Dansk Standard DS en 1264-2

Embed Size (px)

Citation preview

  • 8/19/2019 Dansk Standard DS en 1264-2

    1/47

    Dansk standard DS/EN 1264-2

    2. udgave

    2008-11-27

    Vandbaserede indstøbte varme- ogkølesystemer – Del 2: Gulvvarme –

    Metoder til bestemmelse af den termiskevarmeafgivelse ved brug af beregnings-og prøvningsmetoder

    Water based surface embedded heating and coolingsystems – Part 2: Floor heating: Prove methods for thedetermination of the thermal output using calculationand test methods

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    2/47

    DS-publikationstyperDansk Standard udgiver forskellige publikationstyper.Typen på denne publikation fremgår af forsiden.

    Der kan være tale om:Dansk standard• standard, der er udarbejdet på nationalt niveau, eller som er baseret på et andet lands nationale standard, eller• standard, der er udarbejdet på internationalt og/eller europæisk niveau, og som har fået status som dansk standardDS-information• publikation, der er udarbejdet på nationalt niveau, og som ikke har opnået status som standard, eller• publikation, der er udarbejdet på internationalt og/eller europæisk niveau, og som ikke har fået status som standard, fx en

    teknisk rapport, eller• europæisk præstandardDS-håndbog• samling af standarder, eventuelt suppleret med informativt materialeDS-hæfte• publikation med informativt materiale

    Til disse publikationstyper kan endvidere udgives• tillæg og rettelsesblade

    DS-publikationsformPublikationstyperne udgives i forskellig form som henholdsvis• fuldtekstpublikation (publikationen er trykt i sin helhed)• godkendelsesblad (publikationen leveres i kopi med et trykt DS-omslag)• elektronisk (publikationen leveres på et elektronisk medie)

    DS-betegnelse Alle DS-publikationers betegnelse begynder med DS efterfulgt af et eller flere præfikser og et nr., fx DS 383 , DS/EN 5414 osv. Hvis der efter nr.er angivet et A eller Cor, betyder det, enten at det er et tillæg eller et rettelsesblad til hovedstandarden, eller at det er indført ihovedstandarden.DS-betegnelse angives på forsiden.

    Overensstemmelse med anden publikation:Overensstemmelse kan enten være IDT, EQV, NEQ eller MOD

    • IDT: Når publikationen er identisk med en given publikation.• EQV : Når publikationen teknisk er i overensstemmelse med en given publikation, men

    præsentationen er ændret.• NEQ : Når publikationen teknisk eller præsentationsmæssigt ikke er i overensstemmelse med en

    given standard, men udarbejdet på baggrund af denne.• MOD: Når publikationen er modificeret i forhold til en given publikation.

    DS/EN 1264-2KøbenhavnDS projekt: M216949ICS: 91.140.10

    Første del af denne publikations betegnelse er:DS/EN, hvilket betyder, at det er en europæisk standard, der har status som dansk standard.

    Denne publikations overensstemmelse er:IDT med: EN 1264-2:2008.

    DS-publikationen er på engelsk.

    Denne publikation erstatter: DS/EN 1264-2:1998.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    3/47

    EUROPEAN STANDARDNORME EUROPÉENNEEUROPÄISCHE NORM

    EN 1264-2

    October 2008

    ICS 91.140.10 Supersedes EN 1264-2:1997

    English Version

    Water based surface embedded heating and cooling systems -Part 2: Floor heating: Prove methods for the determination of the

    thermal output using calculation and test methods

    Systèmes de surfaces chauffantes et rafraîchissanteshydrauliques intégrées - Partie 2 : Chauffage par le sol:

    Méthodes de démonstration pour la détermination del'émission thermique utilisant des méthodes par le calcul età l'aide de méthodes d'essai

    Raumflächenintegrierte Heiz- und Kühlsysteme mitWasserdurchströmung - Teil 2: Fußbodenheizung:

    Prüfverfahren für die Bestimmung der Wärmeleistung vonFußbodenheizsystemen unter Benutzung vonBerechnungsmethoden und experimentellen Methoden

    This European Standard was approved by CEN on 13 September 2008.

    CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this EuropeanStandard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the CEN Management Centre or to any CEN member.

    This European Standard exists in three official versions (English, French, German). A version in any other language made by translationunder the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as theofficial versions.

    CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

    EUROPEAN COMMITTEE FOR STANDARDIZATIONC O M I T É E U R O P É E N D E N O R M A L I S AT I O NE U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G

    Management Centre: rue de Stassart, 36 B-1050 Brussels

    © 2008 CEN All rights of exploitation in any form and by any means reservedworldwide for CEN national Members.

    Ref. No. EN 1264-2:2008: E

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    4/47

    EN 1264-2:2008 (E)

    2

    Contents Page

    Foreword..............................................................................................................................................................3

    Introduction .........................................................................................................................................................4

    1 Scope ......................................................................................................................................................5

    2 Normative references ............................................................................................................................5

    3 Definitions and symbols .......................................................................................................................5

    4 Thermal boundary conditions ..............................................................................................................5

    5 Documents for testing...........................................................................................................................6

    6 Calculation of the specific thermal output (characteristic curves and limit curves)......................7 6.1 General approach (see [2], [4]).............................................................................................................7 6.2 Systems with pipes installed inside the screed (type A and type C) ...............................................8 6.3 Systems with pipes installed below the screed or timber floor (type B) .........................................9 6.4 Systems with surface elements (plane section systems, type D) ..................................................11 6.5 Limits of the specific thermal output.................................................................................................11 6.6 Influence of pipe material, pipe wall thickness and pipe sheathing on the specific

    thermal output......................................................................................................................................13 6.7 Heat conductivity of screed with inserts...........................................................................................14

    7 Heat conductivity of the materials .....................................................................................................14

    8 Downward heat loss ............................................................................................................................14

    9 Test procedure for the determination of the thermal output of systems that cannot becalculated in accordance with Clause 6............................................................................................15

    10 Test procedure for the determination of the effective thermal resistance of carpets..................18

    11 Prove report..........................................................................................................................................20

    12 Prove system........................................................................................................................................20 12.1 General..................................................................................................................................................20 12.2 Master samples ....................................................................................................................................21 12.3 Verification of test equipments ..........................................................................................................21 12.4 Determination of the values s m and φφφφM,s (q N,M,s , q G,M,s (R λ λλ λ ;B=0,15), R λ λλ λ ,B,M,s ) of primary master

    samples.................................................................................................................................................22 12.5 Verification of software .......................................................................................................................22

    Annex A (normative) Figures and tables.......................................................................................................23 Annex B (informative) Test procedure for the determination of parameters for application in

    EN 15377-1:2008 Annex C...................................................................................................................42

    Bibliography ......................................................................................................................................................45

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    5/47

    EN 1264-2:2008 (E)

    3

    Foreword

    This document (EN 1264-2:2008) has been prepared by Technical Committee CEN/TC 130 “Space heatingappliances without integral heat sources”, the secretariat of which is held by UNI.

    This European Standard shall be given the status of a national standard, either by publication of an identicaltext or by endorsement, at the latest by April 2009, and conflicting national standards shall be withdrawn atthe latest by April 2009.

    Attention is drawn to the possibility that some of the elements of this document may be the subject of patentrights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

    This document will supersede EN 1264-2:1997.

    This European Standard, Water based surface embedded heating and cooling systems, consists of thefollowing parts:

    Part 1: Definitions and symbols;

    Part 2: Floor heating: Prove methods for the determination of the thermal output using calculationand test methods;

    Part 3: Dimensioning;

    Part 4: Installation;

    Part 5: Heating and cooling surfaces embedded in floors, ceilings and walls — Determination ofthe thermal output.

    According to the CEN/CENELEC Internal Regulations, the national standards organizations of the followingcountries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, CzechRepublic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,Sweden, Switzerland and the United Kingdom.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    6/47

    EN 1264-2:2008 (E)

    4

    Introduction

    This European Standard is based on the realisation that in the field of commercial trade, the thermal outputof heating and cooling systems represents the basis of rating. In order to be able to evaluate and comparedifferent heating and/or cooling systems, it is, therefore, necessary to refer to values determined using onesingle, unambiguously defined method. The basis for doing so are the prove methods for the determinationof the thermal output of floor heating systems specified in Part 2 of this European Standard. In analogy to theEuropean Standard EN 442-2 (Radiators and convectors — Part 2: Test methods and rating), these provemethods provide characteristic partial load curves under defined boundary conditions as well as thecharacteristic output of the system represented by the standard thermal output together with the associatedstandard temperature difference between the heating medium and the room temperature.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    7/47

    EN 1264-2:2008 (E)

    5

    1 Scope

    This European Standard specifies the boundary conditions and the prove methods for the determination ofthe thermal output of hot water floor heating systems as a function of the temperature difference between theheating medium and the room temperature.

    This standard shall be applied to commercial trade and practical engineering if proved and certifiable valuesof the thermal output shall be used.

    This European Standard applies to heating and cooling systems embedded into the enclosure surfaces ofthe room to be heated or to be cooled. This Part of this European Standard applies to hot water floor heatingsystems. Applying of Part 5 of this European Standard requires the prior use of this Part of this EuropeanStandard. Part 5 of this European Standard deals with the conversion of the thermal output of floor heatingsystems determined in Part 2 into the thermal output of heating surfaces embedded in walls and ceilings aswell as into the thermal output of cooling surfaces embedded in floors, walls and ceilings.

    The thermal output is proved by a calculation method (Clause 6) and by a test method (Clause 9). Thecalculation method is applicable to systems corresponding to the definitions in EN 1264-1 (type A, type B,type C, type D). For systems not corresponding to these definitions, the test method shall be used. Thecalculation method and the test method are consistent with each other and provide correlating and adequateprove results.

