_C11_13

R_P05_C24_26R_P05_C24_26

L_P01_C20_22L_P01_C20_221 2

R_P12_C08_10R_P12_C08_10

C_P15_C03_04C_P15_C03_04

C_P05_06_C16C_P05_06_C16

L_P01_C23_25L_P01_C23_251 2

C_P10_C12_13C_P10_C12_13

C_P10_11_C17C_P10_11_C17

L_P13_C25_27L_P13_C25_271 2

C_P05_C16_17C_P05_C16_17

C_P13_C22_23C_P13_C22_23

C_P05_06_C03C_P05_06_C03

R_P12_C11_13R_P12_C11_13

C_P16_E_C18C_P16_E_C18

C_P01_C20_21C_P01_C20_21

L_P09_C24_26L_P09_C24_261 2

R_P11_C02_04R_P11_C02_04

R_P06_C02_04R_P06_C02_04

R_P09_C06_08R_P09_C06_08

L_P09_C23_25L_P09_C23_251 2

C_P10_11_C24C_P10_11_C24

L_P12_C25_27L_P12_C25_271 2

R_P07_C08_10R_P07_C08_10

R_P11_C13_15R_P11_C13_15

R_P02_C11_13R_P02_C11_13

R_P03_C27/2R_P03_C27/2

C_P05_06_C06C_P05_06_C06

C_P01_E_C19C_P01_E_C19

C_P08_C05_06C_P08_C05_06

R_P02_C12_14R_P02_C12_14

C_P09_10_C08C_P09_10_C08

C_P04_05_C02C_P04_05_C02

R_P11_C16_18R_P11_C16_18

R_P08_C25_27R_P08_C25_27

C_P01_02_C26C_P01_02_C26

R_P01_C25_27R_P01_C25_27

L_P09_C20_22L_P09_C20_221 2

C_P01_02_C27C_P01_02_C27

L_P10_C02_04L_P10_C02_041 2

C_P11_C22_23C_P11_C22_23

R_P11_C21_23R_P11_C21_23

C_P07_08_C13C_P07_08_C13

C_P02_03_C19C_P02_03_C19

C_P14_15_C02C_P14_15_C02

C_P01_02_C04C_P01_02_C04

C_P15_C16_17C_P15_C16_17

L_P06_C01_03L_P06_C01_031 2

R_P10_C05_07R_P10_C05_07

C_P16_E_C04C_P16_E_C04

L_P03_C17_19L_P03_C17_191 2

L_P15_P16_C26L_P15_P16_C26

1

2

R_P13_C27/2R_P13_C27/2

R_P09_C02_P10_C01R_P09_C02_P10_C01

C_P03_04_C27C_P03_04_C27

C_P08_C22_23C_P08_C22_23

R_P01_C07_09R_P01_C07_09

R_P15_C04_06R_P15_C04_06

C_P01_C01_02C_P01_C01_02

L_P12_C05_07L_P12_C05_071 2

L_P13_C17_19L_P13_C17_191 2

C_P04_C04_05C_P04_C04_05

C_P01_02_C25C_P01_02_C25

L_P04_C25_27L_P04_C25_271 2

C_P12_C21_22C_P12_C21_22

R_P03_C13_15R_P03_C13_15

C_P15_16_C01C_P15_16_C01

R_P08_C07_09R_P08_C07_09

L_P15_C03_05L_P15_C03_051 2

C_P12_13_C03C_P12_13_C03

R_P16_C07_09R_P16_C07_09

C_P06_07_C16C_P06_07_C16

L_P01_C13_15L_P01_C13_151 2

C_P02_E_C27C_P02_E_C27

C_P06_07_C08C_P06_07_C08

C_P14_C04_05C_P14_C04_05

C_P05_C04_05C_P05_C04_05

R_P04_C02_04R_P04_C02_04

C_P09_C09_10C_P09_C09_10

C_P01_E_C12C_P01_E_C12

C_P16_C13_14C_P16_C13_14

L_P14_C25_27L_P14_C25_271 2

C_P02_C03_04C_P02_C03_04

R_P13_C13_15R_P13_C13_15

C_IC_E_P06_P07C_IC_E_P06_P07

C_P03_C16_17C_P03_C16_17

L_P06_C14_16L_P06_C14_161 2

L_P05_C12_14L_P05_C12_141 2

L_P16_C21_23L_P16_C21_231 2

C_P13_14_C27C_P13_14_C27

C_P01_02_C09C_P01_02_C09

R_P15_C07_09R_P15_C07_09

C_P06_C17_18C_P06_C17_18

C_P07_08_C26C_P07_08_C26

C_P06_07_C23C_P06_07_C23

L_P05_C23_25L_P05_C23_251 2

R_P01_C01_P02_C02R_P01_C01_P02_C02

L_P11_C17_19L_P11_C17_191 2

C_P13_C16_17C_P13_C16_17

L_P06_C17_19L_P06_C17_191 2

R_P11_C24_26R_P11_C24_26

C_P07_C12_13C_P07_C12_13

C_P11_12_C16C_P11_12_C16

L_P06_C20_22L_P06_C20_221 2

R_P01_C27/2R_P01_C27/2

C_P15_16_C22C_P15_16_C22

R_P14_C02_04R_P14_C02_04

L_P04_C05_07L_P04_C05_071 2

C_P10_C16_17C_P10_C16_17

C_P11_C10_11C_P11_C10_11

C_P02_03_C12C_P02_03_C12

R_P02_C21_23R_P02_C21_23

L_P15_C14_16L_P15_C14_161 2

R_P16_C04_06R_P16_C04_06

C_P16_C21_22C_P16_C21_22

L_P02_C05_07L_P02_C05_071 2

R_P05_C09_11R_P05_C09_11

R_P02_C18_20R_P02_C18_20

C_P07_C18_19C_P07_C18_19

R_P10_C15_17R_P10_C15_17

R_P02_C06_08R_P02_C06_08

L_P14_C05_07L_P14_C05_071 2

C_P07_08_C02C_P07_08_C02

R_P12_C02_04R_P12_C02_04

R_P08_C21_23R_P08_C21_23

C_P05_06_C14C_P05_06_C14

R_P10_C18_20R_P10_C18_20

L_P01_C02_P02_C01L_P01_C02_P02_C01

1

2

C_P11_C16_17C_P11_C16_17

C_P11_12_C03C_P11_12_C03

R_P02_C17_19R_P02_C17_19

C_P02_C10_11C_P02_C10_11

R_P09_C15_17R_P09_C15_17

C_P04_05_C16C_P04_05_C16

C_P01_02_C24C_P01_02_C24

C_P03_C10_11C_P03_C10_11

C_P05_06_C11C_P05_06_C11

R_P10_C24_26R_P10_C24_26

C_P16_E_C09C_P16_E_C09

C_P07_08_C05C_P07_08_C05

L_P06_C08_10L_P06_C08_101 2

R_P07_C07_09R_P07_C07_09

R_P03_C24_26R_P03_C24_26

C_P11_12_C06C_P11_12_C06

L_P12_C01_03L_P12_C01_031 2

L_P06_C11_13L_P06_C11_131 2

C_P04_05_C23C_P04_05_C23

C_P04_C07_08C_P04_C07_08

R_P15_C21_23R_P15_C21_23

R_P05_C01_03R_P05_C01_03

C_P04_05_C08C_P04_05_C08

C_P15_C05_06C_P15_C05_06

R_P13_C24_26R_P13_C24_26

C_P07_08_C07C_P07_08_C07 C_P07_08_C22C_P07_08_C22

C_P10_C26_27C_P10_C26_27

L_P05_C02_04L_P05_C02_041 2

C_P01_C11_12C_P01_C11_12

C_P10_C20_21C_P10_C20_21

R_P03_C20_22R_P03_C20_22

C_P14_15_C16C_P14_15_C16

L_P03_C12_14L_P03_C12_141 2

C_P10_11_C04C_P10_11_C04

C_P13_C10_11C_P13_C10_11

R_P01_C24_26R_P01_C24_26

C_P01_E_C07C_P01_E_C07

R_P07_C19_21R_P07_C19_21

R_P13_C20_22R_P13_C20_22

C_P03_04_C06C_P03_04_C06

R_P10_C12_14R_P10_C12_14

R_P09_C10_12R_P09_C10_12

C_P12_13_C16C_P12_13_C16

L_P13_C12_14L_P13_C12_141 2

C_P06_C12_13C_P06_C12_13

C_P15_16_C26C_P15_16_C26

C_P01_02_C12C_P01_02_C12

C_P14_15_C23C_P14_15_C23

C_P14_C07_08C_P14_C07_08

C_P14_15_C08C_P14_15_C08

R_P10_C27/2R_P10_C27/2

C_P08_09_C13C_P08_09_C13

C_P05_06_C21C_P05_06_C21

L_P01_C22_24L_P01_C22_241 2

C_P01_02_C16C_P01_02_C16

L_P09_C05_07L_P09_C05_071 2

L_P12_C14_16L_P12_C14_161 2

C_P07_C06_07C_P07_C06_07

L_P11_C12_14L_P11_C12_141 2

C_P10_E_C01C_P10_E_C01

C_P12_C17_18C_P12_C17_18

C_P06_C25_26C_P06_C25_26

L_P11_C23_25L_P11_C23_251 2

C_P12_13_C23C_P12_13_C23

R_P08_C01_03R_P08_C01_03

C_P12_13_C08C_P12_13_C08

R_P16_C01_03R_P16_C01_03

L_P08_C16_18L_P08_C16_181 2

L_P02_C27/2L_P02_C27/21 2

C_P11_C04_05C_P11_C04_05

C_P09_C21_22C_P09_C21_22

L_P16_C16_18L_P16_C16_181 2

C_P07_08_C17C_P07_08_C17

C_P10_C03_04C_P10_C03_04

C_P02_03_C07C_P02_03_C07

C_P08_C19_20C_P08_C19_20

C_P02_C17_18C_P02_C17_18

R_P10_C23_25R_P10_C23_25

C_P08_09_C21C_P08_09_C21

C_P08_C08_09C_P08_C08_09

C_P05_06_C08C_P05_06_C08

C_P13_14_C06C_P13_14_C06

C_P07_08_C01C_P07_08_C01

C_P06_C20_21C_P06_C20_21

C_P10_C24_25C_P10_C24_25

L_P08_C22_24L_P08_C22_241 2

L_P16_C22_24L_P16_C22_241 2

C_P06_07_C02C_P06_07_C02

C_P03_04_C16C_P03_04_C16

L_P12_C17_19L_P12_C17_191 2

R_P02_C24_26R_P02_C24_26

L_P15_C02_P16_C01L_P15_C02_P16_C01

1

2

C_P09_C01_02C_P09_C01_02

L_P12_C20_22L_P12_C20_221 2

L_P15_C19_21L_P15_C19_211 2

C_P03_C04_05C_P03_C04_05

C_P13_14_C16C_P13_14_C16

L_P04_C14_16L_P04_C14_161 2

R_P11_C09_11R_P11_C09_11

L_P03_C02_04L_P03_C02_041 2

C_P05_C01_02C_P05_C01_02

C_P04_C17_18C_P04_C17_18

C_P01_E_C27C_P01_E_C27

C_P11_12_C14C_P11_12_C14

L_P05_C16_18L_P05_C16_181 2

C_P01_C18_19C_P01_C18_19

L_P14_C14_16L_P14_C14_161 2

R_P05_C06_08R_P05_C06_08

L_P04_C17_19L_P04_C17_191 2

L_P13_C02_04L_P13_C02_041 2

C_P10_11_C11C_P10_11_C11

C_P14_C17_18C_P14_C17_18

L_P04_C20_22L_P04_C20_221 2

L_P08_C10_12L_P08_C10_121 2

C_P06_C02_03C_P06_C02_03

C_P02_03_C27C_P02_03_C27

L_P16_C10_12L_P16_C10_121 2

C_P02_C24_25C_P02_C24_25

C_P10_11_C09C_P10_11_C09

R_P06_C23_25R_P06_C23_25

C_P01_02_C23C_P01_02_C23

C_P16_C18_19C_P16_C18_19

C_P13_C04_05C_P13_C04_05

C_P16_E_C12C_P16_E_C12

R_P15_C23_25R_P15_C23_25

L_P05_C05_07L_P05_C05_071 2

C_P01_C24_25C_P01_C24_25

L_P09_C09_11L_P09_C09_111 2

C_P11_12_C11C_P11_12_C11

R_P10_C09_11R_P10_C09_11

L_P12_C08_10L_P12_C08_101 2

C_P15_C10_11C_P15_C10_11

L_P14_C20_22L_P14_C20_221 2

R_P08_C13_15R_P08_C13_15

L_P06_C02_04L_P06_C02_041 2

L_P09_C06_08L_P09_C06_081 2

R_P16_C13_15R_P16_C13_15

L_P04_C01_03L_P04_C01_031 2

C_P10_C11_12C_P10_C11_12

C_P05_C15_16C_P05_C15_16

R_P15_C08_10R_P15_C08_10

L_P12_C11_13L_P12_C11_131 2

R_P11_C01_03R_P11_C01_03

R_P09_C01_P10_C02R_P09_C01_P10_C02

C_P16_E_C19C_P16_E_C19

L_P14_C17_19L_P14_C17_191 2

L_P11_C02_04L_P11_C02_041 2

C_P12_C12_13C_P12_C12_13

C_IC_E_P12_P13C_IC_E_P12_P13

C_P07_08_C25C_P07_08_C25

C_P03_04_C11C_P03_04_C11

C_P10_C06_07C_P10_C06_07

C_P10_11_C25C_P10_11_C25

L_P04_C08_10L_P04_C08_101 2

C_P11_12_C21C_P11_12_C21

L_P02_C11_13L_P02_C11_131 2

L_P03_C27/2L_P03_C27/21 2

C_P08_C13_14C_P08_C13_14

C_P07_C23_24C_P07_C23_24

C_P01_E_C20C_P01_E_C20

L_P02_C12_14L_P02_C12_141 2

R_P06_C05_07R_P06_C05_07

C_P04_05_C03C_P04_05_C03

C_P07_E_C01C_P07_E_C01

C_P07_C03_04C_P07_C03_04

R_P15_C17_19R_P15_C17_19

L_P14_C01_03L_P14_C01_031 2

L_P01_C25_27L_P01_C25_271 2

L_P14_C08_10L_P14_C08_101 2

R_P03_C01_03R_P03_C01_03

L_P13_C27/2L_P13_C27/21 2

L_P09_C02_P10_C01L_P09_C02_P10_C01

1

2

C_P02_03_C20C_P02_03_C20

C_P14_15_C03C_P14_15_C03

C_P11_12_C08C_P11_12_C08

C_P03_E_C27C_P03_E_C27

C_P15_C15_16C_P15_C15_16

C_P16_E_C05C_P16_E_C05

C_P12_C25_26C_P12_C25_26

C_P03_04_C03C_P03_04_C03

C_P15_16_C21C_P15_16_C21

C_P13_14_C11C_P13_14_C11

R_P10_C06_08R_P10_C06_08

C_P12_13_C02C_P12_13_C02

L_P16_C07_09L_P16_C07_091 2

C_P06_07_C17C_P06_07_C17

C_P14_E_C27C_P14_E_C27

L_P03_C16_18L_P03_C16_181 2

C_P08_C21_22C_P08_C21_22

L_P01_C07_09L_P01_C07_091 2

L_P15_C04_06L_P15_C04_061 2

C_P13_14_C03C_P13_14_C03

C_P08_09_C01C_P08_09_C01

L_P03_C21_23L_P03_C21_231 2

C_P01_02_C06C_P01_02_C06

L_P05_C24_26L_P05_C24_261 2

R_P13_C01_03R_P13_C01_03

C_P12_C20_21C_P12_C20_21

L_P16_C25_27L_P16_C25_271 2

L_P03_C13_15L_P03_C13_151 2

R_P16_C17_19R_P16_C17_19

L_P08_C07_09L_P08_C07_091 2

R_P03_C05_07R_P03_C05_07

C_P15_16_C11C_P15_16_C11

C_P06_07_C24C_P06_07_C24

C_P06_C07_08C_P06_C07_08

L_P01_C01_P02_C02L_P01_C01_P02_C02

1

2

C_P10_11_C18C_P10_11_C18

C_P03_04_C14C_P03_04_C14

C_P06_07_C09C_P06_07_C09

C_P11_C01_02C_P11_C01_02

L_P13_C21_23L_P13_C21_231 2

C_P04_C25_26C_P04_C25_26

C_P01_E_C13C_P01_E_C13

L_P15_C25_27L_P15_C25_271 2

C_P02_C02_03C_P02_C02_03

L_P13_C13_15L_P13_C13_151 2

C_P03_C15_16C_P03_C15_16

R_P13_C05_07R_P13_C05_07

R_P07_C17_19R_P07_C17_19

L_P05_C20_22L_P05_C20_221 2

R_P05_C10_12R_P05_C10_12

L_P13_C16_18L_P13_C16_181 2

L_P15_C07_09L_P15_C07_091 2

R_P07_C16_18R_P07_C16_18

C_P02_03_C13C_P02_03_C13

L_P02_C21_23L_P02_C21_231 2

R_P12_C23_25R_P12_C23_25

C_P13_C15_16C_P13_C15_16

L_P11_C05_07L_P11_C05_071 2

C_P09_10_C04C_P09_10_C04

R_P07_C21_23R_P07_C21_23

C_P07_C11_12C_P07_C11_12

L_P11_C16_18L_P11_C16_181 2

L_P09_C01_03L_P09_C01_031 2

R_P11_C06_08R_P11_C06_08

C_P07_08_C21C_P07_08_C21

C_P13_14_C14C_P13_14_C14

C_P14_C25_26C_P14_C25_26

R_P05_C02_P06_C01R_P05_C02_P06_C01

C_P12_C02_03C_P12_C02_03

C_P10_C15_16C_P10_C15_16

L_P08_C04_06L_P08_C04_061 2

L_P02_C17_19L_P02_C17_191 2

R_P15_C27/2R_P15_C27/2

R_P02_C05_07R_P02_C05_07

L_P02_C18_20L_P02_C18_201 2

C_P07_C17_18C_P07_C17_18

L_P02_C06_08L_P02_C06_081 2

L_P12_C02_04L_P12_C02_041 2

L_P08_C21_23L_P08_C21_231 2

R_P03_C09_11R_P03_C09_11

L_P04_C11_13L_P04_C11_131 2

C_P06_07_C11C_P06_07_C11

R_P01_C15_17R_P01_C15_17

C_P11_C15_16C_P11_C15_16

C_P15_16_C25C_P15_16_C25

C_P05_C09_10C_P05_C09_10

C_P01_02_C22C_P01_02_C22

R_P03_C06_08R_P03_C06_08

C_P02_C09_10C_P02_C09_10

R_P12_C05_07R_P12_C05_07

C_P04_05_C17C_P04_05_C17

C_P04_C12_13C_P04_C12_13

C_P15_C21_22C_P15_C21_22

R_P13_C09_11R_P13_C09_11

L_P14_C11_13L_P14_C11_131 2

C_P16_E_C10C_P16_E_C10

C_P06_C26_27C_P06_C26_27

L_P07_C07_09L_P07_C07_091 2

L_P03_C24_26L_P03_C24_261 2

C_P01_C09_10C_P01_C09_10

C_P09_C25_26C_P09_C25_26

C_P01_C06_07C_P01_C06_07

L_P06_C27/2L_P06_C27/21 2

L_P04_C02_04L_P04_C02_041 2

C_P04_05_C24C_P04_05_C24

L_P03_C23_25L_P03_C23_251 2

C_P16_C04_05C_P16_C04_05

L_P13_C24_26L_P13_C24_261 2

R_P06_C12_14R_P06_C12_14

C_P03_04_C08C_P03_04_C08

R_P13_C06_08R_P13_C06_08

C_P06_C16_17C_P06_C16_17

L_P03_C20_22L_P03_C20_221 2

C_P14_15_C17C_P14_15_C17

C_P14_C12_13C_P14_C12_13

C_P15_16_C16C_P15_16_C16

C_P10_11_C05C_P10_11_C05

L_P10_C27/2L_P10_C27/21 2

C_P08_09_C15C_P08_09_C15

R_P03_C02_P04_C01R_P03_C02_P04_C01

R_P06_C15_17R_P06_C15_17

L_P11_C24_26L_P11_C24_261 2

L_P01_C24_26L_P01_C24_261 2

C_P13_14_C08C_P13_14_C08

C_P01_E_C08C_P01_E_C08

L_P07_C19_21L_P07_C19_211 2

R_P06_C18_20R_P06_C18_20

L_P13_C20_22L_P13_C20_221 2

C_P12_13_C17C_P12_13_C17

L_P14_C02_04L_P14_C02_041 2

R_P04_C05_07R_P04_C05_07

C_P05_C21_22C_P05_C21_22

C_P14_15_C24C_P14_15_C24

L_P13_C23_25L_P13_C23_251 2

L_P07_C08_10L_P07_C08_101 2

Fig. 4-9 Detailed network model of the PF 6 coil

Zoomed part in Fig. 4-10

Page 69: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

57

0

R_P01_P02_C26R_P01_P02_C26

L_P02_C24_26L_P02_C24_261 2

C_P02_C23_24C_P02_C23_24

C_P01_C23_24C_P01_C23_24

L_P01_C27/2L_P01_C27/21 2

L_P01_P02_C26L_P01_P02_C26

1

2

R_P02_C25_27R_P02_C25_27

C_P02_C22_23C_P02_C22_23

R_P02_C22_24R_P02_C22_24

C_P01_E_C22C_P01_E_C22

C_P02_C26_27C_P02_C26_27

C_P02_03_C22C_P02_03_C22

L_P02_C25_27L_P02_C25_271 2

L_P02_C22_24L_P02_C22_241 2

C_P01_E_C23C_P01_E_C23

C_P01_C25_26C_P01_C25_26

C_P02_03_C23C_P02_03_C23

L_P01_C21_23L_P01_C21_231 2

C_P01_E_C24C_P01_E_C24

C_P02_03_C24C_P02_03_C24

R_P02_C23_25R_P02_C23_25

C_P01_C26_27C_P01_C26_27

R_P01_C23_25R_P01_C23_25

C_P01_E_C25C_P01_E_C25

C_P02_03_C25C_P02_03_C25

C_P01_C22_23C_P01_C22_23

L_P02_C23_25L_P02_C23_251 2

R_P02_C27/2R_P02_C27/2

R_P01_C22_24R_P01_C22_24

C_P01_E_C26C_P01_E_C26

C_P02_03_C26C_P02_03_C26

C_P02_C25_26C_P02_C25_26

L_P01_C23_25L_P01_C23_251 2

C_P01_02_C26C_P01_02_C26

R_P01_C25_27R_P01_C25_27

C_P01_02_C27C_P01_02_C27C_P01_02_C25C_P01_02_C25

C_P02_E_C27C_P02_E_C27

R_P01_C27/2R_P01_C27/2

C_P01_02_C24C_P01_02_C24

R_P01_C24_26R_P01_C24_26L_P01_C22_24L_P01_C22_241 2

L_P02_C27/2L_P02_C27/21 2

R_P02_C24_26R_P02_C24_26

C_P01_E_C27C_P01_E_C27

C_P02_03_C27C_P02_03_C27

C_P02_C24_25C_P02_C24_25

C_P01_02_C23C_P01_02_C23

C_P01_C24_25C_P01_C24_25

L_P01_C25_27L_P01_C25_271 2

L_P02_C21_23L_P02_C21_231 2

C_P01_02_C22C_P01_02_C22

L_P01_C24_26L_P01_C24_261 2

Fig. 4-10 Zoomed right upper part of the detailed network model of the PF 6 coil

Page 70: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

58

4.3.2 Detailed Network Model of the PF 6 Coil with Instrumentation Cables

The influence of the instrumentation cables on the resonance frequency and the voltage dis-tribution within the PF 6 coil was analysed by consideration of the instrumentation cables in the detailed network model. The instrumentation cables will be placed on the joints between the double pancakes but the type of cables is not exactly defined in [CDA3]. Thus it was cal-culated with the same instrumentation cable type [Bau98] which was used for the ITER TF Model Coil (TFMC) [Ulb05]. The capacitance of these cables was calculated to 437 pF/m. The cables were taken into the network model as additionally capacitances on the double pancake joints. The designation “IC” was used for the capacitances of the instrumentation cables. The length of the instrumentation cables were derived from [CDA3] and [DDDD4]. The values for the length of the cables and their capacitances are summarised in Tab. 4-5.

Length (m) Capacitance (nF)

C_IC_E_P01 44 20

C_IC_E_P02_P03 34 15

C_IC_E_P04_P05 38 16.5

C_IC_E_P06_P07 41 18

C_IC_E_P08_P09 46 20

C_IC_E_P10_P11 46 20

C_IC_E_P12_P13 41 18

C_IC_E_P14_P15 38 16.5

C_IC_E_P16 46 20

Tab. 4-5 Length and capacitance values for the instrumentation cables of the PF 6 coil

Page 71: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Network Models of the CS and PF Coils

59

4.4 Simplifications Used in the Network Models

- In the detailed network models of PF 3 and PF 6 coils only one RLC circuit was used for each turn of the coils

- All mutual inductances and self inductance were summarised to one cumulative in-ductance of one turn

- The connection of the instrumentation cables on the joints between the pancakes and double pancakes was considered as an additional capacitance on the joints

- AC/DC converter (Ves) was neglected during the fast discharge network simulation, because it will be bypassed during the fast discharge

- In the PF 2-PF 5 coil network the main and booster converters were summarised to one converter

- In the CS1L-CS1U coil network the two converters of each coil were summarised to one converter in the network, because the converters are in series

- The winding direction of the PF 1 coil was not given in the [DDDD3] it was assumed to be the same like PF 3, PF 6 and CS coils

Page 72: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Results of Calculations in Frequency Domain for PF 3 and PF 6

60

5 Results of Calculations in Frequency Domain for PF 3 and PF 6

In the frequency domain the resonance frequency of the PF 3 and PF 6 coils was calculated, which gives a first benchmark of the transient behaviour of these coils.

The calculation strategy, which was used for calculation of resonance frequency of PF 3 and PF 6 coils, is shown in Fig. 5-1. Due to the frequency dependence of the inductances of the coils, the calculations include an iterative loop.

Fig. 5-1 Strategy for calculation of resonance frequency on example of PF 3 coil

In the following the calculation strategy will be explained on the example of the PF 3 coil. At the beginning of the calculations the detailed FEM model of the coil without instrumentation cables was established with the given geometries and materials, which is described in sec-tion 3.2. Because the range, in which the resonance frequency of the coil lies, was unknown the calculations were started with the frequency of 0 Hz. The values for frequency dependent inductances were calculated with the FEM model of the coil for the frequency of 0 Hz. The values for frequency independent capacitances were calculated by formulas for cylindrical and parallel plate capacitor, shown in section 4.2. The resistances of the superconducting cables were defined to 1 pΩ. The calculated values were taken into the network model as lumped elements. The calculations in frequency domain were made by the excitation of the network model with a voltage of 1 V. The answer on the excitation was calculated for all fre-quencies in a defined frequency range, shown in Fig. 5-2. The first calculated resonance frequency was taken into account, because it is the natural frequency of the coil. The natural frequency is the frequency of free vibrations. It seems that the first peak in Fig. 5-2 is at 0.98 kHz with a value of 8.4 V. The closer view at the frequency behaviour at the frequency

Page 73: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Results of Calculations in Frequency Domain for PF 3 and PF 6

61

range lower than 0.9 kHz, shows a peak at 0.51 kHz with a value of 1.07 V, Fig. 5-3. Thus the first resonance frequency of the first loop was calculated to 0.51 kHz.

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3 3.5

U(P01_C08)U(P08_C02)U(P16_C08)

Volta

ge (V

)

Frequency (kHz) Fig. 5-2 Voltage answer on the excitation for the conductors P01_C08, P08_C02 and

P16_C08 in a frequency range lower than 3.5 kHz for a terminal excitation with 1 V and DC values of the PF 3 coil elements.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8

U(P01_C08)U(P08_C02)U(P16_C08)

Volta

ge (V

)

Frequency (kHz) Fig. 5-3 Voltage answer on the excitation for the conductors P01_C08, P08_C02 and

P16_C08 in a frequency range lower than 0.9 kHz for a terminal excitation with 1 V and DC values of the PF 3 coil elements.

Page 74: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Results of Calculations in Frequency Domain for PF 3 and PF 6

62

The comparison between the calculated frequency of the first loop and the frequency of 0 Hz, at which the FEM model of the coil was established, shows relatively big difference. Thus a second calculation loop was started. The new values for the frequency dependent induct-ances were calculated at 0.51 kHz. The values were taken into the network model as lumped elements and the resonance frequency of the second loop was calculated to 14.5 kHz. The relative difference between the resonance frequency of the first loop 0.51 kHz and the sec-ond loop 14.5 kHz was still big, thus the third loop of calculation was started. The values for the inductances were calculated for the frequency of 14.5 kHz and taken into network model of the coil. The resonance frequency of the third loop was calculated to 24.5 kHz.

The difference of 0.1 % between the resonance frequencies of following loops was defined as the break out criterion of the calculation loop. This criterion was reached after the sixth calculation loop and so the final resonance frequency of 25.5 kHz for PF 3 coil was calcu-lated.

To verify that the resonance frequency converges only to one value of 25.5 kHz, the calcula-tion were realised with the start frequency of 200 kHz. The calculations were made with the same strategy, like with the start frequency of 0 Hz. The break out criterion was the achievement of the converged resonance frequency of 25.5 kHz. This criterion was fulfilled after the third calculation loop. The results of the resonance frequency calculations of the PF 3 coil with symmetrical grounding are shown in Tab. 5-1.

Without instrumentation cables with start fre-quency 0 Hz (kHz)

Without instrumentation cables with start fre-quency 200 kHz (kHz)

With instrumentation cables with start fre-quency 0 Hz (kHz)

1st Loop 0.51 27.8 0.49

2nd Loop 14.5 25.6 14

3rd Loop 24.5 25.5 23.5

4th Loop 25.4 24.3

5th Loop 25.5 24.4

6th Loop 25.5

Tab. 5-1 Calculated resonance frequencies of PF 3 coil with symmetrical grounding

Additionally the influence of the instrumentation cables on the resonance frequency of the PF 3 coil was analysed. The network model of the PF 3 coil with instrumentation cables and symmetrical grounding, which was described in 4.2.2, was used for these calculations. After the fifth calculation loop the resonance frequency with instrumentation cables was calculated to 24.4 kHz.

Page 75: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Results of Calculations in Frequency Domain for PF 3 and PF 6

63

The comparison of the results between the calculations with and without instrumentation ca-bles shows that the instrumentation cables have an influence on the resonance frequency of the coils and displace it to lower frequencies.

The calculations of resonance frequency for the PF 6 coil were made with the same strategy like for the PF 3 coil. The results of the calculations with start frequency of 0 Hz without in-strumentation cables, with start frequency of 200 kHz without instrumentation cables and the calculations with instrumentation cables with start frequency of 0 Hz are shown in Tab. 5-2.

Without instrumentation cables with start fre-quency 0 Hz (kHz)

Without instrumentation cables with start fre-quency 200 kHz (kHz)

With instrumentation cables with start fre-quency 0 Hz (kHz)

1st Loop 0.55 34.2 0.58

2nd Loop 18.7 32.1 18.1

3rd Loop 30.8 32.0 29.6

4th Loop 31.9 30.6

5th Loop 32.0 30.7

6th Loop 32.0 30.7

Tab. 5-2 Calculated resonance frequencies of PF 6 coil with symmetrical grounding

Additionally the influence of the unsymmetrical grounding, e. g. in case of a ground fault on one terminal, on the resonance frequency was analysed. The results of the calculation of the resonance frequency with unsymmetrical grounding for PF 3 coil are shown in Tab. 5-3. The resonance frequency of PF 3 coil without instrumentation cables with symmetrical grounding was calculated to 25.5 kHz, with unsymmetrical grounding the resonance frequency is dis-placed to lower value of 20.7 kHz. The instrumentation cables at unsymmetrical grounding displace the resonance frequency of the PF 3 coil to much lower value of 17.0 kHz.

The values of the resonance frequency of PF 6 coil with unsymmetrical grounding are sum-marised in Tab. 5-4. The unsymmetrical grounding displace also the resonance frequency of the PF 6 coil to lower value of 28.6 kHz, compared with 32.0 kHz with symmetrical grounding of the PF 6 coil. The instrumentation cables have strong influence on the resonance fre-quency of the PF 6 coil with unsymmetrical grounding and displace it to 22.9 kHz.

Page 76: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Results of Calculations in Frequency Domain for PF 3 and PF 6

64

Without instrumentation cables with start fre-quency 0 Hz (kHz)

Without instrumentation cables with start fre-quency 200 kHz (kHz)

With instrumentation cables with start fre-quency 0 Hz (kHz)

1st Loop 0.422 22.80 0.354

2nd Loop 11.94 20.78 9.50

3rd Loop 19.85 20.66 16.3

4th Loop 20.60 17.0

5th Loop 20.66 17.0

6th Loop 20.66

Tab. 5-3 Calculated resonance frequencies of PF 3 coil with unsymmetrical grounding

Without instrumentation cables with start fre-quency 0 Hz (kHz)

Without instrumentation cables with start fre-quency 200 kHz (kHz)

With instrumentation cables with start fre-quency 0 Hz (kHz)

1st Loop 0.5 30.8 0.4

2nd Loop 16.8 28.74 12.9

3rd Loop 27.75 28.63 22.1

4th Loop 28.63 22.9

5th Loop 28.63 22.9

Tab. 5-4 Calculated resonance frequencies of PF 6 coil with unsymmetrical grounding

Page 77: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

65

6 Test voltages and waveforms for TF coils

Insulation co-ordination is the selection of the dielectric strength of equipment in relation to the operating voltages and overvoltages which can appear on the system for which the equipment is intended and taking into account the service environment and the characteris-tics of the available preventing and protective devices [IEC60071]. Insulation co-ordination in conventional high voltage engineering delivers the selection of the standard rated withstand voltages from a list. This standard rated withstand voltages are standardised test voltages. Although such sets of standard test voltages cannot be simply taken for fusion magnets the procedure for the determination of the test voltages can be applied. As the first step the sys-tem analysis is performed which delivers the voltages and overvoltages for defined cases, e. g. fast discharge with perfect synchronisation of all fast discharge units and no fault.

The following proposal for test voltages and waveforms is based on previous investigations on TF coils [Fin04]. A short summary of these investigations is presented and the test volt-ages and waveforms are described in this chapter. Some of the proposed test voltage wave-forms are applied in “long-term tests” (10 h for each voltage step) on ITER TFMC in order to demonstrate that the proposed test voltages do not require a modification of the ITER TF design.

6.1 TF coil, TF system and models description

The examined ITER TF coil system is based on the ITER document status 2002 at the be-ginning of the activities for [Fin04]. A list of simplifications is available in [Fin04] in order to perform the calculations on a single PC.

The insulated conductor of an ITER TF coil is embedded in 7 stainless steel plates (so called radial plates) to handle the occurring Lorentz forces. The radial plates are insulated by vac-uum impregnation and stacked to a winding pack. This winding pack is enclosed in a D-shaped stainless steel case (Fig. 6-1).

All 5 inner radial plates have two pancakes with 11 turns each. Both outer radial plates have a pancake with 9 turns and a pancake with 3 turns. This leads to total number of 134 turns per TF coil.

Page 78: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

66

Fig. 6-1 D-shaped steel case, cross section of this steel case in the mid plane of the

straight section (inboard leg) and the design of the conductor insulation of the ITER TF coils.

The ITER TF system consists of 18 TF coils with 9 fast discharge units (FDUs) (Fig. 6-2). In the FDUs the energy is dissipated in discharge resistors during fast discharge. The symmet-rical “soft” grounding (i. e. grounding on both sides of a fast discharge unit with 500 Ω resis-tors) allows to halve the coil terminal to ground voltage and limits the fault current in case of a single earth fault.

Page 79: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

67

FDUFDU FDU

FDU FDUFDU

TF Coil

Grounding resistor

Fast discharge unit

Fig. 6-2 Simplified analogue circuit of the TF coil system during fast discharge (power

supply already disconnected).

According to the design of the TF coil its insulation system consists of three different types: the conductor insulation between the conductor and the surrounding radial plates, the radial plate insulation between two neighbouring radial plates and the ground insulation between the radial plates and the grounded coil case.

The calculation of the maximum voltages for all 3 types of insulation during a fast discharge was performed step by step. In fact, it was not possible to integrate all conditions and solve all problems in a frequency dependent network model directly because in every coil the tran-sient current is superposed to the transport current with the much longer equivalent dis-charge time constant of 11 s.

For the first step the detailed network model of a single TF coil was established by determi-nation of one capacitance, one resistance and one inductance per turn. The turn capacitan-ces were calculated as cylinder capacitors. Radial plate and case capacitances were calcu-lated as plate capacitors; additional capacitances were assumed for the instrumentation ca-bles. The resistances, inductances and mutual inductances were calculated for several fre-quencies with the FEM program Maxwell.

The established network model was treated by the code PSpice, which does not allow the use of frequency dependent lumped elements. So several network models were established for different frequencies. The natural frequency (i.e. first resonance frequency) for a single ITER TF coil was calculated to be at 50 kHz, which is considerable lower as the value of 300 kHz which was calculated and measured for the TF Model Coil [Ulb05].

Page 80: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

68

For the second step a network model of the TF FDU system was built up with 18 simplified coils and 9 models of a FDU. This network model allows the determination of the coil termi-nal voltages. The coils act in this step as coupled superconducting DC coils and were excited with the rated current of 68 kA.

The coils of the system are subjected to different voltage excitations in case of a malfunction of a FDU or an earth fault. Hence for the fault cases, the maximum terminal to terminal volt-ages and the maximum terminal to earth voltages (which do not occur at the same coils) were identified.

In the last step, these terminal voltages from the system network are used for the excitation of the detailed single coil model. For this purpose the models with the natural frequency (50 kHz) and with a rise time in the ms range (chosen: 1 kHz, which corresponds roughly to a rise time of 0.25 ms) are used. For the fast discharge, one terminal was earthed and the other one was excited with the calculated terminal voltages. In the fault cases it was neces-sary to excite both terminals.

6.2 Calculated fault cases

Firstly a fast discharge with no fault and perfect synchronised FDUs were examined.

Then a fault case (fault case 1) with the simultaneous failure or delay of 2 neighbouring FDUs during a fast discharge was assumed, i.e. that for these units the current remains “for a long time” in the short circuit path and the energy of all coils dissipates in only 7 discharge resistors instead of 9. The term “for a long time” means in this sense long compared to the rise time of the fast discharge process causing to reach the same maximum overvoltages as if the commutation in this FDU does not operate at all. This fault case 1 causes an imbalance of the TF system. Hence the coils have different terminal to ground voltages.

For the second fault case it was assumed that the voltage imbalance in the system, caused by fault 1, with the increase of terminal to earth voltages, leads to an earth fault at the time and location of the maximum voltage to earth.

6.3 Calculated voltages for fast discharge and two fault cases

The simulation of the fast discharge starts with the current commutation from the short circuit path (that bridges the resistor path during DC current operation) to the discharge resistor path in the FDUs. This commutation produces a maximum voltage of about U = R • I0 at the resistor R of the FDUs. Assuming an initial rated current of 68 kA and a discharge resistance of 0.1 Ω the voltage across one FDU is about 7 kV. For a perfect symmetrical ITER system, this causes a voltage to ground of +U / 2 or –U / 2 at every FDU terminal because the FDUs are symmetrically grounded over resistors with 500 Ω [PAF6A]. For such a "soft grounded" symmetrical ITER system, every coil has one terminal with a maximum voltage of +U / 2 or –U / 2 (the one which is connected to the FDU) and one terminal with ground potential (the one which is connected to the neighbouring coil). Hence all coils have the same terminal to terminal voltage and the same voltage to ground (neglecting polarity) or 3.5 kV during the

Page 81: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

69

fast discharge. It is therefore sufficient to collect the data of one coil terminal that is con-nected with the FDU.

The voltage values for the fast discharge without a fault and for fault case 1 are preferably chosen from the 1 kHz model because the rise times are 1.5 ms or longer.

For the second fault case, the rise times are in the range of few µs for the maximum radial plate and conductor insulation voltage and in the range of some ms for the ground insulation voltage. The reason for such a difference between the rise times is that the maximum values were not found at the same coil.

Tab. 6-1 shows the collection of all calculated maximum voltages, the time and rise time of these voltages and the location.

Page 82: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test

vol

tage

s an

d w

avef

orm

s fo

r TF

coils

70

N

o fa

ult

Coi

l vol

tage

and

vol

tage

to g

roun

d fo

r all

coils

3.4

67 k

V

Failu

re o

f FD

U 2

and

FD

U 3

Fa

ilure

of F

DU

2, 3

and

ear

th fa

ult a

t L3:

1

Coi

l w

ith m

axim

um c

oil

volta

ge 3

.644

kV: L

14 (L

15)

Coi

l w

ith m

axim

um v

olta

ge t

o gr

ound

8.06

1 kV

: L8:

2 (L

3:1)

Coi

l w

ith m

axim

um c

oil

volta

ge 1

3.49

kV: L

2

Coi

l w

ith m

axim

um v

olta

ge t

o gr

ound

16.3

5 kV

: L8:

2

fm

od

el

/

kHz

loca

-

tion

U /

kV

t / s

TA

/ s

loca

-

tion

U /

kV

t / s

TA

/ s

loca

-

tion

U /

kV

t / s

TA

/ s

loca

-

tion

U /

kV

t / s

TA

/ s

(from

x

V))

loca

-

tion

U /

kV

t / s

TA

/ s

(from

x

kV)

Term

inal

1

term

i-

nal 2

3.47

8.

5 m

1.

6 m

L1

4:2

3.46

8.

1 m

1.

6 m

L8

:2

8.06

80

.4 m

17

m

L2:2

9.

66

81.9

m

2.4

µ

(-114

5)

L8:2

16

.35

87.7

m

3.5

m

(8.0

6)

50

term

i-

nal 2

3.47

8.

5 m

1.

6 m

L1

4:2

3.46

8.

1 m

1.

6 m

L8

:2

8.06

80

.4 m

17

m

L2:2

9.

66

81.9

m

2.4

µ

(-114

5)

L8:2

16

.35

87.7

m

3.5

m

(8.0

6)

Gro

und

in-

sula

tion

1 te

rmi-

nal 2

3.47

8.

5 m

1.

6 m

L1

4:2

3.46

8.

1 m

1.

6 m

L8

:2

8.06

80

.4 m

17

m

DP

J45

10.5

6 82

.7 m

so

me

µs

L8:2

16

.35

87.7

m

3.5

m

(8.0

6)

50

term

i-

nal 2

3.47

8.

5 m

1.

6 m

L1

4:2

3.46

8.

1 m

1.

6 m

L8

:2

8.06

80

.4 m

17

m

DP

J67

10.6

7 81

.9 m

3.

7 µ

(-138

2)

L8:2

16

.35

87.7

m

3.5

m

(8.0

6)

Rad

ial

plat

e in

-

sula

tion

1 R

P 3

RP

2

0.65

0 4.

3 m

1.

6 m

R

P 4

RP

3

0.61

4 6.

0 m

1.

6 m

R

P 2

RP

1

0.68

6 29

.8 m

11

m

RP

6 –

RP

5

4.81

81

.9 m

6.

1 µ

(442

)

RP

2 –

RP

1

1.30

87

.8 m

3

m

(0.6

1)

50

RP

4 –

RP

3

0.56

4 76

.8 m

1.

6 m

R

P 4

RP

3

0.54

4 5.

9 m

2

m

RP

2 –

RP

1

0.70

0 29

.1 m

10

.3 m

R

P 6

RP

5

4.33

81

.9 m

3

µ

(-1.

4 k)

RP

2 –

RP

1

1.31

86

.8 m

3

m

(0.6

2)

Con

duc-

tor

in-

sula

tion

1 te

rmi-

nal

2 –

RP

7

0.58

4 4.

5 m

1.

5 m

te

rmi-

nal

2 –

RP

7

0.53

9 6.

0 m

1.

6 m

te

rmi-

nal

2 –

RP

7

0.81

1 23

.2 m

8

m

term

i-

nal

2 –

RP

7

4.25

81

.9 m

2

µs

(15)

term

i-

nal

2 –

RP

7

1.41

86

.7 m

3

m

(0.5

7)

50

term

i-

nal

2 –

RP

7

0.53

5 5.

2 m

1.

5 m

te

rmi-

nal

2 –

RP

7

0.54

4 5.

9 m

1.

7 m

te

rmi-

nal

2 –

RP

7

0.81

5 23

.2 m

9

m

Nea

r

DPC

join

t of

PC

13 –

RP

7

3.66

81

.9 m

1.

4 µ

(0)

term

i-

nal

2 –

RP

7

1.42

86

.7 m

3.

5 m

(0.6

)

Tab.

6-1

O

verv

iew

abo

ut a

ll ca

lcul

ated

max

imum

vol

tage

s on

ITE

R T

F fo

r all

type

s of

insu

latio

n

Page 83: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

71

6.4 Representative voltages

In conventional high voltage engineering voltages and overvoltages are divided in classes (e. g. fast-front transient). These voltages and overvoltages are then allocated to standard volt-age shapes (e. g. standard lightning impulse shape with T1 = 1.2 µs and T2 = 50 µs). In most cases standard withstand voltage tests are defined in [IEC60071]. In other cases the stan-dard withstand voltage test is to be specified by the “relevant apparatus committees”.

The standard classis of [IEC60071] are not suitable for the ITER TF fast discharge wave-forms and no “relevant apparatus committee” is available for such waveforms. In addition an excitation similar to the appearance to a switching impulse but with longer time to half value may be difficult to perform.

Hence the following representative voltages or overvoltages are proposed.

DC: The DC waveform is proposed due to the equivalent discharge time constant of 11 s, the deformation of the e-function by the PTC behaviour of the resistor, and the simple DC test application combined with the relative low destructive energy. The DC voltage value is se-lected as the maximum voltage which appears during the discharge. The DC voltage can not be applied between the terminals. Instead the voltage is only applied between one part com-pletely on the same high voltage value and the other part which is grounded (e. g. all conduc-tors and all radial plates on high voltage and the surrounding case on ground potential).

AC: The 50 Hz (or 60 Hz) AC waveform is proposed due to its suitable rise time (few ms), the possibility to perform partial discharge insulation diagnostic in the common known frequency range, the relative good availability of voltage sources and the limited maximum current. The AC waveform should not be applied between the terminals because a ITER TF coil is no transformer. Hence the voltage is only applied between one part completely on the same high voltage value and the other part which is grounded. The AC rms voltage value is se-lected as the maximum voltage which appears during discharge divided by √2.

It may also be possible to test with a series resonance circuit at a somewhat different fre-quency than 50 Hz if a suitable system is available.

Lightning impulse: Lightning impulse tests are proposed due to the fast rise times which oc-cur during the capacitor discharge in the current commutation process or during earth fault events on some coils. For the impulse test the voltage is applied between the terminals caus-ing the voltage drop along the winding. The impulse crest value is selected as the maximum voltage which appears during the discharge

Page 84: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

72

6.5 Test voltages

In conventional high voltage engineering after determination of the representative voltages and overvoltages the “co-ordination withstand voltages” are determined which have the shape of the representative overvoltages but the values are obtained by a co-ordination fac-tor. This factor considers e. g. the accuracy of the evaluation of the representative overvolt-ages. Then the “required withstand voltages” are determined by converting the co-ordination withstand voltages to appropriate standard test conditions by multiplying again with a factor. At the end a rated insulation level can be chosen by selection of a set of standard rated with-stand voltages.

For ITER such a standard process is not available. Hence in [Fin04] test voltages are pro-posed which consider the following safety factors and other aspects:

• The selected “usual rule” for voltage tests is proposed to be 2 * Ufault + 1 kV. The value is rounded up to integer values (e. g. 2 * 8.1 kV + 1 kV = 17.2 kV => 18 kV).

• The test voltage for values < 5 kV is taken as 5 kV.

• For radial plate and conductor insulation the higher value is taken for both.

• For the impulse test the terminal to ground voltage is selected in a manner that no inter-nal voltage value exceeds the values derived from the “usual rule”.

Tab. 6-2 gives an overview about the proposed test values derived from the two fault cases.

Page 85: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

73

Type of insulation

Fast dis-charge without fault

Failure of 2 adjacent FDUs

Failure of 2 adjacent FDUs plus earth fault at terminal with maximum volt-age to ground

Calculated maximum voltage

Calculated maximum voltage

Proposed test volt-age for DC and AC tests (peak value)

Calculated maximum voltage

Proposed test volt-age for DC and AC tests (peak value)

Proposed test volt-age for specific µs impulse tests

Ground insulation

3.5 kV 8.1 kV 18 kV 16.4 kV 34 kV 29.6

Radial plate to radial plate

0.7 kV 0.7 kV 5 kV 4.8 kV 11 kV (control: U ≤ 11 kV)

Conductor to radial plate

0.6 kV 0.8 kV 5 kV 4.3 kV 11 kV (control: U ≤ 11 kV)

Tab. 6-2 Calculated voltage and test voltages related to the case with failure of 2 adja-cent FDUs and earth fault at terminal with maximum voltage to ground. In case of the specific proposed impulse voltage test with a terminal voltage higher than 29.6 kV the internal voltage to ground is higher than 34 kV on a location which is not accessible for measurement. This value is depending on the test circuit.

For the cases without an earth fault, the only excitation with rise times in the 1 µs range is caused by the discharge of the capacitor bank. Because the voltage of such an excitation is expected to remain in the 1 kV range an impulse test with a rise time in the µs range with a terminal voltage of 5 kV is sufficient although this value is lower than the DC and AC test voltages.

The potential distribution for a specific circuit was calculated for the impulse test. In the ex-amined example it was assumed that a capacitor bank of 150 µF excites the coil. The damp-ing resistor was 0.77 Ω. For other impulse test circuits the distribution must be recalculated.

6.6 Test arrangements

The connection of the helium inlet tap and the radial plate tap must be changed during the high voltage tests. It is therefore recommended to install at least for these cables the current limiting resistors in a panel box after the room temperature instrumentation cable feedthroughs and not at the input of the instrumentation cables. The cables from the double pancake joints are always connected with high voltage and can therefore be closed at the

Page 86: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

74

end with blind plugs during the high voltage tests if they are not connected to the room tem-perature instrumentation (e. g. during a cold DC test).

6.6.1 Tests on ground insulation (G)

For the ground insulation tests the helium inlet potential is connected directly with the radial plate (Fig. 6-3). Hence it is possible to apply high voltage to the complete conductor and all radial plates and keep the coil case grounded.

pancake

radial plate

warm vacuumvesselfeedthrough

radial plate -helium inletconnector

groundedcoil case

Fig. 6-3 Arrangement G for ground insulation tests. Although the pancakes are within

the radial plates they are drawn outside for better visibility.

6.6.2 Tests on radial plate insulation (R)

The radial plates are connected alternately to ground and to inner helium inlet potential for the test on radial plate insulation (Fig. 6-4). The outer radial plates are connected to the he-lium joint because they are adjacent to the grounded case.

pancake

radial plate

warm vacuumvesselfeedthrough

radial plate -helium inletconnector

groundedcoil case

Fig. 6-4 Arrangement R for tests on radial plate insulation.

Page 87: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

75

6.6.3 Tests on conductor insulation (C)

All radial plates are connected to ground for the test of the conductor insulation (Fig. 6-5).

pancake

radial plate

warm vacuumvesselfeedthrough

grounding ofradial plate

groundedcoil case

Fig. 6-5 Arrangement C for tests of conductor insulation.

