1
Radosav Cerović and Sanja Radičević Fruit Research Institute, Kralja Petra I No. 9, 32000 Čačak, Republic of Serbia E-mail: [email protected] Research in the generative reproduction of sweet and sour cherry is of interdisciplinary importance and is, besides basic research, increasingly recognized as a basic in genetics, breeding, physiology and biotechnology of cherries. Activities belonging to the stated fields of scientific research have been conducted in the following institutions: Fruit Research Institute, Čačak, Faculty of Agriculture, University of Belgrade and Faculty of Agriculture, University of Novi Sad. This research is based on several techniques and methods used to determine: a) Flowering phenology (Fig. 1, 2 and 3) b) Pollen quality (Fig. 4 and 5) c) Monitoring the pollen tube growth in pistil - dynamic of pollen tube growth through certain pistil parts (Fig. 6, 7 and 8) - appereance of incompatibility (Fig. 9 and 10) - identification, inheretance and interactions of incompatibility alleles (Fig. 10 and 11) d) Cytoembryology - stage of ovule development, embryo sac an early embryogenesis (Fig. 12) - ovule viability and embryo sac (Fig. 13, 14 and 15) e) Pollen-pistil interaction in the ovary - control of pollen tube growth (Fig. 16 and 17) f) Initial and final fruit set (Fig. 18 and 19) The paper reviews some of the most important research activities in the field of pollination and fertilization of sweet and sour cherry. In reference list we listed titles of some important papers relating to the research of pollination and ferilization of cherries. A more precise defining of factors relevant in the pollination and ferilization helps to assess the factors crucial to cultivar fertility. In pratical terms, studies on these processes could serve to develope and test prediction models concerning the impact of environmental factors such as temperature (climate change) on cherry production. Souvenir ' ' Burlat ' ' ' ' Napoleon ' ' Vista ' ' Emp. Francis ' ' Van ' ' C. Stella ' ' Vega ' ' S. H. Giant ' ' Kordia ' ' Lapins ' ' Germer dorfer s ' ' Sunburst ' ' Bing ' ' Summit ' ' L ons Early y 4.0 4.0 3.0 4.0 35 . 4.0 5.0 4.0 5.0 4.0 35 . 4.0 4.0 4.0 35 . 5.0 4.0 4.0 4.0 5.0 5.0 3 1 .0 3 . 3 0 .0 3 . 2 2 .0 4 . 2 1 .0 4 . 2 0 .0 4 . 1 9 .0 4 . 1 8 .0 4 . 1 7 .0 4 . 1 6 .0 4 . 1 5 .0 4 . 1 4 .0 4 . 1 3 .0 4 . 1 2 .0 4 . 1 1 .0 4 . 1 0 .0 4 . 0 9 .0 4 . 0 8 .0 4 . 0 7 .0 4 . 0 6 .0 4 . 0 5 .0 4 . 0 4 .0 4 . 0 3 .0 4 . 0 2 .0 4 . 0 1 .0 4 . - flowering onset - full bloom - full bloom - end of flowering - abundance of flowering Nº ' ' Merchant Hedelfingen ' ' ' ' Lambert ' ' Inge ' ' Drogan's Yellow Fig. 1. High-density sweet cherry orchard at the beginning of full flowering (Fruit Research Institute, Čačak, Serbia) Fig. 2. Stages in experiment with controlled pollination in sweet cherry: late-baloon stage (a); emasculated flowers (b); full flowering (c); branches with pollinated and isolated flowers (d) a b c d Fig. 3. Evaluation of sweet cherry cultivars in terms of flowering phenophase (West Serbia conditions, eight-year period) Fig. 4. Pollen grains (equatorial and polar view) in sweet cherry (Prunus avium L.) cultivars: ‘Karina’ (a); Kordia(b); ‘Regina’ (c) and ‘Summit’ (d) Fig. 5. Pollen-viability in vitro of sweet cherry cultivars on agarose-sucrose medium: Kordia(a); ‘Regina’ (b) Fig. 6. Sour cherry pollen germination on the stigma (a), growing pollen tubes in the style (b), and entrance of pollen tube in the nucellus of the ovule (c) (‘Čačanski Rubin× ‘Šumadinka’) Fig. 7. Pollen tubes growth in the style of sweet cherry: cross-pollination (‘Regina’ × ‘Summit’, 6 th day after pollination) (a); open-pollination (‘Summit’, 3 rd day of full flowering) (b); incompatibility breakdown (‘Karina’ × ‘Karina’, 6 th day after self-pollination) (c); self- pollination (‘Kordia× Kordia’, 6 th day after self- pollination) (d) a b c d Sts Std O M N Stg 3 3 3 6 6 6 10 10 10 % % % 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 Bs 2008. 2009. 