    The prove results, expressed depending on further parameters, are the standard specific thermal output andthe associated standard temperature difference between the heating medium and the room temperature aswell as fields of characteristic curves showing the relationship between the specific thermal output and thetemperature difference between the heating medium and the room.

    2 Normative references

    The following referenced documents are indispensable for the application of this document. For datedreferences, only the edition cited applies. For undated references, the latest edition of the referenceddocument (including any amendments) applies.

    EN 1264-1:1997, Floor heating — Systems and components — Part 1 : Definitions and symbols

    prEN 1264-3:2007, Water based surface embedded heating and cooling systems — Part 3: Dimensioning

    3 Definitions and symbols

    For the purposes of this document, the terms and definitions given in EN 1264-1:1997 apply.

    4 Thermal boundary conditions

    A floor heating surface with a given average surface temperature exchanges the same thermal output in anyroom with the same indoor room temperature (standard indoor room temperature ϑ i). It is, therefore, possibleto give a basic characteristic curve of the relationship between specific thermal output and average surfacetemperature that is independent of the heating system and applicable to all floor heating surfaces (includingthose having peripheral areas with greater heat emissions) (see Figure A.1).

    In contrast, every floor heating system has its own maximum permissible specific thermal output, the limitspecific thermal output, qG . This output is calculated for an ambient (standard) indoor room temperature

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    8/47

    EN 1264-2:2008 (E)

    6

    ϑ i = 20 °C. The other condition is the maximum surface temperature ϑ F, max = 29 °C 1) at temperature dropbetween supply and return of the heating medium σ = 0 K. The maximum specific thermal output for theperipheral area will be achieved at a maximum surface temperature ϑ F, max = 35 °C 2) and σ = 0 K.

    For the calculation and for the test procedure, the centre of the heating surface is used as the reference pointfor ϑ F, max , regardless of system type.

    The average surface temperature ϑ F, m , determining the specific thermal output (see basic characteristiccurve) is linked with the maximum surface temperature. In this context, ϑ F, m < ϑ F, max always applies.

    The achievable value ϑ F, m depends on both the floor heating system and the operating conditions(temperature drop σ = ϑ V – ϑ R , downward thermal output qu and heat resistance of the floor covering Rλ , B ).

    The calculation of the specific thermal output is based on the following conditions:

    The heat transfer at the floor surface occurs in accordance with the basic characteristic curve.

    The temperature drop of the heating medium σ = 0; the extent to which the characteristic curve dependson the temperature drop, is covered by using the logarithmically determined temperature differencebetween the heating medium and the room ∆ϑ H [3] (see Equation (1)).

    Turbulent pipe flow: mH/d i > 4 000 kg/(h ⋅ m).

    There is no lateral heat flow.

    The heat-conducting layer of the floor heating system is thermally decoupled by thermal insulation fromthe structural base of the building.

    NOTE The aforementioned last condition does not concern the test procedure of Clause 9.

    5 Documents for testing

    The system supplier's documents are taken as the basis for the determination of the thermal output. Thefollowing documents shall be provided:

    Installation drawing (section) of the floor heating system, covering two pipe spacing, including theperipheral area and giving information on the materials used (if necessary, the test results regarding theheat conductivity values of the materials shall be provided).

    Technical documentation of the system.

    This information shall contain any details necessary for the calculation of the construction customary on site.It shall be submitted to the installer in the same form.

    With a member of the testing body present, a demonstration surface of approximately 2 m × 2 m isconstructed to represent the actual construction used on site.

    1) National regulations may limit this temperature to a lower value

    2) Some floor covering materials may require lower temperatures

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    9/47

    EN 1264-2:2008 (E)

    7

    6 Calculation of the specific thermal output (characteristic curves and limitcurves)

    6.1 General approach (see [2], [4])

    The specific thermal output q at the surface of a floor is determined by the following parameters:

    Pipe spacing T ;

    Thickness su and heat conductivity λ E of the layer above the pipe;

    Heat conduction resistance Rλ , B of the floor covering;

    Pipe external diameter D = d a, including the sheathing ( D = d M ) if necessary and the heat conductivity ofthe pipe λ R or the sheathing λ M . In case of pipes having non-circular cross sections, the equivalentdiameter of a circular pipe having the same circumference shall be used in the calculation (the screed

    covering shall not be changed). Thickness and heat conductivity of permanently mounted diffusionbarrier layers with a thickness up to 0,3 mm need not be considered in the calculation. In this case,

    D = d a shall be used;

    Heat diffusion devices having the characteristic value K WL in accordance with 6.3;

    Contact between the pipes and the heat diffusion devices or the screed, characterised by the factor aK .

    The specific thermal output is proportional to ( ∆ϑ H)n, where the temperature difference between the heatingmedium and the room temperature is:

    ∆ϑ H =

    iR

    iVR V

    ϑ ϑ ϑ ϑ ϑ ϑ

    −−

    ln (1)

    and where experimental and theoretical investigations of the exponent n have shown that:

    1,0 < n < 1,05 (2)

    Within the limits of the achievable accuracy,

    n = 1

    is used.

    The specific thermal output is calculated using Equation (3).

    q = B ⋅ )( iiΠm

    ia ⋅ ∆ϑ H (3)

    where

    B is a system-dependent coefficient, in W/(m 2 ⋅ K);

    )( iiΠm

    ia is a power product linking the parameters of the floor construction with one another (see 6.2,

    6.3 and 6.4).

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    10/47

    EN 1264-2:2008 (E)

    8

    A distinction shall be made between systems, where the pipes are installed inside or below the screed orwood floors, and systems with surface elements (plane section systems). For usual constructions,Equation (3) applies directly. For systems with additional devices for heat distribution, for air filled hollowsections or for other components influencing the heat distribution, the thermal output is determinedexperimentally in accordance with Clause 9.

    6.2 Systems with pipes installed inside the screed (type A and type C)

    For these systems (see Figure A.2), the characteristic curves are calculated in accordance withEquation (4a).

    q = B ⋅ a B ⋅ T

    Tma ⋅ uu

    ma ⋅ DDma ⋅ ∆ϑ H (4a)

    The power product given before the temperature difference ∆ϑ H is called the equivalent heat transmissioncoefficient K H, which leads to the following abbreviated form of the expression:

    q = K H ⋅ ∆ϑ H (4b)

    where

    B = B0 = 6,7 W/(m 2 ⋅ K) for a pipe heat conductivity λ R = λ R, 0 = 0,35 W/(m 2 ⋅ K) and a pipe wallthickness sR = sR, 0 = ( d a – d i)/2 = 0,002 m.

    For other materials with different heat conductivities or for different pipe wall thicknesses, or for sheathedpipes, B shall be calculated in accordance with 6.6.

    For a heating screed with reduced moisture addition, λ E = 1,2 W/(m 2 ⋅ K) shall be used. This value is alsoapplicable to heating screeds. If a different value is used, its validity shall be checked.

    a B is the floor covering factor in accordance with the following equation:

    Bλ ,E

    u

    u

    u

    B

    R s

    s

    a

    ++

    +

    =

    λ α

    λ α

    0,

    0,

    0,

    1

    1

    (5)

    where

    α = 10,8 W/(m 2 ⋅ K);

    λ u, 0 = 1 W/(m ⋅ K);

    su, 0 = 0,045 m;

    Rλ , B is the heat conduction resistance of the floor covering, in m 2 ⋅ K/W;

    λ E is the heat conductivity of the screed, in W/(m ⋅ K);

    a T is a spacing factor in accordance with Table A.1; aT = f ( Rλ , B );

    a u is a covering factor in accordance with Table A.2; au = f (T , Rλ , B );

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    11/47

    EN 1264-2:2008 (E)

    9

    aD is the pipe external diameter factor in accordance with Table A.3; aD = f (T , Rλ , B ).

    075,01

    T m −=T applies where 0,050 m ≤ T ≤ 0,375 m (6)

    mu = 100(0,045 – su) applies where su ≥ 0,010 m (7)

    mD = 250( D – 0,020) applies where 0,008 m ≤ D ≤ 0,030 m (8)

    In Equations (6), (7) and (8)

    T is the pipe spacing;

    D is the external diameter of the pipe, including sheathing, where applicable;

    su is the thickness of the screed covering above the pipe.

    For a pipe spacing T > 0,375 m, the specific thermal output is approximately calculated using

    T qq

    375,0375,0= (9)

    where

    q0,375 is the specific thermal output, calculated for a spacing T = 0,375 m.

    For coverings above the pipe s u ≤ 0,065 m as well as for coverings above the pipe 0,065 m < su ≤ *u s (for

    *u s

    see below), Equation (4a) applies directly. The value of *u s depends on the pipe spacing as follows:

    For a spacing T ≤ 0,200 m, *u s = 0,100 m applies.

    For a spacing T > 0,200, *u s = 0,5 T applies. In this relation, always the actual spacing T shall be used, evenif the calculation is done in accordance with Equation (9).

    For coverings above the pipe su >*u s , Equation (4b) shall be used. In this case, the equivalent heat

    transmission coefficient shall be determined in accordance with the following equation:

    E

    uu

    H

    uuλ

    *

    *1

    1

    s s K

    K

    s s H,

    −+

    =

    =

    (10)

    In Equation (10), *uu s s H,

    K =

    is the power product from Equation (4a), calculated for a covering *u s above the

    pipe.

    The limit curves are calculated in accordance with 6.5.