6.6.4 Tests with operation mode arrangement (O)

The complete set of cable lengths are connected to the coil for the test in operation mode arrangement, e. g. for the impulse tests (Fig. 6-6).

pancake

radial plate

warm vacuumvesselfeedthrough

groundedcoil case

resistor

resistor box

Fig. 6-6 Arrangement O for tests in operation mode arrangement.

Page 88: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

76

6.7 Power supply and high voltage extensions

Different power supplies are connected with the test arrangements (see 6.6). The high volt-age output of the power supply is connected with one terminal of the coil. The second coil terminal is left open or the coil is short circuited for AC and DC excitation. The second coil terminal is grounded for impulse tests.

For DC tests the high voltage DC power supplies are usually equipped with internal voltage and current measurement (Fig. 6-7).

DC high voltageinsulation tester

Fig. 6-7 Power supply for DC tests (internal current and voltage indication not shown)

For AC tests external high voltage dividers are used. A possible example of the power supply is shown in Fig. 6-8. A partial discharge measurement is added. The detection impedance is in series to the coupling capacitance CK. This detection impedance may be put in the ground-ing path to increase the sensitivity, e. g. for partial discharge measurement of the conductor insulation in one radial plate.

Page 89: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

77

ZDivider Coil

CTDetectionimpedance

CK

T_HVT_LVZDivider Trafo

A

IRV

PD equipment

Fig. 6-8 AC power supply (low voltage variable transformer T_LV and high voltage

transformer T_HV) with external high voltage dividers for voltage measure-ments. The detection impedance, coupling capacitance CK and resistor RV are added for partial discharge measurement (and in case of RV for current limita-tion).

A Schering Bridge is used for the determination of the dissipation factor under AC excitation. One possible example is given in Fig. 6-9. The detailed arrangement of the Schering Bridge will be defined if the boundary conditions are known (type of Schering Bridge, capacitance of standard capacitor, grounding of the coil case, eventually auxiliary branches). The measure-ment with the Schering Bridge will be probably easier if it is possible to lift the coil case with the bridge to a potential of about 2 V.

ZDivider

THVCZ

TLVR3

CN

C4

CZ

R4

CITER

G

S

Fig. 6-9 Power supply and Schering Bridge ACS. CITER represents a TF coil.

An impulse voltage generator is used for the excitation of the coil with impulse voltage rise times (or virtual front times) in the µs range (Fig. 6-10). The detailed settings of the impulse generator will be defined if the specifications of the impulse generator are known (capaci-tance of the capacitor bank, maximum voltages, internal damping resistors).

Page 90: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

78

ZDivider Coil

fast switch

Rd

Cs

Fig. 6-10 Impulse generator I containing a capacitor bank CS, a damping resistor Rd and a

fast switch (e. g. ignitron, spark gap, thyristor).

6.8 Test criteria and additional information

For each test a criterion must be defined. Some criteria are indispensable. Others may be developed during the tests or taken as additional information, e. g. the partial discharge activ-ity.

6.8.1 Criterion NB: no breakdown

The most important criterion is that no breakdown appears. Hence this criterion is relevant for every test.

6.8.2 Criterion R: insulation resistance

The insulation resistance of all types of insulation must be > 1 GΩ.

For such high insulation resistances and the high capacitance of the coil the charging current is expected to be in the same range (or even higher) as the current caused by the insulation resistance after a test time of 1 min. It may therefore be useful to apply the maximum voltage value for e. g. 15 min for some measurements. In addition it is recommendable to use always the same DC test equipment because the internal resistance of this equipment may be in the range of the coil.

The measured insulation resistance is strongly effected if the coil is connected with additional conductivities (water cooling hoses, measurement equipment, wet room temperature axial breaks, ...). In this case the value is no more related to the coil and the criterion of the insula-tion resistance value can be skipped.

6.8.3 Criterion IC: constant charging current

The residual leakage current can be neglected compared with the capacitive charging cur-rent during AC tests on well insulated and high capacitive samples. A constant charging cur-rent is therefore a criterion during a test with constant AC voltage.

Page 91: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

79

6.8.4 Additional information PD: partial discharge activity

The inception voltage, extinction voltage and apparent charge (shape of a partial discharge fingerprint) of the partial discharge measurements can deliver useful information, esp. for the judgement of the insulation quality of a single element within a series production.

6.8.5 Additional information DF: dissipation factor

The measurement of the dissipation factor may deliver useful information, esp. for the insula-tion diagnostic of a single element within a series production.

6.8.6 Additional information SW: shape of the waveform

The voltage waveform shape during the impulse test may deliver useful information, esp. for the judgement of the insulation quality of one coil within the series production.

6.9 Paschen test

ITER CSMC used vacuum for high voltage insulation. But for a reliable high voltage opera-tion even under vacuum breakdown in the cryostat a complete encapsulation with solid insu-lation and covering of this insulation with conductive material (e. g. conductive paint) is nec-essary. Such a “Paschen tight” concept must be verified by a Paschen test where the sample is subjected to a transition of the Paschen curve.

For this test a vacuum vessel is necessary. Every test sample must be prepared to be Paschen tight. Sometimes for superconducting coils an appropriate time of a Paschen test at the manufacturer is to do it after connection of the high voltage instrumentation path. But for ITER TF it makes no sense to install the original warm instrumentation feedthroughs at the manufacturer if it is not possible that these feedthroughs remain on the coil during the as-sembly in the ITER facility. Hence the room temperature ends of the cables must be either encapsulated in a Paschen tight manner or guided in a Paschen tight manner to the ambient.

Because it is more time consuming to achieve a good vacuum in a large vessel which had been filled with air than filling an “empty” vessel with air under ambient pressure it is pro-posed to start Paschen testing from vacuum.

One method is to apply permanently the DC test voltage while increasing the pressure con-tinuously from vacuum till ambient pressure. Such a method is e. g. used during a 5 h 49 min Paschen test on 2 warm instrumentation feedthroughs in combination with 50 m instrumenta-tion cables for TOSKA at Forschungszentrum Karlsruhe, Germany.

An other method is to increase the pressure in steps. The steps should be chosen according to a reasonable possible gap length of the fault location in the ground location. Taking into account the minimum thickness of the ITER TF ground insulation (without filler and radial plate insulation) of 6 mm much shorter gap lengths than this value are not very likely. Tab. 6-3 shows a set of interesting pressure values and the belonging gap length for Paschen

Page 92: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

80

Minimum conditions with a Paschen Minimum value in air at room temperature of p * d = 7.3 bar µm:

p / hPa d / mm

0.001 7300

0.01 730

0.1 73

0.3 24

0.5 15

0.73 10

0.91 8 (≈ radial plate insulation + ground wrap)

1 7.3

5 1.5

10 0.73

100 0.073

1000 0.0073

Tab. 6-3 Proposal of pressure steps for Paschen test of ITER TF by considering the be-longing gap lengths in air for reaching Paschen Minimum conditions.

Usually the Paschen tests are performed at room temperature because otherwise the vac-uum vessel would need an additional vacuum shield.

6.10 Long-term high voltage testing of conductor and radial plate insulation

Fast discharges are expected to be rare events during ITER operation, e. g. a number of 50 fast discharges is the design value for ITER TF. Equivalent discharge time is some seconds (e. g. 11 s for TF). On this basis 1 min DC testing seems sufficient and 1 min AC test with its 3000 cycles causes a high stress compared with the nominal operation mode of the TF coils. On the other hand test proposals for ITER TF in [Fin04] recommend the continuous applying of DC voltage during a Paschen Minimum test, i. e. during several hours. In addition for par-tial discharge investigations it is also recommended to avoid a 1 min limitation for AC tests, and a high voltage design which is only optimised for 1 min tests can have major uncertain-ties for quality assurance control compared to a “long term” design. The test voltages are

Page 93: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

81

listed in Tab. 6-2. Practical investigations are necessary to clarify if these test voltages can cause degradation of the electrical insulation.

6.10.1 Selection of insulation type

It was decided to use the ITER TFMC for a long-term test at room temperature, because the TFMC was not foreseen for other additional experiments after the two test phases described in [Ulb05]. A test time of 10 hours for each voltage step was defined, which is very long com-pared to the rated high voltage discharge operation of ITER TF.

The known fault in the ground insulation of TFMC makes it not recommendable to test in detail this insulation of TFMC with the value of Tab. 6-1. Instead, the conductor insulation was chosen because it is the most critical part for a well manufactured TF coil. The capaci-tance of 1.4 µF makes it not possible to examine the complete conductor insulation length because the available AC equipment is not able to produce sufficient reactive power. There-fore only one DP conductor length was tested.

6.10.2 First long term test series

In the first series (sequence in Tab. 6-4) radial plate number 4 was grounded and the con-ductor and all other radial plates were connected with high voltage (Fig. 6-11, Fig. 6-13).

Page 94: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

82

Waveform Voltage / kVrms

DC 5.00

AC 3.54

DC 7.07

AC 5.00

DC 11.0

AC 7.78

Tab. 6-4 Test sequence on radial plate number 4.

Hence not only the insulation between conductor and radial plate 4 was tested but also the insulation to the neighboured radial plates number 3 and 5.

The helium piping system was evacuated, filled with 11 bar of nitrogen gas and this pressure value was continuously observed to avoid flashover in the insulation breaks.

layer

radial plate

warm vacuumvesselfeedthrough

DC high voltageinsulation tester:Danbridge JP30 A,Umax = +30 kVImax = 100 μARange: +3 kV

+groundedcoil case

Fig. 6-11 DC test circuit. Only one radial plate is grounded.

The DC tests (Fig. 6-11) were performed in the steps 5 kV, 7.1 kV and 11 kV. For all voltage steps a decreasing of the current with the time was observed. Fig. 6-12 shows the measured current for 11 kV. No degradation was found.

Page 95: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

83

Fig. 6-12 Measured DC current during the 11 kV test depending on the time. The short-

term oscillations of the current up to 1 µA at t = 3600 s were caused by the con-trol of the DC power supply. The voltage at the high capacitive sample was not affected by these oscillations within the accuracy of the voltage measurement.

The AC tests (Fig. 6-13) were performed with the steps 3.54 kV, 5.00 kV and 7.78 kV (rms values). The detection impedance for the partial discharge (PD) measurement was con-nected in series with a coupling capacitor. The PD activity was observed in 1 h periods in an apparent charge vs. time mode. A 1 min PD measurement apparent charge vs. phase angle of the voltage ("PD fingerprint") was carried out after each 1 h period. The current was measured on high voltage side and on primary side of the high voltage transformer.

Page 96: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

84

detectionimpedance

radial plate -pancake jointconnector

ZHilo 40

CMWB

CKTREO_HV

CICMTREO_LV ZHilo 120

Elavi 3

RV

A

Fig. 6-13 AC test circuit. Only one radial plate is grounded.

During the first and second voltage step all values were in the expected ranges and no breakdown occurred. The fingerprint after 9 hours of 7.78 kV shows no significant change in the PD behaviour – but after about 9 hours 27 min an increase of the apparent charge was observed (Fig. 6-14). A breakdown occurred after 9 hours and 39 min. After this breakdown a permanent degradation of the insulation resistance to 5.6 kΩ was found which makes it im-possible to continue with this test.

Page 97: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

85

Fig. 6-14 Apparent charge vs. time between hour 9 and 10 of testing with 7.78 kV, i. e.

measurement duration for this figure is 1 h and t = 0.0 corresponds to hour 9. The test was stopped after the breakdown (corresponds to 9 h 39 min).

A detailed investigation of the insulation system was performed and finally the fault was lo-calised between radial plate 2 and ground. The conductor and radial plate insulation of radial plate 4 were still fine.

A destruction of the 8 mm ground insulation (combined glass polyimide impregnated with epoxy resin) by a voltage of 7.78 kV is very unlikely, even if some layers are not assembled in a correct way. Hence it was assumed that the fault happened around the path of the wiring which transfers the radial plate potential out of the case. Especially the area, where Tedlar tapes were forgotten to remove during manufacturing, was a good candidate, but a visual determination of the breakdown channel was not possible because the surface in this area is black and rough. The cable screens of all high voltage instrumentation cables are still fine.

6.10.3 Second long term series

It was decided to make a 10 h test with conductor insulation of radial plate 2 as a last test before burn out the fault. In this case the fault location was bridged by connecting radial plate 2 directly with ground and the other radial plates with high voltage. Only the long term tests with the highest voltage values were performed (Tab. 6-5).

Page 98: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

86

Waveform Voltage / kVrms

DC 11.0

AC 7.78

Tab. 6-5 Test sequence for the grounded radial plate number 2.

The DC test with 11 kV was successfully performed but with higher currents, e. g. after 10 h for the grounded RP4 the value had been 0.05+0.01 µA and for the grounded RP2 it was 0.38±0.02 µA.

During AC testing the PD inception starts at 1.7 kV. At the beginning of the voltage step of 7.78 kV the charge was already 12.5 nC which is considerably higher than the measurement before the breakdown with the grounded radial plate 4. Breakdown in this arrangement with the grounded radial plate 2 appeared after a total time of 59 min and 52 s without a prior fur-ther increase of charge values.

After the breakdown a resistance of only 85 Ω was detected between conductor (terminal) and ground with the arrangement of the grounded radial plate 2. The resistance between RP 2 and the grounded case was 61 kΩ. The measured values are slightly increasing with the time but remain in the same range.

6.10.4 Burn out

It was tried to burn out the conductor of DP2 to its radial plate although the low resistance value for the conductor insulation fault is far below the specification of the insulation test ap-paratus. For this purpose the RP 2 was grounded and all other radial plates were connected with the conductor insulation. No light effects were observed during several trials and the protection of the instrument shut down the current very soon. After the trials an insulation resistance of 395 Ω was measured.

Next it was tried to burn out the insulation of RP2 to the grounded case although the resis-tance value for the fault was below the specification of the insulation test apparatus. For this purpose all radial plates were connected to the conductor. With this method it was clearly visible that the sparks appeared on the second pipe counted from top to bottom at the inner upper slot (Fig. 6-15). This is the high voltage instrumentation cable number 1 which routes the potential of RP2.

Page 99: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test voltages and waveforms for TF coils

87

Fig. 6-15 Flash above the second tube counted from top at the inner upper slot of the

helium inlet tubes.

6.10.5 Conclusion of long-term high voltage test and burn out

10 h testing of ITER TFMC shows that conductor and radial plate insulation can withstand test voltages proposed for ITER in Tab. 6-2. Significant increasing of PD activity before the first breakdown demonstrates that this method can be a valuable tool for monitoring the qual-ity of ITER coil insulation. The first defect appeared in the ground insulation of radial plate 2. Then a fault occurred in the conductor insulation of DP2. Burn out of the ground insulation showed sparks in the upper slot of the helium inlet pipe of DP2. It can be assumed that at least the fault in the insulation between radial plate and the grounded case was caused by the forgotten Tedlar tapes. It is also assumed that this was also the reason for the fault of the conductor insulation.

With these results it is clearly shown that the proposed test voltages cause no relevant deg-radation even if they are applied for several hours if the insulation is manufactured correctly. Hence a 10 h DC Paschen test and a 5 min AC test with partial discharge measurement can be defined for test duration (1 min PD measurement with charge as function of phase angle of the voltage; 3 min PD measurement with charge as function of time; about 1 min for changing settings).

Page 100: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test sequence and test procedure for ITER TF

88

7 Test sequence and test procedure for ITER TF

This chapter describes the test sequence and preliminary procedure for high voltage testing of ITER TF considering the investigations described in chapter 6. The test sequence should be performed in a way that:

• minimises additional damage in case of an insulation fault,

• minimises assembly work,

• delivers the necessary information.

During the manufacturing process of ITER TF, parts of the coil should already be tested to verify the quality (e. g. DC and AC testing of conductor insulation within one radial plate).

The standard sequence for a completed high voltage apparatus would be DC, AC, impulse in order to minimise the risk of additional destruction at a fault location. For the ITER TF coil the impulse test should be performed after a first DC test because the following DC and AC tests on conductor and radial plate insulation give a detailed information of the insulation status after the impulse test. Making additional DC and AC tests on conductor and radial plate insu-lation before the impulse test would cause a lot of additional assembly work and is therefore not proposed.

The test voltages must be decided by ITER. Two proposals based on two specific fault sce-narios are given in Tab. 6-2.

The increasing of the applied voltage must be performed in defined steps related to the test voltage. The proposal is: 10 %, 30 %, 50 %, 70 %, 90 %, 100 %.

The full set of DC, AC and impulse tests (Tab. 7-1) is relevant for the completed coil.

Test time for DC is up to 10 min to obtain the polarisation index which is the ratio of the insu-lation resistances at 1 min and 10 min. Test time for AC testing is about 5 min (1 min PD measurement with charge as function of phase angle of the voltage; 3 min PD measurement with charge as function of time; about 1 min for changing settings). Schering Bridge meas-urement may take also few minutes (about 5 min, depending on the equipment).

Page 101: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test sequence and test procedure for ITER TF

89

Number Test

arrangement – power supply

Test voltage according to fault case 1

/ kV

Test voltage according to fault case 2

/ kV

Criterion Addi-tional informa-tion

Test time at 100 %

/ min

1 O-DC 18.00 34.00 NB, R 1

2 O-I 5.00 29.60 NB SW

3 O-DC 18.00 34.00 NB, R 1

4 G-DC 18.00 34.00 NB, R 10

5 G-AC 12.73 24.04 NB, IC PD 5

6 G-ACS 12.73 24.04 NB DF

7 R-DC 5.00 11.00 NB, R 10

8 R-AC 3.54 7.78 NB, IC PD 5

9 C-DC 5.00 11.00 NB, R 10

10 C-AC 3.54 7.78 NB, IC PD 5

11 O-DC 18.00 34.00 NB, R 1

Tab. 7-1 Test procedure for a complete acceptance test. AC voltages are given as rms values. Row 2: O: operation mode, G: ground insulation, R: radial plate insulation, C: conductor insulation, I: impulse, ACS: AC excitation with Schering Bridge measurement. (Test arrangements O, G, R, C are explained in chapter 6.6. Power supplies I, DC, AC, ACS are explained in 6.7) Row 5: NB: no breakdown, R: insulation resistance, IC: constant charging current. (Criterions NB, R, IC are explained in chapter 6.8.) Row 6: PD: partial discharge, DF: dissipation factor, SW: shape of waveform. (Additional information PD, DF, SW are explained in chapter 6.8).

Page 102: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Test sequence and test procedure for ITER TF

90

A room temperature test under Paschen Minimum conditions is necessary with G-DC (or O-DC). This test can be done after the DC test under ambient conditions (and before the im-pulse test).

A full acceptance test is recommended for ITER TF single coils:

• after completion of fabrication under ambient conditions,

• for a cold test,

• after the cold test.

Depending on the boundary conditions of the available equipment (vacuum vessel, impulse generator) it will be defined if these tests are performed on site or by the manufacturer. At least the DC and AC tests should be performed at the manufacturer to reduce the probability of a re-transportation in case of a necessary repair by the manufacturer. At least the test G-DC at full voltage level should be performed on site if all tests are possible at the manufac-turer and the transport causes only acceptable mechanical stress. The ITER site must have a high voltage mode which allows a high voltage test with the maximum test voltage level after installation of all coils. A Paschen test on the completed coil system is necessary.

A routine DC check is necessary for the complete coil system before a new current operation period starts.

Depending on the boundary conditions of the switching circuit it may be discussed if a full acceptance test should be performed after installation in the ITER TF system. In this case a second high voltage mode must make it possible to separate each pair of coils from the FDUs. Because each pair of TF coils has a cold connection (in order to decrease the number of current leads) the coils cannot be tested individually in the ITER facility after final assem-bly. Therefore a two coils impulse test must be investigated by calculation before application.

A reduced test sequence should be performed during manufacturing. Before impregnation with the radial plate insulation the tests C-DC and C-AC should be performed to verify the dielectric strength of the conductor insulation. After insulation of a radial plate the tests R-DC and R-AC should be performed with half of the voltage level. For the simulation of a neighboured radial plate during this test the radial plate is covered with grounded objects e. g. metallic foils.

The tests R-DC and R-AC should be performed with the full maximum voltage after stacking of the radial plate pack (i.e. the 7 radial plates are stacked together) to ensure that the radial plate insulation fulfils the specification.

More detailed test procedures are necessary if more details of the high voltage components, facility and test equipment are known, e. g. containing the pressure values and kind of gas in the axial insulation breaks during room temperature tests. Safety aspects are described in [Fin04].

Page 103: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Conclusion

91

8 Conclusion

High voltage insulation co-ordination of the superconducting coils is an important issue for a reliable operation of ITER. The results of the calculation of voltage stress within the PF coils will be used to define voltages and procedures for testing of the electrical insulation of the coils. In order to obtain appropriate models for the investigation of the terminal and internal voltages of PF coils the calculation strategy uses the Finite Element Method program Max-well2D and the network program PSpice. The CS PF system related constituents of this re-port are:

- The establishing of the simplified Finite Element Method model of the CS PF coil sys-tem and the detailed Finite Element Method models of the PF 3 and PF 6 coils. The PF and CS models reflect the status of [DDD06].

- The results of the Finite Element Method calculation, which were taken into network models as lumped elements.

- The establishing of the network model of the CS PF coil system, which includes the power supply, switching network units, fast discharge units, simplified models of the coils and the magnetic coupling of the coil system, which will be used for calculation of voltage excitation on the coil terminals during the normal operation and the fast discharge.

- The establishing of the detailed network models of the PF 3 and PF 6 coils, which were used for calculation in frequency domain and further will be used for calculation of voltage stress within the coils in time domain.

- The resonance frequencies of the PF 3 and PF 6 coils, which were calculated with detailed network models in frequency domain. Additionally the influence of the in-strumentation cables and unsymmetrical grounding of the coils were analysed with the detailed network models.

AC, DC and impulse test voltages for ITER TF coils were proposed using the results from previous calculations of two different fault events. A verification of the proposed test voltages for the conductor and radial plate insulation of ITER TF was performed on the ITER TF Model Coil in order to prove that no relevant degradation occurs even if the proposed AC and DC test voltages are applied for several hours. Finally high voltage test procedures were described for ITER TF under special consideration of a Paschen test.

Page 104: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

References

92

9 References

[aaa00] Dummy

[Bar05] B. Bareyt, Electrical Connections from the CCUs to the Resistors and to the Ca-pacitors (Part of WBS 4.1); June 2005; ITER_D_22J2TY

[Bau98] K. Bauer, S. Fink, G. Friesinger, A. Ulbricht, F. Wüchner, The electircal insulation system of forced flow cooled superconducting (sc) magnet, Cryogenics 38 (1998) pp. 1123-1134

[CDA1] Design Description Document, DDD 1.1 Magnet, 1.2 Component Description, Annex 1: Feeder Design

[CDA3] Design Description Document, DDD 1.1 Magnet, 1.2 Component Description, Annex 3: Control and Instrumentation

[CDA4] Design Description Document, DDD1.1 Magnet, 1.2 Component Description, Annex 4: Electrical Insulation Design and Monitoring

[CDA4a] Design Description Document, DDD1.1 Magnet, 1.2 Component Description, Annex 4: Electrical Insulation Design and Monitoring, Fig. 3-4 p. 16

[Con03] Contract between The European Atomic Energy Community and Euratom / FZK Association, FU06-CT 2003 - 00119, EFDA/03-1055, Brussels, 10th October, 2003

[Dat1] Data sheet, Westcode, Westpack Phase Control Thyristor Type N1174JK200 to N1174JK220, February 2007

[DDD01] Design Description Document DDD 11 Magnet, 1. Engineering Description, 1.1 System Description, 1.2 Component Descriptions, 1.3 Magnet Procurement Packages, N 11 DDD 142 01-07-12 R 0.1

[DDD06] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006

[DDD06a] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, Tab. 1.2.3-5 p. 103, Tab. 1.2.4-1 p. 110

[DDD06b] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, Tab. 1.2.4-7 p. 114

[DDD06c] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, p. 113

Page 105: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

References

93

[DDD06d] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, p. 115

[DDD06e] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, Tab. 1.2.4-8 p. 116

[DDD06f] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, p. 102

[DDD06g] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, p. 18

[DDD06h] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, Tab. 1.2.6-4, p. 123

[DDD06i] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, pp. 120 - 125

[DDD06j] Design Description Document, DDD 1.1 Magnet, Section 1. Engineering Descrip-tion, October 2006, p. 48

[DDDD1] Design Description Documents Drawings, 12.0187.0001

[DDDD2] Design Description Documents Drawings, 12.000438.02, 12.000438.03, 12.000438.04

[DDDD3] Design Description Documents Drawings, 12.000439.01, 12.000439.03, 12.000442.02, 12.000442.06, 12.000380.02, 12.000446.02, 12.000446.05, 13.000373.04, 13.000373.06

[DDDD4] Design Description Documents Drawings, 12.000426.02, 12.000439.02, 12.000439.03, 12.000446.01, 12.000446.02, 12.000446.05, 12.000427.01

[DRG1a] Design Requirements and Guidelines Level 1, Magnet Superconducting and Electrical Design Criteria, N 11 FDR 12 01-07-02 R 0.1, p. 47

[DRGAa] Annex to Design Requirements and Guidelines Level 1, Superconducting Mate-rial Database, Article 5. Thermal, Electrical and Mechanical Properties of Materi-als at Cryogenic Temperatures, p. 3, p. 8

[DRGAb] Annex to Design Requirements and Guidelines Level 1, Superconducting Mate-rial Database, Article 5. Thermal, Electrical and Mechanical Properties of Materi-als at Cryogenic Temperatures, p. 37

[Fas70a] W. G. Fastowski, J. W. Petrowski, A. E. Rowinski, Kryotechnik, Akademie Verlag, Berlin 1970, p. 342

Page 106: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

References

94

[Fin04] A. Fink, W. H. Fietz, A. M. Miri, X. Quan, A. Ulbricht, Study of the Transient Volt-age Behaviour of the Present ITER TF Coil Design for Determination of the Test Voltages and Procedures, Forschungszentrum Karlsruhe, Scientific Report FZKA 7053, 2004

[Gro62] F. W. Grover, Inductance Calculations, Dover Publications, New York, 1962

[IEC60071] IEC 60071-1, Insulation co-ordination, International Electrotechnical commission, Edition 8.0, 2006

[ITER01] www.iter.org

[Max99] Maxwell2D Field Simulator, Ansoft Corporation, Pittsburgh, 1999

[Orc07] OrCAD Capture PSpice 16.0, Cadence Design Systems Inc, 2007

[PAC1] Design Description Document 1.1 Magnet, 2 Performance Analysis, 2.1 Conduc-tor Design and Analysis, N 11 DDD 156 01-07-13 R 0.1

[PAF6A] Design Description Document 1.1 Magnet, 2 Performance Analysis, 2.4 Fault and Safety Analysis, Annex 6A, Assessment of the TF coil circuit behaviour during normal and fault conditions, B. Bareyt, N 41 RI 34 00-11-01 W 0.1

[PAF6Ba] Design Description Document 1.1 Magnet, 2 Performance Analysis, 2.4 Fault and Safety Analysis, Annex 6B, Assessment of the PF coil circuit behaviour during normal and fault conditions, B. Bareyt, N 41 RI 35 00-11-01 W 0.1, pp. 2 - 3

[PAF6Bb] Design Description Document 1.1 Magnet, 2 Performance Analysis, 2.4 Fault and Safety Analysis, Annex 6B, Assessment of the PF coil circuit behaviour during normal and fault conditions, B. Bareyt, N 41 RI 35 00-11-01 W 0.1, Tab. 3.7 p. 13

[PAF6Bc] Design Description Document 1.1 Magnet, 2 Performance Analysis, 2.4 Fault and Safety Analysis, Annex 6B, Assessment of the PF coil circuit behaviour during normal and fault conditions, B. Bareyt, N 41 RI 35 00-11-01 W 0.1, pp. 6-10

[PAF6Bd] Design Description Document 1.1 Magnet, 2 Performance Analysis, 2.4 Fault and Safety Analysis, Annex 6B, Assessment of the PF coil circuit behaviour during normal and fault conditions, B. Bareyt, N 41 RI 35 00-11-01 W 0.1, p. 7

[PPA3] Design Description Document, DDD1.1 Magnet, 1.3 Procurement Packages, An-nex 3: Poloidal Field Coils

[PPS1] Design Description Document 4.1, Pulsed Power Supplies, N 41 DDD 16 01-07-06 R 0.3

[PPS1a] Design Description Document 4.1, Pulsed Power Supplies, N 41 DDD 16 01-07-06 R 0.3, p. 19

Page 107: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

References

95

[PPS1b] Design Description Document 4.1, Pulsed Power Supplies, N 41 DDD 16 01-07-06 R 0.3, Tab. 1.2.2-6 pp. 75 - 76

[PPSA1] Design Description Document 4.1 Pulsed Power Supplies, Appendix A, Equip-ment List and Technical Data Tables, N 41 DDD 18 01-07-06 R 0.3

[PPSA1a] Design Description Document 4.1 Pulsed Power Supplies, Appendix A, Equip-ment List and Technical Data Tables, N 41 DDD 18 01-07-06 R 0.3, p. 23

[PPSA1b] Design Description Document 4.1 Pulsed Power Supplies, Appendix A, Equip-ment List and Technical Data Tables, N 41 DDD 18 01-07-06 R 0.3, pp. 30 - 33

[PPSD1] Pulsed Power Supply Drawings, 41.0024.0001, 41.0025.0001, 41.0026.0001, 41.0027.0001, 41.0028.0001, 41.0029.0001, 41.0030.0001, 41.0031.0001

[PPSD2] Pulsed Power Supply Drawings, 41.0040.0001

[SLBa] Design Description Document, DDD 6.2 Site Layout and Buildings - Introduction, N 62 DDD 22 01-07-18 R 0.1

[SLBD1] Drawings DDD 6.2 Site Layout and Buildings, 62.0377.0001, 62.0333.0001-0015, 62.0357.0001-0004

[Ulb05] A. Ulbricht, et al., The ITER toroidal field model coil project, Fusion Engineering and Design 73 (2005), pp. 189-327

Page 108: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

IPR

96

10 IPR

The results obtained within the studies performed under this task did not yield any specific innovation or intellectual property.

This work, supported by the European Communities under the contract of Association be-tween EURATOM and Forschungszentrum Karlsruhe, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Page 109: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

97

Annex A Detailed Data of the FEM Models

Annex A.1 FEM Model of CS PF Coil System

Model Definition

Solver: Magnetostatic Symmetry: RZ-Plane

Drawing Size: Z-direction: ±30 m; R-direction: 40 m

Coil Name Location of the starting point Model dimensions

R-direction (m) Z-direction (m) R-direction (m) Z-direction (m)

CS3U 1.36 4.3 0.719 2.091

CS2U 1.36 2.16 0.719 2.091

CS1U 1.36 0.025 0.719 2.091

CS1L 1.36 -2.11 0.719 2.091

CS2L 1.36 -4.25 0.719 2.091

CS3L 1.36 -6.39 0.719 2.091

PF 1 3.459 7.069 0.968 0.976

PF 2 7.995 6.233 0.649 0.595

PF 3 11.643 2.782 0.708 0.966

PF 4 11.643 -2.726 0.649 0.966

PF 5 7.985 -7.203 0.82 0.945

PF 6 3.447 -8.045 1.633 0.976

Tab. A.1-1 Dimensions of the FEM model for Maxwell 2D of CS PF coil system

Page 110: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

98

Materials

CS and PF coils: Copper with relative permeability = 1

Background: Vacuum with relative permeability = 1

Setup Boundaries and Sources

Current Source All superconducting cables are stranded with 45 kA

Boundary Balloon

Setup Executive Parameters

All coils were chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Initial mesh

Percent refinement per pass: 5

Number of requested passes: 70

Percent error: 0.1

Convergence Data

Number of complete passes Number of triangles Energy Error (%)

70 62561 0.1895

(a) Calculation Results of Simplified FEM Model of CS PF Coil System

CS3U CS2U CS1U CS1L CS2L CS3L

CS3U 2.580E-06

CS2U 7.998E-07 2.580E-06

CS1U 1.735E-07 7.999E-07 2.580E-06

Page 111: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

99

CS1L 5.943E-08 1.735E-07 7.999E-07 2.580E-06

CS2L 2.644E-08 5.943E-08 1.735E-07 7.999E-07 2.580E-06

CS3L 1.386E-08 2.643E-08 5.940E-08 1.735E-07 7.996E-07 2.580E-06

PF 1 9.969E-07 4.429E-07 2.053E-07 1.059E-07 6.026E-08 3.703E-08

PF 2 6.977E-07 5.726E-07 4.150E-07 2.846E-07 1.933E-07 1.329E-07

PF 3 4.732E-07 4.953E-07 4.711E-07 4.108E-07 3.356E-07 2.630E-07

PF 4 2.967E-07 3.725E-07 4.437E-07 4.894E-07 4.916E-07 4.491E-07

PF 5 1.298E-07 1.879E-07 2.756E-07 4.011E-07 5.551E-07 6.833E-07

PF 6 4.249E-08 6.845E-08 1.185E-07 2.240E-07 4.628E-07 9.721E-07

Tab. A.1-2 Impedance matrix of the simplified FEM models of CS and PF coils (H)

PF 1 PF 2 PF 3 PF 4 PF 5 PF 6

PF 1 1.138E-05

PF 2 3.936E-06 3.635E-05

PF 3 2.169E-06 1.124E-05 5.342E-05

PF 4 1.156E-06 5.259E-06 1.434E-05 5.379E-05

PF 5 4.477E-07 1.886E-06 4.530E-06 9.758E-06 3.310E-05

PF 6 1.332E-07 5.302E-07 1.187E-06 2.318E-06 4.735E-06 1.116E-05

Tab. A.1-3 Impedance matrix of the simplified FEM models of PF coils (H)

Page 112: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

100

Annex A.2 FEM Models of the PF 3 Coil

(a) FEM Model of the PF 3 Coil for DC

Model Definition

Solver: Magnetostatic Symmetry: RZ-Plane

Drawing Size: Z-direction: ±10 m; R-direction: 20 m

Geometry:

Cooling Tube 1_1: Circle centre: 11672.25 mm; 452.75 mm; Radius: 6 mm

Superconducting cable 1_1: Circle centre: 11672.25 mm; 452.75 mm; Radius: 17.2 mm

Jacket 1_1: First corner: 11646.2 mm; 426.7 mm

Second corner: 11698.3 mm; 478.8 mm

Copy of the conductor 1_1 downwards one time with a distance of 59.5 mm

Copy of the conductor 2_1 downwards one time with a distance of 61.5 mm with considera-tion of additionally insulation between the double pancakes of 2 mm

Continuing of copy of the conductors downwards with distance depending on the location in the double pancake

Copy of the stack of the 16 first conductors rightwards 12 times with a distance of 59 mm

Materials

Cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Superconducting cable Copper at 4K, relative permittivity = 1, relative permeability = 1, con-ductivity = 6.4E9 S/m

Stainless steel jacket Stainless steel at 4K, relative permittivity = 1, relative permeabil-ity = 1, conductivity = 1.88e6 S/m

Insulation Epoxy resin, relative permittivity = 4, relative permeability = 1

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source All superconducting cables are stranded with 45 kA

Page 113: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

101

Boundary Balloon

Setup Executive Parameters

All superconducting cables were chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Insulation Cooling Tube Superconducting cable

Stainless steel jacket

Background

Number of triangles

52124 70 430 750 67290

(b) FEM Model of PF 3 Coil for Frequencies lower than 5 kHz

Model Definition

Solver: Eddy Current Symmetry: RZ-Plane

Drawing Size: Z-direction: +10 m; R-direction: 20 m

Materials

Cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Superconducting cable Copper at 4K, relative permittivity = 1, relative permeability = 1, con-ductivity = 6.4E9 S/m

Stainless steel jacket Stainless steel at 4K, relative permittivity = 1, relative permeabil-ity = 1, conductivity = 1.88e6 S/m

Insulation Epoxy resin, relative permittivity = 4, relative permeability = 1

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source All superconducting cables are stranded with 45 kA

Boundary Bottom edge of the model boundary = even symmetry

Page 114: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

102

Other three edges of the model boundary = balloon

Setup Executive Parameters

All superconducting cables were chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Insulation Cooling Tube Superconducting cable

Stainless steel jacket

Background

Number of triangles

70000 10 48 350 26000

(c) FEM Model of PF 3 Coil for Frequencies higher than 5 kHz

Model Definition

Solver: Eddy Current Symmetry: RZ-Plane

Drawing Size: Z-direction: ±5 m; R-direction: 10 m

Materials

Cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Superconducting cable Copper at 4K, relative permittivity = 1, relative permeability = 1, con-ductivity = 6.4E9 S/m

Stainless steel jacket Stainless steel at 4K, relative permittivity = 1, relative permeabil-ity = 1, conductivity = 1.88e6 S/m

Insulation Epoxy resin, relative permittivity = 4, relative permeability = 1

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source All superconducting cables are stranded with 45 kA

Boundary Balloon

Page 115: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

103

Setup Executive Parameters

All superconducting cables were chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Insulation Cooling Tube Superconducting cable

Stainless steel jacket

Background

Number of triangles

1500 22 150 230 1300

Page 116: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

104

(d) Calculation Results of Detailed FEM Model of the PF 3 Coil

Capacitances of conductors between the layers in one dou-ble pancake (F)

Capacitances of conductors between double pancakes(F)

Capacitances between the con-ductors of one layer (F)

C_P01_02_C01 1.829E-08 C_P02_03_C01 1.44E-08 C_P01_C01_02 1.97E-08C_P01_02_C02 1.838E-08 C_P02_03_C02 1.45E-08 C_P01_C02_03 1.98E-08C_P01_02_C03 1.847E-08 C_P02_03_C03 1.45E-08 C_P01_C03_04 1.99E-08C_P01_02_C04 1.856E-08 C_P02_03_C04 1.46E-08 C_P01_C04_05 2.00E-08C_P01_02_C05 1.866E-08 C_P02_03_C05 1.47E-08 C_P01_C05_06 2.01E-08C_P01_02_C06 1.875E-08 C_P02_03_C06 1.48E-08 C_P01_C06_07 2.02E-08C_P01_02_C07 1.884E-08 C_P02_03_C07 1.48E-08 C_P01_C07_08 2.03E-08C_P01_02_C08 1.893E-08 C_P02_03_C08 1.49E-08 C_P01_C08_09 2.04E-08C_P01_02_C09 1.903E-08 C_P02_03_C09 1.50E-08 C_P01_C09_10 2.05E-08C_P01_02_C10 1.912E-08 C_P02_03_C10 1.51E-08 C_P01_C10_11 2.06E-08C_P01_02_C11 1.921E-08 C_P02_03_C11 1.51E-08 C_P01_C11_12 2.07E-08C_P01_02_C12 1.930E-08 C_P02_03_C12 1.52E-08

Tab. A.2-1 Calculated capacitances between the conductors of PF 3 coil

Capacitances of the conductors to ground in lowest and upper-most pancakes (F)

Capacitance to ground for outer conductors on the left and right side of the coil (F)

Capacitance to ground for low-est and uppermost outer con-ductors in Z-direction (F)

C_P01_E_C01 1.975E-08 C_P02_E_C01 1.02E-08 C_P01_E_C01 9.529E-09C_P01_E_C02 9.578E-09 C_P02_E_C12 1.05E-08 C_P01_E_C12 1.005E-08C_P01_E_C03 9.626E-09 C_P01_E_C04 9.675E-09 C_P01_E_C05 9.723E-09 C_P01_E_C06 9.771E-09 C_P01_E_C07 9.819E-09 C_P01_E_C08 9.867E-09 C_P01_E_C09 9.915E-09 C_P01_E_C10 9.964E-09 C_P01_E_C11 1.001E-08 C_P01_E_C12 2.051E-08

Tab. A.2-2 Calculated capacitances of the outer conductors to ground of PF 3 coil

Page 117: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

105

SC_1_1 8.90E-03 SC_5_1 9.60E-03 SC_9_1 9.79E-03 SC_13_1 9.48E-03SC_1_2 9.12E-03 SC_5_2 9.90E-03 SC_9_2 1.01E-02 SC_13_2 9.76E-03SC_1_3 9.31E-03 SC_5_3 1.01E-02 SC_9_3 1.04E-02 SC_13_3 1.00E-02SC_1_4 9.45E-03 SC_5_4 1.03E-02 SC_9_4 1.06E-02 SC_13_4 1.02E-02SC_1_5 9.56E-03 SC_5_5 1.05E-02 SC_9_5 1.07E-02 SC_13_5 1.03E-02SC_1_6 9.63E-03 SC_5_6 1.06E-02 SC_9_6 1.08E-02 SC_13_6 1.04E-02SC_1_7 9.66E-03 SC_5_7 1.06E-02 SC_9_7 1.08E-02 SC_13_7 1.04E-02SC_1_8 9.65E-03 SC_5_8 1.06E-02 SC_9_8 1.08E-02 SC_13_8 1.04E-02SC_1_9 9.61E-03 SC_5_9 1.05E-02 SC_9_9 1.07E-02 SC_13_9 1.03E-02SC_1_10 9.52E-03 SC_5_10 1.04E-02 SC_9_10 1.06E-02 SC_13_10 1.02E-02SC_1_11 9.40E-03 SC_5_11 1.02E-02 SC_9_11 1.04E-02 SC_13_11 1.01E-02SC_1_12 9.23E-03 SC_5_12 9.96E-03 SC_9_12 1.01E-02 SC_13_12 9.82E-03 SC_2_1 9.13E-03 SC_6_1 9.69E-03 SC_10_1 9.76E-03 SC_14_1 9.32E-03SC_2_2 9.38E-03 SC_6_2 1.00E-02 SC_10_2 1.01E-02 SC_14_2 9.59E-03SC_2_3 9.58E-03 SC_6_3 1.02E-02 SC_10_3 1.03E-02 SC_14_3 9.81E-03SC_2_4 9.74E-03 SC_6_4 1.04E-02 SC_10_4 1.05E-02 SC_14_4 9.99E-03SC_2_5 9.86E-03 SC_6_5 1.06E-02 SC_10_5 1.07E-02 SC_14_5 1.01E-02SC_2_6 9.93E-03 SC_6_6 1.07E-02 SC_10_6 1.08E-02 SC_14_6 1.02E-02SC_2_7 9.96E-03 SC_6_7 1.07E-02 SC_10_7 1.08E-02 SC_14_7 1.02E-02SC_2_8 9.95E-03 SC_6_8 1.07E-02 SC_10_8 1.08E-02 SC_14_8 1.02E-02SC_2_9 9.90E-03 SC_6_9 1.06E-02 SC_10_9 1.07E-02 SC_14_9 1.02E-02SC_2_10 9.80E-03 SC_6_10 1.05E-02 SC_10_10 1.06E-02 SC_14_10 1.00E-02SC_2_11 9.66E-03 SC_6_11 1.03E-02 SC_10_11 1.04E-02 SC_14_11 9.88E-03SC_2_12 9.46E-03 SC_6_12 1.00E-02 SC_10_12 1.01E-02 SC_14_12 9.66E-03 SC_3_1 9.32E-03 SC_7_1 9.76E-03 SC_11_1 9.69E-03 SC_15_1 9.13E-03SC_3_2 9.59E-03 SC_7_2 1.01E-02 SC_11_2 1.00E-02 SC_15_2 9.38E-03SC_3_3 9.81E-03 SC_7_3 1.03E-02 SC_11_3 1.02E-02 SC_15_3 9.58E-03SC_3_4 9.99E-03 SC_7_4 1.05E-02 SC_11_4 1.04E-02 SC_15_4 9.74E-03SC_3_5 1.01E-02 SC_7_5 1.07E-02 SC_11_5 1.06E-02 SC_15_5 9.86E-03SC_3_6 1.02E-02 SC_7_6 1.08E-02 SC_11_6 1.07E-02 SC_15_6 9.93E-03SC_3_7 1.02E-02 SC_7_7 1.08E-02 SC_11_7 1.07E-02 SC_15_7 9.96E-03SC_3_8 1.02E-02 SC_7_8 1.08E-02 SC_11_8 1.07E-02 SC_15_8 9.95E-03SC_3_9 1.02E-02 SC_7_9 1.07E-02 SC_11_9 1.06E-02 SC_15_9 9.90E-03SC_3_10 1.00E-02 SC_7_10 1.06E-02 SC_11_10 1.05E-02 SC_15_10 9.80E-03SC_3_11 9.88E-03 SC_7_11 1.04E-02 SC_11_11 1.03E-02 SC_15_11 9.66E-03SC_3_12 9.66E-03 SC_7_12 1.01E-02 SC_11_12 1.00E-02 SC_15_12 9.46E-03 SC_4_1 9.48E-03 SC_8_1 9.79E-03 SC_12_1 9.60E-03 SC_16_1 8.90E-03SC_4_2 9.76E-03 SC_8_2 1.01E-02 SC_12_2 9.90E-03 SC_16_2 9.12E-03SC_4_3 1.00E-02 SC_8_3 1.04E-02 SC_12_3 1.01E-02 SC_16_3 9.31E-03SC_4_4 1.02E-02 SC_8_4 1.06E-02 SC_12_4 1.03E-02 SC_16_4 9.45E-03SC_4_5 1.03E-02 SC_8_5 1.07E-02 SC_12_5 1.05E-02 SC_16_5 9.56E-03SC_4_6 1.04E-02 SC_8_6 1.08E-02 SC_12_6 1.06E-02 SC_16_6 9.63E-03SC_4_7 1.04E-02 SC_8_7 1.08E-02 SC_12_7 1.06E-02 SC_16_7 9.66E-03SC_4_8 1.04E-02 SC_8_8 1.08E-02 SC_12_8 1.06E-02 SC_16_8 9.65E-03SC_4_9 1.03E-02 SC_8_9 1.07E-02 SC_12_9 1.05E-02 SC_16_9 9.61E-03SC_4_10 1.02E-02 SC_8_10 1.06E-02 SC_12_10 1.04E-02 SC_16_10 9.52E-03SC_4_11 1.01E-02 SC_8_11 1.04E-02 SC_12_11 1.02E-02 SC_16_11 9.40E-03SC_4_12 9.82E-03 SC_8_12 1.01E-02 SC_12_12 9.96E-03 SC_16_12 9.23E-03

Tab. A.2-3 Cumulative inductances for each conductor of PF 3 coil at DC (H)

Page 118: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

106

SC_1_1 1.19E-05 SC_5_1 1.19E-05 SC_9_1 1.19E-05 SC_13_1 1.19E-05SC_1_2 1.36E-05 SC_5_2 1.36E-05 SC_9_2 1.36E-05 SC_13_2 1.36E-05SC_1_3 1.37E-05 SC_5_3 1.37E-05 SC_9_3 1.37E-05 SC_13_3 1.37E-05SC_1_4 1.38E-05 SC_5_4 1.38E-05 SC_9_4 1.38E-05 SC_13_4 1.38E-05SC_1_5 1.39E-05 SC_5_5 1.39E-05 SC_9_5 1.39E-05 SC_13_5 1.39E-05SC_1_6 1.39E-05 SC_5_6 1.39E-05 SC_9_6 1.39E-05 SC_13_6 1.39E-05SC_1_7 1.40E-05 SC_5_7 1.40E-05 SC_9_7 1.40E-05 SC_13_7 1.40E-05SC_1_8 1.41E-05 SC_5_8 1.41E-05 SC_9_8 1.41E-05 SC_13_8 1.41E-05SC_1_9 1.41E-05 SC_5_9 1.41E-05 SC_9_9 1.41E-05 SC_13_9 1.41E-05SC_1_10 1.42E-05 SC_5_10 1.42E-05 SC_9_10 1.42E-05 SC_13_10 1.42E-05SC_1_11 1.42E-05 SC_5_11 1.42E-05 SC_9_11 1.42E-05 SC_13_11 1.42E-05SC_1_12 1.26E-05 SC_5_12 1.26E-05 SC_9_12 1.26E-05 SC_13_12 1.26E-05 SC_2_1 1.19E-05 SC_6_1 1.19E-05 SC_10_1 1.19E-05 SC_14_1 1.19E-05SC_2_2 1.36E-05 SC_6_2 1.36E-05 SC_10_2 1.36E-05 SC_14_2 1.36E-05SC_2_3 1.37E-05 SC_6_3 1.37E-05 SC_10_3 1.37E-05 SC_14_3 1.37E-05SC_2_4 1.38E-05 SC_6_4 1.38E-05 SC_10_4 1.38E-05 SC_14_4 1.38E-05SC_2_5 1.39E-05 SC_6_5 1.39E-05 SC_10_5 1.39E-05 SC_14_5 1.39E-05SC_2_6 1.39E-05 SC_6_6 1.39E-05 SC_10_6 1.39E-05 SC_14_6 1.39E-05SC_2_7 1.40E-05 SC_6_7 1.40E-05 SC_10_7 1.40E-05 SC_14_7 1.40E-05SC_2_8 1.41E-05 SC_6_8 1.41E-05 SC_10_8 1.41E-05 SC_14_8 1.41E-05SC_2_9 1.41E-05 SC_6_9 1.41E-05 SC_10_9 1.41E-05 SC_14_9 1.41E-05SC_2_10 1.42E-05 SC_6_10 1.42E-05 SC_10_10 1.42E-05 SC_14_10 1.42E-05SC_2_11 1.42E-05 SC_6_11 1.42E-05 SC_10_11 1.42E-05 SC_14_11 1.42E-05SC_2_12 1.26E-05 SC_6_12 1.26E-05 SC_10_12 1.26E-05 SC_14_12 1.26E-05 SC_3_1 1.19E-05 SC_7_1 1.19E-05 SC_11_1 1.19E-05 SC_15_1 1.19E-05SC_3_2 1.36E-05 SC_7_2 1.36E-05 SC_11_2 1.36E-05 SC_15_2 1.36E-05SC_3_3 1.37E-05 SC_7_3 1.37E-05 SC_11_3 1.37E-05 SC_15_3 1.37E-05SC_3_4 1.38E-05 SC_7_4 1.38E-05 SC_11_4 1.38E-05 SC_15_4 1.38E-05SC_3_5 1.39E-05 SC_7_5 1.39E-05 SC_11_5 1.39E-05 SC_15_5 1.39E-05SC_3_6 1.39E-05 SC_7_6 1.39E-05 SC_11_6 1.39E-05 SC_15_6 1.39E-05SC_3_7 1.40E-05 SC_7_7 1.40E-05 SC_11_7 1.40E-05 SC_15_7 1.40E-05SC_3_8 1.41E-05 SC_7_8 1.41E-05 SC_11_8 1.41E-05 SC_15_8 1.41E-05SC_3_9 1.41E-05 SC_7_9 1.41E-05 SC_11_9 1.41E-05 SC_15_9 1.41E-05SC_3_10 1.42E-05 SC_7_10 1.42E-05 SC_11_10 1.42E-05 SC_15_10 1.42E-05SC_3_11 1.42E-05 SC_7_11 1.42E-05 SC_11_11 1.42E-05 SC_15_11 1.42E-05SC_3_12 1.26E-05 SC_7_12 1.26E-05 SC_11_12 1.26E-05 SC_15_12 1.26E-05 SC_4_1 1.19E-05 SC_8_1 1.19E-05 SC_12_1 1.19E-05 SC_16_1 1.19E-05SC_4_2 1.36E-05 SC_8_2 1.36E-05 SC_12_2 1.36E-05 SC_16_2 1.36E-05SC_4_3 1.37E-05 SC_8_3 1.37E-05 SC_12_3 1.37E-05 SC_16_3 1.37E-05SC_4_4 1.38E-05 SC_8_4 1.38E-05 SC_12_4 1.38E-05 SC_16_4 1.38E-05SC_4_5 1.39E-05 SC_8_5 1.39E-05 SC_12_5 1.39E-05 SC_16_5 1.39E-05SC_4_6 1.39E-05 SC_8_6 1.39E-05 SC_12_6 1.39E-05 SC_16_6 1.39E-05SC_4_7 1.40E-05 SC_8_7 1.40E-05 SC_12_7 1.40E-05 SC_16_7 1.40E-05SC_4_8 1.41E-05 SC_8_8 1.41E-05 SC_12_8 1.41E-05 SC_16_8 1.41E-05SC_4_9 1.41E-05 SC_8_9 1.41E-05 SC_12_9 1.41E-05 SC_16_9 1.41E-05SC_4_10 1.42E-05 SC_8_10 1.42E-05 SC_12_10 1.42E-05 SC_16_10 1.42E-05SC_4_11 1.42E-05 SC_8_11 1.42E-05 SC_12_11 1.42E-05 SC_16_11 1.42E-05SC_4_12 1.26E-05 SC_8_12 1.26E-05 SC_12_12 1.26E-05 SC_16_12 1.26E-05