2010. Karina Kordia Summit Open pollination Days after pollination Fig. 8. Dynamics of pollen tubes growth in certain parts of the pistil in ‘Regina’ sweet cherry: Stg, Sts, Std upper, middle, lower third of the style; Bs base of the style; Lp locule of the ovary; M micropyle; N nucellus Fig. 9. Different types of incompatible pollen tubes in sweet cherry: pollen tubes with extended tips (a), (b); pollen tubes thickened along the entire length (c), (d) a b c d a b Fig. 10. Pollen tubes growth 72 h after crossing Marasca Savena(6, 13, B, D) × ‘Noble’ (S 6 S 13 ) typical incompatible reaction, tubes stopping in the upper third of the style (a), and Marasca Savena(6, 13, B, D) × ‘Merton Late’ (S 1 S 4 ) compatible growth in the style (b); penetration of a tube to the ovary locule (c) Fig. 11. Amplification patterns produced with primers based on S-RNase regions C2C5 (a) and on SP-C5 (b) for the three parents and for the reference cultivars indicating the alleles S 1 , S 4 , S 6 , S 13 , S B and S D . In (a) conditions were adjusted, by increasing annealing temperature from 58 to 60 o C, to avoid amplification of S 13 the lower band of which comigrates with S D .*‘Bruine Waalseshows an additional band, not expected from its S-RNase phenotype, that was shown to be S 14 by allele specific PCR (data not shown). ‘Montmorency’ revealed the two weak bands characteristic of S 13 , unexpected from its S-RNase phenotype, but confirmed by allele specific PCR (data not shown). S-RNase phenotypes (Tobutt et al., 2004) are given after each cultivar Fig. 12. Large starch grains in the cells surrounding micropyle. The nucellar cap cells with a small starch grains (a); a strong PAS-positive reaction of the cytoplasm of the integumentary epidermal cells after pollen tube penetration on the day 4 after pollination (b); the positive reaction to acid polysaccharides in the chalazal part of ovule (c); the filiform apparatus of the synergids showing a positive reaction to acid polysaccharides (d); starch grains in the egg cell (e); starch grains in the early stages of the embryo development on the day 6 of full bloom (f); small starch grains adjacent to integument cell wall in the earl embryogenesis on the 6 day after pollination (g) Fig. 13. A viable ovule in the sour cherry ovary locule without fluorescence (a); occurrence of fluorescence in the chalazal region of ovule (b); fluorescence of ovule spreading to the micropyle of the ovule (c); intensive fluorescence of the entire ovule, indicating a non-viable ovule (d) Fig. 14. Embryo sacs of sour cherry ‘Čačanski Rubin’ after day 4 of full bloom. The occurrence of the irregular distribution of the individual elements of the egg apparatus (a) and of all cells of the egg apparatus occurs with aging as a sign of degeneration (b) Fig. 15. Embryo sacs of sour cherry ‘Čačanski Rubin’ in the days following anthesis. A strong colour reaction of the degenerated synergid in the egg apparatus indicates degeneration of this structure (a), and of the entire content of the degenerated embryo sac (b) a b c d Fig. 16. Unusual behaviour of growing pollen tubes in the ovary of sweet cherry: a bundle of pollen tubes in the obturator area (a); reverse growth of pollen tube (b); few pollen tubes in the micropyle area (c); a bundle above the nucellus (d) Type of pollination I year II year Initial fruit set (%) Final fruit set (%) Initial fruit set (%) Final fruit set (%) ‘Karina’ × ‘Kordia’ 61.73 22.45 49.14 40.95 ‘Karina’ × ‘Summit’ 60.89 47.52 18.48 20.87 ‘Karina’ × ‘Regina’ 77.91 51.16 40.00 39.50 ‘Karina’ O. P. 72.35 46.76 41.82 24.00 ‘Kordia’ × ‘Summit’ 41.11 41.11 2.56 2.56 ‘Kordia’ × ‘Karina’ 21.74 18.84 8.02 2.67 ‘Kordia’ × ‘Regina’ 34.95 33.98 4.06 4.06 ‘Kordia’ O. P. 50.66 31.58 26.67 19.26 ‘Regina’ × ‘Kordia’ 85.71 54.40 48.51 32.09 ‘Regina’ × ‘Summit’ 68.93 39.81 69.09 46.36 ‘Regina’ × ‘Karina’ 53.71 18.29 57.82 49.31 ‘Regina’ O. P. 81.63 51.89 57.48 37.53 ‘Summit’ × ‘Kordia’ 73.63 31.32 32.20 23.79 ‘Summit’ × ‘Karina’ 83.09 30.43 27.06 23.76 ‘Summit’ × ‘Regina’ 75.93 27.39 33.54 24.19 ‘Summit’ O. P. 68.81 18.96 53.02 39.37 Fig. 