19
Decomposition and Terapascal Phases of Water Ice Chris Pickard University College London, UK Miguel Martinez-Canales University College London, UK Richard Needs University of Cambridge, UK TTI Vallico Sotto, July 2013 1

Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Decomposition and TerapascalPhases of Water Ice

Chris Pickard

University College London, UK

Miguel Martinez-Canales

University College London, UK

Richard Needs

University of Cambridge, UK

TTI Vallico Sotto, July 20131

Page 2: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Density functionals for water at TPa pressures

• Van der Waals interactions are known to be important in ice structuresat low pressures

• Can include van der Waals interactions using empirical (Tkatchenko andothers) or parameter free density functional methods (Langreth and others)

• Including van der Waals interactions tends to contract structures

• The uniform limit becomes relevant at very high densities

• Empirical methods generally do not obey the uniform limit and(probably) do not give an accurate description of the linear response to anapplied potential

• We don’t really know what to do, so we use the PBE-GGA densityfunctional, which satisfies the uniform limit and gives a good account oflinear response

• All energy scales tend to increase as the density increases

2

Page 3: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Terapascal pressures

1 GPa ≃ 104 atmospheres

Pressure at the centre of the Earth ≃ 350 GPa = 0.35 TPa

Pressure at the centre of Jupiter ≃ 8 TPa

Pressures at the centres of large exoplanets up to 100 TPa

Maximum pressure in diamond anvil cell ≃ 0.4 TPa (0.64 TPa now!)

Can achieve multi-TPa pressures in shock wave experiments

Ramped compression achieves multi-TPa pressures at lower temperatures

Aluminium subjected to 400 TPa in an underground nuclear explosion

Development of apparatus for multi-TPa experiments, laser driven shockwaves, precompression, National Ignition Facility (NIF) etc.

3

Page 4: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Relevance of water at terapascal pressures

• It has been speculated that water ice is present in the core of Jupiter atpressures as high as 6.4 TPa, also in Saturn at 1 TPa

• Icy planetary cores could be strongly eroded by contact with ahydrogen-rich mantle

• Pressure at which water ice metallizes?

• Does water ice decompose at high pressures?

• To investigate these issues we need to know what the most stablestructures look like at TPa pressures

4

Page 5: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

The stability of structures

H2O is a stable stoichiometry of the binary H:O system.

At low pressures and temperatures, the reaction

H2O → HyOz +H2−yO1−z

is endothermic for all y and z, 0 < y < 2, 0 < z < 1

(1) Local or mechanical stability: harmonic phonons have real frequencies(also stable against elastic distortions)

(1a) Local or mechanical stability: structure sits in a potential well, butsome phonons are unstable

(2) Stability against decomposition into two other compounds

Structure searching can typically find types (1) and (2), but not (1a)

5

Page 6: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Energy landscape

Minima at low energies, could have multiple funnels

6

Page 7: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Ab Initio Random Structure Searching

Use Density Functional Theory methods as the type of bonding may beuncertain

• Make a random unit cell

• Throw the required numbers of each atom type into the cell at random

• Relax under the quantum mechanical forces and stresses

• Repeat until happy or computing credits run out

• Look at lowest-energy or other interesting structures

Pickard and Needs, Phys Rev Lett 97, 045504 (2006)

Pickard and Needs, J Phys: Condensed Matter 23, 053201 (2011)

7

Page 8: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Ab Initio Random Structure Searching

• Easy to understand

• Easy to do

• Biased towards getting the right answer

• Teaches you chemistry

• Loves modern computers

8

Page 9: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Philosophy and extensions

• When you don’t know anything, select initial structures from a uniformrandom distribution

• When you know something for sure impose it directly, when you thinksomething is likely to be true, bias the search towards it

• Can constrain search to exclude very-low-symmetry structures

• Impose chemical ideas through a careful choice of the initial structures -chemical units, distances between atoms, coordination number

• Can use experimental data as constraints

• “Shake” structures

9

Page 10: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Results from structure searching

Table 1: Space group symmetries, calculated stability ranges, and numbersof fu per primitive unit cell for phases of H2O. Nuclear vibrational motionis not included.

