23
S- and p-wave structure of S = -1 meson- baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring Supported by DOE SCGSR, NSF (PIF No.1415459, CAREER PHY-1452055), DOE DE-AC05-06OR23177 & DE-SC0016582), DFG MA 7156/1-1. 1

Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region

Daniel Sadasivan

Maxim Mai

Michael Doring

Supported by DOE SCGSR, NSF (PIF No.1415459, CAREER PHY-1452055), DOE DE-AC05-06OR23177 & DE-SC0016582), DFG MA 7156/1-1.

1

Page 2: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Motivation

2

Page 3: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

What is a Resonance

• Seen in peak at a certain energy in scattering cross sections.

• Assigned to certain quantum numbers.

• Can be studied through analytic continuation

• Useful to relate results to other theories like quark models and lattice QCD.

1340 1360 1380 1400 1420 1440

!0.5

0.0

0.5

1.0

1.5

WCMS !MeV"

Ref!fm

"

1340 1360 1380 1400 1420 14400.0

0.5

1.0

1.5

2.0

2.5

WCMS !MeV"Ref!fm

"

3

Page 4: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Resonances We Are Looking For

4

Page 5: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Applications

• Λ(1405) is dominated by KN interaction

• A similar mechanism can be responsible for the generation of K−pp bound states. See for example, S. Ajimura et al arXiv:1805.12275 [nucl-ex].

• The equation of state of neutron stars is sensitive to the antikaon condensate and thus to the propagation of antikaons in nuclear medium.

5

Page 6: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Method

6

Page 7: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Model

T T VV

A depiction of the operator form of the Bethe Saltpeter Equation.

The bubble chain summation caused by iteration of the Bethe Salpeter Ansatz

The chiral expansion of the driving term, V.

7

Page 8: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Possible Meson Baryon Interactions for S=-1

Possible channels for S=-1 interactions. The data that exists in the energy region of interest is shown in red.

8

Page 9: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Fit to the Data: Old Data

In addition, we fit to threshold data

including data from the SIDDHARTA Experiment

Total cross sections fitted by the model. The dashed black line shows the contribution of the s-wave part of the amplitude only.

9

Page 10: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

10

-1.0 -0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0

Cos θ

dσ dΩ(mb)

K- p→K0 n (275 MeV)

0.0

0.5

1.0

1.5

2.0

dσ dΩ(mb)

K- p→K0 n (235 MeV)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

dσ dΩ(mb)

K- p→K0 n (265 MeV)

2

4

6

8

10

dσ dΩ(mb)

K- p→K0 n (225 MeV)

1.0 -0.5 0.0 0.5 1.0Cos θ

K- p→K0 n (285 MeV)

K- p→K0 n (245 MeV)

K- p→K0 n (275 MeV)

K- p→K0 n (235 MeV)

1.0 -0.5 0.0 0.5 1.0Cos θ

K- p→K0 n (295 MeV)

K- p→K0 n (255 MeV)

K- p→K0 n (285 MeV)

K- p→K0 n (245 MeV)

1.0 -0.5 0.0 0.5 1.0Cos θ

K- p→K0 n (265 MeV)

K- p→K0 n (295 MeV)

K- p→K0 n (255 MeV)

Fit to the Data: New Data

Differential cross sections fitted by the model.

Page 11: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

More Data

1.30 1.35 1.40 1.45 1.50

M [GeV]

arb

itrary

units

1.

2.

3.

d/d

Min

v[

b/G

eV]

Wtot=2. GeV Wtot=2.1 GeV 0 0

+ -

- +

Wtot=2.2 GeV

0.5

1

d/d

Min

v[

b/G

eV]

Wtot=2.3 GeV Wtot=2.4 GeV Wtot=2.5 GeV

1.35 1.4 1.45

0.2

0.4

0.6

Minv [GeV]

d/d

Min

v[

b/G

eV]

Wtot=2.6 GeV

1.35 1.4 1.45

Minv [GeV]

Wtot=2.7 GeV

1.35 1.4 1.45

Minv [GeV]

Wtot=2.8 GeV

Fit of the generic couplings K−p→Σ(1660)π−and Σ(1660)→(π−Σ+)π+to the invariant mass

distribution in arbitrary units. R. J. Hemingway, Nucl. Phys. B253, 742 (1985).

.

11

Fit (χ2pp= 1.07) to theπ Σ invariant mass distribution (Minv) from γp→K+(πΣ) reaction.

K. Moriya et al. (CLAS), Phys. Rev. C87, 035206 (2013), arXiv:1301.5000 [nucl-ex].

Page 12: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Predictions

12

Page 13: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

-8.