18. Initial and final fruit set in cross- and open-pollination of sweet cherry cultivars in Serbia conditions (two-year period) Fig. 17. Unusual behaviour of growing pollen tubes in the nucellus of the ovule in sweet cherry: the entrance of two pollen tubes (a); a bundle in the nucellus (b) a b Fig. 19. Final fruit set in experiment with controlled pollination (‘Karina’ × ‘Summit’) On the basis of these research we have offered a recommendation a lot of sweet and sour cherry cultivars for their cultivation in orchards whereby the most effective pollination and fertilization can be ensured as well as good fruit-set and satisfactory fruit yields. Reference Bošković R., Sonneveld T., Tobutt K.R., Cerović R. (2000): Recent advances in cherry self-(in)compatibility studies. Acta Horticulturae, 538, 351354. Bošković R., Tobutt K.R., Walfram B., Cerović R., Sonneveld T. (2006): Inhertance and intereactions of incompatibility alleles in the tetraploid sour cherry. Theor. Appl. Genet., 112, 315326. Cerović R. (1991): Cytogenetic properties of sour cherry in relation to pollen. Genetika, 23, 247258. Cerović R. (1992): Pollen tube growth in sour cherry pistils in relation to fruit set. Advances in Horticultural Science, 6, 107111. Cerović R. (1996): Unusual behaviour of growing pollen tubes in the ovary of sour cherry. Acta Horticulturae, 423, 171176. Cerović R. (1997): Biologija oplodnje višnje. Zadužbina Andrejević, Beograd, 1132. (ISBN 86-7244-125-0). Cerović R. (2002): Pollen-pistil interaction in fruit trees. In: Plant Physiology in the New Millenium, Yugoslav Society of Plant Physiology & Agricultural Research Institute SERBIA, 109117. Cerović R., Mićić N. (1996): Oprašivanje i oplodnja jabučastih i koštičavih voćaka. Jugoslovensko voćarstvo, 30, 7398. Cerović R., Mićić N. (1999): Functionality of embryo sacs as related to their viability and fertilization success in sour chery. Scientia Horticulturae, 79, 227235. Cerović R., Mićić N., Đurić G., Jevtić S. (1998): Modelling pollen tube growth and ovule viability in sour cherry. Acta Horticulturae, 468, 621628. Cerović R., Mićić N., Đurić G., Nikolić M. (1998): Determination of pollen viability in sweet cherry. Acta Horticulturae, 468, 559565. Cerović R., Radičević S., Ružić Đ., Kuzmanović M. (2005): OdreĎivanje sortne kompozicije oprašivača za trešnju cv Čarna. Voćarstvo, 39, 152, 347355. Cerović R., Ružić Đ. (1992): Pollen tube growth in sour cherry (Prunus cerasus L.) at different temperatures. The Journal of the Horticultural Science, 67(3), 333340. Cerović R., Ružić Đ. (1992): Senescence of ovules at different temperatures and their effect on the behaviour of pollen tubes in sour cherry. Scientia Horticulturae, 51, 321327. Cerović R., Ružić Đ. (2008): Pollen Tube Ovule Interaction in Sour Cherry. XX international Congress on Sexual Plant Reproduction, Brasilia (Brazil), 137. Cerović R., Ružić Đ., Radičević S., Nikolić M. (2003): OdreĎivanje sortne kompozicije oprašivača za trešnju cv Asenova rana. Jugoslovensko voćarstvo, 37, 143/144, 8594. Cerović R., Vujićić R., Mićić N. (1999): Localization of polysaccharides in the ovary of sour cherry. Gartenbauwissenschaft, 64, 1, 4046. Radičević S., Cerović R., ĐorĎević M., Marić S. (2008): Ispitivanje fenofaze cvetanja i klijavosti polena novijih sorti trešnje. Voćarstvo, 42, 163/164, 8995. Radičević S., Cerović R., Marić S., ĐorĎević M. (2011): Flowering time and incompatibility groups cultivar combination in commercial sweet cherry (Prunus avium L.) orchards. Genetika, 43, 2, 397406. Radičević S., Cerović R., Nikolić D., ĐorĎević M., Lukić M. (2011): Inicijalno i finalno zametanje plodova trešnje u zavisnosti od tipa oprašivanja. Voćarstvo, 45, 173/174, 3137. Tobutt K.R., Bošković R., Cerović R., Sonneveld T., Ružić Đ. (2004): Identification of incompatibility alleles in the tetraploid species sour cherry. Theor. Appl. Genet., 108, 775785. a b c a b c d e f g SUSTAINABLE PRODUCTION OF HIGH-QUALITY CHERRIES FOR THE EUROPEAN MARKET 21st23rd of November 2012 University of Palermo, Dipartimento DEMETRA, Italy