Tab. A.2-4 Cumulative inductances for each conductor of PF 3 coil at 354 Hz (H)

Page 119: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

107

SC_1_1 1.07E-05 SC_5_1 1.07E-05 SC_9_1 1.07E-05 SC_13_1 1.07E-05SC_1_2 1.23E-05 SC_5_2 1.23E-05 SC_9_2 1.23E-05 SC_13_2 1.23E-05SC_1_3 1.24E-05 SC_5_3 1.24E-05 SC_9_3 1.24E-05 SC_13_3 1.24E-05SC_1_4 1.25E-05 SC_5_4 1.25E-05 SC_9_4 1.25E-05 SC_13_4 1.25E-05SC_1_5 1.25E-05 SC_5_5 1.25E-05 SC_9_5 1.25E-05 SC_13_5 1.25E-05SC_1_6 1.26E-05 SC_5_6 1.26E-05 SC_9_6 1.26E-05 SC_13_6 1.26E-05SC_1_7 1.27E-05 SC_5_7 1.27E-05 SC_9_7 1.27E-05 SC_13_7 1.27E-05SC_1_8 1.27E-05 SC_5_8 1.27E-05 SC_9_8 1.27E-05 SC_13_8 1.27E-05SC_1_9 1.28E-05 SC_5_9 1.28E-05 SC_9_9 1.28E-05 SC_13_9 1.28E-05SC_1_10 1.28E-05 SC_5_10 1.28E-05 SC_9_10 1.28E-05 SC_13_10 1.28E-05SC_1_11 1.29E-05 SC_5_11 1.29E-05 SC_9_11 1.29E-05 SC_13_11 1.29E-05SC_1_12 1.12E-05 SC_5_12 1.12E-05 SC_9_12 1.12E-05 SC_13_12 1.12E-05 SC_2_1 1.07E-05 SC_6_1 1.07E-05 SC_10_1 1.07E-05 SC_14_1 1.07E-05SC_2_2 1.23E-05 SC_6_2 1.23E-05 SC_10_2 1.23E-05 SC_14_2 1.23E-05SC_2_3 1.24E-05 SC_6_3 1.24E-05 SC_10_3 1.24E-05 SC_14_3 1.24E-05SC_2_4 1.25E-05 SC_6_4 1.25E-05 SC_10_4 1.25E-05 SC_14_4 1.25E-05SC_2_5 1.25E-05 SC_6_5 1.25E-05 SC_10_5 1.25E-05 SC_14_5 1.25E-05SC_2_6 1.26E-05 SC_6_6 1.26E-05 SC_10_6 1.26E-05 SC_14_6 1.26E-05SC_2_7 1.27E-05 SC_6_7 1.27E-05 SC_10_7 1.27E-05 SC_14_7 1.27E-05SC_2_8 1.27E-05 SC_6_8 1.27E-05 SC_10_8 1.27E-05 SC_14_8 1.27E-05SC_2_9 1.28E-05 SC_6_9 1.28E-05 SC_10_9 1.28E-05 SC_14_9 1.28E-05SC_2_10 1.28E-05 SC_6_10 1.28E-05 SC_10_10 1.28E-05 SC_14_10 1.28E-05SC_2_11 1.29E-05 SC_6_11 1.29E-05 SC_10_11 1.29E-05 SC_14_11 1.29E-05SC_2_12 1.12E-05 SC_6_12 1.12E-05 SC_10_12 1.12E-05 SC_14_12 1.12E-05 SC_3_1 1.07E-05 SC_7_1 1.07E-05 SC_11_1 1.07E-05 SC_15_1 1.07E-05SC_3_2 1.23E-05 SC_7_2 1.23E-05 SC_11_2 1.23E-05 SC_15_2 1.23E-05SC_3_3 1.24E-05 SC_7_3 1.24E-05 SC_11_3 1.24E-05 SC_15_3 1.24E-05SC_3_4 1.25E-05 SC_7_4 1.25E-05 SC_11_4 1.25E-05 SC_15_4 1.25E-05SC_3_5 1.25E-05 SC_7_5 1.25E-05 SC_11_5 1.25E-05 SC_15_5 1.25E-05SC_3_6 1.26E-05 SC_7_6 1.26E-05 SC_11_6 1.26E-05 SC_15_6 1.26E-05SC_3_7 1.27E-05 SC_7_7 1.27E-05 SC_11_7 1.27E-05 SC_15_7 1.27E-05SC_3_8 1.27E-05 SC_7_8 1.27E-05 SC_11_8 1.27E-05 SC_15_8 1.27E-05SC_3_9 1.28E-05 SC_7_9 1.28E-05 SC_11_9 1.28E-05 SC_15_9 1.28E-05SC_3_10 1.28E-05 SC_7_10 1.28E-05 SC_11_10 1.28E-05 SC_15_10 1.28E-05SC_3_11 1.29E-05 SC_7_11 1.29E-05 SC_11_11 1.29E-05 SC_15_11 1.29E-05SC_3_12 1.12E-05 SC_7_12 1.12E-05 SC_11_12 1.12E-05 SC_15_12 1.12E-05 SC_4_1 1.07E-05 SC_8_1 1.07E-05 SC_12_1 1.07E-05 SC_16_1 1.07E-05SC_4_2 1.23E-05 SC_8_2 1.23E-05 SC_12_2 1.23E-05 SC_16_2 1.23E-05SC_4_3 1.24E-05 SC_8_3 1.24E-05 SC_12_3 1.24E-05 SC_16_3 1.24E-05SC_4_4 1.25E-05 SC_8_4 1.25E-05 SC_12_4 1.25E-05 SC_16_4 1.25E-05SC_4_5 1.25E-05 SC_8_5 1.25E-05 SC_12_5 1.25E-05 SC_16_5 1.25E-05SC_4_6 1.26E-05 SC_8_6 1.26E-05 SC_12_6 1.26E-05 SC_16_6 1.26E-05SC_4_7 1.27E-05 SC_8_7 1.27E-05 SC_12_7 1.27E-05 SC_16_7 1.27E-05SC_4_8 1.27E-05 SC_8_8 1.27E-05 SC_12_8 1.27E-05 SC_16_8 1.27E-05SC_4_9 1.28E-05 SC_8_9 1.28E-05 SC_12_9 1.28E-05 SC_16_9 1.28E-05SC_4_10 1.28E-05 SC_8_10 1.28E-05 SC_12_10 1.28E-05 SC_16_10 1.28E-05SC_4_11 1.29E-05 SC_8_11 1.29E-05 SC_12_11 1.29E-05 SC_16_11 1.29E-05SC_4_12 1.12E-05 SC_8_12 1.12E-05 SC_12_12 1.12E-05 SC_16_12 1.12E-05

Tab. A.2-5 Cumulative inductances for each conductor of PF 3 coil at 422 Hz (H)

Page 120: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

108

SC_1_1 4.54E-06 SC_5_1 4.54E-06 SC_9_1 4.54E-06 SC_13_1 4.54E-06SC_1_2 4.56E-06 SC_5_2 4.56E-06 SC_9_2 4.56E-06 SC_13_2 4.56E-06SC_1_3 4.59E-06 SC_5_3 4.59E-06 SC_9_3 4.59E-06 SC_13_3 4.59E-06SC_1_4 4.61E-06 SC_5_4 4.61E-06 SC_9_4 4.61E-06 SC_13_4 4.61E-06SC_1_5 4.63E-06 SC_5_5 4.63E-06 SC_9_5 4.63E-06 SC_13_5 4.63E-06SC_1_6 4.66E-06 SC_5_6 4.66E-06 SC_9_6 4.66E-06 SC_13_6 4.66E-06SC_1_7 4.68E-06 SC_5_7 4.68E-06 SC_9_7 4.68E-06 SC_13_7 4.68E-06SC_1_8 4.70E-06 SC_5_8 4.70E-06 SC_9_8 4.70E-06 SC_13_8 4.70E-06SC_1_9 4.73E-06 SC_5_9 4.73E-06 SC_9_9 4.73E-06 SC_13_9 4.73E-06SC_1_10 4.75E-06 SC_5_10 4.75E-06 SC_9_10 4.75E-06 SC_13_10 4.75E-06SC_1_11 4.77E-06 SC_5_11 4.77E-06 SC_9_11 4.77E-06 SC_13_11 4.77E-06SC_1_12 4.80E-06 SC_5_12 4.80E-06 SC_9_12 4.80E-06 SC_13_12 4.80E-06 SC_2_1 4.54E-06 SC_6_1 4.54E-06 SC_10_1 4.54E-06 SC_14_1 4.54E-06SC_2_2 4.56E-06 SC_6_2 4.56E-06 SC_10_2 4.56E-06 SC_14_2 4.56E-06SC_2_3 4.59E-06 SC_6_3 4.59E-06 SC_10_3 4.59E-06 SC_14_3 4.59E-06SC_2_4 4.61E-06 SC_6_4 4.61E-06 SC_10_4 4.61E-06 SC_14_4 4.61E-06SC_2_5 4.63E-06 SC_6_5 4.63E-06 SC_10_5 4.63E-06 SC_14_5 4.63E-06SC_2_6 4.66E-06 SC_6_6 4.66E-06 SC_10_6 4.66E-06 SC_14_6 4.66E-06SC_2_7 4.68E-06 SC_6_7 4.68E-06 SC_10_7 4.68E-06 SC_14_7 4.68E-06SC_2_8 4.70E-06 SC_6_8 4.70E-06 SC_10_8 4.70E-06 SC_14_8 4.70E-06SC_2_9 4.73E-06 SC_6_9 4.73E-06 SC_10_9 4.73E-06 SC_14_9 4.73E-06SC_2_10 4.75E-06 SC_6_10 4.75E-06 SC_10_10 4.75E-06 SC_14_10 4.75E-06SC_2_11 4.77E-06 SC_6_11 4.77E-06 SC_10_11 4.77E-06 SC_14_11 4.77E-06SC_2_12 4.80E-06 SC_6_12 4.80E-06 SC_10_12 4.80E-06 SC_14_12 4.80E-06 SC_3_1 4.54E-06 SC_7_1 4.54E-06 SC_11_1 4.54E-06 SC_15_1 4.54E-06SC_3_2 4.56E-06 SC_7_2 4.56E-06 SC_11_2 4.56E-06 SC_15_2 4.56E-06SC_3_3 4.59E-06 SC_7_3 4.59E-06 SC_11_3 4.59E-06 SC_15_3 4.59E-06SC_3_4 4.61E-06 SC_7_4 4.61E-06 SC_11_4 4.61E-06 SC_15_4 4.61E-06SC_3_5 4.63E-06 SC_7_5 4.63E-06 SC_11_5 4.63E-06 SC_15_5 4.63E-06SC_3_6 4.66E-06 SC_7_6 4.66E-06 SC_11_6 4.66E-06 SC_15_6 4.66E-06SC_3_7 4.68E-06 SC_7_7 4.68E-06 SC_11_7 4.68E-06 SC_15_7 4.68E-06SC_3_8 4.70E-06 SC_7_8 4.70E-06 SC_11_8 4.70E-06 SC_15_8 4.70E-06SC_3_9 4.73E-06 SC_7_9 4.73E-06 SC_11_9 4.73E-06 SC_15_9 4.73E-06SC_3_10 4.75E-06 SC_7_10 4.75E-06 SC_11_10 4.75E-06 SC_15_10 4.75E-06SC_3_11 4.77E-06 SC_7_11 4.77E-06 SC_11_11 4.77E-06 SC_15_11 4.77E-06SC_3_12 4.80E-06 SC_7_12 4.80E-06 SC_11_12 4.80E-06 SC_15_12 4.80E-06 SC_4_1 4.54E-06 SC_8_1 4.54E-06 SC_12_1 4.54E-06 SC_16_1 4.54E-06SC_4_2 4.56E-06 SC_8_2 4.56E-06 SC_12_2 4.56E-06 SC_16_2 4.56E-06SC_4_3 4.59E-06 SC_8_3 4.59E-06 SC_12_3 4.59E-06 SC_16_3 4.59E-06SC_4_4 4.61E-06 SC_8_4 4.61E-06 SC_12_4 4.61E-06 SC_16_4 4.61E-06SC_4_5 4.63E-06 SC_8_5 4.63E-06 SC_12_5 4.63E-06 SC_16_5 4.63E-06SC_4_6 4.66E-06 SC_8_6 4.66E-06 SC_12_6 4.66E-06 SC_16_6 4.66E-06SC_4_7 4.68E-06 SC_8_7 4.68E-06 SC_12_7 4.68E-06 SC_16_7 4.68E-06SC_4_8 4.70E-06 SC_8_8 4.70E-06 SC_12_8 4.70E-06 SC_16_8 4.70E-06SC_4_9 4.73E-06 SC_8_9 4.73E-06 SC_12_9 4.73E-06 SC_16_9 4.73E-06SC_4_10 4.75E-06 SC_8_10 4.75E-06 SC_12_10 4.75E-06 SC_16_10 4.75E-06SC_4_11 4.77E-06 SC_8_11 4.77E-06 SC_12_11 4.77E-06 SC_16_11 4.77E-06SC_4_12 4.80E-06 SC_8_12 4.80E-06 SC_12_12 4.80E-06 SC_16_12 4.80E-06

Tab. A.2-6 Cumulative inductances for each conductor of PF 3 coil at 9.5 kHz (H)

Page 121: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

109

SC_1_1 4.37E-06 SC_5_1 4.37E-06 SC_9_1 4.37E-06 SC_13_1 4.37E-06SC_1_2 4.40E-06 SC_5_2 4.40E-06 SC_9_2 4.40E-06 SC_13_2 4.40E-06SC_1_3 4.42E-06 SC_5_3 4.42E-06 SC_9_3 4.42E-06 SC_13_3 4.42E-06SC_1_4 4.44E-06 SC_5_4 4.44E-06 SC_9_4 4.44E-06 SC_13_4 4.44E-06SC_1_5 4.46E-06 SC_5_5 4.46E-06 SC_9_5 4.46E-06 SC_13_5 4.46E-06SC_1_6 4.48E-06 SC_5_6 4.48E-06 SC_9_6 4.48E-06 SC_13_6 4.48E-06SC_1_7 4.51E-06 SC_5_7 4.51E-06 SC_9_7 4.51E-06 SC_13_7 4.51E-06SC_1_8 4.53E-06 SC_5_8 4.53E-06 SC_9_8 4.53E-06 SC_13_8 4.53E-06SC_1_9 4.55E-06 SC_5_9 4.55E-06 SC_9_9 4.55E-06 SC_13_9 4.55E-06SC_1_10 4.57E-06 SC_5_10 4.57E-06 SC_9_10 4.57E-06 SC_13_10 4.57E-06SC_1_11 4.59E-06 SC_5_11 4.59E-06 SC_9_11 4.59E-06 SC_13_11 4.59E-06SC_1_12 4.62E-06 SC_5_12 4.62E-06 SC_9_12 4.62E-06 SC_13_12 4.62E-06 SC_2_1 4.37E-06 SC_6_1 4.37E-06 SC_10_1 4.37E-06 SC_14_1 4.37E-06SC_2_2 4.40E-06 SC_6_2 4.40E-06 SC_10_2 4.40E-06 SC_14_2 4.40E-06SC_2_3 4.42E-06 SC_6_3 4.42E-06 SC_10_3 4.42E-06 SC_14_3 4.42E-06SC_2_4 4.44E-06 SC_6_4 4.44E-06 SC_10_4 4.44E-06 SC_14_4 4.44E-06SC_2_5 4.46E-06 SC_6_5 4.46E-06 SC_10_5 4.46E-06 SC_14_5 4.46E-06SC_2_6 4.48E-06 SC_6_6 4.48E-06 SC_10_6 4.48E-06 SC_14_6 4.48E-06SC_2_7 4.51E-06 SC_6_7 4.51E-06 SC_10_7 4.51E-06 SC_14_7 4.51E-06SC_2_8 4.53E-06 SC_6_8 4.53E-06 SC_10_8 4.53E-06 SC_14_8 4.53E-06SC_2_9 4.55E-06 SC_6_9 4.55E-06 SC_10_9 4.55E-06 SC_14_9 4.55E-06SC_2_10 4.57E-06 SC_6_10 4.57E-06 SC_10_10 4.57E-06 SC_14_10 4.57E-06SC_2_11 4.59E-06 SC_6_11 4.59E-06 SC_10_11 4.59E-06 SC_14_11 4.59E-06SC_2_12 4.62E-06 SC_6_12 4.62E-06 SC_10_12 4.62E-06 SC_14_12 4.62E-06 SC_3_1 4.37E-06 SC_7_1 4.37E-06 SC_11_1 4.37E-06 SC_15_1 4.37E-06SC_3_2 4.40E-06 SC_7_2 4.40E-06 SC_11_2 4.40E-06 SC_15_2 4.40E-06SC_3_3 4.42E-06 SC_7_3 4.42E-06 SC_11_3 4.42E-06 SC_15_3 4.42E-06SC_3_4 4.44E-06 SC_7_4 4.44E-06 SC_11_4 4.44E-06 SC_15_4 4.44E-06SC_3_5 4.46E-06 SC_7_5 4.46E-06 SC_11_5 4.46E-06 SC_15_5 4.46E-06SC_3_6 4.48E-06 SC_7_6 4.48E-06 SC_11_6 4.48E-06 SC_15_6 4.48E-06SC_3_7 4.51E-06 SC_7_7 4.51E-06 SC_11_7 4.51E-06 SC_15_7 4.51E-06SC_3_8 4.53E-06 SC_7_8 4.53E-06 SC_11_8 4.53E-06 SC_15_8 4.53E-06SC_3_9 4.55E-06 SC_7_9 4.55E-06 SC_11_9 4.55E-06 SC_15_9 4.55E-06SC_3_10 4.57E-06 SC_7_10 4.57E-06 SC_11_10 4.57E-06 SC_15_10 4.57E-06SC_3_11 4.59E-06 SC_7_11 4.59E-06 SC_11_11 4.59E-06 SC_15_11 4.59E-06SC_3_12 4.62E-06 SC_7_12 4.62E-06 SC_11_12 4.62E-06 SC_15_12 4.62E-06 SC_4_1 4.37E-06 SC_8_1 4.37E-06 SC_12_1 4.37E-06 SC_16_1 4.37E-06SC_4_2 4.40E-06 SC_8_2 4.40E-06 SC_12_2 4.40E-06 SC_16_2 4.40E-06SC_4_3 4.42E-06 SC_8_3 4.42E-06 SC_12_3 4.42E-06 SC_16_3 4.42E-06SC_4_4 4.44E-06 SC_8_4 4.44E-06 SC_12_4 4.44E-06 SC_16_4 4.44E-06SC_4_5 4.46E-06 SC_8_5 4.46E-06 SC_12_5 4.46E-06 SC_16_5 4.46E-06SC_4_6 4.48E-06 SC_8_6 4.48E-06 SC_12_6 4.48E-06 SC_16_6 4.48E-06SC_4_7 4.51E-06 SC_8_7 4.51E-06 SC_12_7 4.51E-06 SC_16_7 4.51E-06SC_4_8 4.53E-06 SC_8_8 4.53E-06 SC_12_8 4.53E-06 SC_16_8 4.53E-06SC_4_9 4.55E-06 SC_8_9 4.55E-06 SC_12_9 4.55E-06 SC_16_9 4.55E-06SC_4_10 4.57E-06 SC_8_10 4.57E-06 SC_12_10 4.57E-06 SC_16_10 4.57E-06SC_4_11 4.59E-06 SC_8_11 4.59E-06 SC_12_11 4.59E-06 SC_16_11 4.59E-06SC_4_12 4.62E-06 SC_8_12 4.62E-06 SC_12_12 4.62E-06 SC_16_12 4.62E-06

Tab. A.2-7 Cumulative inductances for each conductor of PF 3 coil at 11.9 kHz (H)

Page 122: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

110

SC_1_1 4.17E-06 SC_5_1 4.17E-06 SC_9_1 4.17E-06 SC_13_1 4.17E-06SC_1_2 4.19E-06 SC_5_2 4.19E-06 SC_9_2 4.19E-06 SC_13_2 4.19E-06SC_1_3 4.21E-06 SC_5_3 4.21E-06 SC_9_3 4.21E-06 SC_13_3 4.21E-06SC_1_4 4.23E-06 SC_5_4 4.23E-06 SC_9_4 4.23E-06 SC_13_4 4.23E-06SC_1_5 4.25E-06 SC_5_5 4.25E-06 SC_9_5 4.25E-06 SC_13_5 4.25E-06SC_1_6 4.28E-06 SC_5_6 4.28E-06 SC_9_6 4.28E-06 SC_13_6 4.28E-06SC_1_7 4.30E-06 SC_5_7 4.30E-06 SC_9_7 4.30E-06 SC_13_7 4.30E-06SC_1_8 4.32E-06 SC_5_8 4.32E-06 SC_9_8 4.32E-06 SC_13_8 4.32E-06SC_1_9 4.34E-06 SC_5_9 4.34E-06 SC_9_9 4.34E-06 SC_13_9 4.34E-06SC_1_10 4.36E-06 SC_5_10 4.36E-06 SC_9_10 4.36E-06 SC_13_10 4.36E-06SC_1_11 4.38E-06 SC_5_11 4.38E-06 SC_9_11 4.38E-06 SC_13_11 4.38E-06SC_1_12 4.40E-06 SC_5_12 4.40E-06 SC_9_12 4.40E-06 SC_13_12 4.40E-06 SC_2_1 4.17E-06 SC_6_1 4.17E-06 SC_10_1 4.17E-06 SC_14_1 4.17E-06SC_2_2 4.19E-06 SC_6_2 4.19E-06 SC_10_2 4.19E-06 SC_14_2 4.19E-06SC_2_3 4.21E-06 SC_6_3 4.21E-06 SC_10_3 4.21E-06 SC_14_3 4.21E-06SC_2_4 4.23E-06 SC_6_4 4.23E-06 SC_10_4 4.23E-06 SC_14_4 4.23E-06SC_2_5 4.25E-06 SC_6_5 4.25E-06 SC_10_5 4.25E-06 SC_14_5 4.25E-06SC_2_6 4.28E-06 SC_6_6 4.28E-06 SC_10_6 4.28E-06 SC_14_6 4.28E-06SC_2_7 4.30E-06 SC_6_7 4.30E-06 SC_10_7 4.30E-06 SC_14_7 4.30E-06SC_2_8 4.32E-06 SC_6_8 4.32E-06 SC_10_8 4.32E-06 SC_14_8 4.32E-06SC_2_9 4.34E-06 SC_6_9 4.34E-06 SC_10_9 4.34E-06 SC_14_9 4.34E-06SC_2_10 4.36E-06 SC_6_10 4.36E-06 SC_10_10 4.36E-06 SC_14_10 4.36E-06SC_2_11 4.38E-06 SC_6_11 4.38E-06 SC_10_11 4.38E-06 SC_14_11 4.38E-06SC_2_12 4.40E-06 SC_6_12 4.40E-06 SC_10_12 4.40E-06 SC_14_12 4.40E-06 SC_3_1 4.17E-06 SC_7_1 4.17E-06 SC_11_1 4.17E-06 SC_15_1 4.17E-06SC_3_2 4.19E-06 SC_7_2 4.19E-06 SC_11_2 4.19E-06 SC_15_2 4.19E-06SC_3_3 4.21E-06 SC_7_3 4.21E-06 SC_11_3 4.21E-06 SC_15_3 4.21E-06SC_3_4 4.23E-06 SC_7_4 4.23E-06 SC_11_4 4.23E-06 SC_15_4 4.23E-06SC_3_5 4.25E-06 SC_7_5 4.25E-06 SC_11_5 4.25E-06 SC_15_5 4.25E-06SC_3_6 4.28E-06 SC_7_6 4.28E-06 SC_11_6 4.28E-06 SC_15_6 4.28E-06SC_3_7 4.30E-06 SC_7_7 4.30E-06 SC_11_7 4.30E-06 SC_15_7 4.30E-06SC_3_8 4.32E-06 SC_7_8 4.32E-06 SC_11_8 4.32E-06 SC_15_8 4.32E-06SC_3_9 4.34E-06 SC_7_9 4.34E-06 SC_11_9 4.34E-06 SC_15_9 4.34E-06SC_3_10 4.36E-06 SC_7_10 4.36E-06 SC_11_10 4.36E-06 SC_15_10 4.36E-06SC_3_11 4.38E-06 SC_7_11 4.38E-06 SC_11_11 4.38E-06 SC_15_11 4.38E-06SC_3_12 4.40E-06 SC_7_12 4.40E-06 SC_11_12 4.40E-06 SC_15_12 4.40E-06 SC_4_1 4.17E-06 SC_8_1 4.17E-06 SC_12_1 4.17E-06 SC_16_1 4.17E-06SC_4_2 4.19E-06 SC_8_2 4.19E-06 SC_12_2 4.19E-06 SC_16_2 4.19E-06SC_4_3 4.21E-06 SC_8_3 4.21E-06 SC_12_3 4.21E-06 SC_16_3 4.21E-06SC_4_4 4.23E-06 SC_8_4 4.23E-06 SC_12_4 4.23E-06 SC_16_4 4.23E-06SC_4_5 4.25E-06 SC_8_5 4.25E-06 SC_12_5 4.25E-06 SC_16_5 4.25E-06SC_4_6 4.28E-06 SC_8_6 4.28E-06 SC_12_6 4.28E-06 SC_16_6 4.28E-06SC_4_7 4.30E-06 SC_8_7 4.30E-06 SC_12_7 4.30E-06 SC_16_7 4.30E-06SC_4_8 4.32E-06 SC_8_8 4.32E-06 SC_12_8 4.32E-06 SC_16_8 4.32E-06SC_4_9 4.34E-06 SC_8_9 4.34E-06 SC_12_9 4.34E-06 SC_16_9 4.34E-06SC_4_10 4.36E-06 SC_8_10 4.36E-06 SC_12_10 4.36E-06 SC_16_10 4.36E-06SC_4_11 4.38E-06 SC_8_11 4.38E-06 SC_12_11 4.38E-06 SC_16_11 4.38E-06SC_4_12 4.40E-06 SC_8_12 4.40E-06 SC_12_12 4.40E-06 SC_16_12 4.40E-06

Tab. A.2-8 Cumulative inductances for each conductor of PF 3 coil at 16.3 kHz (H)

Page 123: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

111

SC_1_1 4.15E-06 SC_5_1 4.15E-06 SC_9_1 4.15E-06 SC_13_1 4.15E-06SC_1_2 4.17E-06 SC_5_2 4.17E-06 SC_9_2 4.17E-06 SC_13_2 4.17E-06SC_1_3 4.19E-06 SC_5_3 4.19E-06 SC_9_3 4.19E-06 SC_13_3 4.19E-06SC_1_4 4.21E-06 SC_5_4 4.21E-06 SC_9_4 4.21E-06 SC_13_4 4.21E-06SC_1_5 4.23E-06 SC_5_5 4.23E-06 SC_9_5 4.23E-06 SC_13_5 4.23E-06SC_1_6 4.25E-06 SC_5_6 4.25E-06 SC_9_6 4.25E-06 SC_13_6 4.25E-06SC_1_7 4.27E-06 SC_5_7 4.27E-06 SC_9_7 4.27E-06 SC_13_7 4.27E-06SC_1_8 4.29E-06 SC_5_8 4.29E-06 SC_9_8 4.29E-06 SC_13_8 4.29E-06SC_1_9 4.31E-06 SC_5_9 4.31E-06 SC_9_9 4.31E-06 SC_13_9 4.31E-06SC_1_10 4.34E-06 SC_5_10 4.34E-06 SC_9_10 4.34E-06 SC_13_10 4.34E-06SC_1_11 4.36E-06 SC_5_11 4.36E-06 SC_9_11 4.36E-06 SC_13_11 4.36E-06SC_1_12 4.38E-06 SC_5_12 4.38E-06 SC_9_12 4.38E-06 SC_13_12 4.38E-06 SC_2_1 4.15E-06 SC_6_1 4.15E-06 SC_10_1 4.15E-06 SC_14_1 4.15E-06SC_2_2 4.17E-06 SC_6_2 4.17E-06 SC_10_2 4.17E-06 SC_14_2 4.17E-06SC_2_3 4.19E-06 SC_6_3 4.19E-06 SC_10_3 4.19E-06 SC_14_3 4.19E-06SC_2_4 4.21E-06 SC_6_4 4.21E-06 SC_10_4 4.21E-06 SC_14_4 4.21E-06SC_2_5 4.23E-06 SC_6_5 4.23E-06 SC_10_5 4.23E-06 SC_14_5 4.23E-06SC_2_6 4.25E-06 SC_6_6 4.25E-06 SC_10_6 4.25E-06 SC_14_6 4.25E-06SC_2_7 4.27E-06 SC_6_7 4.27E-06 SC_10_7 4.27E-06 SC_14_7 4.27E-06SC_2_8 4.29E-06 SC_6_8 4.29E-06 SC_10_8 4.29E-06 SC_14_8 4.29E-06SC_2_9 4.31E-06 SC_6_9 4.31E-06 SC_10_9 4.31E-06 SC_14_9 4.31E-06SC_2_10 4.34E-06 SC_6_10 4.34E-06 SC_10_10 4.34E-06 SC_14_10 4.34E-06SC_2_11 4.36E-06 SC_6_11 4.36E-06 SC_10_11 4.36E-06 SC_14_11 4.36E-06SC_2_12 4.38E-06 SC_6_12 4.38E-06 SC_10_12 4.38E-06 SC_14_12 4.38E-06 SC_3_1 4.15E-06 SC_7_1 4.15E-06 SC_11_1 4.15E-06 SC_15_1 4.15E-06SC_3_2 4.17E-06 SC_7_2 4.17E-06 SC_11_2 4.17E-06 SC_15_2 4.17E-06SC_3_3 4.19E-06 SC_7_3 4.19E-06 SC_11_3 4.19E-06 SC_15_3 4.19E-06SC_3_4 4.21E-06 SC_7_4 4.21E-06 SC_11_4 4.21E-06 SC_15_4 4.21E-06SC_3_5 4.23E-06 SC_7_5 4.23E-06 SC_11_5 4.23E-06 SC_15_5 4.23E-06SC_3_6 4.25E-06 SC_7_6 4.25E-06 SC_11_6 4.25E-06 SC_15_6 4.25E-06SC_3_7 4.27E-06 SC_7_7 4.27E-06 SC_11_7 4.27E-06 SC_15_7 4.27E-06SC_3_8 4.29E-06 SC_7_8 4.29E-06 SC_11_8 4.29E-06 SC_15_8 4.29E-06SC_3_9 4.31E-06 SC_7_9 4.31E-06 SC_11_9 4.31E-06 SC_15_9 4.31E-06SC_3_10 4.34E-06 SC_7_10 4.34E-06 SC_11_10 4.34E-06 SC_15_10 4.34E-06SC_3_11 4.36E-06 SC_7_11 4.36E-06 SC_11_11 4.36E-06 SC_15_11 4.36E-06SC_3_12 4.38E-06 SC_7_12 4.38E-06 SC_11_12 4.38E-06 SC_15_12 4.38E-06 SC_4_1 4.15E-06 SC_8_1 4.15E-06 SC_12_1 4.15E-06 SC_16_1 4.15E-06SC_4_2 4.17E-06 SC_8_2 4.17E-06 SC_12_2 4.17E-06 SC_16_2 4.17E-06SC_4_3 4.19E-06 SC_8_3 4.19E-06 SC_12_3 4.19E-06 SC_16_3 4.19E-06SC_4_4 4.21E-06 SC_8_4 4.21E-06 SC_12_4 4.21E-06 SC_16_4 4.21E-06SC_4_5 4.23E-06 SC_8_5 4.23E-06 SC_12_5 4.23E-06 SC_16_5 4.23E-06SC_4_6 4.25E-06 SC_8_6 4.25E-06 SC_12_6 4.25E-06 SC_16_6 4.25E-06SC_4_7 4.27E-06 SC_8_7 4.27E-06 SC_12_7 4.27E-06 SC_16_7 4.27E-06SC_4_8 4.29E-06 SC_8_8 4.29E-06 SC_12_8 4.29E-06 SC_16_8 4.29E-06SC_4_9 4.31E-06 SC_8_9 4.31E-06 SC_12_9 4.31E-06 SC_16_9 4.31E-06SC_4_10 4.34E-06 SC_8_10 4.34E-06 SC_12_10 4.34E-06 SC_16_10 4.34E-06SC_4_11 4.36E-06 SC_8_11 4.36E-06 SC_12_11 4.36E-06 SC_16_11 4.36E-06SC_4_12 4.38E-06 SC_8_12 4.38E-06 SC_12_12 4.38E-06 SC_16_12 4.38E-06

Tab. A.2-9 Cumulative inductances for each conductor of PF 3 coil at 17.0 kHz (H)

Page 124: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

112

SC_1_1 4.06E-06 SC_5_1 4.06E-06 SC_9_1 4.06E-06 SC_13_1 4.06E-06SC_1_2 4.08E-06 SC_5_2 4.08E-06 SC_9_2 4.08E-06 SC_13_2 4.08E-06SC_1_3 4.10E-06 SC_5_3 4.10E-06 SC_9_3 4.10E-06 SC_13_3 4.10E-06SC_1_4 4.12E-06 SC_5_4 4.12E-06 SC_9_4 4.12E-06 SC_13_4 4.12E-06SC_1_5 4.14E-06 SC_5_5 4.14E-06 SC_9_5 4.14E-06 SC_13_5 4.14E-06SC_1_6 4.16E-06 SC_5_6 4.16E-06 SC_9_6 4.16E-06 SC_13_6 4.16E-06SC_1_7 4.18E-06 SC_5_7 4.18E-06 SC_9_7 4.18E-06 SC_13_7 4.18E-06SC_1_8 4.20E-06 SC_5_8 4.20E-06 SC_9_8 4.20E-06 SC_13_8 4.20E-06SC_1_9 4.22E-06 SC_5_9 4.22E-06 SC_9_9 4.22E-06 SC_13_9 4.22E-06SC_1_10 4.24E-06 SC_5_10 4.24E-06 SC_9_10 4.24E-06 SC_13_10 4.24E-06SC_1_11 4.26E-06 SC_5_11 4.26E-06 SC_9_11 4.26E-06 SC_13_11 4.26E-06SC_1_12 4.28E-06 SC_5_12 4.28E-06 SC_9_12 4.28E-06 SC_13_12 4.28E-06 SC_2_1 4.06E-06 SC_6_1 4.06E-06 SC_10_1 4.06E-06 SC_14_1 4.06E-06SC_2_2 4.08E-06 SC_6_2 4.08E-06 SC_10_2 4.08E-06 SC_14_2 4.08E-06SC_2_3 4.10E-06 SC_6_3 4.10E-06 SC_10_3 4.10E-06 SC_14_3 4.10E-06SC_2_4 4.12E-06 SC_6_4 4.12E-06 SC_10_4 4.12E-06 SC_14_4 4.12E-06SC_2_5 4.14E-06 SC_6_5 4.14E-06 SC_10_5 4.14E-06 SC_14_5 4.14E-06SC_2_6 4.16E-06 SC_6_6 4.16E-06 SC_10_6 4.16E-06 SC_14_6 4.16E-06SC_2_7 4.18E-06 SC_6_7 4.18E-06 SC_10_7 4.18E-06 SC_14_7 4.18E-06SC_2_8 4.20E-06 SC_6_8 4.20E-06 SC_10_8 4.20E-06 SC_14_8 4.20E-06SC_2_9 4.22E-06 SC_6_9 4.22E-06 SC_10_9 4.22E-06 SC_14_9 4.22E-06SC_2_10 4.24E-06 SC_6_10 4.24E-06 SC_10_10 4.24E-06 SC_14_10 4.24E-06SC_2_11 4.26E-06 SC_6_11 4.26E-06 SC_10_11 4.26E-06 SC_14_11 4.26E-06SC_2_12 4.28E-06 SC_6_12 4.28E-06 SC_10_12 4.28E-06 SC_14_12 4.28E-06 SC_3_1 4.06E-06 SC_7_1 4.06E-06 SC_11_1 4.06E-06 SC_15_1 4.06E-06SC_3_2 4.08E-06 SC_7_2 4.08E-06 SC_11_2 4.08E-06 SC_15_2 4.08E-06SC_3_3 4.10E-06 SC_7_3 4.10E-06 SC_11_3 4.10E-06 SC_15_3 4.10E-06SC_3_4 4.12E-06 SC_7_4 4.12E-06 SC_11_4 4.12E-06 SC_15_4 4.12E-06SC_3_5 4.14E-06 SC_7_5 4.14E-06 SC_11_5 4.14E-06 SC_15_5 4.14E-06SC_3_6 4.16E-06 SC_7_6 4.16E-06 SC_11_6 4.16E-06 SC_15_6 4.16E-06SC_3_7 4.18E-06 SC_7_7 4.18E-06 SC_11_7 4.18E-06 SC_15_7 4.18E-06SC_3_8 4.20E-06 SC_7_8 4.20E-06 SC_11_8 4.20E-06 SC_15_8 4.20E-06SC_3_9 4.22E-06 SC_7_9 4.22E-06 SC_11_9 4.22E-06 SC_15_9 4.22E-06SC_3_10 4.24E-06 SC_7_10 4.24E-06 SC_11_10 4.24E-06 SC_15_10 4.24E-06SC_3_11 4.26E-06 SC_7_11 4.26E-06 SC_11_11 4.26E-06 SC_15_11 4.26E-06SC_3_12 4.28E-06 SC_7_12 4.28E-06 SC_11_12 4.28E-06 SC_15_12 4.28E-06 SC_4_1 4.06E-06 SC_8_1 4.06E-06 SC_12_1 4.06E-06 SC_16_1 4.06E-06SC_4_2 4.08E-06 SC_8_2 4.08E-06 SC_12_2 4.08E-06 SC_16_2 4.08E-06SC_4_3 4.10E-06 SC_8_3 4.10E-06 SC_12_3 4.10E-06 SC_16_3 4.10E-06SC_4_4 4.12E-06 SC_8_4 4.12E-06 SC_12_4 4.12E-06 SC_16_4 4.12E-06SC_4_5 4.14E-06 SC_8_5 4.14E-06 SC_12_5 4.14E-06 SC_16_5 4.14E-06SC_4_6 4.16E-06 SC_8_6 4.16E-06 SC_12_6 4.16E-06 SC_16_6 4.16E-06SC_4_7 4.18E-06 SC_8_7 4.18E-06 SC_12_7 4.18E-06 SC_16_7 4.18E-06SC_4_8 4.20E-06 SC_8_8 4.20E-06 SC_12_8 4.20E-06 SC_16_8 4.20E-06SC_4_9 4.22E-06 SC_8_9 4.22E-06 SC_12_9 4.22E-06 SC_16_9 4.22E-06SC_4_10 4.24E-06 SC_8_10 4.24E-06 SC_12_10 4.24E-06 SC_16_10 4.24E-06SC_4_11 4.26E-06 SC_8_11 4.26E-06 SC_12_11 4.26E-06 SC_16_11 4.26E-06SC_4_12 4.28E-06 SC_8_12 4.28E-06 SC_12_12 4.28E-06 SC_16_12 4.28E-06

Tab. A.2-10 Cumulative inductances for each conductor of PF 3 coil at 19.8 kHz (H)

Page 125: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

113

SC_1_1 4.04E-06 SC_5_1 4.04E-06 SC_9_1 4.04E-06 SC_13_1 4.04E-06SC_1_2 4.06E-06 SC_5_2 4.06E-06 SC_9_2 4.06E-06 SC_13_2 4.06E-06SC_1_3 4.08E-06 SC_5_3 4.08E-06 SC_9_3 4.08E-06 SC_13_3 4.08E-06SC_1_4 4.10E-06 SC_5_4 4.10E-06 SC_9_4 4.10E-06 SC_13_4 4.10E-06SC_1_5 4.12E-06 SC_5_5 4.12E-06 SC_9_5 4.12E-06 SC_13_5 4.12E-06SC_1_6 4.14E-06 SC_5_6 4.14E-06 SC_9_6 4.14E-06 SC_13_6 4.14E-06SC_1_7 4.16E-06 SC_5_7 4.16E-06 SC_9_7 4.16E-06 SC_13_7 4.16E-06SC_1_8 4.18E-06 SC_5_8 4.18E-06 SC_9_8 4.18E-06 SC_13_8 4.18E-06SC_1_9 4.20E-06 SC_5_9 4.20E-06 SC_9_9 4.20E-06 SC_13_9 4.20E-06SC_1_10 4.22E-06 SC_5_10 4.22E-06 SC_9_10 4.22E-06 SC_13_10 4.22E-06SC_1_11 4.24E-06 SC_5_11 4.24E-06 SC_9_11 4.24E-06 SC_13_11 4.24E-06SC_1_12 4.26E-06 SC_5_12 4.26E-06 SC_9_12 4.26E-06 SC_13_12 4.26E-06 SC_2_1 4.04E-06 SC_6_1 4.04E-06 SC_10_1 4.04E-06 SC_14_1 4.04E-06SC_2_2 4.06E-06 SC_6_2 4.06E-06 SC_10_2 4.06E-06 SC_14_2 4.06E-06SC_2_3 4.08E-06 SC_6_3 4.08E-06 SC_10_3 4.08E-06 SC_14_3 4.08E-06SC_2_4 4.10E-06 SC_6_4 4.10E-06 SC_10_4 4.10E-06 SC_14_4 4.10E-06SC_2_5 4.12E-06 SC_6_5 4.12E-06 SC_10_5 4.12E-06 SC_14_5 4.12E-06SC_2_6 4.14E-06 SC_6_6 4.14E-06 SC_10_6 4.14E-06 SC_14_6 4.14E-06SC_2_7 4.16E-06 SC_6_7 4.16E-06 SC_10_7 4.16E-06 SC_14_7 4.16E-06SC_2_8 4.18E-06 SC_6_8 4.18E-06 SC_10_8 4.18E-06 SC_14_8 4.18E-06SC_2_9 4.20E-06 SC_6_9 4.20E-06 SC_10_9 4.20E-06 SC_14_9 4.20E-06SC_2_10 4.22E-06 SC_6_10 4.22E-06 SC_10_10 4.22E-06 SC_14_10 4.22E-06SC_2_11 4.24E-06 SC_6_11 4.24E-06 SC_10_11 4.24E-06 SC_14_11 4.24E-06SC_2_12 4.26E-06 SC_6_12 4.26E-06 SC_10_12 4.26E-06 SC_14_12 4.26E-06 SC_3_1 4.04E-06 SC_7_1 4.04E-06 SC_11_1 4.04E-06 SC_15_1 4.04E-06SC_3_2 4.06E-06 SC_7_2 4.06E-06 SC_11_2 4.06E-06 SC_15_2 4.06E-06SC_3_3 4.08E-06 SC_7_3 4.08E-06 SC_11_3 4.08E-06 SC_15_3 4.08E-06SC_3_4 4.10E-06 SC_7_4 4.10E-06 SC_11_4 4.10E-06 SC_15_4 4.10E-06SC_3_5 4.12E-06 SC_7_5 4.12E-06 SC_11_5 4.12E-06 SC_15_5 4.12E-06SC_3_6 4.14E-06 SC_7_6 4.14E-06 SC_11_6 4.14E-06 SC_15_6 4.14E-06SC_3_7 4.16E-06 SC_7_7 4.16E-06 SC_11_7 4.16E-06 SC_15_7 4.16E-06SC_3_8 4.18E-06 SC_7_8 4.18E-06 SC_11_8 4.18E-06 SC_15_8 4.18E-06SC_3_9 4.20E-06 SC_7_9 4.20E-06 SC_11_9 4.20E-06 SC_15_9 4.20E-06SC_3_10 4.22E-06 SC_7_10 4.22E-06 SC_11_10 4.22E-06 SC_15_10 4.22E-06SC_3_11 4.24E-06 SC_7_11 4.24E-06 SC_11_11 4.24E-06 SC_15_11 4.24E-06SC_3_12 4.26E-06 SC_7_12 4.26E-06 SC_11_12 4.26E-06 SC_15_12 4.26E-06 SC_4_1 4.04E-06 SC_8_1 4.04E-06 SC_12_1 4.04E-06 SC_16_1 4.04E-06SC_4_2 4.06E-06 SC_8_2 4.06E-06 SC_12_2 4.06E-06 SC_16_2 4.06E-06SC_4_3 4.08E-06 SC_8_3 4.08E-06 SC_12_3 4.08E-06 SC_16_3 4.08E-06SC_4_4 4.10E-06 SC_8_4 4.10E-06 SC_12_4 4.10E-06 SC_16_4 4.10E-06SC_4_5 4.12E-06 SC_8_5 4.12E-06 SC_12_5 4.12E-06 SC_16_5 4.12E-06SC_4_6 4.14E-06 SC_8_6 4.14E-06 SC_12_6 4.14E-06 SC_16_6 4.14E-06SC_4_7 4.16E-06 SC_8_7 4.16E-06 SC_12_7 4.16E-06 SC_16_7 4.16E-06SC_4_8 4.18E-06 SC_8_8 4.18E-06 SC_12_8 4.18E-06 SC_16_8 4.18E-06SC_4_9 4.20E-06 SC_8_9 4.20E-06 SC_12_9 4.20E-06 SC_16_9 4.20E-06SC_4_10 4.22E-06 SC_8_10 4.22E-06 SC_12_10 4.22E-06 SC_16_10 4.22E-06SC_4_11 4.24E-06 SC_8_11 4.24E-06 SC_12_11 4.24E-06 SC_16_11 4.24E-06SC_4_12 4.26E-06 SC_8_12 4.26E-06 SC_12_12 4.26E-06 SC_16_12 4.26E-06

Tab. A.2-11 Cumulative inductances for each conductor of PF 3 coil at 20.6 kHz (H)

Page 126: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

114

SC_1_1 4.04E-06 SC_5_1 4.04E-06 SC_9_1 4.04E-06 SC_13_1 4.04E-06SC_1_2 4.06E-06 SC_5_2 4.06E-06 SC_9_2 4.06E-06 SC_13_2 4.06E-06SC_1_3 4.08E-06 SC_5_3 4.08E-06 SC_9_3 4.08E-06 SC_13_3 4.08E-06SC_1_4 4.10E-06 SC_5_4 4.10E-06 SC_9_4 4.10E-06 SC_13_4 4.10E-06SC_1_5 4.12E-06 SC_5_5 4.12E-06 SC_9_5 4.12E-06 SC_13_5 4.12E-06SC_1_6 4.14E-06 SC_5_6 4.14E-06 SC_9_6 4.14E-06 SC_13_6 4.14E-06SC_1_7 4.16E-06 SC_5_7 4.16E-06 SC_9_7 4.16E-06 SC_13_7 4.16E-06SC_1_8 4.18E-06 SC_5_8 4.18E-06 SC_9_8 4.18E-06 SC_13_8 4.18E-06SC_1_9 4.20E-06 SC_5_9 4.20E-06 SC_9_9 4.20E-06 SC_13_9 4.20E-06SC_1_10 4.22E-06 SC_5_10 4.22E-06 SC_9_10 4.22E-06 SC_13_10 4.22E-06SC_1_11 4.24E-06 SC_5_11 4.24E-06 SC_9_11 4.24E-06 SC_13_11 4.24E-06SC_1_12 4.26E-06 SC_5_12 4.26E-06 SC_9_12 4.26E-06 SC_13_12 4.26E-06 SC_2_1 4.04E-06 SC_6_1 4.04E-06 SC_10_1 4.04E-06 SC_14_1 4.04E-06SC_2_2 4.06E-06 SC_6_2 4.06E-06 SC_10_2 4.06E-06 SC_14_2 4.06E-06SC_2_3 4.08E-06 SC_6_3 4.08E-06 SC_10_3 4.08E-06 SC_14_3 4.08E-06SC_2_4 4.10E-06 SC_6_4 4.10E-06 SC_10_4 4.10E-06 SC_14_4 4.10E-06SC_2_5 4.12E-06 SC_6_5 4.12E-06 SC_10_5 4.12E-06 SC_14_5 4.12E-06SC_2_6 4.14E-06 SC_6_6 4.14E-06 SC_10_6 4.14E-06 SC_14_6 4.14E-06SC_2_7 4.16E-06 SC_6_7 4.16E-06 SC_10_7 4.16E-06 SC_14_7 4.16E-06SC_2_8 4.18E-06 SC_6_8 4.18E-06 SC_10_8 4.18E-06 SC_14_8 4.18E-06SC_2_9 4.20E-06 SC_6_9 4.20E-06 SC_10_9 4.20E-06 SC_14_9 4.20E-06SC_2_10 4.22E-06 SC_6_10 4.22E-06 SC_10_10 4.22E-06 SC_14_10 4.22E-06SC_2_11 4.24E-06 SC_6_11 4.24E-06 SC_10_11 4.24E-06 SC_14_11 4.24E-06SC_2_12 4.26E-06 SC_6_12 4.26E-06 SC_10_12 4.26E-06 SC_14_12 4.26E-06 SC_3_1 4.04E-06 SC_7_1 4.04E-06 SC_11_1 4.04E-06 SC_15_1 4.04E-06SC_3_2 4.06E-06 SC_7_2 4.06E-06 SC_11_2 4.06E-06 SC_15_2 4.06E-06SC_3_3 4.08E-06 SC_7_3 4.08E-06 SC_11_3 4.08E-06 SC_15_3 4.08E-06SC_3_4 4.10E-06 SC_7_4 4.10E-06 SC_11_4 4.10E-06 SC_15_4 4.10E-06SC_3_5 4.12E-06 SC_7_5 4.12E-06 SC_11_5 4.12E-06 SC_15_5 4.12E-06SC_3_6 4.14E-06 SC_7_6 4.14E-06 SC_11_6 4.14E-06 SC_15_6 4.14E-06SC_3_7 4.16E-06 SC_7_7 4.16E-06 SC_11_7 4.16E-06 SC_15_7 4.16E-06SC_3_8 4.18E-06 SC_7_8 4.18E-06 SC_11_8 4.18E-06 SC_15_8 4.18E-06SC_3_9 4.20E-06 SC_7_9 4.20E-06 SC_11_9 4.20E-06 SC_15_9 4.20E-06SC_3_10 4.22E-06 SC_7_10 4.22E-06 SC_11_10 4.22E-06 SC_15_10 4.22E-06SC_3_11 4.24E-06 SC_7_11 4.24E-06 SC_11_11 4.24E-06 SC_15_11 4.24E-06SC_3_12 4.26E-06 SC_7_12 4.26E-06 SC_11_12 4.26E-06 SC_15_12 4.26E-06 SC_4_1 4.04E-06 SC_8_1 4.04E-06 SC_12_1 4.04E-06 SC_16_1 4.04E-06SC_4_2 4.06E-06 SC_8_2 4.06E-06 SC_12_2 4.06E-06 SC_16_2 4.06E-06SC_4_3 4.08E-06 SC_8_3 4.08E-06 SC_12_3 4.08E-06 SC_16_3 4.08E-06SC_4_4 4.10E-06 SC_8_4 4.10E-06 SC_12_4 4.10E-06 SC_16_4 4.10E-06SC_4_5 4.12E-06 SC_8_5 4.12E-06 SC_12_5 4.12E-06 SC_16_5 4.12E-06SC_4_6 4.14E-06 SC_8_6 4.14E-06 SC_12_6 4.14E-06 SC_16_6 4.14E-06SC_4_7 4.16E-06 SC_8_7 4.16E-06 SC_12_7 4.16E-06 SC_16_7 4.16E-06SC_4_8 4.18E-06 SC_8_8 4.18E-06 SC_12_8 4.18E-06 SC_16_8 4.18E-06SC_4_9 4.20E-06 SC_8_9 4.20E-06 SC_12_9 4.20E-06 SC_16_9 4.20E-06SC_4_10 4.22E-06 SC_8_10 4.22E-06 SC_12_10 4.22E-06 SC_16_10 4.22E-06SC_4_11 4.24E-06 SC_8_11 4.24E-06 SC_12_11 4.24E-06 SC_16_11 4.24E-06SC_4_12 4.26E-06 SC_8_12 4.26E-06 SC_12_12 4.26E-06 SC_16_12 4.26E-06