    6.3 Systems with pipes installed below the screed or timber floor (type B)

    For these systems (see Figure A.3), the variable thickness su of the weight bearing layer and its variable heatconductivity λ E are covered by the factor au. The pipe diameter has no effect. However, the contact between

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    12/47

    EN 1264-2:2008 (E)

    10

    the heating pipe and the heat diffusion device or any other heat distribution device is an important parameter.In this case, the characteristic curve is calculated as follows:

    q = B ⋅ a B ⋅ TTma ⋅ a u ⋅ a WL ⋅ a K ⋅ ∆ϑ H (11)

    where

    B = B0 = 6,5 W/(m 2 ⋅ K) under the conditions given for Equations (4a) and (4b);

    a T is the pipe spacing factor in accordance with Table A.6; aT = f ( su/λ E);

    mT see Equation (6);

    a u is the covering factor, which is calculated in accordance with the following equation:

    E

    u

    u

    u

    u

    λ α

    λ α s

    s

    a+

    +=

    1

    1

    0,

    0,

    (12)

    where

    α = 10,8 W/(m 2 ⋅ K);

    λ u, 0 = 1 W/(m ⋅ K);

    su, 0 = 0,045 m;

    a WL is the heat conduction factor (see Tables A.8); aWL = f ( K WL , T , D).

    The following applies to the characteristic value K WL :

    0,125EuuWLWL

    WLλ λ ⋅⋅+⋅

    = sb s

    K (13)

    where

    bu = f (T ) shall be taken from Table A.7;

    sWL ⋅ λ WL is the product of the thickness and the heat conductivity of the heat diffusion device;

    su ⋅ λ E is the product of the thickness and the heat conductivity of the screed or timber covering.

    If the width L of the heat diffusion device is smaller than the pipe spacing T , the value a WL, L = T determined inaccordance with Tables A.8, shall be corrected as follows:

    a WL = a WL, L = T – ( aWL, L = T – a WL, L = 0 )[1 – 3,2( L/T ) + 3,4 ( L/T )2 – 1,2( L/T )3] (14)

    The heat conduction factors aWL, L = T and a WL, L = 0 shall be taken from Tables A.8a to A.8f. For L = T , thetables with K WL in accordance with Equation (13) apply directly, for L = 0, the tables apply with K WL

    determined in accordance with Equation (13) with sWL = 0.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    13/47

    EN 1264-2:2008 (E)

    11

    aK is the correction factor for the contact in accordance with Table A.9; a K = f (T ).

    The correction factor for the contact a K covers additional heat transmission resistances due to cases wherethere is only spot or line contact between the heating pipe and the heat diffusion device. These resistancesdepend on the manufacturing tolerances of the pipes and heat conduction devices as well as on the caretaken in installing them, and are, therefore, subject to fluctuations in individual cases. For this reason,Table A.9 gives a calculated average value for aK .

    aB is the floor covering factor:

    )T(f RaaaaB11

    am

    ⋅⋅⋅⋅⋅⋅+=

    Bλ ,K WLTu

    BT

    (15)

    with f (T ) = 1 + 0,44 T

    The limit curves are calculated in accordance with 6.5.

    6.4 Systems with surface elements (plane section systems, type D)

    For floors covered with surface elements (see Figure A.4), the following equation applies:

    q = B ⋅ aB ⋅ T

    Tma ⋅ au ⋅ ∆ϑ H (16)

    where

    B = B0 = 6,5 W/(m 2 ⋅ K) and

    TTm

    a = 1,06;

    au is the covering factor in accordance with Equation (12);

    aB is the floor covering factor:

    Bλ ,TuB

    T Raa Ba

    m⋅⋅⋅+

    =1

    1 (17)

    6.5 Limits of the specific thermal output

    The procedure for the determination of the limits of the specific thermal output is shown in principle withinFigure A.5.

    The limit curve (see Figure A.5) gives the relationship between the specific thermal output and thetemperature difference between the heating medium and the room for cases where the maximumpermissible difference between surface temperature and indoor room temperature (9 K or 15 K respectively)is achieved.

    The limit curve is calculated using the following expression in form of a product:

    GH

    GG

    n

    Bq ⋅⋅=ϕ θ ∆

    ϕ (18)

    where

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    14/47

    EN 1264-2:2008 (E)

    12

    BG is a coefficient in accordance with Table A.4a (applicable to su/λ E ≤ 0,079 2) and Table A.4b(applicable to su/λ E > 0,079 2) for type A and type C systems or in accordance with Table A.10 fortype B systems; or BG = 100 W/(m 2 ⋅ K) for systems with surface elements;

    nG is an exponent in accordance with Table A.5a (applicable to su/λ E ≤ 0,079 2) and Table A.5b(applicable to su/λ E > 0,079 2) for type A and type C systems or in accordance with Table A.11 fortype B systems; or nG = 0 for systems with surface elements;

    ϕ is a factor for the conversion to any values of the temperatures ϑ F, max and ϑ i.

    ϕ

    1,1

    o

    i

    ϑ∆

    ϑ−ϑ= maxF, with ∆ϑ 0 = 9 K (19)

    The limit temperature difference between the heating medium and the room ∆ϑ H, G is calculated as follows

    from the intersection of the characteristic curve with the limit curve (see Figure A.5):

    11

    G

    ii

    GGH,

    Π

    n

    m

    ia B

    B−

    ⋅= ϕ ϑ ∆ (20)

    For type A and type C systems, the above mentioned Equations (18) and (20) apply directly to pipespacing T ≤ 0,375 m. In case of spacing T > 0,375 m, for these systems the following conversion shall bemade:

    GGG f

    T qq ⋅=

    375,0375,0;

    (21)

    GGH,GH, f ⋅= 375,0; ϑ ϑ (22)

    where

    qG; 0,375 is the limit specific thermal output, calculated for a spacing T = 0,375 m;

    ϑ H, G; 0,375 is the limit temperature difference between the heating medium and the room,calculated for a spacing T = 0,375 m.

    The factor f G shall be determined as follows, depending on the ratio su/T :

    For su/T ≤ 0,173, f G = 1 applies.

    For su/T > 0,173, the following equation applies:

    T q

    eT

    qqq f

    T s

    375,0

    )375,0

    (

    375,0

    )173,0/(20375,0

    2

    ⋅⋅−−=

    −⋅−

    G;

    G;maxG,maxG,

    G

    u

    (23)

    where

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    15/47

    EN 1264-2:2008 (E)

    13

    qG, max is the maximum permissible specific thermal output in accordance with Table A.12,calculated for an isothermal surface temperature distribution using the basic characteristiccurve (Figure A.1), with ( ϑ F, m – ϑ i) = (ϑ F, max – ϑ i).

    For type B systems, Equations (18) and (20) apply directly, when the pipe spacing T and the width of theheat diffusion device L are the same. For L < T , the value of the specific thermal output qG, L = T , calculated inaccordance with Equation (18), shall be corrected using the following equation:

    TLG,TLWL,

    WLG =

    =⋅= q

    aa

    q (24)

    where

    aWL, L = T is the heat conduction factor in accordance with Table A.8;

    aWL is the heat conduction factor, calculated in accordance with Equation (14).

    The limit temperature difference between the heating medium and the room ∆ϑ H, G remains unchanged aswith L = T .

    For ∆ϑ F, max – ∆ϑ i = 9 K, ϕ = 1 and Rλ , B = 0, the limit specific thermal output qG is designated as standardspecific thermal output q N , and the associated limit temperature difference between the heating medium andthe room ∆ϑ H, G is designated as standard temperature difference between the heating medium and theroom ∆ϑ N (see Figure A.5). These values serve as characteristic values in the system comparison.

    The maximum possible value of the specific thermal output qG, max for an isothermal surface temperature

    distribution is represented by the ordinate value for ϑ F, m = ϑ F, max on the basic characteristic curve (seeFigure A.1).

    Table A.12 gives values for qG, max , depending on the maximum floor surface temperature ϑ F, max and thestandard indoor room temperature ϑ i.

    If (due to calculation and interpolation inaccuracies as well as linearization) higher values for qG than qG, max are calculated using Equations (18), (21), (24), qG, max has to be used.

    6.6 Influence of pipe material, pipe wall thickness and pipe sheathing on the specificthermal output

    The factors B0 are specified in Equations (4a) and (11) for a pipe heat conductivity λ R, 0 = 0,35 W/(m ⋅ K), awall thickness sR, 0 = 0,002 m. For other materials (see Table A.13) with a heat conductivity of the pipematerial λ R or other wall thicknesses sR , the factor B shall be calculated using:

    ( ) ⋅⋅Π⋅π

    += Ta1,1

    B1

    B1 m

    i0

    ii

    (25)

    −λ −

    −λ 00, s2dd

    ln2

    1s2d

    dln

    21

    R,a

    a

    R R a

    a

    R

    If the pipe has an additional sheathing with an external diameter d M , an internal diameter d a and a heatconductivity of the sheathing λ M , the following equation applies:

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    16/47

    EN 1264-2:2008 (E)

    14

    ( ) ⋅⋅⋅π

    += Ta1,1

    B1

    B1 m

    0

    i

    ii

    Π (26)

    −λ

    −λ

    +

    λ 00 s2d

    dln

    2

    1

    s2d

    dln

    2

    1

    d

    dln

    2

    1

    R,M

    M

    R,R a

    a

    R a

    M

    M

    Any oxygen diffusion barrier layers with thicknesses ≤ 0,3 mm need not be considered. In this case,Equation (25) shall be used.

    In cases with air gaps within the sheathing, Equation (26) only applies if a valid average value λ M includingthe air gaps is available.