Days after pollination - Inra Bordeaux · PDF fileJugoslovensko voćarstvo, 30, 73

Embed Size (px)

Citation preview

Page 1: Days after pollination - Inra Bordeaux · PDF fileJugoslovensko voćarstvo, 30, 73

Radosav Cerović and Sanja Radičević

Fruit Research Institute, Kralja Petra I No. 9, 32000 Čačak, Republic of Serbia

E-mail: [email protected]

Research in the generative reproduction of sweet and sour cherry is of interdisciplinary importance and is, besides basic research,

increasingly recognized as a basic in genetics, breeding, physiology and biotechnology of cherries. Activities belonging to the stated

fields of scientific research have been conducted in the following institutions: Fruit Research Institute, Čačak, Faculty of

Agriculture, University of Belgrade and Faculty of Agriculture, University of Novi Sad.

This research is based on several techniques and methods used to determine:

a) Flowering phenology (Fig. 1, 2 and 3)

b) Pollen quality (Fig. 4 and 5)

c) Monitoring the pollen tube growth in pistil

- dynamic of pollen tube growth through certain pistil parts (Fig. 6, 7 and 8)

- appereance of incompatibility (Fig. 9 and 10)

- identification, inheretance and interactions of incompatibility alleles (Fig. 10 and 11)

d) Cytoembryology

- stage of ovule development, embryo sac an early embryogenesis (Fig. 12)

- ovule viability and embryo sac (Fig. 13, 14 and 15)

e) Pollen-pistil interaction in the ovary - control of pollen tube growth (Fig. 16 and 17)

f) Initial and final fruit set (Fig. 18 and 19)

The paper reviews some of the most important

research activities in the field of pollination and

fertilization of sweet and sour cherry. In

reference list we listed titles of some important

papers relating to the research of pollination and

ferilization of cherries.

A more precise defining of factors relevant in the

pollination and ferilization helps to assess the

factors crucial to cultivar fertility. In pratical

terms, studies on these processes could serve to

develope and test prediction models concerning

the impact of environmental factors such as

temperature (climate change) on cherry

production.

Souvenir' '

Burlat' '

' 'Napoleon' 'Vista

' 'Emp. Francis

' 'Van

' 'C. Stella

' 'Vega

' 'S. H. Giant

' 'Kordia

' 'Lapins

' 'Germer dorfers

' 'Sunburst

' 'Bing

' 'Summit

' 'L ons Earlyy

4.0

4.0

3.0

4.0

3 5.

4.0

5.0

4.0

5.0

4.0

3 5.

4.0

4.0

4.0

3 5.

5.0

4.0

4.0

4.0

5.0

5.0

31.0

3.