Tab. A.2-12 Cumulative inductances for each conductor of PF 3 coil at 20.66 kHz (H)

Page 127: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

115

SC_1_1 4.03E-06 SC_5_1 4.03E-06 SC_9_1 4.03E-06 SC_13_1 4.03E-06SC_1_2 4.06E-06 SC_5_2 4.06E-06 SC_9_2 4.06E-06 SC_13_2 4.06E-06SC_1_3 4.08E-06 SC_5_3 4.08E-06 SC_9_3 4.08E-06 SC_13_3 4.08E-06SC_1_4 4.10E-06 SC_5_4 4.10E-06 SC_9_4 4.10E-06 SC_13_4 4.10E-06SC_1_5 4.12E-06 SC_5_5 4.12E-06 SC_9_5 4.12E-06 SC_13_5 4.12E-06SC_1_6 4.14E-06 SC_5_6 4.14E-06 SC_9_6 4.14E-06 SC_13_6 4.14E-06SC_1_7 4.16E-06 SC_5_7 4.16E-06 SC_9_7 4.16E-06 SC_13_7 4.16E-06SC_1_8 4.18E-06 SC_5_8 4.18E-06 SC_9_8 4.18E-06 SC_13_8 4.18E-06SC_1_9 4.20E-06 SC_5_9 4.20E-06 SC_9_9 4.20E-06 SC_13_9 4.20E-06SC_1_10 4.22E-06 SC_5_10 4.22E-06 SC_9_10 4.22E-06 SC_13_10 4.22E-06SC_1_11 4.24E-06 SC_5_11 4.24E-06 SC_9_11 4.24E-06 SC_13_11 4.24E-06SC_1_12 4.26E-06 SC_5_12 4.26E-06 SC_9_12 4.26E-06 SC_13_12 4.26E-06 SC_2_1 4.03E-06 SC_6_1 4.03E-06 SC_10_1 4.03E-06 SC_14_1 4.03E-06SC_2_2 4.06E-06 SC_6_2 4.06E-06 SC_10_2 4.06E-06 SC_14_2 4.06E-06SC_2_3 4.08E-06 SC_6_3 4.08E-06 SC_10_3 4.08E-06 SC_14_3 4.08E-06SC_2_4 4.10E-06 SC_6_4 4.10E-06 SC_10_4 4.10E-06 SC_14_4 4.10E-06SC_2_5 4.12E-06 SC_6_5 4.12E-06 SC_10_5 4.12E-06 SC_14_5 4.12E-06SC_2_6 4.14E-06 SC_6_6 4.14E-06 SC_10_6 4.14E-06 SC_14_6 4.14E-06SC_2_7 4.16E-06 SC_6_7 4.16E-06 SC_10_7 4.16E-06 SC_14_7 4.16E-06SC_2_8 4.18E-06 SC_6_8 4.18E-06 SC_10_8 4.18E-06 SC_14_8 4.18E-06SC_2_9 4.20E-06 SC_6_9 4.20E-06 SC_10_9 4.20E-06 SC_14_9 4.20E-06SC_2_10 4.22E-06 SC_6_10 4.22E-06 SC_10_10 4.22E-06 SC_14_10 4.22E-06SC_2_11 4.24E-06 SC_6_11 4.24E-06 SC_10_11 4.24E-06 SC_14_11 4.24E-06SC_2_12 4.26E-06 SC_6_12 4.26E-06 SC_10_12 4.26E-06 SC_14_12 4.26E-06 SC_3_1 4.03E-06 SC_7_1 4.03E-06 SC_11_1 4.03E-06 SC_15_1 4.03E-06SC_3_2 4.06E-06 SC_7_2 4.06E-06 SC_11_2 4.06E-06 SC_15_2 4.06E-06SC_3_3 4.08E-06 SC_7_3 4.08E-06 SC_11_3 4.08E-06 SC_15_3 4.08E-06SC_3_4 4.10E-06 SC_7_4 4.10E-06 SC_11_4 4.10E-06 SC_15_4 4.10E-06SC_3_5 4.12E-06 SC_7_5 4.12E-06 SC_11_5 4.12E-06 SC_15_5 4.12E-06SC_3_6 4.14E-06 SC_7_6 4.14E-06 SC_11_6 4.14E-06 SC_15_6 4.14E-06SC_3_7 4.16E-06 SC_7_7 4.16E-06 SC_11_7 4.16E-06 SC_15_7 4.16E-06SC_3_8 4.18E-06 SC_7_8 4.18E-06 SC_11_8 4.18E-06 SC_15_8 4.18E-06SC_3_9 4.20E-06 SC_7_9 4.20E-06 SC_11_9 4.20E-06 SC_15_9 4.20E-06SC_3_10 4.22E-06 SC_7_10 4.22E-06 SC_11_10 4.22E-06 SC_15_10 4.22E-06SC_3_11 4.24E-06 SC_7_11 4.24E-06 SC_11_11 4.24E-06 SC_15_11 4.24E-06SC_3_12 4.26E-06 SC_7_12 4.26E-06 SC_11_12 4.26E-06 SC_15_12 4.26E-06 SC_4_1 4.03E-06 SC_8_1 4.03E-06 SC_12_1 4.03E-06 SC_16_1 4.03E-06SC_4_2 4.06E-06 SC_8_2 4.06E-06 SC_12_2 4.06E-06 SC_16_2 4.06E-06SC_4_3 4.08E-06 SC_8_3 4.08E-06 SC_12_3 4.08E-06 SC_16_3 4.08E-06SC_4_4 4.10E-06 SC_8_4 4.10E-06 SC_12_4 4.10E-06 SC_16_4 4.10E-06SC_4_5 4.12E-06 SC_8_5 4.12E-06 SC_12_5 4.12E-06 SC_16_5 4.12E-06SC_4_6 4.14E-06 SC_8_6 4.14E-06 SC_12_6 4.14E-06 SC_16_6 4.14E-06SC_4_7 4.16E-06 SC_8_7 4.16E-06 SC_12_7 4.16E-06 SC_16_7 4.16E-06SC_4_8 4.18E-06 SC_8_8 4.18E-06 SC_12_8 4.18E-06 SC_16_8 4.18E-06SC_4_9 4.20E-06 SC_8_9 4.20E-06 SC_12_9 4.20E-06 SC_16_9 4.20E-06SC_4_10 4.22E-06 SC_8_10 4.22E-06 SC_12_10 4.22E-06 SC_16_10 4.22E-06SC_4_11 4.24E-06 SC_8_11 4.24E-06 SC_12_11 4.24E-06 SC_16_11 4.24E-06SC_4_12 4.26E-06 SC_8_12 4.26E-06 SC_12_12 4.26E-06 SC_16_12 4.26E-06

Tab. A.2-13 Cumulative inductances for each conductor of PF 3 coil at 20.8 kHz (H)

Page 128: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

116

SC_1_1 3.99E-06 SC_5_1 3.99E-06 SC_9_1 3.99E-06 SC_13_1 3.99E-06SC_1_2 4.01E-06 SC_5_2 4.01E-06 SC_9_2 4.01E-06 SC_13_2 4.01E-06SC_1_3 4.03E-06 SC_5_3 4.03E-06 SC_9_3 4.03E-06 SC_13_3 4.03E-06SC_1_4 4.05E-06 SC_5_4 4.05E-06 SC_9_4 4.05E-06 SC_13_4 4.05E-06SC_1_5 4.07E-06 SC_5_5 4.07E-06 SC_9_5 4.07E-06 SC_13_5 4.07E-06SC_1_6 4.09E-06 SC_5_6 4.09E-06 SC_9_6 4.09E-06 SC_13_6 4.09E-06SC_1_7 4.11E-06 SC_5_7 4.11E-06 SC_9_7 4.11E-06 SC_13_7 4.11E-06SC_1_8 4.13E-06 SC_5_8 4.13E-06 SC_9_8 4.13E-06 SC_13_8 4.13E-06SC_1_9 4.15E-06 SC_5_9 4.15E-06 SC_9_9 4.15E-06 SC_13_9 4.15E-06SC_1_10 4.17E-06 SC_5_10 4.17E-06 SC_9_10 4.17E-06 SC_13_10 4.17E-06SC_1_11 4.19E-06 SC_5_11 4.19E-06 SC_9_11 4.19E-06 SC_13_11 4.19E-06SC_1_12 4.21E-06 SC_5_12 4.21E-06 SC_9_12 4.21E-06 SC_13_12 4.21E-06 SC_2_1 3.99E-06 SC_6_1 3.99E-06 SC_10_1 3.99E-06 SC_14_1 3.99E-06SC_2_2 4.01E-06 SC_6_2 4.01E-06 SC_10_2 4.01E-06 SC_14_2 4.01E-06SC_2_3 4.03E-06 SC_6_3 4.03E-06 SC_10_3 4.03E-06 SC_14_3 4.03E-06SC_2_4 4.05E-06 SC_6_4 4.05E-06 SC_10_4 4.05E-06 SC_14_4 4.05E-06SC_2_5 4.07E-06 SC_6_5 4.07E-06 SC_10_5 4.07E-06 SC_14_5 4.07E-06SC_2_6 4.09E-06 SC_6_6 4.09E-06 SC_10_6 4.09E-06 SC_14_6 4.09E-06SC_2_7 4.11E-06 SC_6_7 4.11E-06 SC_10_7 4.11E-06 SC_14_7 4.11E-06SC_2_8 4.13E-06 SC_6_8 4.13E-06 SC_10_8 4.13E-06 SC_14_8 4.13E-06SC_2_9 4.15E-06 SC_6_9 4.15E-06 SC_10_9 4.15E-06 SC_14_9 4.15E-06SC_2_10 4.17E-06 SC_6_10 4.17E-06 SC_10_10 4.17E-06 SC_14_10 4.17E-06SC_2_11 4.19E-06 SC_6_11 4.19E-06 SC_10_11 4.19E-06 SC_14_11 4.19E-06SC_2_12 4.21E-06 SC_6_12 4.21E-06 SC_10_12 4.21E-06 SC_14_12 4.21E-06 SC_3_1 3.99E-06 SC_7_1 3.99E-06 SC_11_1 3.99E-06 SC_15_1 3.99E-06SC_3_2 4.01E-06 SC_7_2 4.01E-06 SC_11_2 4.01E-06 SC_15_2 4.01E-06SC_3_3 4.03E-06 SC_7_3 4.03E-06 SC_11_3 4.03E-06 SC_15_3 4.03E-06SC_3_4 4.05E-06 SC_7_4 4.05E-06 SC_11_4 4.05E-06 SC_15_4 4.05E-06SC_3_5 4.07E-06 SC_7_5 4.07E-06 SC_11_5 4.07E-06 SC_15_5 4.07E-06SC_3_6 4.09E-06 SC_7_6 4.09E-06 SC_11_6 4.09E-06 SC_15_6 4.09E-06SC_3_7 4.11E-06 SC_7_7 4.11E-06 SC_11_7 4.11E-06 SC_15_7 4.11E-06SC_3_8 4.13E-06 SC_7_8 4.13E-06 SC_11_8 4.13E-06 SC_15_8 4.13E-06SC_3_9 4.15E-06 SC_7_9 4.15E-06 SC_11_9 4.15E-06 SC_15_9 4.15E-06SC_3_10 4.17E-06 SC_7_10 4.17E-06 SC_11_10 4.17E-06 SC_15_10 4.17E-06SC_3_11 4.19E-06 SC_7_11 4.19E-06 SC_11_11 4.19E-06 SC_15_11 4.19E-06SC_3_12 4.21E-06 SC_7_12 4.21E-06 SC_11_12 4.21E-06 SC_15_12 4.21E-06 SC_4_1 3.99E-06 SC_8_1 3.99E-06 SC_12_1 3.99E-06 SC_16_1 3.99E-06SC_4_2 4.01E-06 SC_8_2 4.01E-06 SC_12_2 4.01E-06 SC_16_2 4.01E-06SC_4_3 4.03E-06 SC_8_3 4.03E-06 SC_12_3 4.03E-06 SC_16_3 4.03E-06SC_4_4 4.05E-06 SC_8_4 4.05E-06 SC_12_4 4.05E-06 SC_16_4 4.05E-06SC_4_5 4.07E-06 SC_8_5 4.07E-06 SC_12_5 4.07E-06 SC_16_5 4.07E-06SC_4_6 4.09E-06 SC_8_6 4.09E-06 SC_12_6 4.09E-06 SC_16_6 4.09E-06SC_4_7 4.11E-06 SC_8_7 4.11E-06 SC_12_7 4.11E-06 SC_16_7 4.11E-06SC_4_8 4.13E-06 SC_8_8 4.13E-06 SC_12_8 4.13E-06 SC_16_8 4.13E-06SC_4_9 4.15E-06 SC_8_9 4.15E-06 SC_12_9 4.15E-06 SC_16_9 4.15E-06SC_4_10 4.17E-06 SC_8_10 4.17E-06 SC_12_10 4.17E-06 SC_16_10 4.17E-06SC_4_11 4.19E-06 SC_8_11 4.19E-06 SC_12_11 4.19E-06 SC_16_11 4.19E-06SC_4_12 4.21E-06 SC_8_12 4.21E-06 SC_12_12 4.21E-06 SC_16_12 4.21E-06

Tab. A.2-14 Cumulative inductances for each conductor of PF 3 coil at 22.8 kHz (H)

Page 129: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

117

SC_1_1 3.32E-06 SC_5_1 3.32E-06 SC_9_1 3.32E-06 SC_13_1 3.32E-06SC_1_2 3.33E-06 SC_5_2 3.33E-06 SC_9_2 3.33E-06 SC_13_2 3.33E-06SC_1_3 3.35E-06 SC_5_3 3.35E-06 SC_9_3 3.35E-06 SC_13_3 3.35E-06SC_1_4 3.37E-06 SC_5_4 3.37E-06 SC_9_4 3.37E-06 SC_13_4 3.37E-06SC_1_5 3.38E-06 SC_5_5 3.38E-06 SC_9_5 3.38E-06 SC_13_5 3.38E-06SC_1_6 3.40E-06 SC_5_6 3.40E-06 SC_9_6 3.40E-06 SC_13_6 3.40E-06SC_1_7 3.42E-06 SC_5_7 3.42E-06 SC_9_7 3.42E-06 SC_13_7 3.42E-06SC_1_8 3.43E-06 SC_5_8 3.43E-06 SC_9_8 3.43E-06 SC_13_8 3.43E-06SC_1_9 3.45E-06 SC_5_9 3.45E-06 SC_9_9 3.45E-06 SC_13_9 3.45E-06SC_1_10 3.47E-06 SC_5_10 3.47E-06 SC_9_10 3.47E-06 SC_13_10 3.47E-06SC_1_11 3.48E-06 SC_5_11 3.48E-06 SC_9_11 3.48E-06 SC_13_11 3.48E-06SC_1_12 3.50E-06 SC_5_12 3.50E-06 SC_9_12 3.50E-06 SC_13_12 3.50E-06 SC_2_1 3.32E-06 SC_6_1 3.32E-06 SC_10_1 3.32E-06 SC_14_1 3.32E-06SC_2_2 3.33E-06 SC_6_2 3.33E-06 SC_10_2 3.33E-06 SC_14_2 3.33E-06SC_2_3 3.35E-06 SC_6_3 3.35E-06 SC_10_3 3.35E-06 SC_14_3 3.35E-06SC_2_4 3.37E-06 SC_6_4 3.37E-06 SC_10_4 3.37E-06 SC_14_4 3.37E-06SC_2_5 3.38E-06 SC_6_5 3.38E-06 SC_10_5 3.38E-06 SC_14_5 3.38E-06SC_2_6 3.40E-06 SC_6_6 3.40E-06 SC_10_6 3.40E-06 SC_14_6 3.40E-06SC_2_7 3.42E-06 SC_6_7 3.42E-06 SC_10_7 3.42E-06 SC_14_7 3.42E-06SC_2_8 3.43E-06 SC_6_8 3.43E-06 SC_10_8 3.43E-06 SC_14_8 3.43E-06SC_2_9 3.45E-06 SC_6_9 3.45E-06 SC_10_9 3.45E-06 SC_14_9 3.45E-06SC_2_10 3.47E-06 SC_6_10 3.47E-06 SC_10_10 3.47E-06 SC_14_10 3.47E-06SC_2_11 3.48E-06 SC_6_11 3.48E-06 SC_10_11 3.48E-06 SC_14_11 3.48E-06SC_2_12 3.50E-06 SC_6_12 3.50E-06 SC_10_12 3.50E-06 SC_14_12 3.50E-06 SC_3_1 3.32E-06 SC_7_1 3.32E-06 SC_11_1 3.32E-06 SC_15_1 3.32E-06SC_3_2 3.33E-06 SC_7_2 3.33E-06 SC_11_2 3.33E-06 SC_15_2 3.33E-06SC_3_3 3.35E-06 SC_7_3 3.35E-06 SC_11_3 3.35E-06 SC_15_3 3.35E-06SC_3_4 3.37E-06 SC_7_4 3.37E-06 SC_11_4 3.37E-06 SC_15_4 3.37E-06SC_3_5 3.38E-06 SC_7_5 3.38E-06 SC_11_5 3.38E-06 SC_15_5 3.38E-06SC_3_6 3.40E-06 SC_7_6 3.40E-06 SC_11_6 3.40E-06 SC_15_6 3.40E-06SC_3_7 3.42E-06 SC_7_7 3.42E-06 SC_11_7 3.42E-06 SC_15_7 3.42E-06SC_3_8 3.43E-06 SC_7_8 3.43E-06 SC_11_8 3.43E-06 SC_15_8 3.43E-06SC_3_9 3.45E-06 SC_7_9 3.45E-06 SC_11_9 3.45E-06 SC_15_9 3.45E-06SC_3_10 3.47E-06 SC_7_10 3.47E-06 SC_11_10 3.47E-06 SC_15_10 3.47E-06SC_3_11 3.48E-06 SC_7_11 3.48E-06 SC_11_11 3.48E-06 SC_15_11 3.48E-06SC_3_12 3.50E-06 SC_7_12 3.50E-06 SC_11_12 3.50E-06 SC_15_12 3.50E-06 SC_4_1 3.32E-06 SC_8_1 3.32E-06 SC_12_1 3.32E-06 SC_16_1 3.32E-06SC_4_2 3.33E-06 SC_8_2 3.33E-06 SC_12_2 3.33E-06 SC_16_2 3.33E-06SC_4_3 3.35E-06 SC_8_3 3.35E-06 SC_12_3 3.35E-06 SC_16_3 3.35E-06SC_4_4 3.37E-06 SC_8_4 3.37E-06 SC_12_4 3.37E-06 SC_16_4 3.37E-06SC_4_5 3.38E-06 SC_8_5 3.38E-06 SC_12_5 3.38E-06 SC_16_5 3.38E-06SC_4_6 3.40E-06 SC_8_6 3.40E-06 SC_12_6 3.40E-06 SC_16_6 3.40E-06SC_4_7 3.42E-06 SC_8_7 3.42E-06 SC_12_7 3.42E-06 SC_16_7 3.42E-06SC_4_8 3.43E-06 SC_8_8 3.43E-06 SC_12_8 3.43E-06 SC_16_8 3.43E-06SC_4_9 3.45E-06 SC_8_9 3.45E-06 SC_12_9 3.45E-06 SC_16_9 3.45E-06SC_4_10 3.47E-06 SC_8_10 3.47E-06 SC_12_10 3.47E-06 SC_16_10 3.47E-06SC_4_11 3.48E-06 SC_8_11 3.48E-06 SC_12_11 3.48E-06 SC_16_11 3.48E-06SC_4_12 3.50E-06 SC_8_12 3.50E-06 SC_12_12 3.50E-06 SC_16_12 3.50E-06

Tab. A.2-15 Cumulative inductances for each conductor of PF 3 coil at 200 kHz (H)

Page 130: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

118

SC_1_1 3.26E-06 SC_5_1 3.26E-06 SC_9_1 3.26E-06 SC_13_1 3.26E-06SC_1_2 3.27E-06 SC_5_2 3.27E-06 SC_9_2 3.27E-06 SC_13_2 3.27E-06SC_1_3 3.29E-06 SC_5_3 3.29E-06 SC_9_3 3.29E-06 SC_13_3 3.29E-06SC_1_4 3.30E-06 SC_5_4 3.30E-06 SC_9_4 3.30E-06 SC_13_4 3.30E-06SC_1_5 3.32E-06 SC_5_5 3.32E-06 SC_9_5 3.32E-06 SC_13_5 3.32E-06SC_1_6 3.34E-06 SC_5_6 3.34E-06 SC_9_6 3.34E-06 SC_13_6 3.34E-06SC_1_7 3.35E-06 SC_5_7 3.35E-06 SC_9_7 3.35E-06 SC_13_7 3.35E-06SC_1_8 3.37E-06 SC_5_8 3.37E-06 SC_9_8 3.37E-06 SC_13_8 3.37E-06SC_1_9 3.39E-06 SC_5_9 3.39E-06 SC_9_9 3.39E-06 SC_13_9 3.39E-06SC_1_10 3.40E-06 SC_5_10 3.40E-06 SC_9_10 3.40E-06 SC_13_10 3.40E-06SC_1_11 3.42E-06 SC_5_11 3.42E-06 SC_9_11 3.42E-06 SC_13_11 3.42E-06SC_1_12 3.44E-06 SC_5_12 3.44E-06 SC_9_12 3.44E-06 SC_13_12 3.44E-06 SC_2_1 3.26E-06 SC_6_1 3.26E-06 SC_10_1 3.26E-06 SC_14_1 3.26E-06SC_2_2 3.27E-06 SC_6_2 3.27E-06 SC_10_2 3.27E-06 SC_14_2 3.27E-06SC_2_3 3.29E-06 SC_6_3 3.29E-06 SC_10_3 3.29E-06 SC_14_3 3.29E-06SC_2_4 3.30E-06 SC_6_4 3.30E-06 SC_10_4 3.30E-06 SC_14_4 3.30E-06SC_2_5 3.32E-06 SC_6_5 3.32E-06 SC_10_5 3.32E-06 SC_14_5 3.32E-06SC_2_6 3.34E-06 SC_6_6 3.34E-06 SC_10_6 3.34E-06 SC_14_6 3.34E-06SC_2_7 3.35E-06 SC_6_7 3.35E-06 SC_10_7 3.35E-06 SC_14_7 3.35E-06SC_2_8 3.37E-06 SC_6_8 3.37E-06 SC_10_8 3.37E-06 SC_14_8 3.37E-06SC_2_9 3.39E-06 SC_6_9 3.39E-06 SC_10_9 3.39E-06 SC_14_9 3.39E-06SC_2_10 3.40E-06 SC_6_10 3.40E-06 SC_10_10 3.40E-06 SC_14_10 3.40E-06SC_2_11 3.42E-06 SC_6_11 3.42E-06 SC_10_11 3.42E-06 SC_14_11 3.42E-06SC_2_12 3.44E-06 SC_6_12 3.44E-06 SC_10_12 3.44E-06 SC_14_12 3.44E-06 SC_3_1 3.26E-06 SC_7_1 3.26E-06 SC_11_1 3.26E-06 SC_15_1 3.26E-06SC_3_2 3.27E-06 SC_7_2 3.27E-06 SC_11_2 3.27E-06 SC_15_2 3.27E-06SC_3_3 3.29E-06 SC_7_3 3.29E-06 SC_11_3 3.29E-06 SC_15_3 3.29E-06SC_3_4 3.30E-06 SC_7_4 3.30E-06 SC_11_4 3.30E-06 SC_15_4 3.30E-06SC_3_5 3.32E-06 SC_7_5 3.32E-06 SC_11_5 3.32E-06 SC_15_5 3.32E-06SC_3_6 3.34E-06 SC_7_6 3.34E-06 SC_11_6 3.34E-06 SC_15_6 3.34E-06SC_3_7 3.35E-06 SC_7_7 3.35E-06 SC_11_7 3.35E-06 SC_15_7 3.35E-06SC_3_8 3.37E-06 SC_7_8 3.37E-06 SC_11_8 3.37E-06 SC_15_8 3.37E-06SC_3_9 3.39E-06 SC_7_9 3.39E-06 SC_11_9 3.39E-06 SC_15_9 3.39E-06SC_3_10 3.40E-06 SC_7_10 3.40E-06 SC_11_10 3.40E-06 SC_15_10 3.40E-06SC_3_11 3.42E-06 SC_7_11 3.42E-06 SC_11_11 3.42E-06 SC_15_11 3.42E-06SC_3_12 3.44E-06 SC_7_12 3.44E-06 SC_11_12 3.44E-06 SC_15_12 3.44E-06 SC_4_1 3.26E-06 SC_8_1 3.26E-06 SC_12_1 3.26E-06 SC_16_1 3.26E-06SC_4_2 3.27E-06 SC_8_2 3.27E-06 SC_12_2 3.27E-06 SC_16_2 3.27E-06SC_4_3 3.29E-06 SC_8_3 3.29E-06 SC_12_3 3.29E-06 SC_16_3 3.29E-06SC_4_4 3.30E-06 SC_8_4 3.30E-06 SC_12_4 3.30E-06 SC_16_4 3.30E-06SC_4_5 3.32E-06 SC_8_5 3.32E-06 SC_12_5 3.32E-06 SC_16_5 3.32E-06SC_4_6 3.34E-06 SC_8_6 3.34E-06 SC_12_6 3.34E-06 SC_16_6 3.34E-06SC_4_7 3.35E-06 SC_8_7 3.35E-06 SC_12_7 3.35E-06 SC_16_7 3.35E-06SC_4_8 3.37E-06 SC_8_8 3.37E-06 SC_12_8 3.37E-06 SC_16_8 3.37E-06SC_4_9 3.39E-06 SC_8_9 3.39E-06 SC_12_9 3.39E-06 SC_16_9 3.39E-06SC_4_10 3.40E-06 SC_8_10 3.40E-06 SC_12_10 3.40E-06 SC_16_10 3.40E-06SC_4_11 3.42E-06 SC_8_11 3.42E-06 SC_12_11 3.42E-06 SC_16_11 3.42E-06SC_4_12 3.44E-06 SC_8_12 3.44E-06 SC_12_12 3.44E-06 SC_16_12 3.44E-06

Tab. A.2-16 Cumulative inductances for each conductor of PF 3 coil at 295 kHz (H)

Page 131: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

119

Annex A.3 FEM Models of the PF 6 Coil

(a) FEM Model of the PF 6 Coil for DC

Model Definition

Solver: Magnetostatic Symmetry: RZ-Plane

Drawing Size: Z-direction: ±5 m; R-direction: 10 m

Geometry:

Cooling Tube 1_1: Circle centre: 3476.25 mm; 458 mm; Radius: 6 mm

Superconducting cable 1_1: Circle centre: 3476.25 mm; 458 mm; Radius: 19 mm

Jacket 1_1: First corner: 3449.45 mm; 431.2 mm

Second corner: 3503.05 mm; 484.8 mm

Copy of the conductor 1_1 downwards one time with a distance of 60.7 mm

Copy of the conductor 2_1 downwards one time with a distance of 60.7 mm with considera-tion of additionally insulation between the double pancakes of 1 mm

Continuing of copy of the conductors downwards with distance depending on the location in the double pancake

Copy of the stack of the 16 first conductors rightwards 27 times with a distance of 60.5 mm

Materials

Cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Superconducting cable Copper at 4K, relative permittivity = 1, relative permeability = 1, con-ductivity = 6.4E9 S/m

Stainless steel jacket Stainless steel at 4K, relative permittivity = 1, relative permeabil-ity = 1, conductivity = 1.88e6 S/m

Insulation Epoxy resin, relative permittivity = 4, relative permeability = 1

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source All superconducting cables are stranded with 45 kA

Page 132: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

120

Boundary Balloon

Setup Executive Parameters

All superconducting cables were chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Insulation Cooling Tube Superconducting cable

Stainless steel jacket

Background

Number of triangles

10000 34 72 45 11400

(b) FEM Model of the PF 6 Coil for Frequencies Lower than 5 kHz

Model Definition

Solver: Eddy Current Symmetry: RZ-Plane

Drawing Size: Z-direction: +5 m; R-direction: 10 m

Materials

Cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Superconducting cable Copper at 4K, relative permittivity = 1, relative permeability = 1, con-ductivity = 6.4E9 S/m

Stainless steel jacket Stainless steel at 4K, relative permittivity = 1, relative permeabil-ity = 1, conductivity = 1.88e6 S/m

Insulation Epoxy resin, relative permittivity = 4, relative permeability = 1

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source All superconducting cables are stranded with 45 kA

Boundary Balloon

Page 133: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

121

Setup Executive Parameters

All superconducting cables were chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Insulation Cooling Tube Superconducting cable

Stainless steel jacket

Background

Number of triangles

70000 34 72 302 5000

(c) FEM Model of the PF 6 Coil for Frequencies Higher than 5 kHz

Model Definition

Solver: Eddy Current Symmetry: RZ-Plane

Drawing Size: Z-direction: ±5 m; R-direction: 10 m

Materials

Cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Superconducting cable Copper at 4K, relative permittivity = 1, relative permeability = 1, con-ductivity = 6.4E9 S/m

Stainless steel jacket Stainless steel at 4K, relative permittivity = 1, relative permeabil-ity = 1, conductivity = 1.88e6 S/m

Insulation Epoxy resin, relative permittivity = 4, relative permeability = 1

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source All superconducting cables are stranded with 45 kA

Boundary Balloon

Page 134: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

122

Setup Executive Parameters

All superconducting cables were chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Insulation Cooling Tube Superconducting cable

Stainless steel jacket

Background

Number of triangles

3600 34 1200 2600 1200

(d) Calculation Results of Detailed FEM Model of PF 6 Coil

Capacitances of conductors between the layers in one dou-ble pancake (F)

Capacitances of conductors between double pancakes(F)

Capacitances between the con-ductors of one layer (F)

C_P01_02_C01 5.84E-09 C_P02_03_C01 5.12E-09 C_P01_C01_02 6.06E-09C_P01_02_C02 5.94E-09 C_P02_03_C02 5.21E-09 C_P01_C02_03 6.17E-09C_P01_02_C03 6.04E-09 C_P02_03_C03 5.30E-09 C_P01_C03_04 6.27E-09C_P01_02_C04 6.14E-09 C_P02_03_C04 5.39E-09 C_P01_C04_05 6.38E-09C_P01_02_C05 6.25E-09 C_P02_03_C05 5.48E-09 C_P01_C05_06 6.48E-09C_P01_02_C06 6.35E-09 C_P02_03_C06 5.56E-09 C_P01_C06_07 6.58E-09C_P01_02_C07 6.45E-09 C_P02_03_C07 5.65E-09 C_P01_C07_08 6.69E-09C_P01_02_C08 6.55E-09 C_P02_03_C08 5.74E-09 C_P01_C08_09 6.79E-09C_P01_02_C09 6.65E-09 C_P02_03_C09 5.83E-09 C_P01_C09_10 6.90E-09C_P01_02_C10 6.75E-09 C_P02_03_C10 5.92E-09 C_P01_C10_11 7.00E-09C_P01_02_C11 6.86E-09 C_P02_03_C11 6.01E-09 C_P01_C11_12 7.11E-09C_P01_02_C12 6.96E-09 C_P02_03_C12 6.10E-09 C_P01_C12_13 7.21E-09C_P01_02_C13 7.06E-09 C_P02_03_C13 6.19E-09 C_P01_C13_14 7.32E-09C_P01_02_C14 7.16E-09 C_P02_03_C14 6.28E-09 C_P01_C14_15 7.42E-09C_P01_02_C15 7.26E-09 C_P02_03_C15 6.37E-09 C_P01_C15_16 7.53E-09C_P01_02_C16 7.36E-09 C_P02_03_C16 6.46E-09 C_P01_C16_17 7.63E-09C_P01_02_C17 7.47E-09 C_P02_03_C17 6.54E-09 C_P01_C17_18 7.73E-09C_P01_02_C18 7.57E-09 C_P02_03_C18 6.63E-09 C_P01_C18_19 7.84E-09C_P01_02_C19 7.67E-09 C_P02_03_C19 6.72E-09 C_P01_C19_20 7.94E-09C_P01_02_C20 7.77E-09 C_P02_03_C20 6.81E-09 C_P01_C20_21 8.05E-09C_P01_02_C21 7.87E-09 C_P02_03_C21 6.90E-09 C_P01_C21_22 8.15E-09C_P01_02_C22 7.97E-09 C_P02_03_C22 6.99E-09 C_P01_C22_23 8.26E-09C_P01_02_C23 8.08E-09 C_P02_03_C23 7.08E-09 C_P01_C23_24 8.36E-09C_P01_02_C24 8.18E-09 C_P02_03_C24 7.17E-09 C_P01_C24_25 8.47E-09C_P01_02_C25 8.28E-09 C_P02_03_C25 7.26E-09 C_P01_C25_26 8.57E-09C_P01_02_C26 8.38E-09 C_P02_03_C26 7.35E-09 C_P01_C26_27 8.68E-09C_P01_02_C27 8.48E-09 C_P02_03_C27 7.44E-09

Tab. A.3-1 Calculated capacitances between the conductors of PF 6 coil

Page 135: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

123

Capacitances of the conductors to ground in lowest and upper-most pancakes (F)

Capacitance to ground for outer conductors on the left and right side of the coil (F)

Capacitance to ground for lowest and uppermost outer conductors in Z-direction (F)

C_P01_E_C01 6.25E-09 C_P02_E_C01 3.11E-09 C_P01_E_C01 3.14E-09C_P01_E_C02 3.20E-09 C_P02_E_C27 4.43E-09 C_P01_E_C27 4.56E-09C_P01_E_C03 3.25E-09 C_P01_E_C04 3.31E-09 C_P01_E_C05 3.36E-09 C_P01_E_C06 3.41E-09 C_P01_E_C07 3.47E-09 C_P01_E_C08 3.52E-09 C_P01_E_C09 3.58E-09 C_P01_E_C10 3.63E-09 C_P01_E_C11 3.69E-09 C_P01_E_C12 3.74E-09 C_P01_E_C13 3.80E-09 C_P01_E_C14 3.85E-09 C_P01_E_C15 3.91E-09 C_P01_E_C16 3.96E-09 C_P01_E_C17 4.02E-09 C_P01_E_C18 4.07E-09 C_P01_E_C19 4.13E-09 C_P01_E_C20 4.18E-09 C_P01_E_C21 4.23E-09 C_P01_E_C22 4.29E-09 C_P01_E_C23 4.34E-09 C_P01_E_C24 4.40E-09 C_P01_E_C25 4.45E-09 C_P01_E_C26 4.51E-09 C_P01_E_C27 8.99E-09

Tab. A.3-2 Calculated capacitances of the outer conductors to ground of PF 6 coil

Page 136: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

124

SC_1_1 3.29E-03 SC_5_1 3.55E-03 SC_9_1 3.63E-03 SC_13_1 3.51E-03SC_1_2 3.44E-03 SC_5_2 3.74E-03 SC_9_2 3.82E-03 SC_13_2 3.69E-03SC_1_3 3.59E-03 SC_5_3 3.92E-03 SC_9_3 4.00E-03 SC_13_3 3.86E-03SC_1_4 3.73E-03 SC_5_4 4.08E-03 SC_9_4 4.18E-03 SC_13_4 4.02E-03SC_1_5 3.86E-03 SC_5_5 4.24E-03 SC_9_5 4.34E-03 SC_13_5 4.17E-03SC_1_6 3.99E-03 SC_5_6 4.38E-03 SC_9_6 4.49E-03 SC_13_6 4.31E-03SC_1_7 4.11E-03 SC_5_7 4.52E-03 SC_9_7 4.63E-03 SC_13_7 4.45E-03SC_1_8 4.22E-03 SC_5_8 4.65E-03 SC_9_8 4.76E-03 SC_13_8 4.57E-03SC_1_9 4.32E-03 SC_5_9 4.76E-03 SC_9_9 4.88E-03 SC_13_9 4.68E-03SC_1_10 4.42E-03 SC_5_10 4.87E-03 SC_9_10 4.99E-03 SC_13_10 4.79E-03SC_1_11 4.50E-03 SC_5_11 4.97E-03 SC_9_11 5.09E-03 SC_13_11 4.88E-03SC_1_12 4.58E-03 SC_5_12 5.06E-03 SC_9_12 5.18E-03 SC_13_12 4.97E-03SC_1_13 4.65E-03 SC_5_13 5.13E-03 SC_9_13 5.26E-03 SC_13_13 5.05E-03SC_1_14 4.71E-03 SC_5_14 5.20E-03 SC_9_14 5.33E-03 SC_13_14 5.11E-03SC_1_15 4.76E-03 SC_5_15 5.26E-03 SC_9_15 5.39E-03 SC_13_15 5.17E-03SC_1_16 4.81E-03 SC_5_16 5.30E-03 SC_9_16 5.44E-03 SC_13_16 5.21E-03SC_1_17 4.84E-03 SC_5_17 5.34E-03 SC_9_17 5.47E-03 SC_13_17 5.25E-03SC_1_18 4.86E-03 SC_5_18 5.36E-03 SC_9_18 5.49E-03 SC_13_18 5.27E-03SC_1_19 4.87E-03 SC_5_19 5.37E-03 SC_9_19 5.50E-03 SC_13_19 5.28E-03SC_1_20 4.87E-03 SC_5_20 5.37E-03 SC_9_20 5.50E-03 SC_13_20 5.28E-03SC_1_21 4.86E-03 SC_5_21 5.35E-03 SC_9_21 5.48E-03 SC_13_21 5.26E-03SC_1_22 4.84E-03 SC_5_22 5.31E-03 SC_9_22 5.44E-03 SC_13_22 5.23E-03SC_1_23 4.80E-03 SC_5_23 5.26E-03 SC_9_23 5.38E-03 SC_13_23 5.18E-03SC_1_24 4.75E-03 SC_5_24 5.20E-03 SC_9_24 5.31E-03 SC_13_24 5.12E-03SC_1_25 4.69E-03 SC_5_25 5.11E-03 SC_9_25 5.22E-03 SC_13_25 5.03E-03SC_1_26 4.61E-03 SC_5_26 5.00E-03 SC_9_26 5.10E-03 SC_13_26 4.93E-03SC_1_27 4.51E-03 SC_5_27 4.87E-03 SC_9_27 4.97E-03 SC_13_27 4.81E-03SC_2_1 3.37E-03 SC_6_1 3.59E-03 SC_10_1 3.61E-03 SC_14_1 3.45E-03SC_2_2 3.54E-03 SC_6_2 3.78E-03 SC_10_2 3.81E-03 SC_14_2 3.62E-03SC_2_3 3.70E-03 SC_6_3 3.96E-03 SC_10_3 3.99E-03 SC_14_3 3.79E-03SC_2_4 3.84E-03 SC_6_4 4.13E-03 SC_10_4 4.16E-03 SC_14_4 3.94E-03SC_2_5 3.98E-03 SC_6_5 4.29E-03 SC_10_5 4.32E-03 SC_14_5 4.09E-03SC_2_6 4.12E-03 SC_6_6 4.44E-03 SC_10_6 4.47E-03 SC_14_6 4.23E-03SC_2_7 4.24E-03 SC_6_7 4.58E-03 SC_10_7 4.61E-03 SC_14_7 4.36E-03SC_2_8 4.36E-03 SC_6_8 4.70E-03 SC_10_8 4.74E-03 SC_14_8 4.47E-03SC_2_9 4.46E-03 SC_6_9 4.82E-03 SC_10_9 4.86E-03 SC_14_9 4.59E-03SC_2_10 4.56E-03 SC_6_10 4.93E-03 SC_10_10 4.97E-03 SC_14_10 4.69E-03SC_2_11 4.65E-03 SC_6_11 5.03E-03 SC_10_11 5.07E-03 SC_14_11 4.78E-03SC_2_12 4.73E-03 SC_6_12 5.12E-03 SC_10_12 5.16E-03 SC_14_12 4.86E-03SC_2_13 4.81E-03 SC_6_13 5.20E-03 SC_10_13 5.24E-03 SC_14_13 4.94E-03SC_2_14 4.87E-03 SC_6_14 5.27E-03 SC_10_14 5.31E-03 SC_14_14 5.00E-03SC_2_15 4.92E-03 SC_6_15 5.32E-03 SC_10_15 5.37E-03 SC_14_15 5.06E-03SC_2_16 4.97E-03 SC_6_16 5.37E-03 SC_10_16 5.42E-03 SC_14_16 5.10E-03SC_2_17 5.00E-03 SC_6_17 5.40E-03 SC_10_17 5.45E-03 SC_14_17 5.14E-03SC_2_18 5.02E-03 SC_6_18 5.43E-03 SC_10_18 5.47E-03 SC_14_18 5.16E-03SC_2_19 5.03E-03 SC_6_19 5.44E-03 SC_10_19 5.48E-03 SC_14_19 5.17E-03SC_2_20 5.03E-03 SC_6_20 5.43E-03 SC_10_20 5.48E-03 SC_14_20 5.17E-03SC_2_21 5.02E-03 SC_6_21 5.41E-03 SC_10_21 5.45E-03 SC_14_21 5.15E-03SC_2_22 4.99E-03 SC_6_22 5.38E-03 SC_10_22 5.42E-03 SC_14_22 5.12E-03SC_2_23 4.95E-03 SC_6_23 5.32E-03 SC_10_23 5.37E-03 SC_14_23 5.08E-03SC_2_24 4.90E-03 SC_6_24 5.25E-03 SC_10_24 5.29E-03 SC_14_24 5.02E-03SC_2_25 4.82E-03 SC_6_25 5.16E-03 SC_10_25 5.20E-03 SC_14_25 4.94E-03SC_2_26 4.74E-03 SC_6_26 5.05E-03 SC_10_26 5.09E-03 SC_14_26 4.84E-03SC_2_27 4.63E-03 SC_6_27 4.92E-03 SC_10_27 4.95E-03 SC_14_27 4.73E-03SC_3_1 3.45E-03 SC_7_1 3.61E-03 SC_11_1 3.59E-03 SC_15_1 3.37E-03

Page 137: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

125

SC_3_2 3.62E-03 SC_7_2 3.81E-03 SC_11_2 3.78E-03 SC_15_2 3.54E-03SC_3_3 3.79E-03 SC_7_3 3.99E-03 SC_11_3 3.96E-03 SC_15_3 3.70E-03SC_3_4 3.94E-03 SC_7_4 4.16E-03 SC_11_4 4.13E-03 SC_15_4 3.85E-03SC_3_5 4.09E-03 SC_7_5 4.32E-03 SC_11_5 4.29E-03 SC_15_5 3.99E-03SC_3_6 4.23E-03 SC_7_6 4.47E-03 SC_11_6 4.44E-03 SC_15_6 4.12E-03SC_3_7 4.35E-03 SC_7_7 4.61E-03 SC_11_7 4.58E-03 SC_15_7 4.24E-03SC_3_8 4.47E-03 SC_7_8 4.74E-03 SC_11_8 4.70E-03 SC_15_8 4.36E-03SC_3_9 4.58E-03 SC_7_9 4.86E-03 SC_11_9 4.82E-03 SC_15_9 4.46E-03SC_3_10 4.69E-03 SC_7_10 4.97E-03 SC_11_10 4.93E-03 SC_15_10 4.56E-03SC_3_11 4.78E-03 SC_7_11 5.07E-03 SC_11_11 5.03E-03 SC_15_11 4.65E-03SC_3_12 4.86E-03 SC_7_12 5.16E-03 SC_11_12 5.12E-03 SC_15_12 4.73E-03SC_3_13 4.94E-03 SC_7_13 5.24E-03 SC_11_13 5.20E-03 SC_15_13 4.81E-03SC_3_14 5.00E-03 SC_7_14 5.31E-03 SC_11_14 5.27E-03 SC_15_14 4.87E-03SC_3_15 5.06E-03 SC_7_15 5.37E-03 SC_11_15 5.32E-03 SC_15_15 4.92E-03SC_3_16 5.10E-03 SC_7_16 5.41E-03 SC_11_16 5.37E-03 SC_15_16 4.97E-03SC_3_17 5.14E-03 SC_7_17 5.45E-03 SC_11_17 5.41E-03 SC_15_17 5.00E-03SC_3_18 5.16E-03 SC_7_18 5.47E-03 SC_11_18 5.43E-03 SC_15_18 5.02E-03SC_3_19 5.17E-03 SC_7_19 5.48E-03 SC_11_19 5.44E-03 SC_15_19 5.03E-03SC_3_20 5.17E-03 SC_7_20 5.47E-03 SC_11_20 5.43E-03 SC_15_20 5.03E-03SC_3_21 5.15E-03 SC_7_21 5.45E-03 SC_11_21 5.41E-03 SC_15_21 5.02E-03SC_3_22 5.12E-03 SC_7_22 5.42E-03 SC_11_22 5.38E-03 SC_15_22 4.99E-03SC_3_23 5.08E-03 SC_7_23 5.36E-03 SC_11_23 5.32E-03 SC_15_23 4.95E-03SC_3_24 5.02E-03 SC_7_24 5.29E-03 SC_11_24 5.25E-03 SC_15_24 4.90E-03SC_3_25 4.94E-03 SC_7_25 5.20E-03 SC_11_25 5.16E-03 SC_15_25 4.83E-03SC_3_26 4.84E-03 SC_7_26 5.09E-03 SC_11_26 5.05E-03 SC_15_26 4.74E-03SC_3_27 4.72E-03 SC_7_27 4.95E-03 SC_11_27 4.92E-03 SC_15_27 4.63E-03SC_4_1 3.51E-03 SC_8_1 3.63E-03 SC_12_1 3.55E-03 SC_16_1 3.29E-03SC_4_2 3.69E-03 SC_8_2 3.82E-03 SC_12_2 3.74E-03 SC_16_2 3.44E-03SC_4_3 3.86E-03 SC_8_3 4.00E-03 SC_12_3 3.92E-03 SC_16_3 3.59E-03SC_4_4 4.02E-03 SC_8_4 4.18E-03 SC_12_4 4.08E-03 SC_16_4 3.73E-03SC_4_5 4.17E-03 SC_8_5 4.34E-03 SC_12_5 4.24E-03 SC_16_5 3.87E-03SC_4_6 4.31E-03 SC_8_6 4.49E-03 SC_12_6 4.39E-03 SC_16_6 3.99E-03SC_4_7 4.45E-03 SC_8_7 4.63E-03 SC_12_7 4.52E-03 SC_16_7 4.11E-03SC_4_8 4.57E-03 SC_8_8 4.76E-03 SC_12_8 4.65E-03 SC_16_8 4.22E-03SC_4_9 4.68E-03 SC_8_9 4.88E-03 SC_12_9 4.76E-03 SC_16_9 4.32E-03SC_4_10 4.79E-03 SC_8_10 4.99E-03 SC_12_10 4.87E-03 SC_16_10 4.42E-03SC_4_11 4.88E-03 SC_8_11 5.09E-03 SC_12_11 4.97E-03 SC_16_11 4.51E-03SC_4_12 4.97E-03 SC_8_12 5.18E-03 SC_12_12 5.06E-03 SC_16_12 4.58E-03SC_4_13 5.05E-03 SC_8_13 5.26E-03 SC_12_13 5.13E-03 SC_16_13 4.65E-03SC_4_14 5.11E-03 SC_8_14 5.33E-03 SC_12_14 5.20E-03 SC_16_14 4.71E-03SC_4_15 5.17E-03 SC_8_15 5.39E-03 SC_12_15 5.26E-03 SC_16_15 4.77E-03SC_4_16 5.21E-03 SC_8_16 5.44E-03 SC_12_16 5.30E-03 SC_16_16 4.81E-03SC_4_17 5.25E-03 SC_8_17 5.47E-03 SC_12_17 5.34E-03 SC_16_17 4.84E-03SC_4_18 5.27E-03 SC_8_18 5.49E-03 SC_12_18 5.36E-03 SC_16_18 4.86E-03SC_4_19 5.28E-03 SC_8_19 5.50E-03 SC_12_19 5.37E-03 SC_16_19 4.87E-03SC_4_20 5.28E-03 SC_8_20 5.50E-03 SC_12_20 5.37E-03 SC_16_20 4.87E-03SC_4_21 5.26E-03 SC_8_21 5.48E-03 SC_12_21 5.35E-03 SC_16_21 4.86E-03SC_4_22 5.23E-03 SC_8_22 5.44E-03 SC_12_22 5.31E-03 SC_16_22 4.84E-03SC_4_23 5.18E-03 SC_8_23 5.38E-03 SC_12_23 5.26E-03 SC_16_23 4.80E-03SC_4_24 5.12E-03 SC_8_24 5.31E-03 SC_12_24 5.20E-03 SC_16_24 4.75E-03SC_4_25 5.03E-03 SC_8_25 5.22E-03 SC_12_25 5.11E-03 SC_16_25 4.69E-03SC_4_26 4.93E-03 SC_8_26 5.10E-03 SC_12_26 5.00E-03 SC_16_26 4.61E-03SC_4_27 4.80E-03 SC_8_27 4.96E-03 SC_12_27 4.87E-03 SC_16_27 4.51E-03

Tab. A.3-3 Cumulative inductances for each conductor of PF 6 coil at DC (H)