    6.7 Heat conductivity of screed with inserts

    Where system plates for type A systems are used, the heat conduction in the screed is changed by inserts(such as attachment studs or similar components). If their volume fraction in the screed amounts to

    15 % ≥ ψ ≥ 5 %, an effective heat conductivity Eλ ′ of the component is to be expected.

    Eλ ′ = (1 – ψ ) ⋅ λ E + ψ ⋅ λ W (27)

    where

    λ E is the heat conductivity of the screed;

    λ W is the heat conductivity of the attachment studs;

    ψ is the volume fraction of the attachment studs in the screed.

    7 Heat conductivity of the materials

    For carrying out the calculation, the heat conductivities specified in Table A.13 are used. If the materialslisted in Table A.13 are used, the values of this table shall be taken. For other materials, the heatconductivities shall be taken from effectual European Standards if available or shall be verified by acertificate prepared by an approved testing body.

    8 Downward heat loss

    The downward specific heat loss of floor heating systems towards rooms under the system is calculated inaccordance with the following equation (see Figure A.5 of prEN 1264-3:2007):

    )qR(R

    1q UiO

    UU ϑ−ϑ+⋅⋅= (28)

    where

    qU downward specific heat loss

    q specific thermal output of the floor heating system

    RU downwards partial heat transmission resistance of the floor structure

    RO upwards partial heat transmission resistance of the floor structureϑi standard indoor room temperature of the floor heated room

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    17/47

    EN 1264-2:2008 (E)

    15

    ϑU indoor room temperature of a room under the floor heated room

    With respect to Figure 5 of prEN 1264-3 the following applies:

    U

    UB,O

    sR

    1R

    λ ++

    α= λ (29)

    where

    1/α = 0,0926 m 2·K/W

    RU = R λ ,ins + R λ ,ceiling + R λ ,plaster + R α ,ceiling (30)

    where

    R α ,ceiling = 0,17 m 2·K/W

    In the special case of ϑi = ϑU the simple equation

    U

    OU R

    Rqq ⋅= (31)

    applies.

    For a more detailed calculation of the downward heat loss, see Part 3 of this European Standard.

    9 Test procedure for the determination of the thermal output of systems thatcannot be calculated in accordance with Clause 6

    For constructions which do not correspond to the basic construction of the types A, B, C or D, or in case ofdimensions or material data outside the scope of the calculation method, the specific thermal output shall bedetermined by testing (experimentally) as follows.

    A test sample consisting of at least three heating pipes, with the pipe spacing to be tested, in accordancewith the system design of the floor heating to be investigated is positioned in the testing equipment accordingto Figure A.6 [4]. The size of the test sample shall be approximate 1 m × 1 m on appointment with the testlaboratory and shall cover preferably three-pipe spacing. In Figure A.6 the cooling plates simulate the roomabove the floor heating system (see key 1), i.e. the temperature of the heated room ϑ i, and the room below(see key 4). For the cooling plates the construction according to Figure A.7 is recommended consisting ofpanel radiators with flat tubes in which disconnecting points realize the appropriate cooling water flow. Theheat transfer resistance 1/ α at the floor surface is simulated by the heat transfer layer (see key 2).The twolateral heating pipes serve as a protection field to enable the optimum undisturbed temperature field aroundthe central pipe. The heat transfer resistance 1/ α at the floor surface, given by the basic characteristic curve,is replaced by the heat conduction resistance s/λ of the heat transfer layer (see key 2) of equal magnitude(mean value):

    1/α = s/λ = 0,092 6 m 2 ⋅ K/W (32)

    The tolerance on the value s/λ is ± 0,01 m 2 ⋅ K/W.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    18/47

    EN 1264-2:2008 (E)

    16

    The temperature drop of the sample ϑ V –ϑ R (see Figure A.8) shall not exceed 0,5 K. The temperature rise ofthe water flow in the cooling plates ϑ C,out – ϑ C,in (see Figure A.7) shall not exceed 0,3 K.

    ϑ V is the heat water supply temperature of the sample

    ϑ R is the heat water return temperature of the sample

    ϑ C,out is the outlet cooling water temperature of the cooling plates

    ϑ C,in is the inlet cooling water temperature of the cooling plates

    Temperatures shall be measured with a permissible uncertainty of ± 0,1 K.

    The temperature field of the floor surface is measured in order to determine the values ϑ F, m and ϑ F, max . Themeasurement shall be carried out in the undisturbed area around the central pipe or central pipes and, atleast, over the width of one pipe spacing. If possible, it is recommended using two pipe spacing. Theconfiguration of the measuring points using two pipe spacing should be done in principle as shown in Figure

    A.8. For an example, with the measuring values ϑ F, i (see Figure A.8) the calculation procedure is as follows:

    16/)2

    ( 18,F10,F9,F1,F17

    11i,F

    8

    2i,Fm,F

    ϑ+ϑ+ϑ+ϑ+ϑ+ϑ=ϑ ∑∑

    214,F5,F

    max,Fϑ+ϑ

    where

    i,Fϑ are the local floor surface temperatures (measuring points)

    m,Fϑ is the average floor surface temperature

    max,Fϑ is the maximum floor surface temperature

    In the case of not feasible values of the measured temperature field caused by inhomogeneity of the screed,another part of the surface shall be taken.

    NOTE 1 Because of the fact that the temperature drop of the sample ϑ V –ϑ R is very little and the fact that the

    temperature measurements shall be carried out in the undisturbed area around the central pipe no variation is necessarydepending on the laying system (spirally or meandering).

    NOTE 2 The explanations above refer to the most usual case that the floor heating system is characterized by therepetition of the pipe spacing. The test sample in Figure A.6 which is symmetrical with respect to the central pipe isbased on this fact. If another dimension characterizes the system the procedure has to be adjusted.

    In a first working step the test is realized for R λ ,B = 0.

    The average floor surface temperature ϑ F, m is determining the specific thermal output, and the maximumfloor surface temperature ϑ F, max is limiting the thermal output. The measurement is carried out when steadystate conditions are reached and a temperature of both cooling plates of ϑ i = 20 °C ± 0,5 K is maintained.Under these conditions the average temperature of the heating medium ϑ

    H is set to achieve a maximum

    floor surface temperature of ϑ F, max = 29 °C (i.e. ϑ F, max – ϑ i = 9 K), and in this case the difference between

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    19/47

    EN 1264-2:2008 (E)

    17

    the average temperature of the heating medium and the temperature of the cooling plates ϑ H - ϑ i = ∆ϑ H =∆ϑ N (standard value) applies.

    If it is not possible to set the value of the temperature difference ( ϑ F, max – ϑ i) exactly to 9 K, a value slightly

    below and a value slightly above 9 K shall be set and the results used to formulate a mean value.

    Given that ( ϑ F, max – ϑ i) = 9 K is maintained and the average temperature difference of the floor surface andthe room ( ϑ F, m – ϑ i) is determined, this temperature difference is used within the basic characteristic curve(Figure A.1) and gives the standard specific thermal output:

    q N = 8,92 ⋅ (ϑ F, m – ϑ i)1,1

    N (33)

    The standard specific thermal output q N , together with the above determined corresponding value of thestandard temperature difference ∆ϑ N , gives the equation for the characteristic curve for Rλ , B = 0:

    q N = K H, N ⋅ ∆ϑ N

    with the following gradient of the characteristic curve (the equivalent heat transmission coefficient):

    N

    N NH,

    ϑ ∆q

    K = (34)

    If for a given resistance of the covering ,B,λ R ′ the gradient of the characteristic curve H K ′ applies

    (determination of H K ′ see below Equation (36)), for any resistance of the floor covering Rλ , B > 0, theassociated gradient of the characteristic curve K H( Rλ , B ) can be determined in accordance with the followingequation:

    )1(1

    )(

    −′′

    +==

    H

    NH,

    Bλ ,

    Bλ ,

    NH,Bλ ,HH

    K

    K

    R

    R

    K R K K (35)

    Using Equation (35), the gradients of the characteristic curves K H( Rλ , B ) can be calculated for thermal

    resistances Rλ , B = 0,05 m 2 ⋅ K/W, 0,10 m 2 ⋅ K/W and 0,15 m 2 ⋅ K/W.

    In order to establish the gradient of the characteristic curve H K ′ to be used in Equation (35), anothermeasurement like the one described above for Rλ , B = 0, has to be carried out, but with a resistance of the

    floor covering B,λ R ′ = 0,15 m 2 ⋅ K/W ± 0,01 m 2 ⋅ K/W. By doing this measurement, the limit specific thermal

    output Gq ′ and the limit temperature difference ∆ GH,ϑ ′ are determined, which give the needed value H K ′ :

    GH,Bλ ,HH

    ϑ ′′

    =′′=′

    )( Gq

    R K K (36)

    In accordance with the following Equation (37), the limit temperature differences ∆ϑH, G for the heatconduction resistances Rλ , B > 0 are given by the interfaces of the characteristic curves and the limit curveresulting from the measurement data and the gradient K H of the characteristic curve calculated fromEquation (35):

    ∆ϑ H, G = ϕ ⋅ G

    G

    qqqq

    ′+−′−⋅′−⋅′

    NGH NH

    GH N N

    K ) (

    ,

    ,

    ϑ ϑ ϑ ϑ (37)

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    20/47

    EN 1264-2:2008 (E)

    18

    For systems having several spacing, the maximum and the minimum spacing as well as sufficientintermediate spacing to achieve a spacing ratio not exceeding 1:2, shall be tested in accordance with themethod described. Values for spacing not tested this way, shall be determined by interpolation using suitablepolynomials. The results shall be presented in a prove report as specified in Clause 11.