30.0

3.

22.0

4.

21.0

4.

20.0

4.

19.0

4.

18.0

4.

17.0

4.

16.0

4.

15.0

4.

14.0

4.

13.0

4.

12.0

4.

11.0

4.

10.0

4.

09.0

4.

08.0

4.

07.0

4.

06.0

4.

05.0

4.

04.0

4.

03.0

4.

02.0

4.

01.0

4.

- flowering onset - full bloom

- full bloom - end of flowering

- abundance of floweringNº

' 'Merchant

Hedelfingen' '

' 'Lambert

' 'Inge

' 'Drogan's Yellow

Fig. 1. High-density sweet cherry

orchard at the beginning of full

flowering

(Fruit Research Institute, Čačak,

Serbia)

Fig. 2. Stages in experiment with controlled pollination in sweet cherry: late-baloon stage (a); emasculated flowers (b); full flowering (c); branches with pollinated and

isolated flowers (d)

a b c d

Fig. 3. Evaluation of sweet cherry cultivars in

terms of flowering phenophase

(West Serbia conditions, eight-year period)

Fig. 4. Pollen grains (equatorial and

polar view) in sweet cherry (Prunus

avium L.) cultivars: ‘Karina’ (a);

‘Kordia’ (b); ‘Regina’ (c) and

‘Summit’ (d)

Fig. 5. Pollen-viability in vitro

of sweet cherry cultivars on

agarose-sucrose medium:

‘Kordia’ (a); ‘Regina’ (b)

Fig. 6. Sour cherry pollen germination on the

stigma (a), growing pollen tubes in the

style (b), and entrance of pollen tube in the

nucellus of the ovule (c) (‘Čačanski Rubin’

× ‘Šumadinka’)

Fig. 7. Pollen tubes growth in the style of sweet cherry:

cross-pollination (‘Regina’ × ‘Summit’, 6th day after

pollination) (a); open-pollination (‘Summit’, 3rd day of

full flowering) (b); incompatibility breakdown (‘Karina’

× ‘Karina’, 6th day after self-pollination) (c); self-

pollination (‘Kordia’ × ‘Kordia’, 6th day after self-

pollination) (d)

a b c d

Sts

Std

O

M

N

Stg

3 3 36 6 6 10 10 10% % %

20 20 20

20 20 20

20 20 20

20 20 20

20 20 20

20 20 20

20 20 20

40 40 40

40 40 40

40 40 40

40 40 40

40 40 40

40 40 40

40 40 40

60 60 60

60 60 60

60 60 60

60 60 60

60 60 60

60 60 60

60 60 60

80 80 80

80 80 80

80 80 80

80 80 80

80 80 80

80 80 80

80 80 80

Bs

2008. 2009. 2010.

Karina Kordia Summit Open pollination

Days after pollination

Fig. 8. Dynamics of pollen tubes growth in certain parts of the pistil in ‘Regina’ sweet

cherry: Stg, Sts, Std – upper, middle, lower third of the style; Bs – base of the style;

Lp – locule of the ovary; M – micropyle; N – nucellus

Fig. 9. Different types of incompatible pollen tubes in

sweet cherry: pollen tubes with extended tips (a), (b);

pollen tubes thickened along the entire length (c), (d)

a b

c d

a

b

Fig. 10. Pollen tubes growth 72 h after crossing ‘Marasca

Savena’ (6, 13, B, D) × ‘Noble’ (S6S13) ‒ typical

incompatible reaction, tubes stopping in the upper

third of the style (a), and ‘Marasca Savena’ (6, 13, B,

D) × ‘Merton Late’ (S1S4) ‒ compatible growth in the

style (b); penetration of a tube to the ovary locule (c)