Page 138: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

126

SC_1_1 3.19E-06 SC_5_1 3.19E-06 SC_9_1 3.19E-06 SC_13_1 3.19E-06SC_1_2 3.68E-06 SC_5_2 3.68E-06 SC_9_2 3.68E-06 SC_13_2 3.68E-06SC_1_3 3.76E-06 SC_5_3 3.76E-06 SC_9_3 3.76E-06 SC_13_3 3.76E-06SC_1_4 3.82E-06 SC_5_4 3.82E-06 SC_9_4 3.82E-06 SC_13_4 3.82E-06SC_1_5 3.89E-06 SC_5_5 3.89E-06 SC_9_5 3.89E-06 SC_13_5 3.89E-06SC_1_6 3.95E-06 SC_5_6 3.95E-06 SC_9_6 3.95E-06 SC_13_6 3.95E-06SC_1_7 4.02E-06 SC_5_7 4.02E-06 SC_9_7 4.02E-06 SC_13_7 4.02E-06SC_1_8 4.08E-06 SC_5_8 4.08E-06 SC_9_8 4.08E-06 SC_13_8 4.08E-06SC_1_9 4.15E-06 SC_5_9 4.15E-06 SC_9_9 4.15E-06 SC_13_9 4.15E-06SC_1_10 4.21E-06 SC_5_10 4.21E-06 SC_9_10 4.21E-06 SC_13_10 4.21E-06SC_1_11 4.27E-06 SC_5_11 4.27E-06 SC_9_11 4.27E-06 SC_13_11 4.27E-06SC_1_12 4.34E-06 SC_5_12 4.34E-06 SC_9_12 4.34E-06 SC_13_12 4.34E-06SC_1_13 4.40E-06 SC_5_13 4.40E-06 SC_9_13 4.40E-06 SC_13_13 4.40E-06SC_1_14 4.47E-06 SC_5_14 4.47E-06 SC_9_14 4.47E-06 SC_13_14 4.47E-06SC_1_15 4.53E-06 SC_5_15 4.53E-06 SC_9_15 4.53E-06 SC_13_15 4.53E-06SC_1_16 4.60E-06 SC_5_16 4.60E-06 SC_9_16 4.60E-06 SC_13_16 4.60E-06SC_1_17 4.66E-06 SC_5_17 4.66E-06 SC_9_17 4.66E-06 SC_13_17 4.66E-06SC_1_18 4.73E-06 SC_5_18 4.73E-06 SC_9_18 4.73E-06 SC_13_18 4.73E-06SC_1_19 4.79E-06 SC_5_19 4.79E-06 SC_9_19 4.79E-06 SC_13_19 4.79E-06SC_1_20 4.86E-06 SC_5_20 4.86E-06 SC_9_20 4.86E-06 SC_13_20 4.86E-06SC_1_21 4.93E-06 SC_5_21 4.93E-06 SC_9_21 4.93E-06 SC_13_21 4.93E-06SC_1_22 5.01E-06 SC_5_22 5.01E-06 SC_9_22 5.01E-06 SC_13_22 5.01E-06SC_1_23 5.14E-06 SC_5_23 5.14E-06 SC_9_23 5.14E-06 SC_13_23 5.14E-06SC_1_24 5.32E-06 SC_5_24 5.32E-06 SC_9_24 5.32E-06 SC_13_24 5.32E-06SC_1_25 6.76E-06 SC_5_25 6.76E-06 SC_9_25 6.76E-06 SC_13_25 6.76E-06SC_1_26 6.62E-06 SC_5_26 6.62E-06 SC_9_26 6.62E-06 SC_13_26 6.62E-06SC_1_27 6.61E-06 SC_5_27 6.61E-06 SC_9_27 6.61E-06 SC_13_27 6.61E-06SC_2_1 3.19E-06 SC_6_1 3.19E-06 SC_10_1 3.19E-06 SC_14_1 3.19E-06SC_2_2 3.68E-06 SC_6_2 3.68E-06 SC_10_2 3.68E-06 SC_14_2 3.68E-06SC_2_3 3.76E-06 SC_6_3 3.76E-06 SC_10_3 3.76E-06 SC_14_3 3.76E-06SC_2_4 3.82E-06 SC_6_4 3.82E-06 SC_10_4 3.82E-06 SC_14_4 3.82E-06SC_2_5 3.89E-06 SC_6_5 3.89E-06 SC_10_5 3.89E-06 SC_14_5 3.89E-06SC_2_6 3.95E-06 SC_6_6 3.95E-06 SC_10_6 3.95E-06 SC_14_6 3.95E-06SC_2_7 4.02E-06 SC_6_7 4.02E-06 SC_10_7 4.02E-06 SC_14_7 4.02E-06SC_2_8 4.08E-06 SC_6_8 4.08E-06 SC_10_8 4.08E-06 SC_14_8 4.08E-06SC_2_9 4.15E-06 SC_6_9 4.15E-06 SC_10_9 4.15E-06 SC_14_9 4.15E-06SC_2_10 4.21E-06 SC_6_10 4.21E-06 SC_10_10 4.21E-06 SC_14_10 4.21E-06SC_2_11 4.27E-06 SC_6_11 4.27E-06 SC_10_11 4.27E-06 SC_14_11 4.27E-06SC_2_12 4.34E-06 SC_6_12 4.34E-06 SC_10_12 4.34E-06 SC_14_12 4.34E-06SC_2_13 4.40E-06 SC_6_13 4.40E-06 SC_10_13 4.40E-06 SC_14_13 4.40E-06SC_2_14 4.47E-06 SC_6_14 4.47E-06 SC_10_14 4.47E-06 SC_14_14 4.47E-06SC_2_15 4.53E-06 SC_6_15 4.53E-06 SC_10_15 4.53E-06 SC_14_15 4.53E-06SC_2_16 4.60E-06 SC_6_16 4.60E-06 SC_10_16 4.60E-06 SC_14_16 4.60E-06SC_2_17 4.66E-06 SC_6_17 4.66E-06 SC_10_17 4.66E-06 SC_14_17 4.66E-06SC_2_18 4.73E-06 SC_6_18 4.73E-06 SC_10_18 4.73E-06 SC_14_18 4.73E-06SC_2_19 4.79E-06 SC_6_19 4.79E-06 SC_10_19 4.79E-06 SC_14_19 4.79E-06SC_2_20 4.86E-06 SC_6_20 4.86E-06 SC_10_20 4.86E-06 SC_14_20 4.86E-06SC_2_21 4.93E-06 SC_6_21 4.93E-06 SC_10_21 4.93E-06 SC_14_21 4.93E-06SC_2_22 5.01E-06 SC_6_22 5.01E-06 SC_10_22 5.01E-06 SC_14_22 5.01E-06SC_2_23 5.14E-06 SC_6_23 5.14E-06 SC_10_23 5.14E-06 SC_14_23 5.14E-06SC_2_24 5.32E-06 SC_6_24 5.32E-06 SC_10_24 5.32E-06 SC_14_24 5.32E-06SC_2_25 6.76E-06 SC_6_25 6.76E-06 SC_10_25 6.76E-06 SC_14_25 6.76E-06SC_2_26 6.62E-06 SC_6_26 6.62E-06 SC_10_26 6.62E-06 SC_14_26 6.62E-06SC_2_27 6.61E-06 SC_6_27 6.61E-06 SC_10_27 6.61E-06 SC_14_27 6.61E-06SC_3_1 3.19E-06 SC_7_1 3.19E-06 SC_11_1 3.19E-06 SC_15_1 3.19E-06

Page 139: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

127

SC_3_2 3.68E-06 SC_7_2 3.68E-06 SC_11_2 3.68E-06 SC_15_2 3.68E-06SC_3_3 3.76E-06 SC_7_3 3.76E-06 SC_11_3 3.76E-06 SC_15_3 3.76E-06SC_3_4 3.82E-06 SC_7_4 3.82E-06 SC_11_4 3.82E-06 SC_15_4 3.82E-06SC_3_5 3.89E-06 SC_7_5 3.89E-06 SC_11_5 3.89E-06 SC_15_5 3.89E-06SC_3_6 3.95E-06 SC_7_6 3.95E-06 SC_11_6 3.95E-06 SC_15_6 3.95E-06SC_3_7 4.02E-06 SC_7_7 4.02E-06 SC_11_7 4.02E-06 SC_15_7 4.02E-06SC_3_8 4.08E-06 SC_7_8 4.08E-06 SC_11_8 4.08E-06 SC_15_8 4.08E-06SC_3_9 4.15E-06 SC_7_9 4.15E-06 SC_11_9 4.15E-06 SC_15_9 4.15E-06SC_3_10 4.21E-06 SC_7_10 4.21E-06 SC_11_10 4.21E-06 SC_15_10 4.21E-06SC_3_11 4.27E-06 SC_7_11 4.27E-06 SC_11_11 4.27E-06 SC_15_11 4.27E-06SC_3_12 4.34E-06 SC_7_12 4.34E-06 SC_11_12 4.34E-06 SC_15_12 4.34E-06SC_3_13 4.40E-06 SC_7_13 4.40E-06 SC_11_13 4.40E-06 SC_15_13 4.40E-06SC_3_14 4.47E-06 SC_7_14 4.47E-06 SC_11_14 4.47E-06 SC_15_14 4.47E-06SC_3_15 4.53E-06 SC_7_15 4.53E-06 SC_11_15 4.53E-06 SC_15_15 4.53E-06SC_3_16 4.60E-06 SC_7_16 4.60E-06 SC_11_16 4.60E-06 SC_15_16 4.60E-06SC_3_17 4.66E-06 SC_7_17 4.66E-06 SC_11_17 4.66E-06 SC_15_17 4.66E-06SC_3_18 4.73E-06 SC_7_18 4.73E-06 SC_11_18 4.73E-06 SC_15_18 4.73E-06SC_3_19 4.79E-06 SC_7_19 4.79E-06 SC_11_19 4.79E-06 SC_15_19 4.79E-06SC_3_20 4.86E-06 SC_7_20 4.86E-06 SC_11_20 4.86E-06 SC_15_20 4.86E-06SC_3_21 4.93E-06 SC_7_21 4.93E-06 SC_11_21 4.93E-06 SC_15_21 4.93E-06SC_3_22 5.01E-06 SC_7_22 5.01E-06 SC_11_22 5.01E-06 SC_15_22 5.01E-06SC_3_23 5.14E-06 SC_7_23 5.14E-06 SC_11_23 5.14E-06 SC_15_23 5.14E-06SC_3_24 5.32E-06 SC_7_24 5.32E-06 SC_11_24 5.32E-06 SC_15_24 5.32E-06SC_3_25 6.76E-06 SC_7_25 6.76E-06 SC_11_25 6.76E-06 SC_15_25 6.76E-06SC_3_26 6.62E-06 SC_7_26 6.62E-06 SC_11_26 6.62E-06 SC_15_26 6.62E-06SC_3_27 6.61E-06 SC_7_27 6.61E-06 SC_11_27 6.61E-06 SC_15_27 6.61E-06SC_4_1 3.19E-06 SC_8_1 3.19E-06 SC_12_1 3.19E-06 SC_16_1 3.19E-06SC_4_2 3.68E-06 SC_8_2 3.68E-06 SC_12_2 3.68E-06 SC_16_2 3.68E-06SC_4_3 3.76E-06 SC_8_3 3.76E-06 SC_12_3 3.76E-06 SC_16_3 3.76E-06SC_4_4 3.82E-06 SC_8_4 3.82E-06 SC_12_4 3.82E-06 SC_16_4 3.82E-06SC_4_5 3.89E-06 SC_8_5 3.89E-06 SC_12_5 3.89E-06 SC_16_5 3.89E-06SC_4_6 3.95E-06 SC_8_6 3.95E-06 SC_12_6 3.95E-06 SC_16_6 3.95E-06SC_4_7 4.02E-06 SC_8_7 4.02E-06 SC_12_7 4.02E-06 SC_16_7 4.02E-06SC_4_8 4.08E-06 SC_8_8 4.08E-06 SC_12_8 4.08E-06 SC_16_8 4.08E-06SC_4_9 4.15E-06 SC_8_9 4.15E-06 SC_12_9 4.15E-06 SC_16_9 4.15E-06SC_4_10 4.21E-06 SC_8_10 4.21E-06 SC_12_10 4.21E-06 SC_16_10 4.21E-06SC_4_11 4.27E-06 SC_8_11 4.27E-06 SC_12_11 4.27E-06 SC_16_11 4.27E-06SC_4_12 4.34E-06 SC_8_12 4.34E-06 SC_12_12 4.34E-06 SC_16_12 4.34E-06SC_4_13 4.40E-06 SC_8_13 4.40E-06 SC_12_13 4.40E-06 SC_16_13 4.40E-06SC_4_14 4.47E-06 SC_8_14 4.47E-06 SC_12_14 4.47E-06 SC_16_14 4.47E-06SC_4_15 4.53E-06 SC_8_15 4.53E-06 SC_12_15 4.53E-06 SC_16_15 4.53E-06SC_4_16 4.60E-06 SC_8_16 4.60E-06 SC_12_16 4.60E-06 SC_16_16 4.60E-06SC_4_17 4.66E-06 SC_8_17 4.66E-06 SC_12_17 4.66E-06 SC_16_17 4.66E-06SC_4_18 4.73E-06 SC_8_18 4.73E-06 SC_12_18 4.73E-06 SC_16_18 4.73E-06SC_4_19 4.79E-06 SC_8_19 4.79E-06 SC_12_19 4.79E-06 SC_16_19 4.79E-06SC_4_20 4.86E-06 SC_8_20 4.86E-06 SC_12_20 4.86E-06 SC_16_20 4.86E-06SC_4_21 4.93E-06 SC_8_21 4.93E-06 SC_12_21 4.93E-06 SC_16_21 4.93E-06SC_4_22 5.01E-06 SC_8_22 5.01E-06 SC_12_22 5.01E-06 SC_16_22 5.01E-06SC_4_23 5.14E-06 SC_8_23 5.14E-06 SC_12_23 5.14E-06 SC_16_23 5.14E-06SC_4_24 5.32E-06 SC_8_24 5.32E-06 SC_12_24 5.32E-06 SC_16_24 5.32E-06SC_4_25 6.76E-06 SC_8_25 6.76E-06 SC_12_25 6.76E-06 SC_16_25 6.76E-06SC_4_26 6.62E-06 SC_8_26 6.62E-06 SC_12_26 6.62E-06 SC_16_26 6.62E-06SC_4_27 6.61E-06 SC_8_27 6.61E-06 SC_12_27 6.61E-06 SC_16_27 6.61E-06

Tab. A.3-4 Cumulative inductances for each conductor of PF 6 coil at 406 Hz (H)

Page 140: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

128

SC_1_1 2.81E-06 SC_5_1 2.81E-06 SC_9_1 2.81E-06 SC_13_1 2.81E-06SC_1_2 3.29E-06 SC_5_2 3.29E-06 SC_9_2 3.29E-06 SC_13_2 3.29E-06SC_1_3 3.35E-06 SC_5_3 3.35E-06 SC_9_3 3.35E-06 SC_13_3 3.35E-06SC_1_4 3.41E-06 SC_5_4 3.41E-06 SC_9_4 3.41E-06 SC_13_4 3.41E-06SC_1_5 3.46E-06 SC_5_5 3.46E-06 SC_9_5 3.46E-06 SC_13_5 3.46E-06SC_1_6 3.52E-06 SC_5_6 3.52E-06 SC_9_6 3.52E-06 SC_13_6 3.52E-06SC_1_7 3.58E-06 SC_5_7 3.58E-06 SC_9_7 3.58E-06 SC_13_7 3.58E-06SC_1_8 3.64E-06 SC_5_8 3.64E-06 SC_9_8 3.64E-06 SC_13_8 3.64E-06SC_1_9 3.69E-06 SC_5_9 3.69E-06 SC_9_9 3.69E-06 SC_13_9 3.69E-06SC_1_10 3.75E-06 SC_5_10 3.75E-06 SC_9_10 3.75E-06 SC_13_10 3.75E-06SC_1_11 3.81E-06 SC_5_11 3.81E-06 SC_9_11 3.81E-06 SC_13_11 3.81E-06SC_1_12 3.86E-06 SC_5_12 3.86E-06 SC_9_12 3.86E-06 SC_13_12 3.86E-06SC_1_13 3.92E-06 SC_5_13 3.92E-06 SC_9_13 3.92E-06 SC_13_13 3.92E-06SC_1_14 3.98E-06 SC_5_14 3.98E-06 SC_9_14 3.98E-06 SC_13_14 3.98E-06SC_1_15 4.03E-06 SC_5_15 4.03E-06 SC_9_15 4.03E-06 SC_13_15 4.03E-06SC_1_16 4.09E-06 SC_5_16 4.09E-06 SC_9_16 4.09E-06 SC_13_16 4.09E-06SC_1_17 4.15E-06 SC_5_17 4.15E-06 SC_9_17 4.15E-06 SC_13_17 4.15E-06SC_1_18 4.21E-06 SC_5_18 4.21E-06 SC_9_18 4.21E-06 SC_13_18 4.21E-06SC_1_19 4.26E-06 SC_5_19 4.26E-06 SC_9_19 4.26E-06 SC_13_19 4.26E-06SC_1_20 4.32E-06 SC_5_20 4.32E-06 SC_9_20 4.32E-06 SC_13_20 4.32E-06SC_1_21 4.38E-06 SC_5_21 4.38E-06 SC_9_21 4.38E-06 SC_13_21 4.38E-06SC_1_22 4.45E-06 SC_5_22 4.45E-06 SC_9_22 4.45E-06 SC_13_22 4.45E-06SC_1_23 4.55E-06 SC_5_23 4.55E-06 SC_9_23 4.55E-06 SC_13_23 4.55E-06SC_1_24 4.70E-06 SC_5_24 4.70E-06 SC_9_24 4.70E-06 SC_13_24 4.70E-06SC_1_25 6.07E-06 SC_5_25 6.07E-06 SC_9_25 6.07E-06 SC_13_25 6.07E-06SC_1_26 6.05E-06 SC_5_26 6.05E-06 SC_9_26 6.05E-06 SC_13_26 6.05E-06SC_1_27 5.72E-06 SC_5_27 5.72E-06 SC_9_27 5.72E-06 SC_13_27 5.72E-06SC_2_1 2.81E-06 SC_6_1 2.81E-06 SC_10_1 2.81E-06 SC_14_1 2.81E-06SC_2_2 3.29E-06 SC_6_2 3.29E-06 SC_10_2 3.29E-06 SC_14_2 3.29E-06SC_2_3 3.35E-06 SC_6_3 3.35E-06 SC_10_3 3.35E-06 SC_14_3 3.35E-06SC_2_4 3.41E-06 SC_6_4 3.41E-06 SC_10_4 3.41E-06 SC_14_4 3.41E-06SC_2_5 3.46E-06 SC_6_5 3.46E-06 SC_10_5 3.46E-06 SC_14_5 3.46E-06SC_2_6 3.52E-06 SC_6_6 3.52E-06 SC_10_6 3.52E-06 SC_14_6 3.52E-06SC_2_7 3.58E-06 SC_6_7 3.58E-06 SC_10_7 3.58E-06 SC_14_7 3.58E-06SC_2_8 3.64E-06 SC_6_8 3.64E-06 SC_10_8 3.64E-06 SC_14_8 3.64E-06SC_2_9 3.69E-06 SC_6_9 3.69E-06 SC_10_9 3.69E-06 SC_14_9 3.69E-06SC_2_10 3.75E-06 SC_6_10 3.75E-06 SC_10_10 3.75E-06 SC_14_10 3.75E-06SC_2_11 3.81E-06 SC_6_11 3.81E-06 SC_10_11 3.81E-06 SC_14_11 3.81E-06SC_2_12 3.86E-06 SC_6_12 3.86E-06 SC_10_12 3.86E-06 SC_14_12 3.86E-06SC_2_13 3.92E-06 SC_6_13 3.92E-06 SC_10_13 3.92E-06 SC_14_13 3.92E-06SC_2_14 3.98E-06 SC_6_14 3.98E-06 SC_10_14 3.98E-06 SC_14_14 3.98E-06SC_2_15 4.03E-06 SC_6_15 4.03E-06 SC_10_15 4.03E-06 SC_14_15 4.03E-06SC_2_16 4.09E-06 SC_6_16 4.09E-06 SC_10_16 4.09E-06 SC_14_16 4.09E-06SC_2_17 4.15E-06 SC_6_17 4.15E-06 SC_10_17 4.15E-06 SC_14_17 4.15E-06SC_2_18 4.21E-06 SC_6_18 4.21E-06 SC_10_18 4.21E-06 SC_14_18 4.21E-06SC_2_19 4.26E-06 SC_6_19 4.26E-06 SC_10_19 4.26E-06 SC_14_19 4.26E-06SC_2_20 4.32E-06 SC_6_20 4.32E-06 SC_10_20 4.32E-06 SC_14_20 4.32E-06SC_2_21 4.38E-06 SC_6_21 4.38E-06 SC_10_21 4.38E-06 SC_14_21 4.38E-06SC_2_22 4.45E-06 SC_6_22 4.45E-06 SC_10_22 4.45E-06 SC_14_22 4.45E-06SC_2_23 4.55E-06 SC_6_23 4.55E-06 SC_10_23 4.55E-06 SC_14_23 4.55E-06SC_2_24 4.70E-06 SC_6_24 4.70E-06 SC_10_24 4.70E-06 SC_14_24 4.70E-06SC_2_25 6.07E-06 SC_6_25 6.07E-06 SC_10_25 6.07E-06 SC_14_25 6.07E-06SC_2_26 6.05E-06 SC_6_26 6.05E-06 SC_10_26 6.05E-06 SC_14_26 6.05E-06SC_2_27 5.72E-06 SC_6_27 5.72E-06 SC_10_27 5.72E-06 SC_14_27 5.72E-06SC_3_1 2.81E-06 SC_7_1 2.81E-06 SC_11_1 2.81E-06 SC_15_1 2.81E-06

Page 141: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

129

SC_3_2 3.29E-06 SC_7_2 3.29E-06 SC_11_2 3.29E-06 SC_15_2 3.29E-06SC_3_3 3.35E-06 SC_7_3 3.35E-06 SC_11_3 3.35E-06 SC_15_3 3.35E-06SC_3_4 3.41E-06 SC_7_4 3.41E-06 SC_11_4 3.41E-06 SC_15_4 3.41E-06SC_3_5 3.46E-06 SC_7_5 3.46E-06 SC_11_5 3.46E-06 SC_15_5 3.46E-06SC_3_6 3.52E-06 SC_7_6 3.52E-06 SC_11_6 3.52E-06 SC_15_6 3.52E-06SC_3_7 3.58E-06 SC_7_7 3.58E-06 SC_11_7 3.58E-06 SC_15_7 3.58E-06SC_3_8 3.64E-06 SC_7_8 3.64E-06 SC_11_8 3.64E-06 SC_15_8 3.64E-06SC_3_9 3.69E-06 SC_7_9 3.69E-06 SC_11_9 3.69E-06 SC_15_9 3.69E-06SC_3_10 3.75E-06 SC_7_10 3.75E-06 SC_11_10 3.75E-06 SC_15_10 3.75E-06SC_3_11 3.81E-06 SC_7_11 3.81E-06 SC_11_11 3.81E-06 SC_15_11 3.81E-06SC_3_12 3.86E-06 SC_7_12 3.86E-06 SC_11_12 3.86E-06 SC_15_12 3.86E-06SC_3_13 3.92E-06 SC_7_13 3.92E-06 SC_11_13 3.92E-06 SC_15_13 3.92E-06SC_3_14 3.98E-06 SC_7_14 3.98E-06 SC_11_14 3.98E-06 SC_15_14 3.98E-06SC_3_15 4.03E-06 SC_7_15 4.03E-06 SC_11_15 4.03E-06 SC_15_15 4.03E-06SC_3_16 4.09E-06 SC_7_16 4.09E-06 SC_11_16 4.09E-06 SC_15_16 4.09E-06SC_3_17 4.15E-06 SC_7_17 4.15E-06 SC_11_17 4.15E-06 SC_15_17 4.15E-06SC_3_18 4.21E-06 SC_7_18 4.21E-06 SC_11_18 4.21E-06 SC_15_18 4.21E-06SC_3_19 4.26E-06 SC_7_19 4.26E-06 SC_11_19 4.26E-06 SC_15_19 4.26E-06SC_3_20 4.32E-06 SC_7_20 4.32E-06 SC_11_20 4.32E-06 SC_15_20 4.32E-06SC_3_21 4.38E-06 SC_7_21 4.38E-06 SC_11_21 4.38E-06 SC_15_21 4.38E-06SC_3_22 4.45E-06 SC_7_22 4.45E-06 SC_11_22 4.45E-06 SC_15_22 4.45E-06SC_3_23 4.55E-06 SC_7_23 4.55E-06 SC_11_23 4.55E-06 SC_15_23 4.55E-06SC_3_24 4.70E-06 SC_7_24 4.70E-06 SC_11_24 4.70E-06 SC_15_24 4.70E-06SC_3_25 6.07E-06 SC_7_25 6.07E-06 SC_11_25 6.07E-06 SC_15_25 6.07E-06SC_3_26 6.05E-06 SC_7_26 6.05E-06 SC_11_26 6.05E-06 SC_15_26 6.05E-06SC_3_27 5.72E-06 SC_7_27 5.72E-06 SC_11_27 5.72E-06 SC_15_27 5.72E-06SC_4_1 2.81E-06 SC_8_1 2.81E-06 SC_12_1 2.81E-06 SC_16_1 2.81E-06SC_4_2 3.29E-06 SC_8_2 3.29E-06 SC_12_2 3.29E-06 SC_16_2 3.29E-06SC_4_3 3.35E-06 SC_8_3 3.35E-06 SC_12_3 3.35E-06 SC_16_3 3.35E-06SC_4_4 3.41E-06 SC_8_4 3.41E-06 SC_12_4 3.41E-06 SC_16_4 3.41E-06SC_4_5 3.46E-06 SC_8_5 3.46E-06 SC_12_5 3.46E-06 SC_16_5 3.46E-06SC_4_6 3.52E-06 SC_8_6 3.52E-06 SC_12_6 3.52E-06 SC_16_6 3.52E-06SC_4_7 3.58E-06 SC_8_7 3.58E-06 SC_12_7 3.58E-06 SC_16_7 3.58E-06SC_4_8 3.64E-06 SC_8_8 3.64E-06 SC_12_8 3.64E-06 SC_16_8 3.64E-06SC_4_9 3.69E-06 SC_8_9 3.69E-06 SC_12_9 3.69E-06 SC_16_9 3.69E-06SC_4_10 3.75E-06 SC_8_10 3.75E-06 SC_12_10 3.75E-06 SC_16_10 3.75E-06SC_4_11 3.81E-06 SC_8_11 3.81E-06 SC_12_11 3.81E-06 SC_16_11 3.81E-06SC_4_12 3.86E-06 SC_8_12 3.86E-06 SC_12_12 3.86E-06 SC_16_12 3.86E-06SC_4_13 3.92E-06 SC_8_13 3.92E-06 SC_12_13 3.92E-06 SC_16_13 3.92E-06SC_4_14 3.98E-06 SC_8_14 3.98E-06 SC_12_14 3.98E-06 SC_16_14 3.98E-06SC_4_15 4.03E-06 SC_8_15 4.03E-06 SC_12_15 4.03E-06 SC_16_15 4.03E-06SC_4_16 4.09E-06 SC_8_16 4.09E-06 SC_12_16 4.09E-06 SC_16_16 4.09E-06SC_4_17 4.15E-06 SC_8_17 4.15E-06 SC_12_17 4.15E-06 SC_16_17 4.15E-06SC_4_18 4.21E-06 SC_8_18 4.21E-06 SC_12_18 4.21E-06 SC_16_18 4.21E-06SC_4_19 4.26E-06 SC_8_19 4.26E-06 SC_12_19 4.26E-06 SC_16_19 4.26E-06SC_4_20 4.32E-06 SC_8_20 4.32E-06 SC_12_20 4.32E-06 SC_16_20 4.32E-06SC_4_21 4.38E-06 SC_8_21 4.38E-06 SC_12_21 4.38E-06 SC_16_21 4.38E-06SC_4_22 4.45E-06 SC_8_22 4.45E-06 SC_12_22 4.45E-06 SC_16_22 4.45E-06SC_4_23 4.55E-06 SC_8_23 4.55E-06 SC_12_23 4.55E-06 SC_16_23 4.55E-06SC_4_24 4.70E-06 SC_8_24 4.70E-06 SC_12_24 4.70E-06 SC_16_24 4.70E-06SC_4_25 6.07E-06 SC_8_25 6.07E-06 SC_12_25 6.07E-06 SC_16_25 6.07E-06SC_4_26 6.05E-06 SC_8_26 6.05E-06 SC_12_26 6.05E-06 SC_16_26 6.05E-06SC_4_27 5.72E-06 SC_8_27 5.72E-06 SC_12_27 5.72E-06 SC_16_27 5.72E-06

Tab. A.3-5 Cumulative inductances for each conductor of PF 6 coil at 500 Hz (H)

Page 142: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

130

SC_1_1 2.22E-06 SC_5_1 2.22E-06 SC_9_1 2.22E-06 SC_13_1 2.22E-06SC_1_2 2.53E-06 SC_5_2 2.53E-06 SC_9_2 2.53E-06 SC_13_2 2.53E-06SC_1_3 2.58E-06 SC_5_3 2.58E-06 SC_9_3 2.58E-06 SC_13_3 2.58E-06SC_1_4 2.62E-06 SC_5_4 2.62E-06 SC_9_4 2.62E-06 SC_13_4 2.62E-06SC_1_5 2.66E-06 SC_5_5 2.66E-06 SC_9_5 2.66E-06 SC_13_5 2.66E-06SC_1_6 2.71E-06 SC_5_6 2.71E-06 SC_9_6 2.71E-06 SC_13_6 2.71E-06SC_1_7 2.75E-06 SC_5_7 2.75E-06 SC_9_7 2.75E-06 SC_13_7 2.75E-06SC_1_8 2.79E-06 SC_5_8 2.79E-06 SC_9_8 2.79E-06 SC_13_8 2.79E-06SC_1_9 2.84E-06 SC_5_9 2.84E-06 SC_9_9 2.84E-06 SC_13_9 2.84E-06SC_1_10 2.88E-06 SC_5_10 2.88E-06 SC_9_10 2.88E-06 SC_13_10 2.88E-06SC_1_11 2.92E-06 SC_5_11 2.92E-06 SC_9_11 2.92E-06 SC_13_11 2.92E-06SC_1_12 2.97E-06 SC_5_12 2.97E-06 SC_9_12 2.97E-06 SC_13_12 2.97E-06SC_1_13 3.01E-06 SC_5_13 3.01E-06 SC_9_13 3.01E-06 SC_13_13 3.01E-06SC_1_14 3.05E-06 SC_5_14 3.05E-06 SC_9_14 3.05E-06 SC_13_14 3.05E-06SC_1_15 3.10E-06 SC_5_15 3.10E-06 SC_9_15 3.10E-06 SC_13_15 3.10E-06SC_1_16 3.14E-06 SC_5_16 3.14E-06 SC_9_16 3.14E-06 SC_13_16 3.14E-06SC_1_17 3.19E-06 SC_5_17 3.19E-06 SC_9_17 3.19E-06 SC_13_17 3.19E-06SC_1_18 3.23E-06 SC_5_18 3.23E-06 SC_9_18 3.23E-06 SC_13_18 3.23E-06SC_1_19 3.27E-06 SC_5_19 3.27E-06 SC_9_19 3.27E-06 SC_13_19 3.27E-06SC_1_20 3.32E-06 SC_5_20 3.32E-06 SC_9_20 3.32E-06 SC_13_20 3.32E-06SC_1_21 3.36E-06 SC_5_21 3.36E-06 SC_9_21 3.36E-06 SC_13_21 3.36E-06SC_1_22 3.41E-06 SC_5_22 3.41E-06 SC_9_22 3.41E-06 SC_13_22 3.41E-06SC_1_23 3.46E-06 SC_5_23 3.46E-06 SC_9_23 3.46E-06 SC_13_23 3.46E-06SC_1_24 3.58E-06 SC_5_24 3.58E-06 SC_9_24 3.58E-06 SC_13_24 3.58E-06SC_1_25 4.63E-06 SC_5_25 4.63E-06 SC_9_25 4.63E-06 SC_13_25 4.63E-06SC_1_26 4.73E-06 SC_5_26 4.73E-06 SC_9_26 4.73E-06 SC_13_26 4.73E-06SC_1_27 4.15E-06 SC_5_27 4.15E-06 SC_9_27 4.15E-06 SC_13_27 4.15E-06SC_2_1 2.22E-06 SC_6_1 2.22E-06 SC_10_1 2.22E-06 SC_14_1 2.22E-06SC_2_2 2.53E-06 SC_6_2 2.53E-06 SC_10_2 2.53E-06 SC_14_2 2.53E-06SC_2_3 2.58E-06 SC_6_3 2.58E-06 SC_10_3 2.58E-06 SC_14_3 2.58E-06SC_2_4 2.62E-06 SC_6_4 2.62E-06 SC_10_4 2.62E-06 SC_14_4 2.62E-06SC_2_5 2.66E-06 SC_6_5 2.66E-06 SC_10_5 2.66E-06 SC_14_5 2.66E-06SC_2_6 2.71E-06 SC_6_6 2.71E-06 SC_10_6 2.71E-06 SC_14_6 2.71E-06SC_2_7 2.75E-06 SC_6_7 2.75E-06 SC_10_7 2.75E-06 SC_14_7 2.75E-06SC_2_8 2.79E-06 SC_6_8 2.79E-06 SC_10_8 2.79E-06 SC_14_8 2.79E-06SC_2_9 2.84E-06 SC_6_9 2.84E-06 SC_10_9 2.84E-06 SC_14_9 2.84E-06SC_2_10 2.88E-06 SC_6_10 2.88E-06 SC_10_10 2.88E-06 SC_14_10 2.88E-06SC_2_11 2.92E-06 SC_6_11 2.92E-06 SC_10_11 2.92E-06 SC_14_11 2.92E-06SC_2_12 2.97E-06 SC_6_12 2.97E-06 SC_10_12 2.97E-06 SC_14_12 2.97E-06SC_2_13 3.01E-06 SC_6_13 3.01E-06 SC_10_13 3.01E-06 SC_14_13 3.01E-06SC_2_14 3.05E-06 SC_6_14 3.05E-06 SC_10_14 3.05E-06 SC_14_14 3.05E-06SC_2_15 3.10E-06 SC_6_15 3.10E-06 SC_10_15 3.10E-06 SC_14_15 3.10E-06SC_2_16 3.14E-06 SC_6_16 3.14E-06 SC_10_16 3.14E-06 SC_14_16 3.14E-06SC_2_17 3.19E-06 SC_6_17 3.19E-06 SC_10_17 3.19E-06 SC_14_17 3.19E-06SC_2_18 3.23E-06 SC_6_18 3.23E-06 SC_10_18 3.23E-06 SC_14_18 3.23E-06SC_2_19 3.27E-06 SC_6_19 3.27E-06 SC_10_19 3.27E-06 SC_14_19 3.27E-06SC_2_20 3.32E-06 SC_6_20 3.32E-06 SC_10_20 3.32E-06 SC_14_20 3.32E-06SC_2_21 3.36E-06 SC_6_21 3.36E-06 SC_10_21 3.36E-06 SC_14_21 3.36E-06SC_2_22 3.41E-06 SC_6_22 3.41E-06 SC_10_22 3.41E-06 SC_14_22 3.41E-06SC_2_23 3.46E-06 SC_6_23 3.46E-06 SC_10_23 3.46E-06 SC_14_23 3.46E-06SC_2_24 3.58E-06 SC_6_24 3.58E-06 SC_10_24 3.58E-06 SC_14_24 3.58E-06SC_2_25 4.63E-06 SC_6_25 4.63E-06 SC_10_25 4.63E-06 SC_14_25 4.63E-06SC_2_26 4.73E-06 SC_6_26 4.73E-06 SC_10_26 4.73E-06 SC_14_26 4.73E-06SC_2_27 4.15E-06 SC_6_27 4.15E-06 SC_10_27 4.15E-06 SC_14_27 4.15E-06SC_3_1 2.22E-06 SC_7_1 2.22E-06 SC_11_1 2.22E-06 SC_15_1 2.22E-06

Page 143: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

131

SC_3_2 2.53E-06 SC_7_2 2.53E-06 SC_11_2 2.53E-06 SC_15_2 2.53E-06SC_3_3 2.58E-06 SC_7_3 2.58E-06 SC_11_3 2.58E-06 SC_15_3 2.58E-06SC_3_4 2.62E-06 SC_7_4 2.62E-06 SC_11_4 2.62E-06 SC_15_4 2.62E-06SC_3_5 2.66E-06 SC_7_5 2.66E-06 SC_11_5 2.66E-06 SC_15_5 2.66E-06SC_3_6 2.71E-06 SC_7_6 2.71E-06 SC_11_6 2.71E-06 SC_15_6 2.71E-06SC_3_7 2.75E-06 SC_7_7 2.75E-06 SC_11_7 2.75E-06 SC_15_7 2.75E-06SC_3_8 2.79E-06 SC_7_8 2.79E-06 SC_11_8 2.79E-06 SC_15_8 2.79E-06SC_3_9 2.84E-06 SC_7_9 2.84E-06 SC_11_9 2.84E-06 SC_15_9 2.84E-06SC_3_10 2.88E-06 SC_7_10 2.88E-06 SC_11_10 2.88E-06 SC_15_10 2.88E-06SC_3_11 2.92E-06 SC_7_11 2.92E-06 SC_11_11 2.92E-06 SC_15_11 2.92E-06SC_3_12 2.97E-06 SC_7_12 2.97E-06 SC_11_12 2.97E-06 SC_15_12 2.97E-06SC_3_13 3.01E-06 SC_7_13 3.01E-06 SC_11_13 3.01E-06 SC_15_13 3.01E-06SC_3_14 3.05E-06 SC_7_14 3.05E-06 SC_11_14 3.05E-06 SC_15_14 3.05E-06SC_3_15 3.10E-06 SC_7_15 3.10E-06 SC_11_15 3.10E-06 SC_15_15 3.10E-06SC_3_16 3.14E-06 SC_7_16 3.14E-06 SC_11_16 3.14E-06 SC_15_16 3.14E-06SC_3_17 3.19E-06 SC_7_17 3.19E-06 SC_11_17 3.19E-06 SC_15_17 3.19E-06SC_3_18 3.23E-06 SC_7_18 3.23E-06 SC_11_18 3.23E-06 SC_15_18 3.23E-06SC_3_19 3.27E-06 SC_7_19 3.27E-06 SC_11_19 3.27E-06 SC_15_19 3.27E-06SC_3_20 3.32E-06 SC_7_20 3.32E-06 SC_11_20 3.32E-06 SC_15_20 3.32E-06SC_3_21 3.36E-06 SC_7_21 3.36E-06 SC_11_21 3.36E-06 SC_15_21 3.36E-06SC_3_22 3.41E-06 SC_7_22 3.41E-06 SC_11_22 3.41E-06 SC_15_22 3.41E-06SC_3_23 3.46E-06 SC_7_23 3.46E-06 SC_11_23 3.46E-06 SC_15_23 3.46E-06SC_3_24 3.58E-06 SC_7_24 3.58E-06 SC_11_24 3.58E-06 SC_15_24 3.58E-06SC_3_25 4.63E-06 SC_7_25 4.63E-06 SC_11_25 4.63E-06 SC_15_25 4.63E-06SC_3_26 4.73E-06 SC_7_26 4.73E-06 SC_11_26 4.73E-06 SC_15_26 4.73E-06SC_3_27 4.15E-06 SC_7_27 4.15E-06 SC_11_27 4.15E-06 SC_15_27 4.15E-06SC_4_1 2.22E-06 SC_8_1 2.22E-06 SC_12_1 2.22E-06 SC_16_1 2.22E-06SC_4_2 2.53E-06 SC_8_2 2.53E-06 SC_12_2 2.53E-06 SC_16_2 2.53E-06SC_4_3 2.58E-06 SC_8_3 2.58E-06 SC_12_3 2.58E-06 SC_16_3 2.58E-06SC_4_4 2.62E-06 SC_8_4 2.62E-06 SC_12_4 2.62E-06 SC_16_4 2.62E-06SC_4_5 2.66E-06 SC_8_5 2.66E-06 SC_12_5 2.66E-06 SC_16_5 2.66E-06SC_4_6 2.71E-06 SC_8_6 2.71E-06 SC_12_6 2.71E-06 SC_16_6 2.71E-06SC_4_7 2.75E-06 SC_8_7 2.75E-06 SC_12_7 2.75E-06 SC_16_7 2.75E-06SC_4_8 2.79E-06 SC_8_8 2.79E-06 SC_12_8 2.79E-06 SC_16_8 2.79E-06SC_4_9 2.84E-06 SC_8_9 2.84E-06 SC_12_9 2.84E-06 SC_16_9 2.84E-06SC_4_10 2.88E-06 SC_8_10 2.88E-06 SC_12_10 2.88E-06 SC_16_10 2.88E-06SC_4_11 2.92E-06 SC_8_11 2.92E-06 SC_12_11 2.92E-06 SC_16_11 2.92E-06SC_4_12 2.97E-06 SC_8_12 2.97E-06 SC_12_12 2.97E-06 SC_16_12 2.97E-06SC_4_13 3.01E-06 SC_8_13 3.01E-06 SC_12_13 3.01E-06 SC_16_13 3.01E-06SC_4_14 3.05E-06 SC_8_14 3.05E-06 SC_12_14 3.05E-06 SC_16_14 3.05E-06SC_4_15 3.10E-06 SC_8_15 3.10E-06 SC_12_15 3.10E-06 SC_16_15 3.10E-06SC_4_16 3.14E-06 SC_8_16 3.14E-06 SC_12_16 3.14E-06 SC_16_16 3.14E-06SC_4_17 3.19E-06 SC_8_17 3.19E-06 SC_12_17 3.19E-06 SC_16_17 3.19E-06SC_4_18 3.23E-06 SC_8_18 3.23E-06 SC_12_18 3.23E-06 SC_16_18 3.23E-06SC_4_19 3.27E-06 SC_8_19 3.27E-06 SC_12_19 3.27E-06 SC_16_19 3.27E-06SC_4_20 3.32E-06 SC_8_20 3.32E-06 SC_12_20 3.32E-06 SC_16_20 3.32E-06SC_4_21 3.36E-06 SC_8_21 3.36E-06 SC_12_21 3.36E-06 SC_16_21 3.36E-06SC_4_22 3.41E-06 SC_8_22 3.41E-06 SC_12_22 3.41E-06 SC_16_22 3.41E-06SC_4_23 3.46E-06 SC_8_23 3.46E-06 SC_12_23 3.46E-06 SC_16_23 3.46E-06SC_4_24 3.58E-06 SC_8_24 3.58E-06 SC_12_24 3.58E-06 SC_16_24 3.58E-06SC_4_25 4.63E-06 SC_8_25 4.63E-06 SC_12_25 4.63E-06 SC_16_25 4.63E-06SC_4_26 4.73E-06 SC_8_26 4.73E-06 SC_12_26 4.73E-06 SC_16_26 4.73E-06SC_4_27 4.15E-06 SC_8_27 4.15E-06 SC_12_27 4.15E-06 SC_16_27 4.15E-06

Tab. A.3-6 Cumulative inductances for each conductor of PF 6 coil at 814 Hz (H)

Page 144: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

132

SC_1_1 1.28E-06 SC_5_1 1.28E-06 SC_9_1 1.28E-06 SC_13_1 1.28E-06SC_1_2 1.30E-06 SC_5_2 1.30E-06 SC_9_2 1.30E-06 SC_13_2 1.30E-06SC_1_3 1.32E-06 SC_5_3 1.32E-06 SC_9_3 1.32E-06 SC_13_3 1.32E-06SC_1_4 1.34E-06 SC_5_4 1.34E-06 SC_9_4 1.34E-06 SC_13_4 1.34E-06SC_1_5 1.36E-06 SC_5_5 1.36E-06 SC_9_5 1.36E-06 SC_13_5 1.36E-06SC_1_6 1.39E-06 SC_5_6 1.39E-06 SC_9_6 1.39E-06 SC_13_6 1.39E-06SC_1_7 1.41E-06 SC_5_7 1.41E-06 SC_9_7 1.41E-06 SC_13_7 1.41E-06SC_1_8 1.43E-06 SC_5_8 1.43E-06 SC_9_8 1.43E-06 SC_13_8 1.43E-06SC_1_9 1.45E-06 SC_5_9 1.45E-06 SC_9_9 1.45E-06 SC_13_9 1.45E-06SC_1_10 1.48E-06 SC_5_10 1.48E-06 SC_9_10 1.48E-06 SC_13_10 1.48E-06SC_1_11 1.50E-06 SC_5_11 1.50E-06 SC_9_11 1.50E-06 SC_13_11 1.50E-06SC_1_12 1.52E-06 SC_5_12 1.52E-06 SC_9_12 1.52E-06 SC_13_12 1.52E-06SC_1_13 1.54E-06 SC_5_13 1.54E-06 SC_9_13 1.54E-06 SC_13_13 1.54E-06SC_1_14 1.56E-06 SC_5_14 1.56E-06 SC_9_14 1.56E-06 SC_13_14 1.56E-06SC_1_15 1.59E-06 SC_5_15 1.59E-06 SC_9_15 1.59E-06 SC_13_15 1.59E-06SC_1_16 1.61E-06 SC_5_16 1.61E-06 SC_9_16 1.61E-06 SC_13_16 1.61E-06SC_1_17 1.63E-06 SC_5_17 1.63E-06 SC_9_17 1.63E-06 SC_13_17 1.63E-06SC_1_18 1.65E-06 SC_5_18 1.65E-06 SC_9_18 1.65E-06 SC_13_18 1.65E-06SC_1_19 1.68E-06 SC_5_19 1.68E-06 SC_9_19 1.68E-06 SC_13_19 1.68E-06SC_1_20 1.70E-06 SC_5_20 1.70E-06 SC_9_20 1.70E-06 SC_13_20 1.70E-06SC_1_21 1.72E-06 SC_5_21 1.72E-06 SC_9_21 1.72E-06 SC_13_21 1.72E-06SC_1_22 1.74E-06 SC_5_22 1.74E-06 SC_9_22 1.74E-06 SC_13_22 1.74E-06SC_1_23 1.76E-06 SC_5_23 1.76E-06 SC_9_23 1.76E-06 SC_13_23 1.76E-06SC_1_24 1.79E-06 SC_5_24 1.79E-06 SC_9_24 1.79E-06 SC_13_24 1.79E-06SC_1_25 1.97E-06 SC_5_25 1.97E-06 SC_9_25 1.97E-06 SC_13_25 1.97E-06SC_1_26 2.00E-06 SC_5_26 2.00E-06 SC_9_26 2.00E-06 SC_13_26 2.00E-06SC_1_27 2.02E-06 SC_5_27 2.02E-06 SC_9_27 2.02E-06 SC_13_27 2.02E-06SC_2_1 1.28E-06 SC_6_1 1.28E-06 SC_10_1 1.28E-06 SC_14_1 1.28E-06SC_2_2 1.30E-06 SC_6_2 1.30E-06 SC_10_2 1.30E-06 SC_14_2 1.30E-06SC_2_3 1.32E-06 SC_6_3 1.32E-06 SC_10_3 1.32E-06 SC_14_3 1.32E-06SC_2_4 1.34E-06 SC_6_4 1.34E-06 SC_10_4 1.34E-06 SC_14_4 1.34E-06SC_2_5 1.36E-06 SC_6_5 1.36E-06 SC_10_5 1.36E-06 SC_14_5 1.36E-06SC_2_6 1.39E-06 SC_6_6 1.39E-06 SC_10_6 1.39E-06 SC_14_6 1.39E-06SC_2_7 1.41E-06 SC_6_7 1.41E-06 SC_10_7 1.41E-06 SC_14_7 1.41E-06SC_2_8 1.43E-06 SC_6_8 1.43E-06 SC_10_8 1.43E-06 SC_14_8 1.43E-06SC_2_9 1.45E-06 SC_6_9 1.45E-06 SC_10_9 1.45E-06 SC_14_9 1.45E-06SC_2_10 1.48E-06 SC_6_10 1.48E-06 SC_10_10 1.48E-06 SC_14_10 1.48E-06SC_2_11 1.50E-06 SC_6_11 1.50E-06 SC_10_11 1.50E-06 SC_14_11 1.50E-06SC_2_12 1.52E-06 SC_6_12 1.52E-06 SC_10_12 1.52E-06 SC_14_12 1.52E-06SC_2_13 1.54E-06 SC_6_13 1.54E-06 SC_10_13 1.54E-06 SC_14_13 1.54E-06SC_2_14 1.56E-06 SC_6_14 1.56E-06 SC_10_14 1.56E-06 SC_14_14 1.56E-06SC_2_15 1.59E-06 SC_6_15 1.59E-06 SC_10_15 1.59E-06 SC_14_15 1.59E-06SC_2_16 1.61E-06 SC_6_16 1.61E-06 SC_10_16 1.61E-06 SC_14_16 1.61E-06SC_2_17 1.63E-06 SC_6_17 1.63E-06 SC_10_17 1.63E-06 SC_14_17 1.63E-06SC_2_18 1.65E-06 SC_6_18 1.65E-06 SC_10_18 1.65E-06 SC_14_18 1.65E-06SC_2_19 1.68E-06 SC_6_19 1.68E-06 SC_10_19 1.68E-06 SC_14_19 1.68E-06SC_2_20 1.70E-06 SC_6_20 1.70E-06 SC_10_20 1.70E-06 SC_14_20 1.70E-06SC_2_21 1.72E-06 SC_6_21 1.72E-06 SC_10_21 1.72E-06 SC_14_21 1.72E-06SC_2_22 1.74E-06 SC_6_22 1.74E-06 SC_10_22 1.74E-06 SC_14_22 1.74E-06SC_2_23 1.76E-06 SC_6_23 1.76E-06 SC_10_23 1.76E-06 SC_14_23 1.76E-06SC_2_24 1.79E-06 SC_6_24 1.79E-06 SC_10_24 1.79E-06 SC_14_24 1.79E-06SC_2_25 1.97E-06 SC_6_25 1.97E-06 SC_10_25 1.97E-06 SC_14_25 1.97E-06SC_2_26 2.00E-06 SC_6_26 2.00E-06 SC_10_26 2.00E-06 SC_14_26 2.00E-06SC_2_27 2.02E-06 SC_6_27 2.02E-06 SC_10_27 2.02E-06 SC_14_27 2.02E-06SC_3_1 1.28E-06 SC_7_1 1.28E-06 SC_11_1 1.28E-06 SC_15_1 1.28E-06