Space group Stability range (TPa) No. fu SourceIce X <0.30 2 ExperimentPbcm 0.30–0.71 4 DFT: Benoit et al.Pbca 0.71–0.78 8 DFT: Militzer et al.P3121 0.78–2.01 12 DFT: This workPcca 2.01–2.24 12 DFT: This workC2 2.24–2.36 12 DFT: This workP21 2.36–2.75 4 DFT: McMahon/Wang/Ji et al.P21/c 2.75–6.06 8 DFT: Ji et al.C2/m 6.06–24.0 2 DFT: McMahon et al.I4/mmm >24.0 4 DFT: This work

10

Page 11: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Enthalpy versus pressure

0.5 1 1.5 2 2.5 3Pressure (TPa)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10∆H

(P)

(eV

/f.u.

)

PbcaP21P21/cI-42dP3121PccaC2

0.5 1 1.5 2 2.5 3Pressure (TPa)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

∆G (

0K, P

)

(eV

/f.u.

)

PbcaP21P21/cI-42dP3121PccaC2

Without ZP motion With ZP motion

Dashed lines: Previously known structuresSolid lines: Our new structures

11

Page 12: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Phase diagram of water ice

12

Page 13: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Convex hull diagram at 1 TPa

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x in A1-xBx

-2.07

-1.38

-0.69

0

For

mat

ion

Ent

halp

y (e

V/a

tom

)

0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667 H2O4 Pnnm 1.0000 H0O8 P63/mmc

13

Page 14: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

The P3121 and Pa3̄ structures

P3121 structure of H2O at 1 TPa Pa3̄ structure of H2O2 at 6 TPa

14

Page 15: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

H2O becomes unstable above 5 TPa!

0.4 0.5 0.6x in (½H2O2)1-xHx

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4E

ntha

lpy

(eV

/ato

m)

4TPa6TPa H2+δΟ

H2O2

1

1/16

1/81/31/4

1/2

H2O

H3O

H4O

Different values of δ

Structures are stable over a range of H contents - a topotactic transition

See R.D. Shannon and R.C. Rossi, Nature (London) 202, 1000 (1964)

15

Page 16: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Relative stability of the δ phases

-60 -45 -30 -15 0 15 30ε−ε

f (eV)

0

0.05

0.1

0.15

0.2

eDO

S (

stat

es/e

- /cel

l)

δ=0δ=1/8δ=1/4δ=1/3

H2O → δ

1 + δ

1

2H2O2 +

1

1 + δH2+δO,

16

Page 17: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Band gap versus pressure

0.5 1 1.5 2 2.5 3 3.5 4Pressure (TPa)

0

2

4

6

8

10

Ban

d G

ap (

eV)

PbcaP3121PccaP21/c

Band gap increases with pressure at low pressures (increasing Stark shift)Band gap decreases with pressure at high pressures

17

Page 18: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Band gap versus pressure in ammonia

a) PBE GGA functional b) PBE0 hybrid functional

18

Page 19: Decomposition and Terapascal Phases of Water Ice · -2.07-1.38-0.69 0 Formation Enthalpy (eV/atom) 0.0000 H8O0 I41/amd 0.2500 H12O4 C2/c 0.3333 H24O12 P3121 0.5000 H8O8 Pa-3 0.6667

Conclusions• H2O decomposes into H2O2 and a hydrogen-rich phase at pressures of alittle over 5 TPa

• H2O is not a stable compound at the highest pressures at which it hasbeen suggested to occur within Jupiter

• The hydrogen-rich phase is stable over a wide range of hydrogencontents, and it might play a role in the erosion of the icy component ofthe cores of gas giants as H2O comes into contact with hydrogen

• Metallization of H2O is predicted at just over 6 TPa, and therefore H2Odoes not have a thermodynamically stable low-temperature metallic form

• We have found a new and rich mineralogy of complicated water icephases that are more stable in the pressure range 0.8–2 TPa than anypredicted previously

19