Fig. 11. Amplification patterns produced with primers based on S-RNase

regions C2–C5 (a) and on SP-C5 (b) for the three parents and for the

reference cultivars indicating the alleles S1, S4, S6, S13, SB and SD. In (a)

conditions were adjusted, by increasing annealing temperature from 58 to

60 oC, to avoid amplification of S13 the lower band of which comigrates

with SD.*‘Bruine Waalse’ shows an additional band, not expected from its

S-RNase phenotype, that was shown to be S14 by allele specific PCR (data

not shown). ‘Montmorency’ revealed the two weak bands characteristic of

S13, unexpected from its S-RNase phenotype, but confirmed by allele

specific PCR (data not shown). S-RNase phenotypes (Tobutt et al., 2004)

are given after each cultivar

Fig. 12. Large starch grains in the cells surrounding

micropyle. The nucellar cap cells with a small

starch grains (a); a strong PAS-positive reaction of

the cytoplasm of the integumentary epidermal

cells after pollen tube penetration on the day 4

after pollination (b); the positive reaction to acid

polysaccharides in the chalazal part of ovule (c);

the filiform apparatus of the synergids showing a

positive reaction to acid polysaccharides (d);

starch grains in the egg cell (e); starch grains in

the early stages of the embryo development on the

day 6 of full bloom (f); small starch grains

adjacent to integument cell wall in the earl

embryogenesis on the 6 day after pollination (g)

Fig. 13. A viable ovule in the sour cherry

ovary locule without fluorescence (a);

occurrence of fluorescence in the

chalazal region of ovule (b);

fluorescence of ovule spreading to the

micropyle of the ovule (c); intensive

fluorescence of the entire ovule,

indicating a non-viable ovule (d)

Fig. 14. Embryo sacs of sour cherry ‘Čačanski

Rubin’ after day 4 of full bloom. The

occurrence of the irregular distribution of the

individual elements of the egg apparatus (a)

and of all cells of the egg apparatus occurs

with aging as a sign of degeneration (b)

Fig. 15. Embryo sacs of sour cherry ‘Čačanski

Rubin’ in the days following anthesis. A

strong colour reaction of the degenerated

synergid in the egg apparatus indicates

degeneration of this structure (a), and of the

entire content of the degenerated embryo

sac (b)

a b

c d

Fig. 16. Unusual behaviour of growing pollen tubes in the ovary of sweet cherry: a

bundle of pollen tubes in the obturator area (a); reverse growth of pollen tube (b); few

pollen tubes in the micropyle area (c); a bundle above the nucellus (d)

Type of

pollination

I year II year

Initial

fruit set

(%)

Final

fruit set

(%)

Initial

fruit set

(%)

Final

fruit set

(%)

‘Karina’ × ‘Kordia’ 61.73 22.45 49.14 40.95

‘Karina’ × ‘Summit’ 60.89 47.52 18.48 20.87

‘Karina’ × ‘Regina’ 77.91 51.16 40.00 39.50

‘Karina’ O. P. 72.35 46.76 41.82 24.00

‘Kordia’ × ‘Summit’ 41.11 41.11 2.56 2.56

‘Kordia’ × ‘Karina’ 21.74 18.84 8.02 2.67

‘Kordia’ × ‘Regina’ 34.95 33.98 4.06 4.06

‘Kordia’ O. P. 50.66 31.58 26.67 19.26

‘Regina’ × ‘Kordia’ 85.71 54.40 48.51 32.09

‘Regina’ × ‘Summit’ 68.93 39.81 69.09 46.36

‘Regina’ × ‘Karina’ 53.71 18.29 57.82 49.31

‘Regina’ O. P. 81.63 51.89 57.48 37.53

‘Summit’ × ‘Kordia’ 73.63 31.32 32.20 23.79

‘Summit’ × ‘Karina’ 83.09 30.43 27.06 23.76

‘Summit’ × ‘Regina’ 75.93 27.39 33.54 24.19

‘Summit’ O. P. 68.81 18.96 53.02 39.37

Fig. 18. Initial and final fruit set in cross- and open-pollination of sweet

cherry cultivars in Serbia conditions (two-year period)

Fig. 17. Unusual behaviour of growing pollen tubes in the nucellus of the ovule in sweet cherry: the

entrance of two pollen tubes (a); a bundle in the nucellus (b)

a b

Fig. 19. Final fruit set in experiment with

controlled pollination (‘Karina’ × ‘Summit’)

On the basis of these research we have offered a

recommendation a lot of sweet and sour cherry cultivars

for their cultivation in orchards whereby the most

effective pollination and fertilization can be ensured as

well as good fruit-set and satisfactory fruit yields.