    10 Test procedure for the determination of the effective thermal resistance ofcarpets

    If carpets are used for floor covering a special problem occurs. Because of the surface structure of carpetstheir thermal resistance R λ ,B cannot be determined by the two plate method as generally used for othermaterials. This circumstance is primary due to the pressure which takes effect on a carpet sample if usingthis method. Further a possible change of the heat exchange coefficient due to the surface structure has tobe considered. For these reasons the effective (see below) thermal resistance R λ ,B of carpets shall bedetermined by a one plate method as described in this chapter.

    The equipment for testing is shown in Figures A.9, A.10 and A.11. The dimensions should be at least

    1m x 1m. The equipment is situated in the centre of the floor of a test booth in accordance with EN 14037-2(Figure A.9), i.e. in a room with constant controlled ambient room temperatures. Between the test equipmentand the floor of the booth insulation is recommended (key 3). The essential parts of the equipment are aheating plate (key 2) in accordance with the cooling plate in Figure A.7, a heat flow meter plate (key 1) with awell-known thermal conduction resistance R HFM, temperature measuring sensors on the surfaces and aglobe thermometer Gl according to EN 14037-2.

    NOTE Between the heat flow meter plate (key 1) and the heating plate (key 2) an elastic layer shall be interposed,for instance consisting of PE lather of about 2 mm thickness.

    The meaning of the used symbols is as follows:

    q specific thermal output

    ϑGl ambient reference temperature measured with globe thermometer

    ϑH average heating medium temperature

    ϑHFM,a temperature of the surface on top of the heat flow meter plate

    ϑHFM,b temperature of the surface at the bottom of the heat flow meter plate

    R α heat exchange resistance on the heating surface

    RHFM thermal conduction resistance of the heat flow meter plate

    Rλ ,B effective thermal resistance of carpet covering

    subscripts 1: means test 1 (example: ϑGl,1 is the valid value of ϑGl of test 1)

    2: means test 2 (example: ϑGl,2 is the valid value of ϑGl of test 2)For the thermal conduction resistance of the heat flow meter plate the following specification is valid:The material of the plate is plexiglass with the thickness of 10 mm. Its thermal conduction resistancedepends on the temperature t as follows:

    R HFM = - 0,000188 ⋅ t + 0,0578 m2·K/W with t = (ϑHFM,a + ϑHFM,b )/2

    Temperatures shall be measured with a permissible uncertainty of ± 0,1 K. Temperature differences shall bemeasured with a permissible uncertainty of ± 0,05 K.

    The temperature drop of the heating medium shall not exceed 0,5 K if possible.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    21/47

    EN 1264-2:2008 (E)

    19

    Two test procedures are necessary. The globe thermometer in both cases is situated 0,75 m above thecentre of the heating surface, i.e. in test 2 higher above the floor of the test booth by the thickness of thecarpet.

    Test 1

    Test 1 aims to the determination of the heat exchange resistance R α . In this test the heating surface is theupper surface of the heat flow meter plate and no carpet exists, see Figure A.10.

    Remark: The value R α coming from the basic characteristic curve (0,0926 (m 2 K/W)) is not used because themeasured temperature ϑGl in this test doesn't exactly apply to the respective procedure used for the basiccharacteristic curve [1].

    With the measured temperatures ϑHFM,a,1 , ϑHFM,b,1 the specific thermal output comes from the heat flow meterplate using the following equation:

    HFM

    1,a,HFM1,b,HFM

    R

    )(q

    ϑ−ϑ= (38)

    During the test the ambient reference temperature is maintained on ϑGl,1 = 20 °C ± 0,5 K by appropriatecooling of the test booth and the average heating medium temperature ϑH,1 is set to achieve with Equation(38) a value q = 80 ± 2,0 W/m 2.

    With this result and the measured corresponding temperatures ϑHFM,a,1 , ϑGl,1 the heat exchange resistance R α can be calculated according to:

    q

    )(R 1,Gl1,a,HFM

    ϑ−ϑ=α (39)

    Test 2

    Test 2 aims to the determination of the effective thermal resistance of carpet covering R λ ,B using the result R α of test 1. In this test the respective carpet lies on the upper surface of the heat flow meter plate, seeFigure A. 11.

    Corresponding to test 1 ϑGl,2 is maintained on 20 °C ± 0,5 K. With the measured temperatures ϑHFM,a,2 ,ϑHFM,b,2 the specific thermal output is given by the following equation:

    HFM2,a,HFM2,b,HFM

    R

    )(q

    ϑ−ϑ= (40)

    The average heating medium temperature ϑH,2 is set to achieve with Equation (40) again a valueq = 80 ± 2,0 W/m 2 With this value, the measured temperatures ϑHFM,a,2 , ϑGl,2 and the value R α of test 1 theeffective thermal resistance of the carpet covering can be calculated as follows:

    αλ −ϑ−ϑ

    = Rq

    )(R 2,Gl2,a,HFMB, (41)

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    22/47

    EN 1264-2:2008 (E)

    20

    Following from the described procedure, i.e. the determination of R α without carpet, the gained value R λ ,B ofEquation (41) includes not only the thermal conduction resistance but also (should the occasion arise) theabove mentioned effect of a changed heat exchange coefficient. This attribute is necessary for using this

    value for the determination of the thermal output according to the calculation method (Clause 6) and to thetest procedure (Clause 9). For that reason the supplement "effective" is used.

    For carpets used in practice as floor covering for floor heating systems only values R λ ,B determined by thetest method described above are valid to determinate the thermal output in accordance with this standard.This means that the effective thermal resistance R λ ,B of the respective carpet must be available.

    11 Prove report

    For a given construction the results shall be documented for each scheduled pipe spacing T and eachscheduled thickness s U above the pipe. The testing body presents this valid results in a prove report. The

    results are documented in a field of characteristic curves with linear coordinates, using the followingequation:

    q = f (∆ϑ H , Rλ , B ) (42)

    The characteristic curves are drawn for values of the thermal resistance R λ , B = 0, R λ , B = 0,05,R λ , B = 0,10 and R λ , B = 0,15 ·m

    2 K/W. Values of R λ , B > 0,15 m2 ·K/W are not in accordance with this

    standard.

    Into this field of characteristic curves, also the limit curves in accordance with Equation (18) are entered.These characteristic curves give for R λ , B = 0 the standard specific thermal output q N and the associatedstandard temperature difference ∆ϑ N in accordance with 6.5. Further shall be documented the values of the

    limit specific output q G and the associated limit temperature difference ∆ϑ H,G depending on the remainingabove mentioned values R λ , B in accordance with 6.5.

    The proved system shall be identified by a technical description in accordance with Clause 5. Thesedocuments shall contain all dimensions and materials which influence the thermal properties. The results arevalid for that system defined in such a way. If any change is made by the supplier of the system which affectsthe principles of the thermal proving, a new proving shall be carried out.

    12 Prove system

    12.1 General

    The prove system consists of the following components:

    Approved test laboratory which is accredited according to EN ISO/IEC 17025. The laboratory takespart at all inter-comparison tests among the approved laboratories. The laboratory shall fulfil therequirements of this standard.

    Computer system including the software to calculate the specific thermal output (field ofcharacteristic curves and limit curves) according to Clause 6 of this standard.

    Test equipment for the test procedure according to Clause 9 of this standard.

    Test equipment for the test procedure according to Clause 10 of this standard.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    23/47

    EN 1264-2:2008 (E)

    21

    Master sample, primary and secondary one.

    Constructional conformity: The participating laboratory shall state the conformity of its testequipments to this European Standard.

    Software conformity: The participating laboratory shall state the conformity of its software to thisEuropean Standard.

    12.2 Master samples

    The construction and the materials of the master samples used for the test equipment of Clause 9 are shownin Figure A.12. The primary and the secondary master sample are of the same construction and materials.The laboratory shall equip itself with master sample 2. Master sample 1 will be circulated among thelaboratories participating at the prove system. The manufacturing process has to ensure that for all samplesthe materials are from the same charge and the dimensions correspond correctly. About this a verification isrequested in a complete report and kept available for any further check.

    For the purposes of the test equipment of Clause 10 a mat with smooth surfaces containing of foamedrubber ("Moosgummi") shall be chosen in coordination of the participating test laboratories and used asmaster sample 1 as described above. The thermal resistance shall be set in the range of Rλ , B = 0,1 to 0,15m 2·K/W. About this a verification is requested in a complete report and kept available for any further check.For the test equipment of Clause 10 a master sample 2 is not necessary, see below.

    The purpose of the master samples is as follows:

    a) to verify if the reproducibility of test values among test laboratories is within the limits set by thisEuropean Standard,

    b) to establish a common basis for all test equipments to verify that the repeatability of test values ineach test equipment is within the limits set by this European Standard.

    12.3 Verification of test equipments

    All test equipments shall be verified for:

    Reproducibility precision of the test methods:

    The reproducibility shall be proved by the prove laboratory using the primary master sample. The results ofthe tests carried out with the test equipment in accordance with close 9 shall be within the tolerances m = ± a 1 % (determination of a 1 see 12.4) of the values q N,M,s and q G, M,s (R λ ;B=0,15). The results of the testscarried out with the test equipment in accordance with Clause 10 shall be within the tolerance s m = ± a 2 %(determination of a 2 see 12.4) of the value R λ ,B,M,s The prove laboratories have to prove the reproducibility in

    periodical tests.