Page 145: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

133

SC_3_2 1.30E-06 SC_7_2 1.30E-06 SC_11_2 1.30E-06 SC_15_2 1.30E-06SC_3_3 1.32E-06 SC_7_3 1.32E-06 SC_11_3 1.32E-06 SC_15_3 1.32E-06SC_3_4 1.34E-06 SC_7_4 1.34E-06 SC_11_4 1.34E-06 SC_15_4 1.34E-06SC_3_5 1.36E-06 SC_7_5 1.36E-06 SC_11_5 1.36E-06 SC_15_5 1.36E-06SC_3_6 1.39E-06 SC_7_6 1.39E-06 SC_11_6 1.39E-06 SC_15_6 1.39E-06SC_3_7 1.41E-06 SC_7_7 1.41E-06 SC_11_7 1.41E-06 SC_15_7 1.41E-06SC_3_8 1.43E-06 SC_7_8 1.43E-06 SC_11_8 1.43E-06 SC_15_8 1.43E-06SC_3_9 1.45E-06 SC_7_9 1.45E-06 SC_11_9 1.45E-06 SC_15_9 1.45E-06SC_3_10 1.48E-06 SC_7_10 1.48E-06 SC_11_10 1.48E-06 SC_15_10 1.48E-06SC_3_11 1.50E-06 SC_7_11 1.50E-06 SC_11_11 1.50E-06 SC_15_11 1.50E-06SC_3_12 1.52E-06 SC_7_12 1.52E-06 SC_11_12 1.52E-06 SC_15_12 1.52E-06SC_3_13 1.54E-06 SC_7_13 1.54E-06 SC_11_13 1.54E-06 SC_15_13 1.54E-06SC_3_14 1.56E-06 SC_7_14 1.56E-06 SC_11_14 1.56E-06 SC_15_14 1.56E-06SC_3_15 1.59E-06 SC_7_15 1.59E-06 SC_11_15 1.59E-06 SC_15_15 1.59E-06SC_3_16 1.61E-06 SC_7_16 1.61E-06 SC_11_16 1.61E-06 SC_15_16 1.61E-06SC_3_17 1.63E-06 SC_7_17 1.63E-06 SC_11_17 1.63E-06 SC_15_17 1.63E-06SC_3_18 1.65E-06 SC_7_18 1.65E-06 SC_11_18 1.65E-06 SC_15_18 1.65E-06SC_3_19 1.68E-06 SC_7_19 1.68E-06 SC_11_19 1.68E-06 SC_15_19 1.68E-06SC_3_20 1.70E-06 SC_7_20 1.70E-06 SC_11_20 1.70E-06 SC_15_20 1.70E-06SC_3_21 1.72E-06 SC_7_21 1.72E-06 SC_11_21 1.72E-06 SC_15_21 1.72E-06SC_3_22 1.74E-06 SC_7_22 1.74E-06 SC_11_22 1.74E-06 SC_15_22 1.74E-06SC_3_23 1.76E-06 SC_7_23 1.76E-06 SC_11_23 1.76E-06 SC_15_23 1.76E-06SC_3_24 1.79E-06 SC_7_24 1.79E-06 SC_11_24 1.79E-06 SC_15_24 1.79E-06SC_3_25 1.97E-06 SC_7_25 1.97E-06 SC_11_25 1.97E-06 SC_15_25 1.97E-06SC_3_26 2.00E-06 SC_7_26 2.00E-06 SC_11_26 2.00E-06 SC_15_26 2.00E-06SC_3_27 2.02E-06 SC_7_27 2.02E-06 SC_11_27 2.02E-06 SC_15_27 2.02E-06SC_4_1 1.28E-06 SC_8_1 1.28E-06 SC_12_1 1.28E-06 SC_16_1 1.28E-06SC_4_2 1.30E-06 SC_8_2 1.30E-06 SC_12_2 1.30E-06 SC_16_2 1.30E-06SC_4_3 1.32E-06 SC_8_3 1.32E-06 SC_12_3 1.32E-06 SC_16_3 1.32E-06SC_4_4 1.34E-06 SC_8_4 1.34E-06 SC_12_4 1.34E-06 SC_16_4 1.34E-06SC_4_5 1.36E-06 SC_8_5 1.36E-06 SC_12_5 1.36E-06 SC_16_5 1.36E-06SC_4_6 1.39E-06 SC_8_6 1.39E-06 SC_12_6 1.39E-06 SC_16_6 1.39E-06SC_4_7 1.41E-06 SC_8_7 1.41E-06 SC_12_7 1.41E-06 SC_16_7 1.41E-06SC_4_8 1.43E-06 SC_8_8 1.43E-06 SC_12_8 1.43E-06 SC_16_8 1.43E-06SC_4_9 1.45E-06 SC_8_9 1.45E-06 SC_12_9 1.45E-06 SC_16_9 1.45E-06SC_4_10 1.48E-06 SC_8_10 1.48E-06 SC_12_10 1.48E-06 SC_16_10 1.48E-06SC_4_11 1.50E-06 SC_8_11 1.50E-06 SC_12_11 1.50E-06 SC_16_11 1.50E-06SC_4_12 1.52E-06 SC_8_12 1.52E-06 SC_12_12 1.52E-06 SC_16_12 1.52E-06SC_4_13 1.54E-06 SC_8_13 1.54E-06 SC_12_13 1.54E-06 SC_16_13 1.54E-06SC_4_14 1.56E-06 SC_8_14 1.56E-06 SC_12_14 1.56E-06 SC_16_14 1.56E-06SC_4_15 1.59E-06 SC_8_15 1.59E-06 SC_12_15 1.59E-06 SC_16_15 1.59E-06SC_4_16 1.61E-06 SC_8_16 1.61E-06 SC_12_16 1.61E-06 SC_16_16 1.61E-06SC_4_17 1.63E-06 SC_8_17 1.63E-06 SC_12_17 1.63E-06 SC_16_17 1.63E-06SC_4_18 1.65E-06 SC_8_18 1.65E-06 SC_12_18 1.65E-06 SC_16_18 1.65E-06SC_4_19 1.68E-06 SC_8_19 1.68E-06 SC_12_19 1.68E-06 SC_16_19 1.68E-06SC_4_20 1.70E-06 SC_8_20 1.70E-06 SC_12_20 1.70E-06 SC_16_20 1.70E-06SC_4_21 1.72E-06 SC_8_21 1.72E-06 SC_12_21 1.72E-06 SC_16_21 1.72E-06SC_4_22 1.74E-06 SC_8_22 1.74E-06 SC_12_22 1.74E-06 SC_16_22 1.74E-06SC_4_23 1.76E-06 SC_8_23 1.76E-06 SC_12_23 1.76E-06 SC_16_23 1.76E-06SC_4_24 1.79E-06 SC_8_24 1.79E-06 SC_12_24 1.79E-06 SC_16_24 1.79E-06SC_4_25 1.97E-06 SC_8_25 1.97E-06 SC_12_25 1.97E-06 SC_16_25 1.97E-06SC_4_26 2.00E-06 SC_8_26 2.00E-06 SC_12_26 2.00E-06 SC_16_26 2.00E-06SC_4_27 2.02E-06 SC_8_27 2.02E-06 SC_12_27 2.02E-06 SC_16_27 2.02E-06

Tab. A.3-7 Cumulative inductances for each conductor of PF 6 coil at 12.9 kHz (H)

Page 146: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

134

SC_1_1 1.23E-06 SC_5_1 1.23E-06 SC_9_1 1.23E-06 SC_13_1 1.23E-06SC_1_2 1.25E-06 SC_5_2 1.25E-06 SC_9_2 1.25E-06 SC_13_2 1.25E-06SC_1_3 1.27E-06 SC_5_3 1.27E-06 SC_9_3 1.27E-06 SC_13_3 1.27E-06SC_1_4 1.29E-06 SC_5_4 1.29E-06 SC_9_4 1.29E-06 SC_13_4 1.29E-06SC_1_5 1.32E-06 SC_5_5 1.32E-06 SC_9_5 1.32E-06 SC_13_5 1.32E-06SC_1_6 1.34E-06 SC_5_6 1.34E-06 SC_9_6 1.34E-06 SC_13_6 1.34E-06SC_1_7 1.36E-06 SC_5_7 1.36E-06 SC_9_7 1.36E-06 SC_13_7 1.36E-06SC_1_8 1.38E-06 SC_5_8 1.38E-06 SC_9_8 1.38E-06 SC_13_8 1.38E-06SC_1_9 1.40E-06 SC_5_9 1.40E-06 SC_9_9 1.40E-06 SC_13_9 1.40E-06SC_1_10 1.42E-06 SC_5_10 1.42E-06 SC_9_10 1.42E-06 SC_13_10 1.42E-06SC_1_11 1.44E-06 SC_5_11 1.44E-06 SC_9_11 1.44E-06 SC_13_11 1.44E-06SC_1_12 1.47E-06 SC_5_12 1.47E-06 SC_9_12 1.47E-06 SC_13_12 1.47E-06SC_1_13 1.49E-06 SC_5_13 1.49E-06 SC_9_13 1.49E-06 SC_13_13 1.49E-06SC_1_14 1.51E-06 SC_5_14 1.51E-06 SC_9_14 1.51E-06 SC_13_14 1.51E-06SC_1_15 1.53E-06 SC_5_15 1.53E-06 SC_9_15 1.53E-06 SC_13_15 1.53E-06SC_1_16 1.55E-06 SC_5_16 1.55E-06 SC_9_16 1.55E-06 SC_13_16 1.55E-06SC_1_17 1.57E-06 SC_5_17 1.57E-06 SC_9_17 1.57E-06 SC_13_17 1.57E-06SC_1_18 1.59E-06 SC_5_18 1.59E-06 SC_9_18 1.59E-06 SC_13_18 1.59E-06SC_1_19 1.62E-06 SC_5_19 1.62E-06 SC_9_19 1.62E-06 SC_13_19 1.62E-06SC_1_20 1.64E-06 SC_5_20 1.64E-06 SC_9_20 1.64E-06 SC_13_20 1.64E-06SC_1_21 1.66E-06 SC_5_21 1.66E-06 SC_9_21 1.66E-06 SC_13_21 1.66E-06SC_1_22 1.68E-06 SC_5_22 1.68E-06 SC_9_22 1.68E-06 SC_13_22 1.68E-06SC_1_23 1.70E-06 SC_5_23 1.70E-06 SC_9_23 1.70E-06 SC_13_23 1.70E-06SC_1_24 1.72E-06 SC_5_24 1.72E-06 SC_9_24 1.72E-06 SC_13_24 1.72E-06SC_1_25 1.89E-06 SC_5_25 1.89E-06 SC_9_25 1.89E-06 SC_13_25 1.89E-06SC_1_26 1.92E-06 SC_5_26 1.92E-06 SC_9_26 1.92E-06 SC_13_26 1.92E-06SC_1_27 1.94E-06 SC_5_27 1.94E-06 SC_9_27 1.94E-06 SC_13_27 1.94E-06SC_2_1 1.23E-06 SC_6_1 1.23E-06 SC_10_1 1.23E-06 SC_14_1 1.23E-06SC_2_2 1.25E-06 SC_6_2 1.25E-06 SC_10_2 1.25E-06 SC_14_2 1.25E-06SC_2_3 1.27E-06 SC_6_3 1.27E-06 SC_10_3 1.27E-06 SC_14_3 1.27E-06SC_2_4 1.29E-06 SC_6_4 1.29E-06 SC_10_4 1.29E-06 SC_14_4 1.29E-06SC_2_5 1.32E-06 SC_6_5 1.32E-06 SC_10_5 1.32E-06 SC_14_5 1.32E-06SC_2_6 1.34E-06 SC_6_6 1.34E-06 SC_10_6 1.34E-06 SC_14_6 1.34E-06SC_2_7 1.36E-06 SC_6_7 1.36E-06 SC_10_7 1.36E-06 SC_14_7 1.36E-06SC_2_8 1.38E-06 SC_6_8 1.38E-06 SC_10_8 1.38E-06 SC_14_8 1.38E-06SC_2_9 1.40E-06 SC_6_9 1.40E-06 SC_10_9 1.40E-06 SC_14_9 1.40E-06SC_2_10 1.42E-06 SC_6_10 1.42E-06 SC_10_10 1.42E-06 SC_14_10 1.42E-06SC_2_11 1.44E-06 SC_6_11 1.44E-06 SC_10_11 1.44E-06 SC_14_11 1.44E-06SC_2_12 1.47E-06 SC_6_12 1.47E-06 SC_10_12 1.47E-06 SC_14_12 1.47E-06SC_2_13 1.49E-06 SC_6_13 1.49E-06 SC_10_13 1.49E-06 SC_14_13 1.49E-06SC_2_14 1.51E-06 SC_6_14 1.51E-06 SC_10_14 1.51E-06 SC_14_14 1.51E-06SC_2_15 1.53E-06 SC_6_15 1.53E-06 SC_10_15 1.53E-06 SC_14_15 1.53E-06SC_2_16 1.55E-06 SC_6_16 1.55E-06 SC_10_16 1.55E-06 SC_14_16 1.55E-06SC_2_17 1.57E-06 SC_6_17 1.57E-06 SC_10_17 1.57E-06 SC_14_17 1.57E-06SC_2_18 1.59E-06 SC_6_18 1.59E-06 SC_10_18 1.59E-06 SC_14_18 1.59E-06SC_2_19 1.62E-06 SC_6_19 1.62E-06 SC_10_19 1.62E-06 SC_14_19 1.62E-06SC_2_20 1.64E-06 SC_6_20 1.64E-06 SC_10_20 1.64E-06 SC_14_20 1.64E-06SC_2_21 1.66E-06 SC_6_21 1.66E-06 SC_10_21 1.66E-06 SC_14_21 1.66E-06SC_2_22 1.68E-06 SC_6_22 1.68E-06 SC_10_22 1.68E-06 SC_14_22 1.68E-06SC_2_23 1.70E-06 SC_6_23 1.70E-06 SC_10_23 1.70E-06 SC_14_23 1.70E-06SC_2_24 1.72E-06 SC_6_24 1.72E-06 SC_10_24 1.72E-06 SC_14_24 1.72E-06SC_2_25 1.89E-06 SC_6_25 1.89E-06 SC_10_25 1.89E-06 SC_14_25 1.89E-06SC_2_26 1.92E-06 SC_6_26 1.92E-06 SC_10_26 1.92E-06 SC_14_26 1.92E-06SC_2_27 1.94E-06 SC_6_27 1.94E-06 SC_10_27 1.94E-06 SC_14_27 1.94E-06SC_3_1 1.23E-06 SC_7_1 1.23E-06 SC_11_1 1.23E-06 SC_15_1 1.23E-06

Page 147: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

135

SC_3_2 1.25E-06 SC_7_2 1.25E-06 SC_11_2 1.25E-06 SC_15_2 1.25E-06SC_3_3 1.27E-06 SC_7_3 1.27E-06 SC_11_3 1.27E-06 SC_15_3 1.27E-06SC_3_4 1.29E-06 SC_7_4 1.29E-06 SC_11_4 1.29E-06 SC_15_4 1.29E-06SC_3_5 1.32E-06 SC_7_5 1.32E-06 SC_11_5 1.32E-06 SC_15_5 1.32E-06SC_3_6 1.34E-06 SC_7_6 1.34E-06 SC_11_6 1.34E-06 SC_15_6 1.34E-06SC_3_7 1.36E-06 SC_7_7 1.36E-06 SC_11_7 1.36E-06 SC_15_7 1.36E-06SC_3_8 1.38E-06 SC_7_8 1.38E-06 SC_11_8 1.38E-06 SC_15_8 1.38E-06SC_3_9 1.40E-06 SC_7_9 1.40E-06 SC_11_9 1.40E-06 SC_15_9 1.40E-06SC_3_10 1.42E-06 SC_7_10 1.42E-06 SC_11_10 1.42E-06 SC_15_10 1.42E-06SC_3_11 1.44E-06 SC_7_11 1.44E-06 SC_11_11 1.44E-06 SC_15_11 1.44E-06SC_3_12 1.47E-06 SC_7_12 1.47E-06 SC_11_12 1.47E-06 SC_15_12 1.47E-06SC_3_13 1.49E-06 SC_7_13 1.49E-06 SC_11_13 1.49E-06 SC_15_13 1.49E-06SC_3_14 1.51E-06 SC_7_14 1.51E-06 SC_11_14 1.51E-06 SC_15_14 1.51E-06SC_3_15 1.53E-06 SC_7_15 1.53E-06 SC_11_15 1.53E-06 SC_15_15 1.53E-06SC_3_16 1.55E-06 SC_7_16 1.55E-06 SC_11_16 1.55E-06 SC_15_16 1.55E-06SC_3_17 1.57E-06 SC_7_17 1.57E-06 SC_11_17 1.57E-06 SC_15_17 1.57E-06SC_3_18 1.59E-06 SC_7_18 1.59E-06 SC_11_18 1.59E-06 SC_15_18 1.59E-06SC_3_19 1.62E-06 SC_7_19 1.62E-06 SC_11_19 1.62E-06 SC_15_19 1.62E-06SC_3_20 1.64E-06 SC_7_20 1.64E-06 SC_11_20 1.64E-06 SC_15_20 1.64E-06SC_3_21 1.66E-06 SC_7_21 1.66E-06 SC_11_21 1.66E-06 SC_15_21 1.66E-06SC_3_22 1.68E-06 SC_7_22 1.68E-06 SC_11_22 1.68E-06 SC_15_22 1.68E-06SC_3_23 1.70E-06 SC_7_23 1.70E-06 SC_11_23 1.70E-06 SC_15_23 1.70E-06SC_3_24 1.72E-06 SC_7_24 1.72E-06 SC_11_24 1.72E-06 SC_15_24 1.72E-06SC_3_25 1.89E-06 SC_7_25 1.89E-06 SC_11_25 1.89E-06 SC_15_25 1.89E-06SC_3_26 1.92E-06 SC_7_26 1.92E-06 SC_11_26 1.92E-06 SC_15_26 1.92E-06SC_3_27 1.94E-06 SC_7_27 1.94E-06 SC_11_27 1.94E-06 SC_15_27 1.94E-06SC_4_1 1.23E-06 SC_8_1 1.23E-06 SC_12_1 1.23E-06 SC_16_1 1.23E-06SC_4_2 1.25E-06 SC_8_2 1.25E-06 SC_12_2 1.25E-06 SC_16_2 1.25E-06SC_4_3 1.27E-06 SC_8_3 1.27E-06 SC_12_3 1.27E-06 SC_16_3 1.27E-06SC_4_4 1.29E-06 SC_8_4 1.29E-06 SC_12_4 1.29E-06 SC_16_4 1.29E-06SC_4_5 1.32E-06 SC_8_5 1.32E-06 SC_12_5 1.32E-06 SC_16_5 1.32E-06SC_4_6 1.34E-06 SC_8_6 1.34E-06 SC_12_6 1.34E-06 SC_16_6 1.34E-06SC_4_7 1.36E-06 SC_8_7 1.36E-06 SC_12_7 1.36E-06 SC_16_7 1.36E-06SC_4_8 1.38E-06 SC_8_8 1.38E-06 SC_12_8 1.38E-06 SC_16_8 1.38E-06SC_4_9 1.40E-06 SC_8_9 1.40E-06 SC_12_9 1.40E-06 SC_16_9 1.40E-06SC_4_10 1.42E-06 SC_8_10 1.42E-06 SC_12_10 1.42E-06 SC_16_10 1.42E-06SC_4_11 1.44E-06 SC_8_11 1.44E-06 SC_12_11 1.44E-06 SC_16_11 1.44E-06SC_4_12 1.47E-06 SC_8_12 1.47E-06 SC_12_12 1.47E-06 SC_16_12 1.47E-06SC_4_13 1.49E-06 SC_8_13 1.49E-06 SC_12_13 1.49E-06 SC_16_13 1.49E-06SC_4_14 1.51E-06 SC_8_14 1.51E-06 SC_12_14 1.51E-06 SC_16_14 1.51E-06SC_4_15 1.53E-06 SC_8_15 1.53E-06 SC_12_15 1.53E-06 SC_16_15 1.53E-06SC_4_16 1.55E-06 SC_8_16 1.55E-06 SC_12_16 1.55E-06 SC_16_16 1.55E-06SC_4_17 1.57E-06 SC_8_17 1.57E-06 SC_12_17 1.57E-06 SC_16_17 1.57E-06SC_4_18 1.59E-06 SC_8_18 1.59E-06 SC_12_18 1.59E-06 SC_16_18 1.59E-06SC_4_19 1.62E-06 SC_8_19 1.62E-06 SC_12_19 1.62E-06 SC_16_19 1.62E-06SC_4_20 1.64E-06 SC_8_20 1.64E-06 SC_12_20 1.64E-06 SC_16_20 1.64E-06SC_4_21 1.66E-06 SC_8_21 1.66E-06 SC_12_21 1.66E-06 SC_16_21 1.66E-06SC_4_22 1.68E-06 SC_8_22 1.68E-06 SC_12_22 1.68E-06 SC_16_22 1.68E-06SC_4_23 1.70E-06 SC_8_23 1.70E-06 SC_12_23 1.70E-06 SC_16_23 1.70E-06SC_4_24 1.72E-06 SC_8_24 1.72E-06 SC_12_24 1.72E-06 SC_16_24 1.72E-06SC_4_25 1.89E-06 SC_8_25 1.89E-06 SC_12_25 1.89E-06 SC_16_25 1.89E-06SC_4_26 1.92E-06 SC_8_26 1.92E-06 SC_12_26 1.92E-06 SC_16_26 1.92E-06SC_4_27 1.94E-06 SC_8_27 1.94E-06 SC_12_27 1.94E-06 SC_16_27 1.94E-06

Tab. A.3-8 Cumulative inductances for each conductor of PF 6 coil at 16.8 kHz (H)

Page 148: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

136

SC_1_1 1.19E-06 SC_5_1 1.19E-06 SC_9_1 1.19E-06 SC_13_1 1.19E-06SC_1_2 1.21E-06 SC_5_2 1.21E-06 SC_9_2 1.21E-06 SC_13_2 1.21E-06SC_1_3 1.23E-06 SC_5_3 1.23E-06 SC_9_3 1.23E-06 SC_13_3 1.23E-06SC_1_4 1.25E-06 SC_5_4 1.25E-06 SC_9_4 1.25E-06 SC_13_4 1.25E-06SC_1_5 1.27E-06 SC_5_5 1.27E-06 SC_9_5 1.27E-06 SC_13_5 1.27E-06SC_1_6 1.29E-06 SC_5_6 1.29E-06 SC_9_6 1.29E-06 SC_13_6 1.29E-06SC_1_7 1.31E-06 SC_5_7 1.31E-06 SC_9_7 1.31E-06 SC_13_7 1.31E-06SC_1_8 1.33E-06 SC_5_8 1.33E-06 SC_9_8 1.33E-06 SC_13_8 1.33E-06SC_1_9 1.36E-06 SC_5_9 1.36E-06 SC_9_9 1.36E-06 SC_13_9 1.36E-06SC_1_10 1.38E-06 SC_5_10 1.38E-06 SC_9_10 1.38E-06 SC_13_10 1.38E-06SC_1_11 1.40E-06 SC_5_11 1.40E-06 SC_9_11 1.40E-06 SC_13_11 1.40E-06SC_1_12 1.42E-06 SC_5_12 1.42E-06 SC_9_12 1.42E-06 SC_13_12 1.42E-06SC_1_13 1.44E-06 SC_5_13 1.44E-06 SC_9_13 1.44E-06 SC_13_13 1.44E-06SC_1_14 1.46E-06 SC_5_14 1.46E-06 SC_9_14 1.46E-06 SC_13_14 1.46E-06SC_1_15 1.48E-06 SC_5_15 1.48E-06 SC_9_15 1.48E-06 SC_13_15 1.48E-06SC_1_16 1.50E-06 SC_5_16 1.50E-06 SC_9_16 1.50E-06 SC_13_16 1.50E-06SC_1_17 1.52E-06 SC_5_17 1.52E-06 SC_9_17 1.52E-06 SC_13_17 1.52E-06SC_1_18 1.54E-06 SC_5_18 1.54E-06 SC_9_18 1.54E-06 SC_13_18 1.54E-06SC_1_19 1.56E-06 SC_5_19 1.56E-06 SC_9_19 1.56E-06 SC_13_19 1.56E-06SC_1_20 1.58E-06 SC_5_20 1.58E-06 SC_9_20 1.58E-06 SC_13_20 1.58E-06SC_1_21 1.60E-06 SC_5_21 1.60E-06 SC_9_21 1.60E-06 SC_13_21 1.60E-06SC_1_22 1.62E-06 SC_5_22 1.62E-06 SC_9_22 1.62E-06 SC_13_22 1.62E-06SC_1_23 1.65E-06 SC_5_23 1.65E-06 SC_9_23 1.65E-06 SC_13_23 1.65E-06SC_1_24 1.67E-06 SC_5_24 1.67E-06 SC_9_24 1.67E-06 SC_13_24 1.67E-06SC_1_25 1.82E-06 SC_5_25 1.82E-06 SC_9_25 1.82E-06 SC_13_25 1.82E-06SC_1_26 1.84E-06 SC_5_26 1.84E-06 SC_9_26 1.84E-06 SC_13_26 1.84E-06SC_1_27 1.86E-06 SC_5_27 1.86E-06 SC_9_27 1.86E-06 SC_13_27 1.86E-06SC_2_1 1.19E-06 SC_6_1 1.19E-06 SC_10_1 1.19E-06 SC_14_1 1.19E-06SC_2_2 1.21E-06 SC_6_2 1.21E-06 SC_10_2 1.21E-06 SC_14_2 1.21E-06SC_2_3 1.23E-06 SC_6_3 1.23E-06 SC_10_3 1.23E-06 SC_14_3 1.23E-06SC_2_4 1.25E-06 SC_6_4 1.25E-06 SC_10_4 1.25E-06 SC_14_4 1.25E-06SC_2_5 1.27E-06 SC_6_5 1.27E-06 SC_10_5 1.27E-06 SC_14_5 1.27E-06SC_2_6 1.29E-06 SC_6_6 1.29E-06 SC_10_6 1.29E-06 SC_14_6 1.29E-06SC_2_7 1.31E-06 SC_6_7 1.31E-06 SC_10_7 1.31E-06 SC_14_7 1.31E-06SC_2_8 1.33E-06 SC_6_8 1.33E-06 SC_10_8 1.33E-06 SC_14_8 1.33E-06SC_2_9 1.36E-06 SC_6_9 1.36E-06 SC_10_9 1.36E-06 SC_14_9 1.36E-06SC_2_10 1.38E-06 SC_6_10 1.38E-06 SC_10_10 1.38E-06 SC_14_10 1.38E-06SC_2_11 1.40E-06 SC_6_11 1.40E-06 SC_10_11 1.40E-06 SC_14_11 1.40E-06SC_2_12 1.42E-06 SC_6_12 1.42E-06 SC_10_12 1.42E-06 SC_14_12 1.42E-06SC_2_13 1.44E-06 SC_6_13 1.44E-06 SC_10_13 1.44E-06 SC_14_13 1.44E-06SC_2_14 1.46E-06 SC_6_14 1.46E-06 SC_10_14 1.46E-06 SC_14_14 1.46E-06SC_2_15 1.48E-06 SC_6_15 1.48E-06 SC_10_15 1.48E-06 SC_14_15 1.48E-06SC_2_16 1.50E-06 SC_6_16 1.50E-06 SC_10_16 1.50E-06 SC_14_16 1.50E-06SC_2_17 1.52E-06 SC_6_17 1.52E-06 SC_10_17 1.52E-06 SC_14_17 1.52E-06SC_2_18 1.54E-06 SC_6_18 1.54E-06 SC_10_18 1.54E-06 SC_14_18 1.54E-06SC_2_19 1.56E-06 SC_6_19 1.56E-06 SC_10_19 1.56E-06 SC_14_19 1.56E-06SC_2_20 1.58E-06 SC_6_20 1.58E-06 SC_10_20 1.58E-06 SC_14_20 1.58E-06SC_2_21 1.60E-06 SC_6_21 1.60E-06 SC_10_21 1.60E-06 SC_14_21 1.60E-06SC_2_22 1.62E-06 SC_6_22 1.62E-06 SC_10_22 1.62E-06 SC_14_22 1.62E-06SC_2_23 1.65E-06 SC_6_23 1.65E-06 SC_10_23 1.65E-06 SC_14_23 1.65E-06SC_2_24 1.67E-06 SC_6_24 1.67E-06 SC_10_24 1.67E-06 SC_14_24 1.67E-06SC_2_25 1.82E-06 SC_6_25 1.82E-06 SC_10_25 1.82E-06 SC_14_25 1.82E-06SC_2_26 1.84E-06 SC_6_26 1.84E-06 SC_10_26 1.84E-06 SC_14_26 1.84E-06SC_2_27 1.86E-06 SC_6_27 1.86E-06 SC_10_27 1.86E-06 SC_14_27 1.86E-06SC_3_1 1.19E-06 SC_7_1 1.19E-06 SC_11_1 1.19E-06 SC_15_1 1.19E-06

Page 149: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

137

SC_3_2 1.21E-06 SC_7_2 1.21E-06 SC_11_2 1.21E-06 SC_15_2 1.21E-06SC_3_3 1.23E-06 SC_7_3 1.23E-06 SC_11_3 1.23E-06 SC_15_3 1.23E-06SC_3_4 1.25E-06 SC_7_4 1.25E-06 SC_11_4 1.25E-06 SC_15_4 1.25E-06SC_3_5 1.27E-06 SC_7_5 1.27E-06 SC_11_5 1.27E-06 SC_15_5 1.27E-06SC_3_6 1.29E-06 SC_7_6 1.29E-06 SC_11_6 1.29E-06 SC_15_6 1.29E-06SC_3_7 1.31E-06 SC_7_7 1.31E-06 SC_11_7 1.31E-06 SC_15_7 1.31E-06SC_3_8 1.33E-06 SC_7_8 1.33E-06 SC_11_8 1.33E-06 SC_15_8 1.33E-06SC_3_9 1.36E-06 SC_7_9 1.36E-06 SC_11_9 1.36E-06 SC_15_9 1.36E-06SC_3_10 1.38E-06 SC_7_10 1.38E-06 SC_11_10 1.38E-06 SC_15_10 1.38E-06SC_3_11 1.40E-06 SC_7_11 1.40E-06 SC_11_11 1.40E-06 SC_15_11 1.40E-06SC_3_12 1.42E-06 SC_7_12 1.42E-06 SC_11_12 1.42E-06 SC_15_12 1.42E-06SC_3_13 1.44E-06 SC_7_13 1.44E-06 SC_11_13 1.44E-06 SC_15_13 1.44E-06SC_3_14 1.46E-06 SC_7_14 1.46E-06 SC_11_14 1.46E-06 SC_15_14 1.46E-06SC_3_15 1.48E-06 SC_7_15 1.48E-06 SC_11_15 1.48E-06 SC_15_15 1.48E-06SC_3_16 1.50E-06 SC_7_16 1.50E-06 SC_11_16 1.50E-06 SC_15_16 1.50E-06SC_3_17 1.52E-06 SC_7_17 1.52E-06 SC_11_17 1.52E-06 SC_15_17 1.52E-06SC_3_18 1.54E-06 SC_7_18 1.54E-06 SC_11_18 1.54E-06 SC_15_18 1.54E-06SC_3_19 1.56E-06 SC_7_19 1.56E-06 SC_11_19 1.56E-06 SC_15_19 1.56E-06SC_3_20 1.58E-06 SC_7_20 1.58E-06 SC_11_20 1.58E-06 SC_15_20 1.58E-06SC_3_21 1.60E-06 SC_7_21 1.60E-06 SC_11_21 1.60E-06 SC_15_21 1.60E-06SC_3_22 1.62E-06 SC_7_22 1.62E-06 SC_11_22 1.62E-06 SC_15_22 1.62E-06SC_3_23 1.65E-06 SC_7_23 1.65E-06 SC_11_23 1.65E-06 SC_15_23 1.65E-06SC_3_24 1.67E-06 SC_7_24 1.67E-06 SC_11_24 1.67E-06 SC_15_24 1.67E-06SC_3_25 1.82E-06 SC_7_25 1.82E-06 SC_11_25 1.82E-06 SC_15_25 1.82E-06SC_3_26 1.84E-06 SC_7_26 1.84E-06 SC_11_26 1.84E-06 SC_15_26 1.84E-06SC_3_27 1.86E-06 SC_7_27 1.86E-06 SC_11_27 1.86E-06 SC_15_27 1.86E-06SC_4_1 1.19E-06 SC_8_1 1.19E-06 SC_12_1 1.19E-06 SC_16_1 1.19E-06SC_4_2 1.21E-06 SC_8_2 1.21E-06 SC_12_2 1.21E-06 SC_16_2 1.21E-06SC_4_3 1.23E-06 SC_8_3 1.23E-06 SC_12_3 1.23E-06 SC_16_3 1.23E-06SC_4_4 1.25E-06 SC_8_4 1.25E-06 SC_12_4 1.25E-06 SC_16_4 1.25E-06SC_4_5 1.27E-06 SC_8_5 1.27E-06 SC_12_5 1.27E-06 SC_16_5 1.27E-06SC_4_6 1.29E-06 SC_8_6 1.29E-06 SC_12_6 1.29E-06 SC_16_6 1.29E-06SC_4_7 1.31E-06 SC_8_7 1.31E-06 SC_12_7 1.31E-06 SC_16_7 1.31E-06SC_4_8 1.33E-06 SC_8_8 1.33E-06 SC_12_8 1.33E-06 SC_16_8 1.33E-06SC_4_9 1.36E-06 SC_8_9 1.36E-06 SC_12_9 1.36E-06 SC_16_9 1.36E-06SC_4_10 1.38E-06 SC_8_10 1.38E-06 SC_12_10 1.38E-06 SC_16_10 1.38E-06SC_4_11 1.40E-06 SC_8_11 1.40E-06 SC_12_11 1.40E-06 SC_16_11 1.40E-06SC_4_12 1.42E-06 SC_8_12 1.42E-06 SC_12_12 1.42E-06 SC_16_12 1.42E-06SC_4_13 1.44E-06 SC_8_13 1.44E-06 SC_12_13 1.44E-06 SC_16_13 1.44E-06SC_4_14 1.46E-06 SC_8_14 1.46E-06 SC_12_14 1.46E-06 SC_16_14 1.46E-06SC_4_15 1.48E-06 SC_8_15 1.48E-06 SC_12_15 1.48E-06 SC_16_15 1.48E-06SC_4_16 1.50E-06 SC_8_16 1.50E-06 SC_12_16 1.50E-06 SC_16_16 1.50E-06SC_4_17 1.52E-06 SC_8_17 1.52E-06 SC_12_17 1.52E-06 SC_16_17 1.52E-06SC_4_18 1.54E-06 SC_8_18 1.54E-06 SC_12_18 1.54E-06 SC_16_18 1.54E-06SC_4_19 1.56E-06 SC_8_19 1.56E-06 SC_12_19 1.56E-06 SC_16_19 1.56E-06SC_4_20 1.58E-06 SC_8_20 1.58E-06 SC_12_20 1.58E-06 SC_16_20 1.58E-06SC_4_21 1.60E-06 SC_8_21 1.60E-06 SC_12_21 1.60E-06 SC_16_21 1.60E-06SC_4_22 1.62E-06 SC_8_22 1.62E-06 SC_12_22 1.62E-06 SC_16_22 1.62E-06SC_4_23 1.65E-06 SC_8_23 1.65E-06 SC_12_23 1.65E-06 SC_16_23 1.65E-06SC_4_24 1.67E-06 SC_8_24 1.67E-06 SC_12_24 1.67E-06 SC_16_24 1.67E-06SC_4_25 1.82E-06 SC_8_25 1.82E-06 SC_12_25 1.82E-06 SC_16_25 1.82E-06SC_4_26 1.84E-06 SC_8_26 1.84E-06 SC_12_26 1.84E-06 SC_16_26 1.84E-06SC_4_27 1.86E-06 SC_8_27 1.86E-06 SC_12_27 1.86E-06 SC_16_27 1.86E-06

Tab. A.3-9 Cumulative inductances for each conductor of PF 6 coil at 22.1 kHz (H)

Page 150: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

138

SC_1_1 1.19E-06 SC_5_1 1.19E-06 SC_9_1 1.19E-06 SC_13_1 1.19E-06SC_1_2 1.21E-06 SC_5_2 1.21E-06 SC_9_2 1.21E-06 SC_13_2 1.21E-06SC_1_3 1.23E-06 SC_5_3 1.23E-06 SC_9_3 1.23E-06 SC_13_3 1.23E-06SC_1_4 1.25E-06 SC_5_4 1.25E-06 SC_9_4 1.25E-06 SC_13_4 1.25E-06SC_1_5 1.27E-06 SC_5_5 1.27E-06 SC_9_5 1.27E-06 SC_13_5 1.27E-06SC_1_6 1.29E-06 SC_5_6 1.29E-06 SC_9_6 1.29E-06 SC_13_6 1.29E-06SC_1_7 1.31E-06 SC_5_7 1.31E-06 SC_9_7 1.31E-06 SC_13_7 1.31E-06SC_1_8 1.33E-06 SC_5_8 1.33E-06 SC_9_8 1.33E-06 SC_13_8 1.33E-06SC_1_9 1.35E-06 SC_5_9 1.35E-06 SC_9_9 1.35E-06 SC_13_9 1.35E-06SC_1_10 1.37E-06 SC_5_10 1.37E-06 SC_9_10 1.37E-06 SC_13_10 1.37E-06SC_1_11 1.39E-06 SC_5_11 1.39E-06 SC_9_11 1.39E-06 SC_13_11 1.39E-06SC_1_12 1.41E-06 SC_5_12 1.41E-06 SC_9_12 1.41E-06 SC_13_12 1.41E-06SC_1_13 1.43E-06 SC_5_13 1.43E-06 SC_9_13 1.43E-06 SC_13_13 1.43E-06SC_1_14 1.45E-06 SC_5_14 1.45E-06 SC_9_14 1.45E-06 SC_13_14 1.45E-06SC_1_15 1.47E-06 SC_5_15 1.47E-06 SC_9_15 1.47E-06 SC_13_15 1.47E-06SC_1_16 1.49E-06 SC_5_16 1.49E-06 SC_9_16 1.49E-06 SC_13_16 1.49E-06SC_1_17 1.52E-06 SC_5_17 1.52E-06 SC_9_17 1.52E-06 SC_13_17 1.52E-06SC_1_18 1.54E-06 SC_5_18 1.54E-06 SC_9_18 1.54E-06 SC_13_18 1.54E-06SC_1_19 1.56E-06 SC_5_19 1.56E-06 SC_9_19 1.56E-06 SC_13_19 1.56E-06SC_1_20 1.58E-06 SC_5_20 1.58E-06 SC_9_20 1.58E-06 SC_13_20 1.58E-06SC_1_21 1.60E-06 SC_5_21 1.60E-06 SC_9_21 1.60E-06 SC_13_21 1.60E-06SC_1_22 1.62E-06 SC_5_22 1.62E-06 SC_9_22 1.62E-06 SC_13_22 1.62E-06SC_1_23 1.64E-06 SC_5_23 1.64E-06 SC_9_23 1.64E-06 SC_13_23 1.64E-06SC_1_24 1.66E-06 SC_5_24 1.66E-06 SC_9_24 1.66E-06 SC_13_24 1.66E-06SC_1_25 1.81E-06 SC_5_25 1.81E-06 SC_9_25 1.81E-06 SC_13_25 1.81E-06SC_1_26 1.83E-06 SC_5_26 1.83E-06 SC_9_26 1.83E-06 SC_13_26 1.83E-06SC_1_27 1.85E-06 SC_5_27 1.85E-06 SC_9_27 1.85E-06 SC_13_27 1.85E-06SC_2_1 1.19E-06 SC_6_1 1.19E-06 SC_10_1 1.19E-06 SC_14_1 1.19E-06SC_2_2 1.21E-06 SC_6_2 1.21E-06 SC_10_2 1.21E-06 SC_14_2 1.21E-06SC_2_3 1.23E-06 SC_6_3 1.23E-06 SC_10_3 1.23E-06 SC_14_3 1.23E-06SC_2_4 1.25E-06 SC_6_4 1.25E-06 SC_10_4 1.25E-06 SC_14_4 1.25E-06SC_2_5 1.27E-06 SC_6_5 1.27E-06 SC_10_5 1.27E-06 SC_14_5 1.27E-06SC_2_6 1.29E-06 SC_6_6 1.29E-06 SC_10_6 1.29E-06 SC_14_6 1.29E-06SC_2_7 1.31E-06 SC_6_7 1.31E-06 SC_10_7 1.31E-06 SC_14_7 1.31E-06SC_2_8 1.33E-06 SC_6_8 1.33E-06 SC_10_8 1.33E-06 SC_14_8 1.33E-06SC_2_9 1.35E-06 SC_6_9 1.35E-06 SC_10_9 1.35E-06 SC_14_9 1.35E-06SC_2_10 1.37E-06 SC_6_10 1.37E-06 SC_10_10 1.37E-06 SC_14_10 1.37E-06SC_2_11 1.39E-06 SC_6_11 1.39E-06 SC_10_11 1.39E-06 SC_14_11 1.39E-06SC_2_12 1.41E-06 SC_6_12 1.41E-06 SC_10_12 1.41E-06 SC_14_12 1.41E-06SC_2_13 1.43E-06 SC_6_13 1.43E-06 SC_10_13 1.43E-06 SC_14_13 1.43E-06SC_2_14 1.45E-06 SC_6_14 1.45E-06 SC_10_14 1.45E-06 SC_14_14 1.45E-06SC_2_15 1.47E-06 SC_6_15 1.47E-06 SC_10_15 1.47E-06 SC_14_15 1.47E-06SC_2_16 1.49E-06 SC_6_16 1.49E-06 SC_10_16 1.49E-06 SC_14_16 1.49E-06SC_2_17 1.52E-06 SC_6_17 1.52E-06 SC_10_17 1.52E-06 SC_14_17 1.52E-06SC_2_18 1.54E-06 SC_6_18 1.54E-06 SC_10_18 1.54E-06 SC_14_18 1.54E-06SC_2_19 1.56E-06 SC_6_19 1.56E-06 SC_10_19 1.56E-06 SC_14_19 1.56E-06SC_2_20 1.58E-06 SC_6_20 1.58E-06 SC_10_20 1.58E-06 SC_14_20 1.58E-06SC_2_21 1.60E-06 SC_6_21 1.60E-06 SC_10_21 1.60E-06 SC_14_21 1.60E-06SC_2_22 1.62E-06 SC_6_22 1.62E-06 SC_10_22 1.62E-06 SC_14_22 1.62E-06SC_2_23 1.64E-06 SC_6_23 1.64E-06 SC_10_23 1.64E-06 SC_14_23 1.64E-06SC_2_24 1.66E-06 SC_6_24 1.66E-06 SC_10_24 1.66E-06 SC_14_24 1.66E-06SC_2_25 1.81E-06 SC_6_25 1.81E-06 SC_10_25 1.81E-06 SC_14_25 1.81E-06SC_2_26 1.83E-06 SC_6_26 1.83E-06 SC_10_26 1.83E-06 SC_14_26 1.83E-06SC_2_27 1.85E-06 SC_6_27 1.85E-06 SC_10_27 1.85E-06 SC_14_27 1.85E-06SC_3_1 1.19E-06 SC_7_1 1.19E-06 SC_11_1 1.19E-06 SC_15_1 1.19E-06

Page 151: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

139

SC_3_2 1.21E-06 SC_7_2 1.21E-06 SC_11_2 1.21E-06 SC_15_2 1.21E-06SC_3_3 1.23E-06 SC_7_3 1.23E-06 SC_11_3 1.23E-06 SC_15_3 1.23E-06SC_3_4 1.25E-06 SC_7_4 1.25E-06 SC_11_4 1.25E-06 SC_15_4 1.25E-06SC_3_5 1.27E-06 SC_7_5 1.27E-06 SC_11_5 1.27E-06 SC_15_5 1.27E-06SC_3_6 1.29E-06 SC_7_6 1.29E-06 SC_11_6 1.29E-06 SC_15_6 1.29E-06SC_3_7 1.31E-06 SC_7_7 1.31E-06 SC_11_7 1.31E-06 SC_15_7 1.31E-06SC_3_8 1.33E-06 SC_7_8 1.33E-06 SC_11_8 1.33E-06 SC_15_8 1.33E-06SC_3_9 1.35E-06 SC_7_9 1.35E-06 SC_11_9 1.35E-06 SC_15_9 1.35E-06SC_3_10 1.37E-06 SC_7_10 1.37E-06 SC_11_10 1.37E-06 SC_15_10 1.37E-06SC_3_11 1.39E-06 SC_7_11 1.39E-06 SC_11_11 1.39E-06 SC_15_11 1.39E-06SC_3_12 1.41E-06 SC_7_12 1.41E-06 SC_11_12 1.41E-06 SC_15_12 1.41E-06SC_3_13 1.43E-06 SC_7_13 1.43E-06 SC_11_13 1.43E-06 SC_15_13 1.43E-06SC_3_14 1.45E-06 SC_7_14 1.45E-06 SC_11_14 1.45E-06 SC_15_14 1.45E-06SC_3_15 1.47E-06 SC_7_15 1.47E-06 SC_11_15 1.47E-06 SC_15_15 1.47E-06SC_3_16 1.49E-06 SC_7_16 1.49E-06 SC_11_16 1.49E-06 SC_15_16 1.49E-06SC_3_17 1.52E-06 SC_7_17 1.52E-06 SC_11_17 1.52E-06 SC_15_17 1.52E-06SC_3_18 1.54E-06 SC_7_18 1.54E-06 SC_11_18 1.54E-06 SC_15_18 1.54E-06SC_3_19 1.56E-06 SC_7_19 1.56E-06 SC_11_19 1.56E-06 SC_15_19 1.56E-06SC_3_20 1.58E-06 SC_7_20 1.58E-06 SC_11_20 1.58E-06 SC_15_20 1.58E-06SC_3_21 1.60E-06 SC_7_21 1.60E-06 SC_11_21 1.60E-06 SC_15_21 1.60E-06SC_3_22 1.62E-06 SC_7_22 1.62E-06 SC_11_22 1.62E-06 SC_15_22 1.62E-06SC_3_23 1.64E-06 SC_7_23 1.64E-06 SC_11_23 1.64E-06 SC_15_23 1.64E-06SC_3_24 1.66E-06 SC_7_24 1.66E-06 SC_11_24 1.66E-06 SC_15_24 1.66E-06SC_3_25 1.81E-06 SC_7_25 1.81E-06 SC_11_25 1.81E-06 SC_15_25 1.81E-06SC_3_26 1.83E-06 SC_7_26 1.83E-06 SC_11_26 1.83E-06 SC_15_26 1.83E-06SC_3_27 1.85E-06 SC_7_27 1.85E-06 SC_11_27 1.85E-06 SC_15_27 1.85E-06SC_4_1 1.19E-06 SC_8_1 1.19E-06 SC_12_1 1.19E-06 SC_16_1 1.19E-06SC_4_2 1.21E-06 SC_8_2 1.21E-06 SC_12_2 1.21E-06 SC_16_2 1.21E-06SC_4_3 1.23E-06 SC_8_3 1.23E-06 SC_12_3 1.23E-06 SC_16_3 1.23E-06SC_4_4 1.25E-06 SC_8_4 1.25E-06 SC_12_4 1.25E-06 SC_16_4 1.25E-06SC_4_5 1.27E-06 SC_8_5 1.27E-06 SC_12_5 1.27E-06 SC_16_5 1.27E-06SC_4_6 1.29E-06 SC_8_6 1.29E-06 SC_12_6 1.29E-06 SC_16_6 1.29E-06SC_4_7 1.31E-06 SC_8_7 1.31E-06 SC_12_7 1.31E-06 SC_16_7 1.31E-06SC_4_8 1.33E-06 SC_8_8 1.33E-06 SC_12_8 1.33E-06 SC_16_8 1.33E-06SC_4_9 1.35E-06 SC_8_9 1.35E-06 SC_12_9 1.35E-06 SC_16_9 1.35E-06SC_4_10 1.37E-06 SC_8_10 1.37E-06 SC_12_10 1.37E-06 SC_16_10 1.37E-06SC_4_11 1.39E-06 SC_8_11 1.39E-06 SC_12_11 1.39E-06 SC_16_11 1.39E-06SC_4_12 1.41E-06 SC_8_12 1.41E-06 SC_12_12 1.41E-06 SC_16_12 1.41E-06SC_4_13 1.43E-06 SC_8_13 1.43E-06 SC_12_13 1.43E-06 SC_16_13 1.43E-06SC_4_14 1.45E-06 SC_8_14 1.45E-06 SC_12_14 1.45E-06 SC_16_14 1.45E-06SC_4_15 1.47E-06 SC_8_15 1.47E-06 SC_12_15 1.47E-06 SC_16_15 1.47E-06SC_4_16 1.49E-06 SC_8_16 1.49E-06 SC_12_16 1.49E-06 SC_16_16 1.49E-06SC_4_17 1.52E-06 SC_8_17 1.52E-06 SC_12_17 1.52E-06 SC_16_17 1.52E-06SC_4_18 1.54E-06 SC_8_18 1.54E-06 SC_12_18 1.54E-06 SC_16_18 1.54E-06SC_4_19 1.56E-06 SC_8_19 1.56E-06 SC_12_19 1.56E-06 SC_16_19 1.56E-06SC_4_20 1.58E-06 SC_8_20 1.58E-06 SC_12_20 1.58E-06 SC_16_20 1.58E-06SC_4_21 1.60E-06 SC_8_21 1.60E-06 SC_12_21 1.60E-06 SC_16_21 1.60E-06SC_4_22 1.62E-06 SC_8_22 1.62E-06 SC_12_22 1.62E-06 SC_16_22 1.62E-06SC_4_23 1.64E-06 SC_8_23 1.64E-06 SC_12_23 1.64E-06 SC_16_23 1.64E-06SC_4_24 1.66E-06 SC_8_24 1.66E-06 SC_12_24 1.66E-06 SC_16_24 1.66E-06SC_4_25 1.81E-06 SC_8_25 1.81E-06 SC_12_25 1.81E-06 SC_16_25 1.81E-06SC_4_26 1.83E-06 SC_8_26 1.83E-06 SC_12_26 1.83E-06 SC_16_26 1.83E-06SC_4_27 1.85E-06 SC_8_27 1.85E-06 SC_12_27 1.85E-06 SC_16_27 1.85E-06

Tab. A.3-10 Cumulative inductances for each conductor of PF 6 coil at 22.9 kHz (H)