Reference

Bošković R., Sonneveld T., Tobutt K.R., Cerović R. (2000): Recent advances in cherry self-(in)compatibility studies. Acta Horticulturae, 538, 351‒354.

Bošković R., Tobutt K.R., Walfram B., Cerović R., Sonneveld T. (2006): Inhertance and intereactions of incompatibility alleles in the tetraploid sour cherry. Theor. Appl. Genet., 112,

315‒326.

Cerović R. (1991): Cytogenetic properties of sour cherry in relation to pollen. Genetika, 23, 247‒258.

Cerović R. (1992): Pollen tube growth in sour cherry pistils in relation to fruit set. Advances in Horticultural Science, 6, 107‒111.

Cerović R. (1996): Unusual behaviour of growing pollen tubes in the ovary of sour cherry. Acta Horticulturae, 423, 171‒176.

Cerović R. (1997): Biologija oplodnje višnje. Zadužbina Andrejević, Beograd, 1‒132. (ISBN 86-7244-125-0).

Cerović R. (2002): Pollen-pistil interaction in fruit trees. In: Plant Physiology in the New Millenium, Yugoslav Society of Plant Physiology & Agricultural Research Institute SERBIA,

109‒117.

Cerović R., Mićić N. (1996): Oprašivanje i oplodnja jabučastih i koštičavih voćaka. Jugoslovensko voćarstvo, 30, 7398.

Cerović R., Mićić N. (1999): Functionality of embryo sacs as related to their viability and fertilization success in sour chery. Scientia Horticulturae, 79, 227‒235.

Cerović R., Mićić N., Đurić G., Jevtić S. (1998): Modelling pollen tube growth and ovule viability in sour cherry. Acta Horticulturae, 468, 621‒628.

Cerović R., Mićić N., Đurić G., Nikolić M. (1998): Determination of pollen viability in sweet cherry. Acta Horticulturae, 468, 559‒565.

Cerović R., Radičević S., Ružić Đ., Kuzmanović M. (2005): OdreĎivanje sortne kompozicije oprašivača za trešnju cv Čarna. Voćarstvo, 39, 152, 347‒355.

Cerović R., Ružić Đ. (1992): Pollen tube growth in sour cherry (Prunus cerasus L.) at different temperatures. The Journal of the Horticultural Science, 67(3), 333–340.

Cerović R., Ružić Đ. (1992): Senescence of ovules at different temperatures and their effect on the behaviour of pollen tubes in sour cherry. Scientia Horticulturae, 51, 321–327.

Cerović R., Ružić Đ. (2008): Pollen Tube – Ovule Interaction in Sour Cherry. XX international Congress on Sexual Plant Reproduction, Brasilia (Brazil), 137.

Cerović R., Ružić Đ., Radičević S., Nikolić M. (2003): OdreĎivanje sortne kompozicije oprašivača za trešnju cv Asenova rana. Jugoslovensko voćarstvo, 37, 143/144, 85–94.

Cerović R., Vujićić R., Mićić N. (1999): Localization of polysaccharides in the ovary of sour cherry. Gartenbauwissenschaft, 64, 1, 40‒46.

Radičević S., Cerović R., ĐorĎević M., Marić S. (2008): Ispitivanje fenofaze cvetanja i klijavosti polena novijih sorti trešnje. Voćarstvo, 42, 163/164, 89‒95.

Radičević S., Cerović R., Marić S., ĐorĎević M. (2011): Flowering time and incompatibility groups – cultivar combination in commercial sweet cherry (Prunus avium L.) orchards.

Genetika, 43, 2, 397–406.

Radičević S., Cerović R., Nikolić D., ĐorĎević M., Lukić M. (2011): Inicijalno i finalno zametanje plodova trešnje u zavisnosti od tipa oprašivanja. Voćarstvo, 45, 173/174, 31‒37.

Tobutt K.R., Bošković R., Cerović R., Sonneveld T., Ružić Đ. (2004): Identification of incompatibility alleles in the tetraploid species sour cherry. Theor. Appl. Genet., 108, 775–785.

a

b c

a

b

c

d

e

f

g

SUSTAINABLE PRODUCTION OF HIGH-QUALITY CHERRIES FOR THE EUROPEAN MARKET

21st‒23rd of November 2012

University of Palermo, Dipartimento DEMETRA, Italy