    Repeatability precision of the test methods:

    The repeatability shall be proved by the prove laboratory using its own secondary master sample. The testsshall be carried out periodically in a distance of 12 months. The results of the tests carried out with the testequipment in accordance with Clause 9 and with those in accordance with Clause 10 shall be within atolerance range s 0 = 2 %. For the equipment of Clause 10 only Test 1 of Clause 10 is necessary (this meansa master sample 2 is not needed). At the starting of the test equipments three consecutive measurementsshall be carried out to prove the fulfilment of the above requirements.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    24/47

    EN 1264-2:2008 (E)

    22

    12.4 Determination of the values s m and φφφφM,s (q N,M,s , q G,M,s (R λ λλ λ ;B =0,15), R λ λλ λ ,B,M,s ) of primarymaster samples

    The φM,s –values of the primary master samples will be determined by a round robin measurement of alllaboratories participating at the prove system. The procedure shall be carried out by a workgroup composed

    of members of the participating laboratories with the collaboration of the responsible working groupCEN/TC 130. Each laboratory determines φO,s –values as an average of three consecutive measurements.

    All test results shall be within the tolerance range s 0 = 2 %. The workgroup of the participating laboratoriesdeterminates in accordance with the working group CEN/TC 130 the values ± a 1 % and a 2 % for s m. Thevalues φM,s will be formed by the workgroup as an average from the φO,s –values of the laboratories, wherebyno φO,s –values shall be used, which differ more than ± a 1 % or a 2 % respectively from the respective averagevalue of all laboratories.

    12.5 Verification of software

    For each calculation result shall be documented the valid boundary conditions.

    The software shall be verified for reproducibility and repeatability. For this purpose the following systemsshall be calculated and the results documented according to this European Standard:

    1 Floor heating system with pipes inside the screed (type A), tacker system

    Pipe PE-X 16 x 2 mmSpacing T 50/100/300/450 mmCement screed s U 50 mm

    2 Floor heating system with pipes inside the screed (type A)

    Pipe Cu 12 x 0,7 mm with PVC sheathing 2 mm with air includedSpacing T 100/200/300 mmCement screed s U 45 mm

    3 Floor heating system with pipes below the screed (type B)

    Pipe PE-X 14 x 2 mmSpacing T 100/200/300 mmΩ-Aluminium plate heat diffusion devices 0,6 mm, L = 98 mm

    Anhydrite screed s U 30 mm

    4 Floor heating system with pipes inside the screed (type A)

    Pipe PE-X 25x2,5 mmSpacing T 150/300/450 mmConcrete s U 100 mm

    The reproducibility of the calculation results (carried out in accordance to Clause 6) shall be within thetolerance s m = ± 0,5 % of the values q N,M,s and q G,M,s (R λ ;B=0,15).

    The values q N,M,s and q G, M,s (R λ ;B=0,15) are determined in a procedure according to 12.4.

    The repeatability shall be proved periodically. No deviations are allowed.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    25/47

    EN 1264-2:2008 (E)

    23

    Annex A (normative)

    Figures and tables

    Text in Figure

    1 Specific thermal output q (W/m 2)2 Average temperature difference between surface and indoor room temperature ( ϑF, m – ϑi) in K

    Key

    ϑ i Standard indoor room temperature in °C

    ϑ F, m Average surface temperature in °C

    q Specific thermal output in W/m 2, q = 8,92 ( ϑ F, m – ϑ i)1,1

    Figure A.1 — Basic characteristic curve

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    26/47

    EN 1264-2:2008 (E)

    24

    Key

    1 Floor covering Rλ , B 2 Weight bearing and thermal diffusion layer λ E (cement screed, anhydrite screed,asphalt screed). The thickness between the pipes and the insulation layeris in the range of 0 mm to 10 mm.

    3 Thermal insulation 4 Structural base

    Figure A.2 — Systems with pipes inside the screed (type A and type C)

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    27/47

    EN 1264-2:2008 (E)

    25

    Key

    1 Floor covering Rλ , B 2 Weight bearing layer λ E (cement screed, anhydrite screed,asphalt screed, timber)

    3 Heat diffusion device 4 Thermal insulation5 Structural base

    Figure A.3 — Systems with pipes below the screed (type B)

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    28/47

    EN 1264-2:2008 (E)

    26

    Key

    1 Floor covering Rλ , B 2 Weight bearing and thermal diffusion layer λ E (cement screed, anhydrite screed,asphalt screed, timber)

    3 Thermal insulation 4 Structural base

    Figure A.4 — Systems with surface elements (plane section systems, type D)

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    29/47

    EN 1264-2:2008 (E)

    27

    Key

    q = specific thermal output W/m 2

    ∆ ϑ H = Temperature difference between heating medium and room K

    a = peripheral area

    b = limit curves

    Figure A.5 — Procedure in principle for determination of limits for specific thermal output

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    30/47

    EN 1264-2:2008 (E)

    28

    Key

    1 Cooling plate above (see Figure A.7)2 Heat transfer layer3 Floor heating system (test sample)

    3a Screed with embedded pipes (part of test sample)

    3b Thermal insulation (part of test sample)

    4 Cooling plate below (see Figure A.7)

    Figure A.6 — Test equipment of Clause 9

    Key

    1 Disconnecting pointsϑC,out Outlet cooling water temperatureϑC,in Inlet cooling water temperature

    Figure A.7 — Cooling plate (see Figure A.6: key 1 and 4)

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    31/47

    EN 1264-2:2008 (E)

    29

    Key

    ϑV Heat water supply temperature

    ϑR Heat water return temperature

    ϑF,i Local floor surface temperatures

    Figure A.8 — Configuration of the measuring points ϑϑϑϑF,i on the surface of the test sample

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    32/47

  • 8/19/2019 Dansk Standard DS en 1264-2

    33/47

    EN 1264-2:2008 (E)

    31

    Key

    1 heat flow meter plate2 heating plate3 insulation4 floor structure of the test booth5 carpet sample

    q specific thermal outputϑGl,2 ambient reference temperature measured with globe thermometerϑHFM,a,2 temperature of the surface on top of the heat flow meter plate

    ϑHFM,b,2 temperature of the surface at the bottom of the heat flow meter plate

    Figure A.11 — Test equipment for test 2 of Clause 10

    Key

    1 Plate of plexiglass2 Ω- Heat diffusion device consisting of steel 0,6 mm3 System plate consisting of PS 30Pipes: 5 Pipes parallel, consisting of sheathing composite construction

    PE-HD/AL/PE-HD 14,5x2,4 mm, heat conductivity λ = 0,379 W/(m K)T Pipe spacingL Width of the heat diffusion deviceDimension of sample: 1x1 m

    Figure A.12 — Master sample for the test equipment of Clause 9

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    34/47

    EN 1264-2:2008 (E)

    32

    For all the tables : Intermediate values shall be interpolated by using a natural cubic spline interpolation.

    Table A.1 — Spacing factor a T for type A and type C systems

    Rλ λλ λ , B

    m2 ⋅ K/W0 0,05 0,10 0,15

    a T 1,23 1,188 1,156 1,134

    Table A.2 — Covering factor a u , depending on the pipe spacing T and the heat conductionresistance R λ λλ λ , B of the floor covering for type A and type C systems

    Rλ λλ λ , B

    m2 ⋅ K/W0 0,05 0,10 0,15

    T

    (m)a u

    0,05 1,069 1,056 1,043 1,037

    0,075 1,066 1,053 1,041 1,035

    0,1 1,063 1,05 1,039 1,033 5

    0,15 1,057 1,046 1,035 1,030 5

    0,2 1,051 1,041 1,031 5 1,027 5

    0,225 1,048 1,038 1,029 5 1,026

    0,3 1,039 5 1,031 1,024 1,021

    0,375 1,03 1,022 1 1,018 1 1,015

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    35/47

    EN 1264-2:2008 (E)

    33

    Table A.3 — Pipe external diameter factor a D , depending on the heat conduction resistance R λ λλ λ , B ofthe floor covering and the pipe spacing T for type A and type C systems

    Rλ λλ λ , B

    m2 ⋅ K/W0 0,05 0,10 0,15

    T

    (m)a D

    0,05 1,013 1,013 1,012 1,011

    0,075 1,021 1,019 1,016 1,014

    0,1 1,029 1,025 1,022 1,018

    0,15 1,04 1,034 1,029 1,024

    0,2 1,046 1,04 1,035 1,03

    0,225 1,049 1,043 1,038 1,033

    0,3 1,053 1,049 1,044 1,039

    0,375 1,056 1,051 1,046 1,042

    Table A 4a — Coefficient BG , depending on the ratioE

    u

    λ s

    forE

    u

    λ s

    ≤≤≤≤ 0,0792 and on the pipe spacing T

    for systems with pipes installed inside the screed (type A and type C)

    su /λ λλ λ E

    m2 ⋅ K/W 0,01 0,020 8 0,029 2 0,037 5 0,045 8 0,054 2 0,062 5 0,070 8 0,079 2

    T

    m

    0,05 85,0 91,5 96,8 100 100 100 100 100 100

    0,075 75,3 83,5 89,9 96,3 99,5 100 100 100 100

    0,1 66,0 75,4 82,9 89,3 95,5 98,8 100 100 100

    0,15 51,0 61,1 69,2 76,3 82,7 87,5 91,8 95,1 97,8

    0,2 38,5 48,2 56,2 63,1 69,1 74,5 81,3 86,4 90,0

    0,225 33,0 42,5 49,5 56,5 62 67,5 75,3 81,6 86,1

    0,3 20,5 26,8 31,6 36,4 41,5 47,5 57,5 65,3 72,4

    0,375 11,5 13,7 15,5 18,2 21,5 27,5 40,0 49,1 58,3COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    36/47

    EN 1264-2:2008 (E)