Page 152: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

140

SC_1_1 1.16E-06 SC_5_1 1.16E-06 SC_9_1 1.16E-06 SC_13_1 1.16E-06SC_1_2 1.18E-06 SC_5_2 1.18E-06 SC_9_2 1.18E-06 SC_13_2 1.18E-06SC_1_3 1.20E-06 SC_5_3 1.20E-06 SC_9_3 1.20E-06 SC_13_3 1.20E-06SC_1_4 1.22E-06 SC_5_4 1.22E-06 SC_9_4 1.22E-06 SC_13_4 1.22E-06SC_1_5 1.24E-06 SC_5_5 1.24E-06 SC_9_5 1.24E-06 SC_13_5 1.24E-06SC_1_6 1.26E-06 SC_5_6 1.26E-06 SC_9_6 1.26E-06 SC_13_6 1.26E-06SC_1_7 1.28E-06 SC_5_7 1.28E-06 SC_9_7 1.28E-06 SC_13_7 1.28E-06SC_1_8 1.30E-06 SC_5_8 1.30E-06 SC_9_8 1.30E-06 SC_13_8 1.30E-06SC_1_9 1.32E-06 SC_5_9 1.32E-06 SC_9_9 1.32E-06 SC_13_9 1.32E-06SC_1_10 1.34E-06 SC_5_10 1.34E-06 SC_9_10 1.34E-06 SC_13_10 1.34E-06SC_1_11 1.36E-06 SC_5_11 1.36E-06 SC_9_11 1.36E-06 SC_13_11 1.36E-06SC_1_12 1.38E-06 SC_5_12 1.38E-06 SC_9_12 1.38E-06 SC_13_12 1.38E-06SC_1_13 1.40E-06 SC_5_13 1.40E-06 SC_9_13 1.40E-06 SC_13_13 1.40E-06SC_1_14 1.42E-06 SC_5_14 1.42E-06 SC_9_14 1.42E-06 SC_13_14 1.42E-06SC_1_15 1.44E-06 SC_5_15 1.44E-06 SC_9_15 1.44E-06 SC_13_15 1.44E-06SC_1_16 1.46E-06 SC_5_16 1.46E-06 SC_9_16 1.46E-06 SC_13_16 1.46E-06SC_1_17 1.48E-06 SC_5_17 1.48E-06 SC_9_17 1.48E-06 SC_13_17 1.48E-06SC_1_18 1.50E-06 SC_5_18 1.50E-06 SC_9_18 1.50E-06 SC_13_18 1.50E-06SC_1_19 1.52E-06 SC_5_19 1.52E-06 SC_9_19 1.52E-06 SC_13_19 1.52E-06SC_1_20 1.54E-06 SC_5_20 1.54E-06 SC_9_20 1.54E-06 SC_13_20 1.54E-06SC_1_21 1.56E-06 SC_5_21 1.56E-06 SC_9_21 1.56E-06 SC_13_21 1.56E-06SC_1_22 1.58E-06 SC_5_22 1.58E-06 SC_9_22 1.58E-06 SC_13_22 1.58E-06SC_1_23 1.60E-06 SC_5_23 1.60E-06 SC_9_23 1.60E-06 SC_13_23 1.60E-06SC_1_24 1.62E-06 SC_5_24 1.62E-06 SC_9_24 1.62E-06 SC_13_24 1.62E-06SC_1_25 1.76E-06 SC_5_25 1.76E-06 SC_9_25 1.76E-06 SC_13_25 1.76E-06SC_1_26 1.78E-06 SC_5_26 1.78E-06 SC_9_26 1.78E-06 SC_13_26 1.78E-06SC_1_27 1.81E-06 SC_5_27 1.81E-06 SC_9_27 1.81E-06 SC_13_27 1.81E-06SC_2_1 1.16E-06 SC_6_1 1.16E-06 SC_10_1 1.16E-06 SC_14_1 1.16E-06SC_2_2 1.18E-06 SC_6_2 1.18E-06 SC_10_2 1.18E-06 SC_14_2 1.18E-06SC_2_3 1.20E-06 SC_6_3 1.20E-06 SC_10_3 1.20E-06 SC_14_3 1.20E-06SC_2_4 1.22E-06 SC_6_4 1.22E-06 SC_10_4 1.22E-06 SC_14_4 1.22E-06SC_2_5 1.24E-06 SC_6_5 1.24E-06 SC_10_5 1.24E-06 SC_14_5 1.24E-06SC_2_6 1.26E-06 SC_6_6 1.26E-06 SC_10_6 1.26E-06 SC_14_6 1.26E-06SC_2_7 1.28E-06 SC_6_7 1.28E-06 SC_10_7 1.28E-06 SC_14_7 1.28E-06SC_2_8 1.30E-06 SC_6_8 1.30E-06 SC_10_8 1.30E-06 SC_14_8 1.30E-06SC_2_9 1.32E-06 SC_6_9 1.32E-06 SC_10_9 1.32E-06 SC_14_9 1.32E-06SC_2_10 1.34E-06 SC_6_10 1.34E-06 SC_10_10 1.34E-06 SC_14_10 1.34E-06SC_2_11 1.36E-06 SC_6_11 1.36E-06 SC_10_11 1.36E-06 SC_14_11 1.36E-06SC_2_12 1.38E-06 SC_6_12 1.38E-06 SC_10_12 1.38E-06 SC_14_12 1.38E-06SC_2_13 1.40E-06 SC_6_13 1.40E-06 SC_10_13 1.40E-06 SC_14_13 1.40E-06SC_2_14 1.42E-06 SC_6_14 1.42E-06 SC_10_14 1.42E-06 SC_14_14 1.42E-06SC_2_15 1.44E-06 SC_6_15 1.44E-06 SC_10_15 1.44E-06 SC_14_15 1.44E-06SC_2_16 1.46E-06 SC_6_16 1.46E-06 SC_10_16 1.46E-06 SC_14_16 1.46E-06SC_2_17 1.48E-06 SC_6_17 1.48E-06 SC_10_17 1.48E-06 SC_14_17 1.48E-06SC_2_18 1.50E-06 SC_6_18 1.50E-06 SC_10_18 1.50E-06 SC_14_18 1.50E-06SC_2_19 1.52E-06 SC_6_19 1.52E-06 SC_10_19 1.52E-06 SC_14_19 1.52E-06SC_2_20 1.54E-06 SC_6_20 1.54E-06 SC_10_20 1.54E-06 SC_14_20 1.54E-06SC_2_21 1.56E-06 SC_6_21 1.56E-06 SC_10_21 1.56E-06 SC_14_21 1.56E-06SC_2_22 1.58E-06 SC_6_22 1.58E-06 SC_10_22 1.58E-06 SC_14_22 1.58E-06SC_2_23 1.60E-06 SC_6_23 1.60E-06 SC_10_23 1.60E-06 SC_14_23 1.60E-06SC_2_24 1.62E-06 SC_6_24 1.62E-06 SC_10_24 1.62E-06 SC_14_24 1.62E-06SC_2_25 1.76E-06 SC_6_25 1.76E-06 SC_10_25 1.76E-06 SC_14_25 1.76E-06SC_2_26 1.78E-06 SC_6_26 1.78E-06 SC_10_26 1.78E-06 SC_14_26 1.78E-06SC_2_27 1.81E-06 SC_6_27 1.81E-06 SC_10_27 1.81E-06 SC_14_27 1.81E-06SC_3_1 1.16E-06 SC_7_1 1.16E-06 SC_11_1 1.16E-06 SC_15_1 1.16E-06

Page 153: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

141

SC_3_2 1.18E-06 SC_7_2 1.18E-06 SC_11_2 1.18E-06 SC_15_2 1.18E-06SC_3_3 1.20E-06 SC_7_3 1.20E-06 SC_11_3 1.20E-06 SC_15_3 1.20E-06SC_3_4 1.22E-06 SC_7_4 1.22E-06 SC_11_4 1.22E-06 SC_15_4 1.22E-06SC_3_5 1.24E-06 SC_7_5 1.24E-06 SC_11_5 1.24E-06 SC_15_5 1.24E-06SC_3_6 1.26E-06 SC_7_6 1.26E-06 SC_11_6 1.26E-06 SC_15_6 1.26E-06SC_3_7 1.28E-06 SC_7_7 1.28E-06 SC_11_7 1.28E-06 SC_15_7 1.28E-06SC_3_8 1.30E-06 SC_7_8 1.30E-06 SC_11_8 1.30E-06 SC_15_8 1.30E-06SC_3_9 1.32E-06 SC_7_9 1.32E-06 SC_11_9 1.32E-06 SC_15_9 1.32E-06SC_3_10 1.34E-06 SC_7_10 1.34E-06 SC_11_10 1.34E-06 SC_15_10 1.34E-06SC_3_11 1.36E-06 SC_7_11 1.36E-06 SC_11_11 1.36E-06 SC_15_11 1.36E-06SC_3_12 1.38E-06 SC_7_12 1.38E-06 SC_11_12 1.38E-06 SC_15_12 1.38E-06SC_3_13 1.40E-06 SC_7_13 1.40E-06 SC_11_13 1.40E-06 SC_15_13 1.40E-06SC_3_14 1.42E-06 SC_7_14 1.42E-06 SC_11_14 1.42E-06 SC_15_14 1.42E-06SC_3_15 1.44E-06 SC_7_15 1.44E-06 SC_11_15 1.44E-06 SC_15_15 1.44E-06SC_3_16 1.46E-06 SC_7_16 1.46E-06 SC_11_16 1.46E-06 SC_15_16 1.46E-06SC_3_17 1.48E-06 SC_7_17 1.48E-06 SC_11_17 1.48E-06 SC_15_17 1.48E-06SC_3_18 1.50E-06 SC_7_18 1.50E-06 SC_11_18 1.50E-06 SC_15_18 1.50E-06SC_3_19 1.52E-06 SC_7_19 1.52E-06 SC_11_19 1.52E-06 SC_15_19 1.52E-06SC_3_20 1.54E-06 SC_7_20 1.54E-06 SC_11_20 1.54E-06 SC_15_20 1.54E-06SC_3_21 1.56E-06 SC_7_21 1.56E-06 SC_11_21 1.56E-06 SC_15_21 1.56E-06SC_3_22 1.58E-06 SC_7_22 1.58E-06 SC_11_22 1.58E-06 SC_15_22 1.58E-06SC_3_23 1.60E-06 SC_7_23 1.60E-06 SC_11_23 1.60E-06 SC_15_23 1.60E-06SC_3_24 1.62E-06 SC_7_24 1.62E-06 SC_11_24 1.62E-06 SC_15_24 1.62E-06SC_3_25 1.76E-06 SC_7_25 1.76E-06 SC_11_25 1.76E-06 SC_15_25 1.76E-06SC_3_26 1.78E-06 SC_7_26 1.78E-06 SC_11_26 1.78E-06 SC_15_26 1.78E-06SC_3_27 1.81E-06 SC_7_27 1.81E-06 SC_11_27 1.81E-06 SC_15_27 1.81E-06SC_4_1 1.16E-06 SC_8_1 1.16E-06 SC_12_1 1.16E-06 SC_16_1 1.16E-06SC_4_2 1.18E-06 SC_8_2 1.18E-06 SC_12_2 1.18E-06 SC_16_2 1.18E-06SC_4_3 1.20E-06 SC_8_3 1.20E-06 SC_12_3 1.20E-06 SC_16_3 1.20E-06SC_4_4 1.22E-06 SC_8_4 1.22E-06 SC_12_4 1.22E-06 SC_16_4 1.22E-06SC_4_5 1.24E-06 SC_8_5 1.24E-06 SC_12_5 1.24E-06 SC_16_5 1.24E-06SC_4_6 1.26E-06 SC_8_6 1.26E-06 SC_12_6 1.26E-06 SC_16_6 1.26E-06SC_4_7 1.28E-06 SC_8_7 1.28E-06 SC_12_7 1.28E-06 SC_16_7 1.28E-06SC_4_8 1.30E-06 SC_8_8 1.30E-06 SC_12_8 1.30E-06 SC_16_8 1.30E-06SC_4_9 1.32E-06 SC_8_9 1.32E-06 SC_12_9 1.32E-06 SC_16_9 1.32E-06SC_4_10 1.34E-06 SC_8_10 1.34E-06 SC_12_10 1.34E-06 SC_16_10 1.34E-06SC_4_11 1.36E-06 SC_8_11 1.36E-06 SC_12_11 1.36E-06 SC_16_11 1.36E-06SC_4_12 1.38E-06 SC_8_12 1.38E-06 SC_12_12 1.38E-06 SC_16_12 1.38E-06SC_4_13 1.40E-06 SC_8_13 1.40E-06 SC_12_13 1.40E-06 SC_16_13 1.40E-06SC_4_14 1.42E-06 SC_8_14 1.42E-06 SC_12_14 1.42E-06 SC_16_14 1.42E-06SC_4_15 1.44E-06 SC_8_15 1.44E-06 SC_12_15 1.44E-06 SC_16_15 1.44E-06SC_4_16 1.46E-06 SC_8_16 1.46E-06 SC_12_16 1.46E-06 SC_16_16 1.46E-06SC_4_17 1.48E-06 SC_8_17 1.48E-06 SC_12_17 1.48E-06 SC_16_17 1.48E-06SC_4_18 1.50E-06 SC_8_18 1.50E-06 SC_12_18 1.50E-06 SC_16_18 1.50E-06SC_4_19 1.52E-06 SC_8_19 1.52E-06 SC_12_19 1.52E-06 SC_16_19 1.52E-06SC_4_20 1.54E-06 SC_8_20 1.54E-06 SC_12_20 1.54E-06 SC_16_20 1.54E-06SC_4_21 1.56E-06 SC_8_21 1.56E-06 SC_12_21 1.56E-06 SC_16_21 1.56E-06SC_4_22 1.58E-06 SC_8_22 1.58E-06 SC_12_22 1.58E-06 SC_16_22 1.58E-06SC_4_23 1.60E-06 SC_8_23 1.60E-06 SC_12_23 1.60E-06 SC_16_23 1.60E-06SC_4_24 1.62E-06 SC_8_24 1.62E-06 SC_12_24 1.62E-06 SC_16_24 1.62E-06SC_4_25 1.76E-06 SC_8_25 1.76E-06 SC_12_25 1.76E-06 SC_16_25 1.76E-06SC_4_26 1.78E-06 SC_8_26 1.78E-06 SC_12_26 1.78E-06 SC_16_26 1.78E-06SC_4_27 1.81E-06 SC_8_27 1.81E-06 SC_12_27 1.81E-06 SC_16_27 1.81E-06

Tab. A.3-11 Cumulative inductances for each conductor of PF 6 coil at 27.7 kHz (H)

Page 154: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

142

SC_1_1 1.16E-06 SC_5_1 1.16E-06 SC_9_1 1.16E-06 SC_13_1 1.16E-06SC_1_2 1.18E-06 SC_5_2 1.18E-06 SC_9_2 1.18E-06 SC_13_2 1.18E-06SC_1_3 1.20E-06 SC_5_3 1.20E-06 SC_9_3 1.20E-06 SC_13_3 1.20E-06SC_1_4 1.22E-06 SC_5_4 1.22E-06 SC_9_4 1.22E-06 SC_13_4 1.22E-06SC_1_5 1.24E-06 SC_5_5 1.24E-06 SC_9_5 1.24E-06 SC_13_5 1.24E-06SC_1_6 1.26E-06 SC_5_6 1.26E-06 SC_9_6 1.26E-06 SC_13_6 1.26E-06SC_1_7 1.28E-06 SC_5_7 1.28E-06 SC_9_7 1.28E-06 SC_13_7 1.28E-06SC_1_8 1.30E-06 SC_5_8 1.30E-06 SC_9_8 1.30E-06 SC_13_8 1.30E-06SC_1_9 1.32E-06 SC_5_9 1.32E-06 SC_9_9 1.32E-06 SC_13_9 1.32E-06SC_1_10 1.34E-06 SC_5_10 1.34E-06 SC_9_10 1.34E-06 SC_13_10 1.34E-06SC_1_11 1.36E-06 SC_5_11 1.36E-06 SC_9_11 1.36E-06 SC_13_11 1.36E-06SC_1_12 1.38E-06 SC_5_12 1.38E-06 SC_9_12 1.38E-06 SC_13_12 1.38E-06SC_1_13 1.40E-06 SC_5_13 1.40E-06 SC_9_13 1.40E-06 SC_13_13 1.40E-06SC_1_14 1.42E-06 SC_5_14 1.42E-06 SC_9_14 1.42E-06 SC_13_14 1.42E-06SC_1_15 1.44E-06 SC_5_15 1.44E-06 SC_9_15 1.44E-06 SC_13_15 1.44E-06SC_1_16 1.46E-06 SC_5_16 1.46E-06 SC_9_16 1.46E-06 SC_13_16 1.46E-06SC_1_17 1.48E-06 SC_5_17 1.48E-06 SC_9_17 1.48E-06 SC_13_17 1.48E-06SC_1_18 1.50E-06 SC_5_18 1.50E-06 SC_9_18 1.50E-06 SC_13_18 1.50E-06SC_1_19 1.52E-06 SC_5_19 1.52E-06 SC_9_19 1.52E-06 SC_13_19 1.52E-06SC_1_20 1.54E-06 SC_5_20 1.54E-06 SC_9_20 1.54E-06 SC_13_20 1.54E-06SC_1_21 1.56E-06 SC_5_21 1.56E-06 SC_9_21 1.56E-06 SC_13_21 1.56E-06SC_1_22 1.58E-06 SC_5_22 1.58E-06 SC_9_22 1.58E-06 SC_13_22 1.58E-06SC_1_23 1.60E-06 SC_5_23 1.60E-06 SC_9_23 1.60E-06 SC_13_23 1.60E-06SC_1_24 1.62E-06 SC_5_24 1.62E-06 SC_9_24 1.62E-06 SC_13_24 1.62E-06SC_1_25 1.76E-06 SC_5_25 1.76E-06 SC_9_25 1.76E-06 SC_13_25 1.76E-06SC_1_26 1.78E-06 SC_5_26 1.78E-06 SC_9_26 1.78E-06 SC_13_26 1.78E-06SC_1_27 1.80E-06 SC_5_27 1.80E-06 SC_9_27 1.80E-06 SC_13_27 1.80E-06SC_2_1 1.16E-06 SC_6_1 1.16E-06 SC_10_1 1.16E-06 SC_14_1 1.16E-06SC_2_2 1.18E-06 SC_6_2 1.18E-06 SC_10_2 1.18E-06 SC_14_2 1.18E-06SC_2_3 1.20E-06 SC_6_3 1.20E-06 SC_10_3 1.20E-06 SC_14_3 1.20E-06SC_2_4 1.22E-06 SC_6_4 1.22E-06 SC_10_4 1.22E-06 SC_14_4 1.22E-06SC_2_5 1.24E-06 SC_6_5 1.24E-06 SC_10_5 1.24E-06 SC_14_5 1.24E-06SC_2_6 1.26E-06 SC_6_6 1.26E-06 SC_10_6 1.26E-06 SC_14_6 1.26E-06SC_2_7 1.28E-06 SC_6_7 1.28E-06 SC_10_7 1.28E-06 SC_14_7 1.28E-06SC_2_8 1.30E-06 SC_6_8 1.30E-06 SC_10_8 1.30E-06 SC_14_8 1.30E-06SC_2_9 1.32E-06 SC_6_9 1.32E-06 SC_10_9 1.32E-06 SC_14_9 1.32E-06SC_2_10 1.34E-06 SC_6_10 1.34E-06 SC_10_10 1.34E-06 SC_14_10 1.34E-06SC_2_11 1.36E-06 SC_6_11 1.36E-06 SC_10_11 1.36E-06 SC_14_11 1.36E-06SC_2_12 1.38E-06 SC_6_12 1.38E-06 SC_10_12 1.38E-06 SC_14_12 1.38E-06SC_2_13 1.40E-06 SC_6_13 1.40E-06 SC_10_13 1.40E-06 SC_14_13 1.40E-06SC_2_14 1.42E-06 SC_6_14 1.42E-06 SC_10_14 1.42E-06 SC_14_14 1.42E-06SC_2_15 1.44E-06 SC_6_15 1.44E-06 SC_10_15 1.44E-06 SC_14_15 1.44E-06SC_2_16 1.46E-06 SC_6_16 1.46E-06 SC_10_16 1.46E-06 SC_14_16 1.46E-06SC_2_17 1.48E-06 SC_6_17 1.48E-06 SC_10_17 1.48E-06 SC_14_17 1.48E-06SC_2_18 1.50E-06 SC_6_18 1.50E-06 SC_10_18 1.50E-06 SC_14_18 1.50E-06SC_2_19 1.52E-06 SC_6_19 1.52E-06 SC_10_19 1.52E-06 SC_14_19 1.52E-06SC_2_20 1.54E-06 SC_6_20 1.54E-06 SC_10_20 1.54E-06 SC_14_20 1.54E-06SC_2_21 1.56E-06 SC_6_21 1.56E-06 SC_10_21 1.56E-06 SC_14_21 1.56E-06SC_2_22 1.58E-06 SC_6_22 1.58E-06 SC_10_22 1.58E-06 SC_14_22 1.58E-06SC_2_23 1.60E-06 SC_6_23 1.60E-06 SC_10_23 1.60E-06 SC_14_23 1.60E-06SC_2_24 1.62E-06 SC_6_24 1.62E-06 SC_10_24 1.62E-06 SC_14_24 1.62E-06SC_2_25 1.76E-06 SC_6_25 1.76E-06 SC_10_25 1.76E-06 SC_14_25 1.76E-06SC_2_26 1.78E-06 SC_6_26 1.78E-06 SC_10_26 1.78E-06 SC_14_26 1.78E-06SC_2_27 1.80E-06 SC_6_27 1.80E-06 SC_10_27 1.80E-06 SC_14_27 1.80E-06SC_3_1 1.16E-06 SC_7_1 1.16E-06 SC_11_1 1.16E-06 SC_15_1 1.16E-06

Page 155: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

143

SC_3_2 1.18E-06 SC_7_2 1.18E-06 SC_11_2 1.18E-06 SC_15_2 1.18E-06SC_3_3 1.20E-06 SC_7_3 1.20E-06 SC_11_3 1.20E-06 SC_15_3 1.20E-06SC_3_4 1.22E-06 SC_7_4 1.22E-06 SC_11_4 1.22E-06 SC_15_4 1.22E-06SC_3_5 1.24E-06 SC_7_5 1.24E-06 SC_11_5 1.24E-06 SC_15_5 1.24E-06SC_3_6 1.26E-06 SC_7_6 1.26E-06 SC_11_6 1.26E-06 SC_15_6 1.26E-06SC_3_7 1.28E-06 SC_7_7 1.28E-06 SC_11_7 1.28E-06 SC_15_7 1.28E-06SC_3_8 1.30E-06 SC_7_8 1.30E-06 SC_11_8 1.30E-06 SC_15_8 1.30E-06SC_3_9 1.32E-06 SC_7_9 1.32E-06 SC_11_9 1.32E-06 SC_15_9 1.32E-06SC_3_10 1.34E-06 SC_7_10 1.34E-06 SC_11_10 1.34E-06 SC_15_10 1.34E-06SC_3_11 1.36E-06 SC_7_11 1.36E-06 SC_11_11 1.36E-06 SC_15_11 1.36E-06SC_3_12 1.38E-06 SC_7_12 1.38E-06 SC_11_12 1.38E-06 SC_15_12 1.38E-06SC_3_13 1.40E-06 SC_7_13 1.40E-06 SC_11_13 1.40E-06 SC_15_13 1.40E-06SC_3_14 1.42E-06 SC_7_14 1.42E-06 SC_11_14 1.42E-06 SC_15_14 1.42E-06SC_3_15 1.44E-06 SC_7_15 1.44E-06 SC_11_15 1.44E-06 SC_15_15 1.44E-06SC_3_16 1.46E-06 SC_7_16 1.46E-06 SC_11_16 1.46E-06 SC_15_16 1.46E-06SC_3_17 1.48E-06 SC_7_17 1.48E-06 SC_11_17 1.48E-06 SC_15_17 1.48E-06SC_3_18 1.50E-06 SC_7_18 1.50E-06 SC_11_18 1.50E-06 SC_15_18 1.50E-06SC_3_19 1.52E-06 SC_7_19 1.52E-06 SC_11_19 1.52E-06 SC_15_19 1.52E-06SC_3_20 1.54E-06 SC_7_20 1.54E-06 SC_11_20 1.54E-06 SC_15_20 1.54E-06SC_3_21 1.56E-06 SC_7_21 1.56E-06 SC_11_21 1.56E-06 SC_15_21 1.56E-06SC_3_22 1.58E-06 SC_7_22 1.58E-06 SC_11_22 1.58E-06 SC_15_22 1.58E-06SC_3_23 1.60E-06 SC_7_23 1.60E-06 SC_11_23 1.60E-06 SC_15_23 1.60E-06SC_3_24 1.62E-06 SC_7_24 1.62E-06 SC_11_24 1.62E-06 SC_15_24 1.62E-06SC_3_25 1.76E-06 SC_7_25 1.76E-06 SC_11_25 1.76E-06 SC_15_25 1.76E-06SC_3_26 1.78E-06 SC_7_26 1.78E-06 SC_11_26 1.78E-06 SC_15_26 1.78E-06SC_3_27 1.80E-06 SC_7_27 1.80E-06 SC_11_27 1.80E-06 SC_15_27 1.80E-06SC_4_1 1.16E-06 SC_8_1 1.16E-06 SC_12_1 1.16E-06 SC_16_1 1.16E-06SC_4_2 1.18E-06 SC_8_2 1.18E-06 SC_12_2 1.18E-06 SC_16_2 1.18E-06SC_4_3 1.20E-06 SC_8_3 1.20E-06 SC_12_3 1.20E-06 SC_16_3 1.20E-06SC_4_4 1.22E-06 SC_8_4 1.22E-06 SC_12_4 1.22E-06 SC_16_4 1.22E-06SC_4_5 1.24E-06 SC_8_5 1.24E-06 SC_12_5 1.24E-06 SC_16_5 1.24E-06SC_4_6 1.26E-06 SC_8_6 1.26E-06 SC_12_6 1.26E-06 SC_16_6 1.26E-06SC_4_7 1.28E-06 SC_8_7 1.28E-06 SC_12_7 1.28E-06 SC_16_7 1.28E-06SC_4_8 1.30E-06 SC_8_8 1.30E-06 SC_12_8 1.30E-06 SC_16_8 1.30E-06SC_4_9 1.32E-06 SC_8_9 1.32E-06 SC_12_9 1.32E-06 SC_16_9 1.32E-06SC_4_10 1.34E-06 SC_8_10 1.34E-06 SC_12_10 1.34E-06 SC_16_10 1.34E-06SC_4_11 1.36E-06 SC_8_11 1.36E-06 SC_12_11 1.36E-06 SC_16_11 1.36E-06SC_4_12 1.38E-06 SC_8_12 1.38E-06 SC_12_12 1.38E-06 SC_16_12 1.38E-06SC_4_13 1.40E-06 SC_8_13 1.40E-06 SC_12_13 1.40E-06 SC_16_13 1.40E-06SC_4_14 1.42E-06 SC_8_14 1.42E-06 SC_12_14 1.42E-06 SC_16_14 1.42E-06SC_4_15 1.44E-06 SC_8_15 1.44E-06 SC_12_15 1.44E-06 SC_16_15 1.44E-06SC_4_16 1.46E-06 SC_8_16 1.46E-06 SC_12_16 1.46E-06 SC_16_16 1.46E-06SC_4_17 1.48E-06 SC_8_17 1.48E-06 SC_12_17 1.48E-06 SC_16_17 1.48E-06SC_4_18 1.50E-06 SC_8_18 1.50E-06 SC_12_18 1.50E-06 SC_16_18 1.50E-06SC_4_19 1.52E-06 SC_8_19 1.52E-06 SC_12_19 1.52E-06 SC_16_19 1.52E-06SC_4_20 1.54E-06 SC_8_20 1.54E-06 SC_12_20 1.54E-06 SC_16_20 1.54E-06SC_4_21 1.56E-06 SC_8_21 1.56E-06 SC_12_21 1.56E-06 SC_16_21 1.56E-06SC_4_22 1.58E-06 SC_8_22 1.58E-06 SC_12_22 1.58E-06 SC_16_22 1.58E-06SC_4_23 1.60E-06 SC_8_23 1.60E-06 SC_12_23 1.60E-06 SC_16_23 1.60E-06SC_4_24 1.62E-06 SC_8_24 1.62E-06 SC_12_24 1.62E-06 SC_16_24 1.62E-06SC_4_25 1.76E-06 SC_8_25 1.76E-06 SC_12_25 1.76E-06 SC_16_25 1.76E-06SC_4_26 1.78E-06 SC_8_26 1.78E-06 SC_12_26 1.78E-06 SC_16_26 1.78E-06SC_4_27 1.80E-06 SC_8_27 1.80E-06 SC_12_27 1.80E-06 SC_16_27 1.80E-06

Tab. A.3-12 Cumulative inductances for each conductor of PF 6 coil at 28.6 kHz (H)

Page 156: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

144

SC_1_1 1.16E-06 SC_5_1 1.16E-06 SC_9_1 1.16E-06 SC_13_1 1.16E-06SC_1_2 1.18E-06 SC_5_2 1.18E-06 SC_9_2 1.18E-06 SC_13_2 1.18E-06SC_1_3 1.20E-06 SC_5_3 1.20E-06 SC_9_3 1.20E-06 SC_13_3 1.20E-06SC_1_4 1.22E-06 SC_5_4 1.22E-06 SC_9_4 1.22E-06 SC_13_4 1.22E-06SC_1_5 1.24E-06 SC_5_5 1.24E-06 SC_9_5 1.24E-06 SC_13_5 1.24E-06SC_1_6 1.26E-06 SC_5_6 1.26E-06 SC_9_6 1.26E-06 SC_13_6 1.26E-06SC_1_7 1.28E-06 SC_5_7 1.28E-06 SC_9_7 1.28E-06 SC_13_7 1.28E-06SC_1_8 1.30E-06 SC_5_8 1.30E-06 SC_9_8 1.30E-06 SC_13_8 1.30E-06SC_1_9 1.32E-06 SC_5_9 1.32E-06 SC_9_9 1.32E-06 SC_13_9 1.32E-06SC_1_10 1.34E-06 SC_5_10 1.34E-06 SC_9_10 1.34E-06 SC_13_10 1.34E-06SC_1_11 1.36E-06 SC_5_11 1.36E-06 SC_9_11 1.36E-06 SC_13_11 1.36E-06SC_1_12 1.38E-06 SC_5_12 1.38E-06 SC_9_12 1.38E-06 SC_13_12 1.38E-06SC_1_13 1.40E-06 SC_5_13 1.40E-06 SC_9_13 1.40E-06 SC_13_13 1.40E-06SC_1_14 1.42E-06 SC_5_14 1.42E-06 SC_9_14 1.42E-06 SC_13_14 1.42E-06SC_1_15 1.44E-06 SC_5_15 1.44E-06 SC_9_15 1.44E-06 SC_13_15 1.44E-06SC_1_16 1.46E-06 SC_5_16 1.46E-06 SC_9_16 1.46E-06 SC_13_16 1.46E-06SC_1_17 1.48E-06 SC_5_17 1.48E-06 SC_9_17 1.48E-06 SC_13_17 1.48E-06SC_1_18 1.50E-06 SC_5_18 1.50E-06 SC_9_18 1.50E-06 SC_13_18 1.50E-06SC_1_19 1.52E-06 SC_5_19 1.52E-06 SC_9_19 1.52E-06 SC_13_19 1.52E-06SC_1_20 1.54E-06 SC_5_20 1.54E-06 SC_9_20 1.54E-06 SC_13_20 1.54E-06SC_1_21 1.56E-06 SC_5_21 1.56E-06 SC_9_21 1.56E-06 SC_13_21 1.56E-06SC_1_22 1.58E-06 SC_5_22 1.58E-06 SC_9_22 1.58E-06 SC_13_22 1.58E-06SC_1_23 1.60E-06 SC_5_23 1.60E-06 SC_9_23 1.60E-06 SC_13_23 1.60E-06SC_1_24 1.62E-06 SC_5_24 1.62E-06 SC_9_24 1.62E-06 SC_13_24 1.62E-06SC_1_25 1.76E-06 SC_5_25 1.76E-06 SC_9_25 1.76E-06 SC_13_25 1.76E-06SC_1_26 1.78E-06 SC_5_26 1.78E-06 SC_9_26 1.78E-06 SC_13_26 1.78E-06SC_1_27 1.80E-06 SC_5_27 1.80E-06 SC_9_27 1.80E-06 SC_13_27 1.80E-06SC_2_1 1.16E-06 SC_6_1 1.16E-06 SC_10_1 1.16E-06 SC_14_1 1.16E-06SC_2_2 1.18E-06 SC_6_2 1.18E-06 SC_10_2 1.18E-06 SC_14_2 1.18E-06SC_2_3 1.20E-06 SC_6_3 1.20E-06 SC_10_3 1.20E-06 SC_14_3 1.20E-06SC_2_4 1.22E-06 SC_6_4 1.22E-06 SC_10_4 1.22E-06 SC_14_4 1.22E-06SC_2_5 1.24E-06 SC_6_5 1.24E-06 SC_10_5 1.24E-06 SC_14_5 1.24E-06SC_2_6 1.26E-06 SC_6_6 1.26E-06 SC_10_6 1.26E-06 SC_14_6 1.26E-06SC_2_7 1.28E-06 SC_6_7 1.28E-06 SC_10_7 1.28E-06 SC_14_7 1.28E-06SC_2_8 1.30E-06 SC_6_8 1.30E-06 SC_10_8 1.30E-06 SC_14_8 1.30E-06SC_2_9 1.32E-06 SC_6_9 1.32E-06 SC_10_9 1.32E-06 SC_14_9 1.32E-06SC_2_10 1.34E-06 SC_6_10 1.34E-06 SC_10_10 1.34E-06 SC_14_10 1.34E-06SC_2_11 1.36E-06 SC_6_11 1.36E-06 SC_10_11 1.36E-06 SC_14_11 1.36E-06SC_2_12 1.38E-06 SC_6_12 1.38E-06 SC_10_12 1.38E-06 SC_14_12 1.38E-06SC_2_13 1.40E-06 SC_6_13 1.40E-06 SC_10_13 1.40E-06 SC_14_13 1.40E-06SC_2_14 1.42E-06 SC_6_14 1.42E-06 SC_10_14 1.42E-06 SC_14_14 1.42E-06SC_2_15 1.44E-06 SC_6_15 1.44E-06 SC_10_15 1.44E-06 SC_14_15 1.44E-06SC_2_16 1.46E-06 SC_6_16 1.46E-06 SC_10_16 1.46E-06 SC_14_16 1.46E-06SC_2_17 1.48E-06 SC_6_17 1.48E-06 SC_10_17 1.48E-06 SC_14_17 1.48E-06SC_2_18 1.50E-06 SC_6_18 1.50E-06 SC_10_18 1.50E-06 SC_14_18 1.50E-06SC_2_19 1.52E-06 SC_6_19 1.52E-06 SC_10_19 1.52E-06 SC_14_19 1.52E-06SC_2_20 1.54E-06 SC_6_20 1.54E-06 SC_10_20 1.54E-06 SC_14_20 1.54E-06SC_2_21 1.56E-06 SC_6_21 1.56E-06 SC_10_21 1.56E-06 SC_14_21 1.56E-06SC_2_22 1.58E-06 SC_6_22 1.58E-06 SC_10_22 1.58E-06 SC_14_22 1.58E-06SC_2_23 1.60E-06 SC_6_23 1.60E-06 SC_10_23 1.60E-06 SC_14_23 1.60E-06SC_2_24 1.62E-06 SC_6_24 1.62E-06 SC_10_24 1.62E-06 SC_14_24 1.62E-06SC_2_25 1.76E-06 SC_6_25 1.76E-06 SC_10_25 1.76E-06 SC_14_25 1.76E-06SC_2_26 1.78E-06 SC_6_26 1.78E-06 SC_10_26 1.78E-06 SC_14_26 1.78E-06SC_2_27 1.80E-06 SC_6_27 1.80E-06 SC_10_27 1.80E-06 SC_14_27 1.80E-06SC_3_1 1.16E-06 SC_7_1 1.16E-06 SC_11_1 1.16E-06 SC_15_1 1.16E-06

Page 157: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

145

SC_3_2 1.18E-06 SC_7_2 1.18E-06 SC_11_2 1.18E-06 SC_15_2 1.18E-06SC_3_3 1.20E-06 SC_7_3 1.20E-06 SC_11_3 1.20E-06 SC_15_3 1.20E-06SC_3_4 1.22E-06 SC_7_4 1.22E-06 SC_11_4 1.22E-06 SC_15_4 1.22E-06SC_3_5 1.24E-06 SC_7_5 1.24E-06 SC_11_5 1.24E-06 SC_15_5 1.24E-06SC_3_6 1.26E-06 SC_7_6 1.26E-06 SC_11_6 1.26E-06 SC_15_6 1.26E-06SC_3_7 1.28E-06 SC_7_7 1.28E-06 SC_11_7 1.28E-06 SC_15_7 1.28E-06SC_3_8 1.30E-06 SC_7_8 1.30E-06 SC_11_8 1.30E-06 SC_15_8 1.30E-06SC_3_9 1.32E-06 SC_7_9 1.32E-06 SC_11_9 1.32E-06 SC_15_9 1.32E-06SC_3_10 1.34E-06 SC_7_10 1.34E-06 SC_11_10 1.34E-06 SC_15_10 1.34E-06SC_3_11 1.36E-06 SC_7_11 1.36E-06 SC_11_11 1.36E-06 SC_15_11 1.36E-06SC_3_12 1.38E-06 SC_7_12 1.38E-06 SC_11_12 1.38E-06 SC_15_12 1.38E-06SC_3_13 1.40E-06 SC_7_13 1.40E-06 SC_11_13 1.40E-06 SC_15_13 1.40E-06SC_3_14 1.42E-06 SC_7_14 1.42E-06 SC_11_14 1.42E-06 SC_15_14 1.42E-06SC_3_15 1.44E-06 SC_7_15 1.44E-06 SC_11_15 1.44E-06 SC_15_15 1.44E-06SC_3_16 1.46E-06 SC_7_16 1.46E-06 SC_11_16 1.46E-06 SC_15_16 1.46E-06SC_3_17 1.48E-06 SC_7_17 1.48E-06 SC_11_17 1.48E-06 SC_15_17 1.48E-06SC_3_18 1.50E-06 SC_7_18 1.50E-06 SC_11_18 1.50E-06 SC_15_18 1.50E-06SC_3_19 1.52E-06 SC_7_19 1.52E-06 SC_11_19 1.52E-06 SC_15_19 1.52E-06SC_3_20 1.54E-06 SC_7_20 1.54E-06 SC_11_20 1.54E-06 SC_15_20 1.54E-06SC_3_21 1.56E-06 SC_7_21 1.56E-06 SC_11_21 1.56E-06 SC_15_21 1.56E-06SC_3_22 1.58E-06 SC_7_22 1.58E-06 SC_11_22 1.58E-06 SC_15_22 1.58E-06SC_3_23 1.60E-06 SC_7_23 1.60E-06 SC_11_23 1.60E-06 SC_15_23 1.60E-06SC_3_24 1.62E-06 SC_7_24 1.62E-06 SC_11_24 1.62E-06 SC_15_24 1.62E-06SC_3_25 1.76E-06 SC_7_25 1.76E-06 SC_11_25 1.76E-06 SC_15_25 1.76E-06SC_3_26 1.78E-06 SC_7_26 1.78E-06 SC_11_26 1.78E-06 SC_15_26 1.78E-06SC_3_27 1.80E-06 SC_7_27 1.80E-06 SC_11_27 1.80E-06 SC_15_27 1.80E-06SC_4_1 1.16E-06 SC_8_1 1.16E-06 SC_12_1 1.16E-06 SC_16_1 1.16E-06SC_4_2 1.18E-06 SC_8_2 1.18E-06 SC_12_2 1.18E-06 SC_16_2 1.18E-06SC_4_3 1.20E-06 SC_8_3 1.20E-06 SC_12_3 1.20E-06 SC_16_3 1.20E-06SC_4_4 1.22E-06 SC_8_4 1.22E-06 SC_12_4 1.22E-06 SC_16_4 1.22E-06SC_4_5 1.24E-06 SC_8_5 1.24E-06 SC_12_5 1.24E-06 SC_16_5 1.24E-06SC_4_6 1.26E-06 SC_8_6 1.26E-06 SC_12_6 1.26E-06 SC_16_6 1.26E-06SC_4_7 1.28E-06 SC_8_7 1.28E-06 SC_12_7 1.28E-06 SC_16_7 1.28E-06SC_4_8 1.30E-06 SC_8_8 1.30E-06 SC_12_8 1.30E-06 SC_16_8 1.30E-06SC_4_9 1.32E-06 SC_8_9 1.32E-06 SC_12_9 1.32E-06 SC_16_9 1.32E-06SC_4_10 1.34E-06 SC_8_10 1.34E-06 SC_12_10 1.34E-06 SC_16_10 1.34E-06SC_4_11 1.36E-06 SC_8_11 1.36E-06 SC_12_11 1.36E-06 SC_16_11 1.36E-06SC_4_12 1.38E-06 SC_8_12 1.38E-06 SC_12_12 1.38E-06 SC_16_12 1.38E-06SC_4_13 1.40E-06 SC_8_13 1.40E-06 SC_12_13 1.40E-06 SC_16_13 1.40E-06SC_4_14 1.42E-06 SC_8_14 1.42E-06 SC_12_14 1.42E-06 SC_16_14 1.42E-06SC_4_15 1.44E-06 SC_8_15 1.44E-06 SC_12_15 1.44E-06 SC_16_15 1.44E-06SC_4_16 1.46E-06 SC_8_16 1.46E-06 SC_12_16 1.46E-06 SC_16_16 1.46E-06SC_4_17 1.48E-06 SC_8_17 1.48E-06 SC_12_17 1.48E-06 SC_16_17 1.48E-06SC_4_18 1.50E-06 SC_8_18 1.50E-06 SC_12_18 1.50E-06 SC_16_18 1.50E-06SC_4_19 1.52E-06 SC_8_19 1.52E-06 SC_12_19 1.52E-06 SC_16_19 1.52E-06SC_4_20 1.54E-06 SC_8_20 1.54E-06 SC_12_20 1.54E-06 SC_16_20 1.54E-06SC_4_21 1.56E-06 SC_8_21 1.56E-06 SC_12_21 1.56E-06 SC_16_21 1.56E-06SC_4_22 1.58E-06 SC_8_22 1.58E-06 SC_12_22 1.58E-06 SC_16_22 1.58E-06SC_4_23 1.60E-06 SC_8_23 1.60E-06 SC_12_23 1.60E-06 SC_16_23 1.60E-06SC_4_24 1.62E-06 SC_8_24 1.62E-06 SC_12_24 1.62E-06 SC_16_24 1.62E-06SC_4_25 1.76E-06 SC_8_25 1.76E-06 SC_12_25 1.76E-06 SC_16_25 1.76E-06SC_4_26 1.78E-06 SC_8_26 1.78E-06 SC_12_26 1.78E-06 SC_16_26 1.78E-06SC_4_27 1.80E-06 SC_8_27 1.80E-06 SC_12_27 1.80E-06 SC_16_27 1.80E-06

Tab. A.3-13 Cumulative inductances for each conductor of PF 6 coil at 28.7 kHz (H)

Page 158: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

146

SC_1_1 1.15E-06 SC_5_1 1.15E-06 SC_9_1 1.15E-06 SC_13_1 1.15E-06SC_1_2 1.17E-06 SC_5_2 1.17E-06 SC_9_2 1.17E-06 SC_13_2 1.17E-06SC_1_3 1.19E-06 SC_5_3 1.19E-06 SC_9_3 1.19E-06 SC_13_3 1.19E-06SC_1_4 1.21E-06 SC_5_4 1.21E-06 SC_9_4 1.21E-06 SC_13_4 1.21E-06SC_1_5 1.23E-06 SC_5_5 1.23E-06 SC_9_5 1.23E-06 SC_13_5 1.23E-06SC_1_6 1.25E-06 SC_5_6 1.25E-06 SC_9_6 1.25E-06 SC_13_6 1.25E-06SC_1_7 1.27E-06 SC_5_7 1.27E-06 SC_9_7 1.27E-06 SC_13_7 1.27E-06SC_1_8 1.29E-06 SC_5_8 1.29E-06 SC_9_8 1.29E-06 SC_13_8 1.29E-06SC_1_9 1.31E-06 SC_5_9 1.31E-06 SC_9_9 1.31E-06 SC_13_9 1.31E-06SC_1_10 1.33E-06 SC_5_10 1.33E-06 SC_9_10 1.33E-06 SC_13_10 1.33E-06SC_1_11 1.35E-06 SC_5_11 1.35E-06 SC_9_11 1.35E-06 SC_13_11 1.35E-06SC_1_12 1.37E-06 SC_5_12 1.37E-06 SC_9_12 1.37E-06 SC_13_12 1.37E-06SC_1_13 1.39E-06 SC_5_13 1.39E-06 SC_9_13 1.39E-06 SC_13_13 1.39E-06SC_1_14 1.41E-06 SC_5_14 1.41E-06 SC_9_14 1.41E-06 SC_13_14 1.41E-06SC_1_15 1.43E-06 SC_5_15 1.43E-06 SC_9_15 1.43E-06 SC_13_15 1.43E-06SC_1_16 1.45E-06 SC_5_16 1.45E-06 SC_9_16 1.45E-06 SC_13_16 1.45E-06SC_1_17 1.47E-06 SC_5_17 1.47E-06 SC_9_17 1.47E-06 SC_13_17 1.47E-06SC_1_18 1.49E-06 SC_5_18 1.49E-06 SC_9_18 1.49E-06 SC_13_18 1.49E-06SC_1_19 1.51E-06 SC_5_19 1.51E-06 SC_9_19 1.51E-06 SC_13_19 1.51E-06SC_1_20 1.53E-06 SC_5_20 1.53E-06 SC_9_20 1.53E-06 SC_13_20 1.53E-06SC_1_21 1.55E-06 SC_5_21 1.55E-06 SC_9_21 1.55E-06 SC_13_21 1.55E-06SC_1_22 1.57E-06 SC_5_22 1.57E-06 SC_9_22 1.57E-06 SC_13_22 1.57E-06SC_1_23 1.59E-06 SC_5_23 1.59E-06 SC_9_23 1.59E-06 SC_13_23 1.59E-06SC_1_24 1.61E-06 SC_5_24 1.61E-06 SC_9_24 1.61E-06 SC_13_24 1.61E-06SC_1_25 1.74E-06 SC_5_25 1.74E-06 SC_9_25 1.74E-06 SC_13_25 1.74E-06SC_1_26 1.76E-06 SC_5_26 1.76E-06 SC_9_26 1.76E-06 SC_13_26 1.76E-06SC_1_27 1.78E-06 SC_5_27 1.78E-06 SC_9_27 1.78E-06 SC_13_27 1.78E-06SC_2_1 1.15E-06 SC_6_1 1.15E-06 SC_10_1 1.15E-06 SC_14_1 1.15E-06SC_2_2 1.17E-06 SC_6_2 1.17E-06 SC_10_2 1.17E-06 SC_14_2 1.17E-06SC_2_3 1.19E-06 SC_6_3 1.19E-06 SC_10_3 1.19E-06 SC_14_3 1.19E-06SC_2_4 1.21E-06 SC_6_4 1.21E-06 SC_10_4 1.21E-06 SC_14_4 1.21E-06SC_2_5 1.23E-06 SC_6_5 1.23E-06 SC_10_5 1.23E-06 SC_14_5 1.23E-06SC_2_6 1.25E-06 SC_6_6 1.25E-06 SC_10_6 1.25E-06 SC_14_6 1.25E-06SC_2_7 1.27E-06 SC_6_7 1.27E-06 SC_10_7 1.27E-06 SC_14_7 1.27E-06SC_2_8 1.29E-06 SC_6_8 1.29E-06 SC_10_8 1.29E-06 SC_14_8 1.29E-06SC_2_9 1.31E-06 SC_6_9 1.31E-06 SC_10_9 1.31E-06 SC_14_9 1.31E-06SC_2_10 1.33E-06 SC_6_10 1.33E-06 SC_10_10 1.33E-06 SC_14_10 1.33E-06SC_2_11 1.35E-06 SC_6_11 1.35E-06 SC_10_11 1.35E-06 SC_14_11 1.35E-06SC_2_12 1.37E-06 SC_6_12 1.37E-06 SC_10_12 1.37E-06 SC_14_12 1.37E-06SC_2_13 1.39E-06 SC_6_13 1.39E-06 SC_10_13 1.39E-06 SC_14_13 1.39E-06SC_2_14 1.41E-06 SC_6_14 1.41E-06 SC_10_14 1.41E-06 SC_14_14 1.41E-06SC_2_15 1.43E-06 SC_6_15 1.43E-06 SC_10_15 1.43E-06 SC_14_15 1.43E-06SC_2_16 1.45E-06 SC_6_16 1.45E-06 SC_10_16 1.45E-06 SC_14_16 1.45E-06SC_2_17 1.47E-06 SC_6_17 1.47E-06 SC_10_17 1.47E-06 SC_14_17 1.47E-06SC_2_18 1.49E-06 SC_6_18 1.49E-06 SC_10_18 1.49E-06 SC_14_18 1.49E-06SC_2_19 1.51E-06 SC_6_19 1.51E-06 SC_10_19 1.51E-06 SC_14_19 1.51E-06SC_2_20 1.53E-06 SC_6_20 1.53E-06 SC_10_20 1.53E-06 SC_14_20 1.53E-06SC_2_21 1.55E-06 SC_6_21 1.55E-06 SC_10_21 1.55E-06 SC_14_21 1.55E-06SC_2_22 1.57E-06 SC_6_22 1.57E-06 SC_10_22 1.57E-06 SC_14_22 1.57E-06SC_2_23 1.59E-06 SC_6_23 1.59E-06 SC_10_23 1.59E-06 SC_14_23 1.59E-06SC_2_24 1.61E-06 SC_6_24 1.61E-06 SC_10_24 1.61E-06 SC_14_24 1.61E-06SC_2_25 1.74E-06 SC_6_25 1.74E-06 SC_10_25 1.74E-06 SC_14_25 1.74E-06SC_2_26 1.76E-06 SC_6_26 1.76E-06 SC_10_26 1.76E-06 SC_14_26 1.76E-06SC_2_27 1.78E-06 SC_6_27 1.78E-06 SC_10_27 1.78E-06 SC_14_27 1.78E-06SC_3_1 1.15E-06 SC_7_1 1.15E-06 SC_11_1 1.15E-06 SC_15_1 1.15E-06