-4.

0.

4.

8.

12.

16.

f JI[G

eV-

1]

0(1/2-)

-1.

-2.

0.

1.0(1/2+)

1.25 1.30 1.35 1.40 1.45

-1.

0.

1.

2.

3.

4.

W [GeV]

f JI[G

eV-

1]

1(1/2-)

1.25 1.30 1.35 1.40 1.45

-3.

-1.

-2.

0.

1.

W [GeV]

1(1/2+)

PWA Amplitudes

13

I(JP)Imaginary part of K̄N partialReal part of K̄N partial

Page 14: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Λ(1405)

Left: Pole positions (black stars) for the 0(1/2−). The error ellipses are from a re-sampling procedure

shown explicitly in the corresponding insets. The shaded squares show the prediction from

other literature for the narrow (blue) and broad (orange) pole of

Λ(1405)

Below: A plot of the amplitude in the complex plane that shows the

two peaks.

14

Page 15: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

An Anomalous Structure

Left: A representation of the position of a pole in the best fit of our model in the 1(1/2+)

Channel.

Below: The amplitudes of the couplings for the poles observed in the best fit.

15

Page 16: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Analysis

16

Page 17: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Possible Explanations of the Anomalous Structure

When a structure is observed in a good fit to good data and does not have the quantum numbers of any known state, categorically speaking there are three possibilities.

1. It’s present because the data demonstrate that there exists an undiscovered state in nature.

2. It’s present because the data require the model to account for something it isn’t currently accounting for.

3. It’s completely arbitrary; it’s existence does not improve the fit in any way.

17

Page 18: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Lasso Test of Robustness

Plot of Lasso (Least Absolute Shrinkage and Selection Operator) Method.

18

The amplitude that is penalized.

Page 19: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Possible Explanations of the Anomalous Structure

When a structure is observed in a good fit to the data and does not have the quantum numbers of any known state, categorically speaking there are three possibilities.

1. It’s present because the data demonstrate that there exists an undiscovered state in nature.

2. It’s present because the data require the model to account for something it isn’t currently accounting for.

3. It’s completely arbitrary; it’s existence does not improve the fit in any way.

19

Page 20: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Σ(1385)

-1.0 -0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0

Cos θ

dσ/dΩ

[mb]

K-p→K 0n (w=265 MeV)0.0

0.5

1.0

1.5

2.0

dσ/dΩ[mb]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

dσ/dΩ[mb]

K-p→K-p (w=265 MeV)2

4

6

8

10

dσ/dΩ[mb]

K-p→K-p (w=225 MeV)

1.0 -0.5 0.0 0.5 1.0Cos θ

K-p→K 0n (w=275 MeV)

K-p→K 0n (w=235 MeV)

K-p→K-p (w=275 MeV)

K-p→K-p (w=235 MeV)

1.0 -0.5 0.0 0.5 1.0Cos θ

K-p→K 0n (w=285 MeV)

K-p→K 0n (w=245 MeV)

K-p→K-p (w=285 MeV)

K-p→K-p (w=245 MeV)

1.0 -0.5 0.0 0.5 1.0Cos θ

K-p→K 0n (w=295 MeV)

K-p→K 0n (w=255 MeV)

K-p→K-p (w=295 MeV)

K-p→K-p (w=255 MeV)

Reversed Formula for the differential cross section

The partial waves of the best fit. We additionally include a black line to show the best fit when the partial waves are reversed.

Real Formula for the differential cross section

20

Page 21: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Possible Explanations of the Anomalous Structure

When a structure is observed in a good fit to the data and does not have the quantum numbers of any known state, categorically speaking there are three possibilities.

1. It’s present because the data demonstrate that there exists an undiscovered state in nature.

2. It’s present because the data require the model to account for something it isn’t currently accounting for.

3. It’s completely arbitrary; it’s existence does not improve the fit in any way.

21

Page 22: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Summary

• The Mai-Meissner Model is fit to differential cross section as well as older data. This constitutes the first ever simultaneous fit of all data without explicit resonances.

• Both poles of the Λ(1405) were reproduced

• A new anomalous structure was observed that didn’t have the right parity for the Σ(1385).

• This statistically robust state likely exists because the differential cross section data demand a p-wave resonance and a NLO model cannot give it the right J.

22

Page 23: Daniel Sadasivan Maxim Mai Michael Doring · 2019-12-20 · S- and p-wave structure of S = -1 meson-baryon scattering in the resonance region Daniel Sadasivan Maxim Mai Michael Doring

Thank You

23