    34

    Table A.4b — Coefficient B G, depending on the ratio T s u for

    E

    u

    λ s

    > 0,0792 for systems with pipes

    installed inside the screed (type A and type C)

    su /T B G

    0,173 27,5

    0,20 40,0

    0,25 57,5

    0,30 69,5

    0,35 78,2

    0,40 84,4

    0,45 88,3

    0,50 91,60,55 94,0

    0,60 96,3

    0,65 98,6

    0,70 99,8

    > 0,75 100

    Table A.5a — Exponent n G, depending on the ratio Eu

    λ

    s

    for Eu

    λ

    s

    ≤≤≤≤ 0,0792 and on the pipe spacing T forsystems with pipes installed inside the screed (type A and type C)

    su /λ λλ λ E

    m2 ⋅ K/W0,01 0,020 8 0,029 2 0,037 5 0,045 8 0,054 2 0,062 5 0,070 8 0,079 2

    T

    m

    0,05 0,008 0,005 0,002 0 0 0 0 0 0

    0,075 0,024 0,021 0,018 0,011 0,002 0 0 0 0

    0,1 0,046 0,043 0,041 0,033 0,014 0,005 0 0 0

    0,15 0,088 0,085 0,082 0,076 0,055 0,038 0,024 0,014 0,006

    0,2 0,131 0,13 0,129 0,123 0,105 0,083 0,057 0,040 0,028

    0,225 0,155 0,154 0,153 0,146 0,13 0,11 0,077 0,056 0,041

    0,262 5 0,197 0,196 0,196 0,19 0,173 0,15 0,110 0,083 0,062

    0,3 0,254 0,253 0,253 0,245 0,228 0,195 0,145 0,114 0,086

    0,337 5 0,322 0,321 0,321 0,31 0,293 0,260 0,187 0,148 0,115

    0,375 0,422 0,421 0,421 0,405 0,385 0,325 0,230 0,183 0,142

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    37/47

    EN 1264-2:2008 (E)

    35

    Table A.5b — Exponent n G, depending on the ratio T s u for

    E

    u

    λ s

    > 0,0792 for systems with pipes

    installed inside the screed (type A and type C)

    su /T n G

    0,173 0,320

    0,20 0,230

    0,25 0,145

    0,30 0,097

    0,35 0,067

    0,40 0,048

    0,45 0,033

    0,50 0,0230,55 0,015

    0,60 0,009

    0,65 0,005

    0,70 0,002

    > 0,75 0

    Table A.6 — Spacing factor a T for type B systems

    s U /λ λλ λ E

    m 2·K/W0,01 0,02 0,03 0,04 0,05 0,06 0,08 0,10 0,15 0,18

    a T 1,103 1,100 1,097 1,093 1,091 1,088 1,082 1,075 1,064 1,059

    Table A.7 — Factor bu , depending on the pipe spacing T for type B systems

    T

    (m)0,05 0,075 0,1 0,15 0,2 0,225 0,3 0,375 0,45

    bu 1 1 1 0,7 0,5 0,43 0,25 0,1 0COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    38/47

    EN 1264-2:2008 (E)

    36

    Table A.8a — Heat conduction factor a WL , depending on the pipe spacing T , the pipe externaldiameter D and the characteristic value K WL for type B systems ( K WL = 0)

    D

    (m)0,022 0,020 0,018 0,016 0,014

    T

    (m)a WL

    0,05 0,96 0,93 0,9 0,86 0,82

    0,075 0,8 0,754 0,7 0,644 0,59

    0,1 0,658 0,617 0,576 0,533 0,488

    0,15 0,505 0,47 0,444 0,415 0,387

    0,2 0,422 0,4 0,379 0,357 0,337

    0,225 0,396 0,376 0,357 0,34 0,320,3 0,344 0,33 0,315 0,3 0,288

    0,375 0,312 0,3 0,29 0,278 0,266

    0,45 0,3 0,29 0,28 0,264 0,25

    Table A.8b — Heat conduction factor a WL , depending on the pipe spacing T , the pipe externaldiameter D and the characteristic value K WL for type B systems ( K WL = 0,1)

    D

    (m) 0,022 0,020 0,018 0,016 0,014

    T

    (m)a WL

    0,05 0,975 0,955 0,930 0,905 0,88

    0,075 0,859 0,836 0,812 0,776 0,74

    0,1 0,77 0,76 0,726 0,693 0,66

    0,15 0,642 0,621 0,6 0,58 0,561

    0,2 0,57 0,55 0,53 0,51 0,49

    0,225 0,54 0,522 0,504 0,485 0,467

    0,3 0,472 0,462 0,453 0,444 0,435

    0,375 0,46 0,446 0,434 0,421 0,411

    0,45 0,45 0,44 0,43 0,42 0,41COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    39/47

    EN 1264-2:2008 (E)

    37

    Table A.8c — Heat conduction factor a WL , depending on the pipe spacing T , the pipe externaldiameter D and the characteristic value K WL for type B systems ( K WL = 0,2)

    D

    (m)0,022 0,020 0,018 0,016 0,014

    T

    (m)a WL

    0,05 0,985 0,97 0,955 0,937 0,92

    0,075 0,902 0,893 0,885 0,865 0,845

    0,1 0,855 0,843 0,832 0,821 0,81

    0,15 0,775 0,765 0,755 0,745 0,735

    0,2 0,71 0,703 0,695 0,688 0,68

    0,225 0,685 0,678 0,67 0,663 0,6550,3 0,615 0,608 0,6 0,592 0,585

    0,375 0,58 0,573 0,565 0,558 0,55

    0,45 0,57 0,565 0,56 0,555 0,55

    Table A.8d — Heat conduction factor a WL , depending on the pipe spacing T , the pipe externaldiameter D and the characteristic value K WL for type B systems ( K WL = 0,3)

    D

    (m) 0,022 0,020 0,018 0,016 0,014

    T

    (m)a WL

    0,05 0,99 0,98 0,97 0,96 0,95

    0,075 0,94 0,935 0,93 0,925 0,92

    0,1 0,92 0,915 0,91 0,905 0,9

    0,15 0,855 0,855 0,855 0,855 0,855

    0,2 0,8 0,8 0,8 0,8 0,8

    0,225 0,79 0,79 0,79 0,79 0,79

    0,3 0,72 0,72 0,72 0,72 0,72

    0,375 0,69 0,69 0,69 0,69 0,69

    0,45 0,68 0,68 0,68 0,68 0,68COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    40/47

    EN 1264-2:2008 (E)

    38

    Table A.8e — Heat conduction factor a WL , depending on the pipe spacing T , the pipe externaldiameter D and the characteristic value K WL for type B systems ( K WL = 0,4)

    D

    (m)0,022 0,020 0,018 0,016 0,014

    T

    (m)a WL

    0,05 0,995 0,99 0,985 0,978 0,97

    0,075 0,96 0,962 0,963 0,964 0,965

    0,1 0,94 0,94 0,94 0,94 0,94

    0,15 0,895 0,895 0,895 0,895 0,895

    0,2 0,86 0,86 0,86 0,86 0,86

    0,225 0,84 0,84 0,84 0,84 0,840,3 0,78 0,78 0,78 0,78 0,78

    0,375 0,76 0,76 0,76 0,76 0,76

    0,45 0,75 0,75 0,75 0,75 0,75

    Table A.8f — Heat conduction factor a WL , depending on the pipe spacing T and the characteristicvalue K WL for type B systems ( K WL ≥≥≥≥ 0,5 [a WL no longer dependent on D ])

    K WL 0,5 0,6 0,7 0,8 0,9 1,0 ∞∞∞∞

    T

    (m)a WL

    0,05 0,995 0,998 1 1 1 1 1

    0,075 0,979 0,984 0,99 0,995 0,998 1 1,01

    0,1 0,963 0,972 0,98 0,988 0,995 1 1,02

    0,15 0,924 0,945 0,96 0,974 0,99 1 1,04

    0,2 0,894 0,921 0,943 0,961 0,98 1 1,06

    0,225 0,88 0,908 0,934 0,955 0,975 1 1,07

    0,3 0,83 0,87 0,91 0,94 0,97 1 1,09

    0,375 0,815 0,86 0,90 0,93 0,97 1 1,1

    0,45 0,81 0,86 0,90 0,93 0,97 1 1,1

    KWL>1:

    [ ] [ ] [ ]( ) [ ][ ] [ ]

    KWL

    0KWLWLKWLWL

    KWLWL0KWLWLKWLWLKWLWLWL aa

    1aaaaa

    −−

    ⋅−−==∞=

    ∞==∞=∞=

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    41/47

    EN 1264-2:2008 (E)

    39

    Table A.9 — Correction factor a K for the contact in case of type B systems

    T

    (m)0,05 0,075 0,1 0,15 0,2 0,225 0,3 0,375 0,45

    a K 1 0,99 0,98 0,95 0,92 0,9 0,82 0,72 0,60

    Table A.10 — Coefficient BG , depending on K WL and the pipe spacing T for type B systems

    T

    (m)0,05 0,075 0,1 0,15 0,2 0,225 0,3 0,375 0,45

    K WL BG

    0,1 92 86,7 79,4 64,8 50,8 45,8 27,5 9,9 0

    0,2 93,1 88 81,3 67,5 54,2 49 31,8 15,8 2,4

    0,3 94,2 89,5 83,3 70,2 57,6 52,5 36 21,3 7,0

    0,4 95,4 90,7 85,2 72,9 60,8 56 40,2 25,7 11,9

    0,5 96,6 92,1 87,2 75,6 64,1 59,3 44,4 30 16,6

    0,6 97,8 93,7 89,2 78,3 67,3 62,6 48,6 34,1 21,1

    0,7 98,7 95 91 81 70,6 66,3 52,8 38,5 25,5

    0,8 99,3 96,3 93 83,7 74 69,7 57 42,8 29,6

    0,9 99,8 97,7 95 86,3 77,2 73 61,2 47 33,6

    1,0 100 98,5 96,5 89 80,7 76,6 65,4 51,4 37,31,1 100 99,3 97,8 91,5 84 80 69,4 55,6 40,9