Page 159: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

147

SC_3_2 1.17E-06 SC_7_2 1.17E-06 SC_11_2 1.17E-06 SC_15_2 1.17E-06SC_3_3 1.19E-06 SC_7_3 1.19E-06 SC_11_3 1.19E-06 SC_15_3 1.19E-06SC_3_4 1.21E-06 SC_7_4 1.21E-06 SC_11_4 1.21E-06 SC_15_4 1.21E-06SC_3_5 1.23E-06 SC_7_5 1.23E-06 SC_11_5 1.23E-06 SC_15_5 1.23E-06SC_3_6 1.25E-06 SC_7_6 1.25E-06 SC_11_6 1.25E-06 SC_15_6 1.25E-06SC_3_7 1.27E-06 SC_7_7 1.27E-06 SC_11_7 1.27E-06 SC_15_7 1.27E-06SC_3_8 1.29E-06 SC_7_8 1.29E-06 SC_11_8 1.29E-06 SC_15_8 1.29E-06SC_3_9 1.31E-06 SC_7_9 1.31E-06 SC_11_9 1.31E-06 SC_15_9 1.31E-06SC_3_10 1.33E-06 SC_7_10 1.33E-06 SC_11_10 1.33E-06 SC_15_10 1.33E-06SC_3_11 1.35E-06 SC_7_11 1.35E-06 SC_11_11 1.35E-06 SC_15_11 1.35E-06SC_3_12 1.37E-06 SC_7_12 1.37E-06 SC_11_12 1.37E-06 SC_15_12 1.37E-06SC_3_13 1.39E-06 SC_7_13 1.39E-06 SC_11_13 1.39E-06 SC_15_13 1.39E-06SC_3_14 1.41E-06 SC_7_14 1.41E-06 SC_11_14 1.41E-06 SC_15_14 1.41E-06SC_3_15 1.43E-06 SC_7_15 1.43E-06 SC_11_15 1.43E-06 SC_15_15 1.43E-06SC_3_16 1.45E-06 SC_7_16 1.45E-06 SC_11_16 1.45E-06 SC_15_16 1.45E-06SC_3_17 1.47E-06 SC_7_17 1.47E-06 SC_11_17 1.47E-06 SC_15_17 1.47E-06SC_3_18 1.49E-06 SC_7_18 1.49E-06 SC_11_18 1.49E-06 SC_15_18 1.49E-06SC_3_19 1.51E-06 SC_7_19 1.51E-06 SC_11_19 1.51E-06 SC_15_19 1.51E-06SC_3_20 1.53E-06 SC_7_20 1.53E-06 SC_11_20 1.53E-06 SC_15_20 1.53E-06SC_3_21 1.55E-06 SC_7_21 1.55E-06 SC_11_21 1.55E-06 SC_15_21 1.55E-06SC_3_22 1.57E-06 SC_7_22 1.57E-06 SC_11_22 1.57E-06 SC_15_22 1.57E-06SC_3_23 1.59E-06 SC_7_23 1.59E-06 SC_11_23 1.59E-06 SC_15_23 1.59E-06SC_3_24 1.61E-06 SC_7_24 1.61E-06 SC_11_24 1.61E-06 SC_15_24 1.61E-06SC_3_25 1.74E-06 SC_7_25 1.74E-06 SC_11_25 1.74E-06 SC_15_25 1.74E-06SC_3_26 1.76E-06 SC_7_26 1.76E-06 SC_11_26 1.76E-06 SC_15_26 1.76E-06SC_3_27 1.78E-06 SC_7_27 1.78E-06 SC_11_27 1.78E-06 SC_15_27 1.78E-06SC_4_1 1.15E-06 SC_8_1 1.15E-06 SC_12_1 1.15E-06 SC_16_1 1.15E-06SC_4_2 1.17E-06 SC_8_2 1.17E-06 SC_12_2 1.17E-06 SC_16_2 1.17E-06SC_4_3 1.19E-06 SC_8_3 1.19E-06 SC_12_3 1.19E-06 SC_16_3 1.19E-06SC_4_4 1.21E-06 SC_8_4 1.21E-06 SC_12_4 1.21E-06 SC_16_4 1.21E-06SC_4_5 1.23E-06 SC_8_5 1.23E-06 SC_12_5 1.23E-06 SC_16_5 1.23E-06SC_4_6 1.25E-06 SC_8_6 1.25E-06 SC_12_6 1.25E-06 SC_16_6 1.25E-06SC_4_7 1.27E-06 SC_8_7 1.27E-06 SC_12_7 1.27E-06 SC_16_7 1.27E-06SC_4_8 1.29E-06 SC_8_8 1.29E-06 SC_12_8 1.29E-06 SC_16_8 1.29E-06SC_4_9 1.31E-06 SC_8_9 1.31E-06 SC_12_9 1.31E-06 SC_16_9 1.31E-06SC_4_10 1.33E-06 SC_8_10 1.33E-06 SC_12_10 1.33E-06 SC_16_10 1.33E-06SC_4_11 1.35E-06 SC_8_11 1.35E-06 SC_12_11 1.35E-06 SC_16_11 1.35E-06SC_4_12 1.37E-06 SC_8_12 1.37E-06 SC_12_12 1.37E-06 SC_16_12 1.37E-06SC_4_13 1.39E-06 SC_8_13 1.39E-06 SC_12_13 1.39E-06 SC_16_13 1.39E-06SC_4_14 1.41E-06 SC_8_14 1.41E-06 SC_12_14 1.41E-06 SC_16_14 1.41E-06SC_4_15 1.43E-06 SC_8_15 1.43E-06 SC_12_15 1.43E-06 SC_16_15 1.43E-06SC_4_16 1.45E-06 SC_8_16 1.45E-06 SC_12_16 1.45E-06 SC_16_16 1.45E-06SC_4_17 1.47E-06 SC_8_17 1.47E-06 SC_12_17 1.47E-06 SC_16_17 1.47E-06SC_4_18 1.49E-06 SC_8_18 1.49E-06 SC_12_18 1.49E-06 SC_16_18 1.49E-06SC_4_19 1.51E-06 SC_8_19 1.51E-06 SC_12_19 1.51E-06 SC_16_19 1.51E-06SC_4_20 1.53E-06 SC_8_20 1.53E-06 SC_12_20 1.53E-06 SC_16_20 1.53E-06SC_4_21 1.55E-06 SC_8_21 1.55E-06 SC_12_21 1.55E-06 SC_16_21 1.55E-06SC_4_22 1.57E-06 SC_8_22 1.57E-06 SC_12_22 1.57E-06 SC_16_22 1.57E-06SC_4_23 1.59E-06 SC_8_23 1.59E-06 SC_12_23 1.59E-06 SC_16_23 1.59E-06SC_4_24 1.61E-06 SC_8_24 1.61E-06 SC_12_24 1.61E-06 SC_16_24 1.61E-06SC_4_25 1.74E-06 SC_8_25 1.74E-06 SC_12_25 1.74E-06 SC_16_25 1.74E-06SC_4_26 1.76E-06 SC_8_26 1.76E-06 SC_12_26 1.76E-06 SC_16_26 1.76E-06SC_4_27 1.78E-06 SC_8_27 1.78E-06 SC_12_27 1.78E-06 SC_16_27 1.78E-06

Tab. A.3-14 Cumulative inductances for each conductor of PF 6 coil at 30.8 kHz (H)

Page 160: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

148

SC_1_1 1.00E-06 SC_5_1 1.00E-06 SC_9_1 1.00E-06 SC_13_1 1.00E-06SC_1_2 1.02E-06 SC_5_2 1.02E-06 SC_9_2 1.02E-06 SC_13_2 1.02E-06SC_1_3 1.04E-06 SC_5_3 1.04E-06 SC_9_3 1.04E-06 SC_13_3 1.04E-06SC_1_4 1.06E-06 SC_5_4 1.06E-06 SC_9_4 1.06E-06 SC_13_4 1.06E-06SC_1_5 1.07E-06 SC_5_5 1.07E-06 SC_9_5 1.07E-06 SC_13_5 1.07E-06SC_1_6 1.09E-06 SC_5_6 1.09E-06 SC_9_6 1.09E-06 SC_13_6 1.09E-06SC_1_7 1.11E-06 SC_5_7 1.11E-06 SC_9_7 1.11E-06 SC_13_7 1.11E-06SC_1_8 1.13E-06 SC_5_8 1.13E-06 SC_9_8 1.13E-06 SC_13_8 1.13E-06SC_1_9 1.14E-06 SC_5_9 1.14E-06 SC_9_9 1.14E-06 SC_13_9 1.14E-06SC_1_10 1.16E-06 SC_5_10 1.16E-06 SC_9_10 1.16E-06 SC_13_10 1.16E-06SC_1_11 1.18E-06 SC_5_11 1.18E-06 SC_9_11 1.18E-06 SC_13_11 1.18E-06SC_1_12 1.20E-06 SC_5_12 1.20E-06 SC_9_12 1.20E-06 SC_13_12 1.20E-06SC_1_13 1.21E-06 SC_5_13 1.21E-06 SC_9_13 1.21E-06 SC_13_13 1.21E-06SC_1_14 1.23E-06 SC_5_14 1.23E-06 SC_9_14 1.23E-06 SC_13_14 1.23E-06SC_1_15 1.25E-06 SC_5_15 1.25E-06 SC_9_15 1.25E-06 SC_13_15 1.25E-06SC_1_16 1.27E-06 SC_5_16 1.27E-06 SC_9_16 1.27E-06 SC_13_16 1.27E-06SC_1_17 1.28E-06 SC_5_17 1.28E-06 SC_9_17 1.28E-06 SC_13_17 1.28E-06SC_1_18 1.30E-06 SC_5_18 1.30E-06 SC_9_18 1.30E-06 SC_13_18 1.30E-06SC_1_19 1.32E-06 SC_5_19 1.32E-06 SC_9_19 1.32E-06 SC_13_19 1.32E-06SC_1_20 1.34E-06 SC_5_20 1.34E-06 SC_9_20 1.34E-06 SC_13_20 1.34E-06SC_1_21 1.35E-06 SC_5_21 1.35E-06 SC_9_21 1.35E-06 SC_13_21 1.35E-06SC_1_22 1.37E-06 SC_5_22 1.37E-06 SC_9_22 1.37E-06 SC_13_22 1.37E-06SC_1_23 1.39E-06 SC_5_23 1.39E-06 SC_9_23 1.39E-06 SC_13_23 1.39E-06SC_1_24 1.41E-06 SC_5_24 1.41E-06 SC_9_24 1.41E-06 SC_13_24 1.41E-06SC_1_25 1.47E-06 SC_5_25 1.47E-06 SC_9_25 1.47E-06 SC_13_25 1.47E-06SC_1_26 1.49E-06 SC_5_26 1.49E-06 SC_9_26 1.49E-06 SC_13_26 1.49E-06SC_1_27 1.50E-06 SC_5_27 1.50E-06 SC_9_27 1.50E-06 SC_13_27 1.50E-06SC_2_1 1.00E-06 SC_6_1 1.00E-06 SC_10_1 1.00E-06 SC_14_1 1.00E-06SC_2_2 1.02E-06 SC_6_2 1.02E-06 SC_10_2 1.02E-06 SC_14_2 1.02E-06SC_2_3 1.04E-06 SC_6_3 1.04E-06 SC_10_3 1.04E-06 SC_14_3 1.04E-06SC_2_4 1.06E-06 SC_6_4 1.06E-06 SC_10_4 1.06E-06 SC_14_4 1.06E-06SC_2_5 1.07E-06 SC_6_5 1.07E-06 SC_10_5 1.07E-06 SC_14_5 1.07E-06SC_2_6 1.09E-06 SC_6_6 1.09E-06 SC_10_6 1.09E-06 SC_14_6 1.09E-06SC_2_7 1.11E-06 SC_6_7 1.11E-06 SC_10_7 1.11E-06 SC_14_7 1.11E-06SC_2_8 1.13E-06 SC_6_8 1.13E-06 SC_10_8 1.13E-06 SC_14_8 1.13E-06SC_2_9 1.14E-06 SC_6_9 1.14E-06 SC_10_9 1.14E-06 SC_14_9 1.14E-06SC_2_10 1.16E-06 SC_6_10 1.16E-06 SC_10_10 1.16E-06 SC_14_10 1.16E-06SC_2_11 1.18E-06 SC_6_11 1.18E-06 SC_10_11 1.18E-06 SC_14_11 1.18E-06SC_2_12 1.20E-06 SC_6_12 1.20E-06 SC_10_12 1.20E-06 SC_14_12 1.20E-06SC_2_13 1.21E-06 SC_6_13 1.21E-06 SC_10_13 1.21E-06 SC_14_13 1.21E-06SC_2_14 1.23E-06 SC_6_14 1.23E-06 SC_10_14 1.23E-06 SC_14_14 1.23E-06SC_2_15 1.25E-06 SC_6_15 1.25E-06 SC_10_15 1.25E-06 SC_14_15 1.25E-06SC_2_16 1.27E-06 SC_6_16 1.27E-06 SC_10_16 1.27E-06 SC_14_16 1.27E-06SC_2_17 1.28E-06 SC_6_17 1.28E-06 SC_10_17 1.28E-06 SC_14_17 1.28E-06SC_2_18 1.30E-06 SC_6_18 1.30E-06 SC_10_18 1.30E-06 SC_14_18 1.30E-06SC_2_19 1.32E-06 SC_6_19 1.32E-06 SC_10_19 1.32E-06 SC_14_19 1.32E-06SC_2_20 1.34E-06 SC_6_20 1.34E-06 SC_10_20 1.34E-06 SC_14_20 1.34E-06SC_2_21 1.35E-06 SC_6_21 1.35E-06 SC_10_21 1.35E-06 SC_14_21 1.35E-06SC_2_22 1.37E-06 SC_6_22 1.37E-06 SC_10_22 1.37E-06 SC_14_22 1.37E-06SC_2_23 1.39E-06 SC_6_23 1.39E-06 SC_10_23 1.39E-06 SC_14_23 1.39E-06SC_2_24 1.41E-06 SC_6_24 1.41E-06 SC_10_24 1.41E-06 SC_14_24 1.41E-06SC_2_25 1.47E-06 SC_6_25 1.47E-06 SC_10_25 1.47E-06 SC_14_25 1.47E-06SC_2_26 1.49E-06 SC_6_26 1.49E-06 SC_10_26 1.49E-06 SC_14_26 1.49E-06SC_2_27 1.50E-06 SC_6_27 1.50E-06 SC_10_27 1.50E-06 SC_14_27 1.50E-06SC_3_1 1.00E-06 SC_7_1 1.00E-06 SC_11_1 1.00E-06 SC_15_1 1.00E-06

Page 161: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

149

SC_3_2 1.02E-06 SC_7_2 1.02E-06 SC_11_2 1.02E-06 SC_15_2 1.02E-06SC_3_3 1.04E-06 SC_7_3 1.04E-06 SC_11_3 1.04E-06 SC_15_3 1.04E-06SC_3_4 1.06E-06 SC_7_4 1.06E-06 SC_11_4 1.06E-06 SC_15_4 1.06E-06SC_3_5 1.07E-06 SC_7_5 1.07E-06 SC_11_5 1.07E-06 SC_15_5 1.07E-06SC_3_6 1.09E-06 SC_7_6 1.09E-06 SC_11_6 1.09E-06 SC_15_6 1.09E-06SC_3_7 1.11E-06 SC_7_7 1.11E-06 SC_11_7 1.11E-06 SC_15_7 1.11E-06SC_3_8 1.13E-06 SC_7_8 1.13E-06 SC_11_8 1.13E-06 SC_15_8 1.13E-06SC_3_9 1.14E-06 SC_7_9 1.14E-06 SC_11_9 1.14E-06 SC_15_9 1.14E-06SC_3_10 1.16E-06 SC_7_10 1.16E-06 SC_11_10 1.16E-06 SC_15_10 1.16E-06SC_3_11 1.18E-06 SC_7_11 1.18E-06 SC_11_11 1.18E-06 SC_15_11 1.18E-06SC_3_12 1.20E-06 SC_7_12 1.20E-06 SC_11_12 1.20E-06 SC_15_12 1.20E-06SC_3_13 1.21E-06 SC_7_13 1.21E-06 SC_11_13 1.21E-06 SC_15_13 1.21E-06SC_3_14 1.23E-06 SC_7_14 1.23E-06 SC_11_14 1.23E-06 SC_15_14 1.23E-06SC_3_15 1.25E-06 SC_7_15 1.25E-06 SC_11_15 1.25E-06 SC_15_15 1.25E-06SC_3_16 1.27E-06 SC_7_16 1.27E-06 SC_11_16 1.27E-06 SC_15_16 1.27E-06SC_3_17 1.28E-06 SC_7_17 1.28E-06 SC_11_17 1.28E-06 SC_15_17 1.28E-06SC_3_18 1.30E-06 SC_7_18 1.30E-06 SC_11_18 1.30E-06 SC_15_18 1.30E-06SC_3_19 1.32E-06 SC_7_19 1.32E-06 SC_11_19 1.32E-06 SC_15_19 1.32E-06SC_3_20 1.34E-06 SC_7_20 1.34E-06 SC_11_20 1.34E-06 SC_15_20 1.34E-06SC_3_21 1.35E-06 SC_7_21 1.35E-06 SC_11_21 1.35E-06 SC_15_21 1.35E-06SC_3_22 1.37E-06 SC_7_22 1.37E-06 SC_11_22 1.37E-06 SC_15_22 1.37E-06SC_3_23 1.39E-06 SC_7_23 1.39E-06 SC_11_23 1.39E-06 SC_15_23 1.39E-06SC_3_24 1.41E-06 SC_7_24 1.41E-06 SC_11_24 1.41E-06 SC_15_24 1.41E-06SC_3_25 1.47E-06 SC_7_25 1.47E-06 SC_11_25 1.47E-06 SC_15_25 1.47E-06SC_3_26 1.49E-06 SC_7_26 1.49E-06 SC_11_26 1.49E-06 SC_15_26 1.49E-06SC_3_27 1.50E-06 SC_7_27 1.50E-06 SC_11_27 1.50E-06 SC_15_27 1.50E-06SC_4_1 1.00E-06 SC_8_1 1.00E-06 SC_12_1 1.00E-06 SC_16_1 1.00E-06SC_4_2 1.02E-06 SC_8_2 1.02E-06 SC_12_2 1.02E-06 SC_16_2 1.02E-06SC_4_3 1.04E-06 SC_8_3 1.04E-06 SC_12_3 1.04E-06 SC_16_3 1.04E-06SC_4_4 1.06E-06 SC_8_4 1.06E-06 SC_12_4 1.06E-06 SC_16_4 1.06E-06SC_4_5 1.07E-06 SC_8_5 1.07E-06 SC_12_5 1.07E-06 SC_16_5 1.07E-06SC_4_6 1.09E-06 SC_8_6 1.09E-06 SC_12_6 1.09E-06 SC_16_6 1.09E-06SC_4_7 1.11E-06 SC_8_7 1.11E-06 SC_12_7 1.11E-06 SC_16_7 1.11E-06SC_4_8 1.13E-06 SC_8_8 1.13E-06 SC_12_8 1.13E-06 SC_16_8 1.13E-06SC_4_9 1.14E-06 SC_8_9 1.14E-06 SC_12_9 1.14E-06 SC_16_9 1.14E-06SC_4_10 1.16E-06 SC_8_10 1.16E-06 SC_12_10 1.16E-06 SC_16_10 1.16E-06SC_4_11 1.18E-06 SC_8_11 1.18E-06 SC_12_11 1.18E-06 SC_16_11 1.18E-06SC_4_12 1.20E-06 SC_8_12 1.20E-06 SC_12_12 1.20E-06 SC_16_12 1.20E-06SC_4_13 1.21E-06 SC_8_13 1.21E-06 SC_12_13 1.21E-06 SC_16_13 1.21E-06SC_4_14 1.23E-06 SC_8_14 1.23E-06 SC_12_14 1.23E-06 SC_16_14 1.23E-06SC_4_15 1.25E-06 SC_8_15 1.25E-06 SC_12_15 1.25E-06 SC_16_15 1.25E-06SC_4_16 1.27E-06 SC_8_16 1.27E-06 SC_12_16 1.27E-06 SC_16_16 1.27E-06SC_4_17 1.28E-06 SC_8_17 1.28E-06 SC_12_17 1.28E-06 SC_16_17 1.28E-06SC_4_18 1.30E-06 SC_8_18 1.30E-06 SC_12_18 1.30E-06 SC_16_18 1.30E-06SC_4_19 1.32E-06 SC_8_19 1.32E-06 SC_12_19 1.32E-06 SC_16_19 1.32E-06SC_4_20 1.34E-06 SC_8_20 1.34E-06 SC_12_20 1.34E-06 SC_16_20 1.34E-06SC_4_21 1.35E-06 SC_8_21 1.35E-06 SC_12_21 1.35E-06 SC_16_21 1.35E-06SC_4_22 1.37E-06 SC_8_22 1.37E-06 SC_12_22 1.37E-06 SC_16_22 1.37E-06SC_4_23 1.39E-06 SC_8_23 1.39E-06 SC_12_23 1.39E-06 SC_16_23 1.39E-06SC_4_24 1.41E-06 SC_8_24 1.41E-06 SC_12_24 1.41E-06 SC_16_24 1.41E-06SC_4_25 1.47E-06 SC_8_25 1.47E-06 SC_12_25 1.47E-06 SC_16_25 1.47E-06SC_4_26 1.49E-06 SC_8_26 1.49E-06 SC_12_26 1.49E-06 SC_16_26 1.49E-06SC_4_27 1.50E-06 SC_8_27 1.50E-06 SC_12_27 1.50E-06 SC_16_27 1.50E-06

Tab. A.3-15 Cumulative inductances for each conductor of PF 6 coil at 200 kHz (H)

Page 162: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

150

SC_1_1 9.88E-07 SC_5_1 9.88E-07 SC_9_1 9.88E-07 SC_13_1 9.88E-07SC_1_2 1.01E-06 SC_5_2 1.01E-06 SC_9_2 1.01E-06 SC_13_2 1.01E-06SC_1_3 1.02E-06 SC_5_3 1.02E-06 SC_9_3 1.02E-06 SC_13_3 1.02E-06SC_1_4 1.04E-06 SC_5_4 1.04E-06 SC_9_4 1.04E-06 SC_13_4 1.04E-06SC_1_5 1.06E-06 SC_5_5 1.06E-06 SC_9_5 1.06E-06 SC_13_5 1.06E-06SC_1_6 1.07E-06 SC_5_6 1.07E-06 SC_9_6 1.07E-06 SC_13_6 1.07E-06SC_1_7 1.09E-06 SC_5_7 1.09E-06 SC_9_7 1.09E-06 SC_13_7 1.09E-06SC_1_8 1.11E-06 SC_5_8 1.11E-06 SC_9_8 1.11E-06 SC_13_8 1.11E-06SC_1_9 1.13E-06 SC_5_9 1.13E-06 SC_9_9 1.13E-06 SC_13_9 1.13E-06SC_1_10 1.14E-06 SC_5_10 1.14E-06 SC_9_10 1.14E-06 SC_13_10 1.14E-06SC_1_11 1.16E-06 SC_5_11 1.16E-06 SC_9_11 1.16E-06 SC_13_11 1.16E-06SC_1_12 1.18E-06 SC_5_12 1.18E-06 SC_9_12 1.18E-06 SC_13_12 1.18E-06SC_1_13 1.19E-06 SC_5_13 1.19E-06 SC_9_13 1.19E-06 SC_13_13 1.19E-06SC_1_14 1.21E-06 SC_5_14 1.21E-06 SC_9_14 1.21E-06 SC_13_14 1.21E-06SC_1_15 1.23E-06 SC_5_15 1.23E-06 SC_9_15 1.23E-06 SC_13_15 1.23E-06SC_1_16 1.25E-06 SC_5_16 1.25E-06 SC_9_16 1.25E-06 SC_13_16 1.25E-06SC_1_17 1.26E-06 SC_5_17 1.26E-06 SC_9_17 1.26E-06 SC_13_17 1.26E-06SC_1_18 1.28E-06 SC_5_18 1.28E-06 SC_9_18 1.28E-06 SC_13_18 1.28E-06SC_1_19 1.30E-06 SC_5_19 1.30E-06 SC_9_19 1.30E-06 SC_13_19 1.30E-06SC_1_20 1.31E-06 SC_5_20 1.31E-06 SC_9_20 1.31E-06 SC_13_20 1.31E-06SC_1_21 1.33E-06 SC_5_21 1.33E-06 SC_9_21 1.33E-06 SC_13_21 1.33E-06SC_1_22 1.35E-06 SC_5_22 1.35E-06 SC_9_22 1.35E-06 SC_13_22 1.35E-06SC_1_23 1.37E-06 SC_5_23 1.37E-06 SC_9_23 1.37E-06 SC_13_23 1.37E-06SC_1_24 1.38E-06 SC_5_24 1.38E-06 SC_9_24 1.38E-06 SC_13_24 1.38E-06SC_1_25 1.44E-06 SC_5_25 1.44E-06 SC_9_25 1.44E-06 SC_13_25 1.44E-06SC_1_26 1.45E-06 SC_5_26 1.45E-06 SC_9_26 1.45E-06 SC_13_26 1.45E-06SC_1_27 1.47E-06 SC_5_27 1.47E-06 SC_9_27 1.47E-06 SC_13_27 1.47E-06SC_2_1 9.88E-07 SC_6_1 9.88E-07 SC_10_1 9.88E-07 SC_14_1 9.88E-07SC_2_2 1.01E-06 SC_6_2 1.01E-06 SC_10_2 1.01E-06 SC_14_2 1.01E-06SC_2_3 1.02E-06 SC_6_3 1.02E-06 SC_10_3 1.02E-06 SC_14_3 1.02E-06SC_2_4 1.04E-06 SC_6_4 1.04E-06 SC_10_4 1.04E-06 SC_14_4 1.04E-06SC_2_5 1.06E-06 SC_6_5 1.06E-06 SC_10_5 1.06E-06 SC_14_5 1.06E-06SC_2_6 1.07E-06 SC_6_6 1.07E-06 SC_10_6 1.07E-06 SC_14_6 1.07E-06SC_2_7 1.09E-06 SC_6_7 1.09E-06 SC_10_7 1.09E-06 SC_14_7 1.09E-06SC_2_8 1.11E-06 SC_6_8 1.11E-06 SC_10_8 1.11E-06 SC_14_8 1.11E-06SC_2_9 1.13E-06 SC_6_9 1.13E-06 SC_10_9 1.13E-06 SC_14_9 1.13E-06SC_2_10 1.14E-06 SC_6_10 1.14E-06 SC_10_10 1.14E-06 SC_14_10 1.14E-06SC_2_11 1.16E-06 SC_6_11 1.16E-06 SC_10_11 1.16E-06 SC_14_11 1.16E-06SC_2_12 1.18E-06 SC_6_12 1.18E-06 SC_10_12 1.18E-06 SC_14_12 1.18E-06SC_2_13 1.19E-06 SC_6_13 1.19E-06 SC_10_13 1.19E-06 SC_14_13 1.19E-06SC_2_14 1.21E-06 SC_6_14 1.21E-06 SC_10_14 1.21E-06 SC_14_14 1.21E-06SC_2_15 1.23E-06 SC_6_15 1.23E-06 SC_10_15 1.23E-06 SC_14_15 1.23E-06SC_2_16 1.25E-06 SC_6_16 1.25E-06 SC_10_16 1.25E-06 SC_14_16 1.25E-06SC_2_17 1.26E-06 SC_6_17 1.26E-06 SC_10_17 1.26E-06 SC_14_17 1.26E-06SC_2_18 1.28E-06 SC_6_18 1.28E-06 SC_10_18 1.28E-06 SC_14_18 1.28E-06SC_2_19 1.30E-06 SC_6_19 1.30E-06 SC_10_19 1.30E-06 SC_14_19 1.30E-06SC_2_20 1.31E-06 SC_6_20 1.31E-06 SC_10_20 1.31E-06 SC_14_20 1.31E-06SC_2_21 1.33E-06 SC_6_21 1.33E-06 SC_10_21 1.33E-06 SC_14_21 1.33E-06SC_2_22 1.35E-06 SC_6_22 1.35E-06 SC_10_22 1.35E-06 SC_14_22 1.35E-06SC_2_23 1.37E-06 SC_6_23 1.37E-06 SC_10_23 1.37E-06 SC_14_23 1.37E-06SC_2_24 1.38E-06 SC_6_24 1.38E-06 SC_10_24 1.38E-06 SC_14_24 1.38E-06SC_2_25 1.44E-06 SC_6_25 1.44E-06 SC_10_25 1.44E-06 SC_14_25 1.44E-06SC_2_26 1.45E-06 SC_6_26 1.45E-06 SC_10_26 1.45E-06 SC_14_26 1.45E-06SC_2_27 1.47E-06 SC_6_27 1.47E-06 SC_10_27 1.47E-06 SC_14_27 1.47E-06SC_3_1 9.88E-07 SC_7_1 9.88E-07 SC_11_1 9.88E-07 SC_15_1 9.88E-07

Page 163: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

151

SC_3_2 1.01E-06 SC_7_2 1.01E-06 SC_11_2 1.01E-06 SC_15_2 1.01E-06SC_3_3 1.02E-06 SC_7_3 1.02E-06 SC_11_3 1.02E-06 SC_15_3 1.02E-06SC_3_4 1.04E-06 SC_7_4 1.04E-06 SC_11_4 1.04E-06 SC_15_4 1.04E-06SC_3_5 1.06E-06 SC_7_5 1.06E-06 SC_11_5 1.06E-06 SC_15_5 1.06E-06SC_3_6 1.07E-06 SC_7_6 1.07E-06 SC_11_6 1.07E-06 SC_15_6 1.07E-06SC_3_7 1.09E-06 SC_7_7 1.09E-06 SC_11_7 1.09E-06 SC_15_7 1.09E-06SC_3_8 1.11E-06 SC_7_8 1.11E-06 SC_11_8 1.11E-06 SC_15_8 1.11E-06SC_3_9 1.13E-06 SC_7_9 1.13E-06 SC_11_9 1.13E-06 SC_15_9 1.13E-06SC_3_10 1.14E-06 SC_7_10 1.14E-06 SC_11_10 1.14E-06 SC_15_10 1.14E-06SC_3_11 1.16E-06 SC_7_11 1.16E-06 SC_11_11 1.16E-06 SC_15_11 1.16E-06SC_3_12 1.18E-06 SC_7_12 1.18E-06 SC_11_12 1.18E-06 SC_15_12 1.18E-06SC_3_13 1.19E-06 SC_7_13 1.19E-06 SC_11_13 1.19E-06 SC_15_13 1.19E-06SC_3_14 1.21E-06 SC_7_14 1.21E-06 SC_11_14 1.21E-06 SC_15_14 1.21E-06SC_3_15 1.23E-06 SC_7_15 1.23E-06 SC_11_15 1.23E-06 SC_15_15 1.23E-06SC_3_16 1.25E-06 SC_7_16 1.25E-06 SC_11_16 1.25E-06 SC_15_16 1.25E-06SC_3_17 1.26E-06 SC_7_17 1.26E-06 SC_11_17 1.26E-06 SC_15_17 1.26E-06SC_3_18 1.28E-06 SC_7_18 1.28E-06 SC_11_18 1.28E-06 SC_15_18 1.28E-06SC_3_19 1.30E-06 SC_7_19 1.30E-06 SC_11_19 1.30E-06 SC_15_19 1.30E-06SC_3_20 1.31E-06 SC_7_20 1.31E-06 SC_11_20 1.31E-06 SC_15_20 1.31E-06SC_3_21 1.33E-06 SC_7_21 1.33E-06 SC_11_21 1.33E-06 SC_15_21 1.33E-06SC_3_22 1.35E-06 SC_7_22 1.35E-06 SC_11_22 1.35E-06 SC_15_22 1.35E-06SC_3_23 1.37E-06 SC_7_23 1.37E-06 SC_11_23 1.37E-06 SC_15_23 1.37E-06SC_3_24 1.38E-06 SC_7_24 1.38E-06 SC_11_24 1.38E-06 SC_15_24 1.38E-06SC_3_25 1.44E-06 SC_7_25 1.44E-06 SC_11_25 1.44E-06 SC_15_25 1.44E-06SC_3_26 1.45E-06 SC_7_26 1.45E-06 SC_11_26 1.45E-06 SC_15_26 1.45E-06SC_3_27 1.47E-06 SC_7_27 1.47E-06 SC_11_27 1.47E-06 SC_15_27 1.47E-06SC_4_1 9.88E-07 SC_8_1 9.88E-07 SC_12_1 9.88E-07 SC_16_1 9.88E-07SC_4_2 1.01E-06 SC_8_2 1.01E-06 SC_12_2 1.01E-06 SC_16_2 1.01E-06SC_4_3 1.02E-06 SC_8_3 1.02E-06 SC_12_3 1.02E-06 SC_16_3 1.02E-06SC_4_4 1.04E-06 SC_8_4 1.04E-06 SC_12_4 1.04E-06 SC_16_4 1.04E-06SC_4_5 1.06E-06 SC_8_5 1.06E-06 SC_12_5 1.06E-06 SC_16_5 1.06E-06SC_4_6 1.07E-06 SC_8_6 1.07E-06 SC_12_6 1.07E-06 SC_16_6 1.07E-06SC_4_7 1.09E-06 SC_8_7 1.09E-06 SC_12_7 1.09E-06 SC_16_7 1.09E-06SC_4_8 1.11E-06 SC_8_8 1.11E-06 SC_12_8 1.11E-06 SC_16_8 1.11E-06SC_4_9 1.13E-06 SC_8_9 1.13E-06 SC_12_9 1.13E-06 SC_16_9 1.13E-06SC_4_10 1.14E-06 SC_8_10 1.14E-06 SC_12_10 1.14E-06 SC_16_10 1.14E-06SC_4_11 1.16E-06 SC_8_11 1.16E-06 SC_12_11 1.16E-06 SC_16_11 1.16E-06SC_4_12 1.18E-06 SC_8_12 1.18E-06 SC_12_12 1.18E-06 SC_16_12 1.18E-06SC_4_13 1.19E-06 SC_8_13 1.19E-06 SC_12_13 1.19E-06 SC_16_13 1.19E-06SC_4_14 1.21E-06 SC_8_14 1.21E-06 SC_12_14 1.21E-06 SC_16_14 1.21E-06SC_4_15 1.23E-06 SC_8_15 1.23E-06 SC_12_15 1.23E-06 SC_16_15 1.23E-06SC_4_16 1.25E-06 SC_8_16 1.25E-06 SC_12_16 1.25E-06 SC_16_16 1.25E-06SC_4_17 1.26E-06 SC_8_17 1.26E-06 SC_12_17 1.26E-06 SC_16_17 1.26E-06SC_4_18 1.28E-06 SC_8_18 1.28E-06 SC_12_18 1.28E-06 SC_16_18 1.28E-06SC_4_19 1.30E-06 SC_8_19 1.30E-06 SC_12_19 1.30E-06 SC_16_19 1.30E-06SC_4_20 1.31E-06 SC_8_20 1.31E-06 SC_12_20 1.31E-06 SC_16_20 1.31E-06SC_4_21 1.33E-06 SC_8_21 1.33E-06 SC_12_21 1.33E-06 SC_16_21 1.33E-06SC_4_22 1.35E-06 SC_8_22 1.35E-06 SC_12_22 1.35E-06 SC_16_22 1.35E-06SC_4_23 1.37E-06 SC_8_23 1.37E-06 SC_12_23 1.37E-06 SC_16_23 1.37E-06SC_4_24 1.38E-06 SC_8_24 1.38E-06 SC_12_24 1.38E-06 SC_16_24 1.38E-06SC_4_25 1.44E-06 SC_8_25 1.44E-06 SC_12_25 1.44E-06 SC_16_25 1.44E-06SC_4_26 1.45E-06 SC_8_26 1.45E-06 SC_12_26 1.45E-06 SC_16_26 1.45E-06SC_4_27 1.47E-06 SC_8_27 1.47E-06 SC_12_27 1.47E-06 SC_16_27 1.47E-06

Tab. A.3-16 Cumulative inductances for each conductor of PF 6 coil at 295 kHz (H)

Page 164: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

152

Annex A.4 FEM Models of the Bus Bars for Power Supply

(a) FEM Model of the Superconducting Bus Bars

Model Definition

Solver: Eddy Current Symmetry: XY-Plane Frequency 0 Hz

Drawing Size: X-direction: ±100 mm; Y-direction: ±100 mm

Materials

Cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Superconducting cable Copper at 4K, relative permittivity = 1, relative permeability = 1, con-ductivity = 6.4E9 S/m

Stainless steel jacket Stainless steel at 4K, relative permittivity = 1, relative permeabil-ity = 1, conductivity = 1.88e6 S/m

Insulation Epoxy resin, relative permittivity = 4, relative permeability = 1

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source Superconducting bus bar with 45 kA

Boundary Balloon

Setup Executive Parameters

Only superconducting bus bar was chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Insulation Cooling Tube Superconducting cable

Stainless steel jacket

Background

Number of triangles

182 34 1294 73 291

Page 165: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the FEM Models

153

(b) FEM Model of the Water Cooled Bus Bars

Model Definition

Solver: Eddy Current Symmetry: XY-Plane Frequency 0 Hz

Drawing Size: X-direction: ±400 mm; Y-direction: ±400 mm

Materials

Water cooling tube Vacuum, relative permittivity = 1, relative permeability = 1

Aluminium bus bar Aluminium, relative permittivity = 1, relative permeability = 1, conductivity = 3.6e+7

Background: Vacuum, relative permittivity = 1, relative permeability = 1

Setup Boundaries and Sources

Current Source Water cooled bus bar with 45 kA

Boundary Balloon

Setup Executive Parameters

Water cooled bus bar was chosen into the impedance matrix.

Return path of the current was set to default.

Setup Solution Options

Mesh: Manual mesh

Object Water Cooling Tube Water Cooled Bus bar Background

Number of triangles 34 1628 672

Page 166: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

154

Annex B Detailed Data of the Network Models

Annex B.1 Network Model of CS PF Coil System

Name of the Element Value of the Element Name of the Element Value of the Element

Cwcbb+CS1U 4.00E-10 F Cwcbb-1CS1L 4.00E-10 F

Cwcbb+CS2L 4.00E-10 F Cwcbb-1CS2L 4.00E-10 F

Cwcbb+CS2U 4.00E-10 F Cwcbb-1CS2U 4.00E-10 F

Cwcbb+CS3L 4.00E-10 F Cwcbb-1CS3L 4.00E-10 F

Cwcbb+CS3U 3.90E-10 F Cwcbb-1CS3U 3.90E-10 F

Cwcbb+PF1 3.90E-10 F Cwcbb-1PF1 3.90E-10 F

Cwcbb+PF2 4.00E-10 F Cwcbb-1PF2 4.00E-10 F

C wcbb+PF3 4.00E-10 F Cwcbb-1PF3 4.00E-10 F

Cwcbb+PF4 4.00E-10 F Cwcbb-1PF4 4.00E-10 F

Cwcbb+PF5 4.00E-10 F Cwcbb-1PF5 4.00E-10 F

Cwcbb+PF6 3.90E-10 F Cwcbb-1PF6 3.90E-10 F

Cwcbb-2CS1L 5.90E-10 F CwcbbCS1U 1.05E-09 F

Cwcbb-2CS2L 5.90E-10 F CwcbbCS2L 1.05E-09 F

Cwcbb-2CS2U 4.00E-10 F CwcbbCS2U 1.05E-09 F

Cwcbb-2CS3L 5.90E-10 F CwcbbCS3L 1.05E-09 F

Cwcbb-2CS3U 4.00E-10 F CwcbbCS3U 1.05E-09 F

Cwcbb-2PF1 4.00E-10 F CwcbbPF1 1.05E-09 F

Cwcbb-2PF2 4.00E-10 F CwcbbPF2 1.05E-09 F

Page 167: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

155

Cwcbb-2PF3 4.00E-10 F CwcbbPF3 1.05E-09 F

Cwcbb-2PF4 5.90E-10 F CwcbbPF4 1.05E-09 F

Cwcbb-2PF5 5.90E-10 F CwcbbPF5 1.05E-09 F

Cwcbb-2PF6 4.00E-10 F CwcbbPF6 1.05E-09 F

Lwcbb+CS1U 4.20E-05 H Lwcbb-1CS1L 4.20E-05 H

Lwcbb+CS2L 4.17E-05 H Lwcbb-1CS2L 4.17E-05 H

Lwcbb+CS2U 4.17E-05 H Lwcbb-1CS2U 4.17E-05 H

Lwcbb+CS3L 4.17E-05 H Lwcbb-1CS3L 4.17E-05 H

Lwcbb+CS3U 4.17E-05 H Lwcbb-1CS3U 4.17E-05 H

Lwcbb+PF1 4.17E-05 H Lwcbb-1PF1 4.17E-05 H

Lwcbb+PF2 4.20E-05 H Lwcbb-1PF2 4.20E-05 H

Lwcbb+PF3 4.20E-05 H Lwcbb-1PF3 4.20E-05 H

Lwcbb+PF4 4.20E-05 H Lwcbb-1PF4 4.20E-05 H

Lwcbb+PF5 4.20E-05 H Lwcbb-1PF5 4.20E-05 H

Lwcbb+PF6 4.17E-05 H Lwcbb-1PF6 4.17E-05 H

Lwcbb-2CS1L 6.30E-05 H Rwcbb+CS1U 4.20E-05 Ω

Lwcbb-2CS2L 6.30E-05 H Rwcbb+CS2L 4.17E-05 Ω

Lwcbb-2CS2U 4.33E-05 H Rwcbb+CS2U 4.17E-05 Ω

Lwcbb-2CS3L 6.30E-05 H Rwcbb+CS3L 4.17E-05 Ω

Lwcbb-2CS3U 4.33E-05 H Rwcbb+CS3U 4.17E-05 Ω

Lwcbb-2PF1 4.33E-05 H Rwcbb+PF1 4.17E-05 Ω

Page 168: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

156

Lwcbb-2PF2 4.30E-05 H Rwcbb+PF2 4.20E-05 Ω

Lwcbb-2PF3 4.30E-05 H Rwcbb+PF3 4.20E-05 Ω

Lwcbb-2PF4 6.30E-05 H Rwcbb+PF4 4.20E-05 Ω

Lwcbb-2PF5 6.30E-05 H Rwcbb+PF5 4.20E-05 Ω

Lwcbb-2PF6 4.33E-05 H Rwcbb+PF6 4.17E-05 Ω

Rwcbb-1CS1L 4.20E-05 Ω Rwcbb-2CS1L 6.30E-05 Ω

Rwcbb-1CS2L 4.17E-05 Ω Rwcbb-2CS2L 6.30E-05 Ω

Rwcbb-1CS2U 4.17E-05 Ω Rwcbb-2CS2U 4.33E-05 Ω

Rwcbb-1CS3L 4.17E-05 Ω Rwcbb-2CS3L 6.30E-05 Ω

Rwcbb-1CS3U 4.17E-05 Ω Rwcbb-2CS3U 4.33E-05 Ω

Rwcbb-1PF1 4.17E-05 Ω Rwcbb-2PF1 4.33E-05 Ω

Rwcbb-1PF2 4.20E-05 Ω Rwcbb-2PF2 4.30E-05 Ω

Rwcbb-1PF3 4.20E-05 Ω Rwcbb-2PF3 4.30E-05 Ω

Rwcbb-1PF4 4.20E-05 Ω Rwcbb-2PF4 6.30E-05 Ω

Rwcbb-1PF5 4.20E-05 Ω Rwcbb-2PF5 6.30E-05 Ω

Rwcbb-1PF6 4.17E-05 Ω Rwcbb-2PF6 4.33E-05 Ω

Tab. B.1-1 Values for resistances, inductances and capacitances used in the network model of the CS PF coil system for the water cooled bus bars

Page 169: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

157

Name of the Element Value of the Element Name of the Element Value of the Element

Ck6+CS1L 1.98E-07 F Lk6+CS1L 8.25E-07 H

Ck6+CS1U 2.09E-07 F Lk6+CS1U 8.70E-07 H

Ck6+CS2L 1.01E-07 F Lk6+CS2L 4.20E-07 H

Ck6+CS2U 1.58E-07 F Lk6+CS2U 6.60E-07 H

Ck6+CS3L 7.20E-08 F Lk6+CS3L 3.00E-07 H

Ck6+CS3U 1.30E-07 F Lk6+CS3U 5.40E-07 H

Ck6+PF1 3.60E-08 F Lk6+PF1 1.50E-07 H

Ck6+PF6 3.60E-08 F Lk6+PF6 1.50E-07 H

Ck6-CS1L 1.80E-07 F Lk6-CS1L 7.50E-07 H

Ck6-CS1U 2.09E-07 F Lk6-CS1U 8.70E-07 H

Ck6-CS2L 1.01E-07 F Lk6-CS2L 4.20E-07 H

Ck6-CS2U 1.58E-07 F Lk6-CS2U 6.60E-07 H

Ck6-CS3L 7.20E-08 F Lk6-CS3L 3.00E-07 H

Ck6-CS3U 1.30E-07 F Lk6-CS3U 5.40E-07 H

Ck6-PF1 3.60E-08 F Lk6-PF1 1.50E-07 H

Ck6-PF6 3.60E-08 F Lk6-PF6 1.50E-07 H

Rk6+CS1L 4.57E-04 Ω Rk6-CS1L 4.17E-04 Ω

Rk6+CS1U 4.83E-04 Ω Rk6-CS1U 4.83E-04 Ω

Rk6+CS2L 2.33E-04 Ω Rk6-CS2L 2.33E-04 Ω

Rk6+CS2U 3.66E-04 Ω Rk6-CS2U 3.66E-04 Ω

Rk6+CS3L 1.67E-04 Ω Rk6-CS3L 1.67E-04 Ω

Page 170: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

158

Rk6+CS3U 3.00E-04 Ω Rk6-CS3U 3.00E-04 Ω

Rk6+PF1 8.38E-05 Ω Rk6-PF1 8.33E-05 Ω

Rk6+PF6 8.38E-05 Ω Rk6-PF6 8.33E-05 Ω

Tab. B.1-2 Values for resistances, inductances and capacitances used in the network model of the CS PF coil system for the connection of the switching network units with switching network resistors

Page 171: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

159

Name of the Element Value of the Element Name of the Element Value of the Element

Ck2+CS1L 6.00E-08 F Ck2-CS1L 9.60E-08 F

Ck2+CS1U 2.05E-07 F Ck2-CS1U 2.12E-07 F

Ck2+CS2L 4.00E-08 F Ck2-CS2L 4.00E-08 F

Ck2+CS2U 5.64E-08 F Ck2-CS2U 5.64E-08 F

Ck2+CS3L 3.60E-08 F Ck2-CS3L 3.80E-08 F

Ck2+CS3U 4.68E-08 F Ck2-CS3U 4.68E-08 F

Ck2+PF1 2.40E-08 F Ck2-PF1 2.40E-08 F

Ck2+PF2 3.60E-08 F Ck2-PF2 3.60E-08 F

Ck2+PF3 1.05E-08 F Ck2-PF3 1.05E-08 F

Ck2+PF4 6.00E-09 F Ck2-PF4 1.26E-08 F

Ck2+PF5 6.00E-09 F Ck2-PF5 1.30E-08 F

Ck2+PF6 6.00E-08 F Ck2-CS1L 9.60E-08 F

Lk2+CS1L 2.25E-06 H Lk2-CS1L 3.60E-06 H

Lk2+CS1U 8.50E-07 H Lk2-CS1U 8.85E-07 H

Lk2+CS2L 1.48E-06 H Lk2-CS2L 1.48E-06 H

Lk2+CS2U 2.11E-06 H Lk2-CS2U 2.11E-06 H

Lk2+CS3L 1.35E-06 H Lk2-CS3L 1.44E-06 H

Lk2+CS3U 1.75E-06 H Lk2-CS3U 1.75E-06 H

Lk2+PF1 9.00E-07 H Lk2-PF1 9.00E-07 H

Lk2+PF2 1.35E-06 H Lk2-PF2 1.35E-06 H

Lk2+PF3 1.57E-06 H Lk2-PF3 1.57E-06 H

Page 172: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

160

Lk2+PF4 9.00E-07 H Lk2-PF4 1.89E-06 H

Lk2+PF5 9.00E-07 H Lk2-PF5 1.89E-06 H

Lk2+PF6 1.13E-06 H Lk2-PF6 2.11E-06 H

Rk2+CS1L 1.25E-03 Ω Rk2-CS1L 2.00E-03 Ω

Rk2+CS1U 4.75E-04 Ω Rk2-CS1U 4.91E-04 Ω

Rk2+CS2L 8.25E-04 Ω Rk2-CS2L 8.25E-04 Ω

Rk2+CS2U 1.18E-03 Ω Rk2-CS2U 1.18E-03 Ω

Rk2+CS3L 7.50E-04 Ω Rk2-CS3L 8.00E-04 Ω

Rk2+CS3U 9.75E-04 Ω Rk2-CS3U 9.75E-04 Ω

Rk2+PF1 5.00E-04 Ω Rk2-PF1 5.00E-04 Ω

Rk2+PF2 7.50E-04 Ω Rk2-PF2 7.50E-04 Ω

Rk2+PF3 8.75E-04 Ω Rk2-PF3 8.75E-04 Ω

Rk2+PF4 5.00E-04 Ω Rk2-PF4 1.00E-03 Ω

Rk2+PF5 5.00E-04 Ω Rk2-PF5 1.00E-06 Ω

Rk2+PF6 6.25E-04 Ω Rk2-PF6 1.18E-03 Ω

Tab. B.1-3 Values for resistances, inductances and capacitances used in the network model of the CS PF coil system for the connection of the fast discharge units with fast discharge resistors

Page 173: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

161

Name of the Element Value of the Element Name of the Element Value of the Element

Cscbb+CS1L 7.20E-08 F Cscbb-CS1L 7.20E-08 F

Cscbb+CS1U 7.20E-08 F Cscbb-CS1U 7.20E-08 F

Cscbb+CS2L 6.98E-08 F Cscbb-CS2L 6.98E-08 F

Cscbb+CS2U 6.40E-08 F Cscbb-CS2U 6.40E-08 F

Cscbb+CS3L 6.60E-08 F Cscbb-CS3L 6.60E-08 F

Cscbb+CS3U 6.10E-08 F Cscbb-CS3U 6.10E-08 F

Cscbb+PF1 4.48E-08 F Cscbb-PF1 4.48E-08 F

Cscbb+PF2 4.50E-08 F Cscbb-PF2 4.50E-08 F

Cscbb+PF3 4.10E-08 F Cscbb-PF3 4.10E-08 F

Cscbb+PF4 4.80E-08 F Cscbb-PF4 4.80E-08 F

Cscbb+PF5 4.60E-08 F Cscbb-PF5 4.60E-08 F

Cscbb+PF6 4.48E-08 F Cscbb-PF6 4.48E-08 F

Lscbb+CS1L 5.60E-05 H Lscbb-CS1L 5.60E-05 H

Lscbb+CS1U 5.60E-05 H Lscbb-CS1U 5.60E-05 H

Lscbb+CS2L 5.46E-05 H Lscbb-CS2L 5.46E-05 H

Lscbb+CS2U 5.04E-05 H Lscbb-CS2U 5.04E-05 H

Lscbb+CS3L 5.18E-05 H Lscbb-CS3L 5.18E-05 H

Lscbb+CS3U 4.76E-05 H Lscbb-CS3U 4.76E-05 H

Lscbb+PF1 3.50E-05 H Lscbb-PF1 3.50E-05 H

Lscbb+PF2 3.50E-05 H Lscbb-PF2 3.50E-05 H

Lscbb+PF3 3.20E-05 H Lscbb-PF3 3.20E-05 H

Page 174: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

162

Lscbb+PF4 3.80E-05 H Lscbb-PF4 3.80E-05 H

Lscbb+PF5 3.60E-05 H Lscbb-PF5 3.00E-05 H

Lscbb+PF6 3.50E-05 H Lscbb-PF6 3.50E-05 H

Rscbb+CS1L 4.00E-11 Ω Rscbb-CS1L 4.00E-11 Ω

Rscbb+CS1U 4.00E-11 Ω Rscbb-CS1U 4.00E-11 Ω

Rscbb+CS2L 3.90E-11 Ω Rscbb-CS2L 3.90E-11 Ω

Rscbb+CS2U 3.60E-11 Ω Rscbb-CS2U 3.60E-11 Ω

Rscbb+CS3L 3.70E-11 Ω Rscbb-CS3L 3.70E-11 Ω

Rscbb+CS3U 3.40E-11 Ω Rscbb-CS3U 3.40E-11 Ω

Rscbb+PF1 2.50E-11 Ω Rscbb-PF1 2.50E-11 Ω

Rscbb+PF2 2.50E-11 Ω Rscbb-PF2 2.50E-11 Ω

Rscbb+PF3 2.30E-11 Ω Rscbb-PF3 2.30E-11 Ω

Rscbb+PF4 2.70E-11 Ω Rscbb-PF4 2.70E-11 Ω

Rscbb+PF5 2.60E-11 Ω Rscbb-PF5 2.60E-11 Ω

Rscbb+PF6 2.50E-11 Ω Rscbb-PF6 2.50E-11 Ω

Tab. B.1-4 Values for resistances, inductances and capacitances used in the network model of the CS PF coil system for the connection of the coil terminal box with coil terminals with superconducting bus bars

Page 175: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

163

Fig. B.1-1 Simulation settings for analysis of the network model of the CS PF coil system

Fig. B.1-2 Simulation settings for options of the network model of the CS PF coil system

Page 176: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

164

Annex B.2 Network Model of PF 3 Coil

(a) Calculations in Frequency Domain

Fig. B.2-1 Simulation settings for analysis of the network model of the PF 3 coil in fre-

quency domain

Fig. B.2-2 Simulation settings for options of the network model of the PF 3 coil in fre-

quency domain

Page 177: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

165

(b) Calculations in Time Domain

Fig. B.2-3 Simulation settings for configuration files of the network model of the PF 3 coil

in time domain

Fig. B.2-4 Simulation settings for options of the network model of the PF 3 coil in time do-

main

Page 178: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

166

Annex B.3 Network Model of PF 6 Coil

(a) Calculations in Frequency Domain

Fig. B.3-1 Simulation settings for analysis of the network model of the PF 6 coil in fre-

quency domain

Fig. B.3-2 Simulation settings for options of the network model of the PF 6 coil in fre-

quency domain

Page 179: Definition of Procedures for Coil Electrical Testing and ... · PDF fileCoil Electrical Testing and Preparation for PF Transient ... Definition of Procedures for Coil Electrical Testing

Detailed Data of the Network Models

167

(b) Calculations in Time Domain

Fig. B.3-3 Simulation settings for configuration files of the network model of the PF 6 coil

in time domain

Fig. B.3-4 Simulation settings for options of the network model of the PF 6 coil in time do-

main