    1,2 100 99,6 98,5 93,8 87,2 83,3 73,2 59,8 44,3

    1,3 100 99,8 99,3 95,8 90 86,3 76,6 63,8 47,5

    1,4 100 100 99,8 97,5 92,5 89 80 67,3 50,5

    1,5 100 100 100 98,6 94,8 91,7 83 71 53,4

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    42/47

    EN 1264-2:2008 (E)

    40

    Table A.11 — Exponent n G , depending on K WL and the pipe spacing T for type B systems

    T

    (m)0,05 0,075 0,1 0,15 0,2 0,225 0,3 0,375 0,45

    K WL n G

    0,1 0,0029 0,017 0,032 0,067 0,122 0,151 0,235 0,333 1

    0,2 0,0024 0,015 0,027 0,055 0,097 0,120 0,184 0,288 0,725

    0,3 0,0021 0,013 0,024 0,048 0,086 0,104 0,169 0,256 0,482

    0,4 0,0018 0,012 0,022 0,044 0,08 0,095 0,156 0,228 0,38

    0,5 0,0015 0,011 0,02 0,04 0,074 0,088 0,143 0,204 0,31

    0,6 0,0012 0,0099 0,018 0,037 0,067 0,082 0,131 0,183 0,25

    0,7 0,0009 0,0087 0,016 0,033 0,061 0,074 0,118 0,162 0,21

    0,8 0,006 0,0074 0,014 0,03 0,055 0,067 0,106 0,144 0,187

    0,9 0,0003 0,0062 0,012 0,027 0,049 0,06 0,095 0,126 0,165

    1,0 0 0,005 0,01 0,024 0,044 0,053 0,083 0,11 0,143

    1,1 0 0,0038 0,008 0,021 0,038 0,046 0,072 0,096 0,121

    1,2 0 0,0025 0,006 0,018 0,032 0,038 0,063 0,084 0,107

    1,3 0 0,0012 0,004 0,015 0,027 0,034 0,054 0,073 0,093

    1,4 0 0 0,002 0,012 0,022 0,029 0,047 0,063 0,080

    1,5 0 0 0 0,009 0,02 0,025 0,04 0,055 0,070

    Table A.12 — Values for qG, max , depending on ϑ ϑϑ ϑ F, max and ϑ ϑϑ ϑ i

    ϑ ϑϑ ϑ F, max ϑ ϑϑ ϑ i qG, max

    (°C) (°C) (W/m 2)

    29 20 100 occupied area

    33 24 100 bathroom and similar

    35 20 175 peripheral area

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    43/47

    EN 1264-2:2008 (E)

    41

    Table A.13 — Heat conductivity values of materials for hot water floor heating systems

    Heat conductivity λ λλ λ Material

    W/(m ⋅ K)

    PB pipe 0,22

    PP pipe 0,22

    PE-X pipe (HDX, MDX) 0,35

    PE-RT 0,35

    Steel pipe 52

    Copper pipe 390

    PVC sheathing with air included 0,15

    PVC sheathing with no air included 0,2

    Aluminium heat diffusion devices 200

    Steel heat diffusion devices 52

    Cement screed 1,2

    Anhydrite screed 1,2

    Concrete ( ρ ≈ 2 400 kg/m 3) 1,9

    Gypsum plaster boards 0,25

    Lime plaster 0,7

    Walking surface on industrial floors 0,7

    Mastic asphalt screed 0,9

    Stone wood 0,4

    Timber (wood-chip board) 0,15

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    44/47

    EN 1264-2:2008 (E)

    42

    Annex B (informative)

    Test procedure for the determination of parameters for application inEN 15377-1:2008 Annex C

    Introduction

    In this European Prove Standard, only one calculation method and a corresponding test method are usedwhich are qualified to get proved and certifiable values for the thermal output of water based surfaceembedded heating and cooling systems.

    Furthermore, in EN 15377-1 additional calculation methods are described.

    EN 15377-1:2008 Annex C presents a calculation method for systems with pipes embedded in woodenconstruction. It works on the basis of the Thermal Resistance Method. The relevant thermal resistances shallbe determined by test for systems without heat diffusion devices and in the case where higher accuracy shallbe reached. Due to the fact that EN 15377 does not enclose test methods, this requirement should be takenover in this European standard.

    For the relevant parameters and the respective equations, see EN 15377-1:2008, C.3.1 and C.3.2. Using theformula symbols of this European Standard and those of EN 15377, simultaneous steady state values of thefollowing parameters representing the system are to be provided:

    ϑH = ϑHC average heating medium temperature

    ϑi indoor room temperature

    ϑe = ϑU indoor room temperature of a room under the floor heated room

    ϑm average Temperature of the heating layer, i.e. of the heat diffusion device if it exists

    q = q i specific thermal output of the floor heating system

    qU = q e downward specific heat loss

    qHC total specific heat input to the system, where

    qHC = q + q U

    Test equipment and procedure

    For the test equipment, see Figure B.1. It is essentially identical to the test equipment of Clause 9, seeFigure A.6, but extended by a heat flow meter plate (see key 4 in Figure A.6) in accordance with Clause 10of this European Standard. Additionally (in cases where this is possible depending on the material and the

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    45/47

    EN 1264-2:2008 (E)

    43

    structure of the weight-bearing layer 3 ) measuring sensors can be installed in order to get the averagetemperature of the heating layer ϑm.

    NOTE 1 Between the heat flow meter plate (key 4) and the cooling plate (key 6) an elastic layer shall be interposed,for instance consisting of PE lather of about 2 mm thickness.

    The test procedure is as follows:

    Steady state conditions shall be adjusted as described in Clause 9 of this European Standard. Operationconditions and accuracy requirements of Clause 9 and Clause 10 of this European Standard are to besatisfied. The simulated temperature ϑU (ϑe) is maintained on the same value of ϑi or a lower valuedepending on the special circumstances.

    The specific thermal output q (q i) is determined as described in Clause 9 of this European Standard. Thismeans, the heat exchange resistance on the surface of the heating floor 1/ α (R Si , see EN 15377) is included,i.e. for the later with EN 15377-1 calculated thermal resistance R i no further correction is necessary.

    The downward heat loss q U (q e) is determined by the heat flow meter plate. Should the situation arise, for thelater with EN 15377-2 calculated thermal resistance R e , a correction depending on the heat exchangeresistance on the rear side surface may be necessary.

    The measured values of the designated temperatures and specific thermal heat flows allow for the evaluationof the equations of EN 15377-1:2008 Annex C.3.1 and C.3.2. In the case of C.3.2 the values of twoindependent steady state conditions are needed.

    NOTE 2 It must be underlined that results calculated in this way, not are proved results in terms of this EuropeanStandard.

    3 The temperature sensors also may be installed on the underneath surface of the heat diffusion device.

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    46/47

    EN 1264-2:2008 (E)

    44

    Key

    1 Cooling plate above

    2 Heat transfer layer s/ λ = 0,0926 m 2·W/K

    3 Floor heating system (test sample)

    3a Weight bearing layer

    3b Pipes and heat diffusion device

    3c Thermal insulation

    4 Heat flow meter plate (heat flux meter)

    5 Temperature measuring sensors

    6 Cooling plate on the bottom of the heat flow meter plate

    q Specific thermal output

    qU Downward heat loss

    ϑi Indoor room temperature

    ϑia Temperature maintained on ϑU ≤ ϑi

    ϑU Indoor temperature of a room under the floor heated room

    ϑF,m Average temperature of the heating surface

    ϑF,max Maximum temperature of the heating surface

    ϑH Average heating medium temperature

    ϑm Average temperature of the heating layer

    In brackets: Denominations of prEN 15377

    Figure B.1 —Test equipment for test of Annex B

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008

    User license: Københavns Erhvervs Akademi

  • 8/19/2019 Dansk Standard DS en 1264-2

    47/47

    EN 1264-2:2008 (E)

    Bibliography

    [1] Konzelmann, M. and Zöllner, G.: Wärmetechnische Prüfung von Fußbodenheizungen. Published inHLH 33 (1982), No. 4, pp. 136–142

    [2] Kast, W., Klan, H. and Bohle, J.: Wärmeleistung von Fußbodenheizungen. Published in HLH 33(1986), No. 4, pp. 175–182

    [3] Konzelmann, M. and Zöllner, G.: Auslegung und wärmetechnische Prüfung von Warmwasser-Fuß-bodenheizungen. Published in SHT 4 (1984), pp. 255–259

    [4] Kast, W., Klan, H. and Bohle, J.: Wärmeleistung von Fußbodenheizungen, Part 2. Published inHLH 33 (1986), No. 10, pp. 497–502

    [5] EN 442-2, Radiators and convectors — Part 2: Test methods and rating

    [6] prEN 1264-4, Water based surface embedded heating and cooling systems — Part 4: Installation

    [7] EN 15377-1:2008, Heating systems in buildings — Design of embedded water based surface heatingand cooling systems — Part 1 : Determination of the design heating and cooling capacity

    [8] EN 15377-2:2008, Heating systems in buildings — Design of embedded water based surface heatingand cooling systems — Part 2: Design, dimensioning and installation

    COPYRGHTDanshSandards.NOTFORCOMMERCALUSEORREPRODUCTON.DSEN1264-22008