94
ESM Cluj-Napoca - August 2015 1 Damping of magnetization dynamics Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands Andrei Kirilyuk

Damping of magnetization dynamics - MAGNETISM.eu - EMA

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

ESM Cluj-Napoca - August 20151

Damping of magnetization dynamics

!Radboud University, Institute for Molecules and Materials,

Nijmegen, The Netherlands

Andrei Kirilyuk

ESM Cluj-Napoca - August 20152

ESM Cluj-Napoca - August 2015

Landau-Lifshitz equation

3

S

Nenergy gain: !torque equation:

Landau & Lifshitz, 1935

Heff

ESM Cluj-Napoca - August 2015

Landau-Lifshitz equation

3

S

Nenergy gain: !torque equation:

Landau & Lifshitz, 1935

Heff

ESM Cluj-Napoca - August 2015

Damping: Landau-Lifshitz vs Gilbert

4

ESM Cluj-Napoca - August 2015

Damping: Landau-Lifshitz vs Gilbert

4

ESM Cluj-Napoca - August 2015

Damping: Landau-Lifshitz vs Gilbert

4

Landau-Lifshitz vs Gilbert

ESM Cluj-Napoca - August 2015

Damping: Landau-Lifshitz vs Gilbert

4

Since the second result is in agreement with the fact that a very large damping should produce a very slow motion while the first is not, one may conclude that the Landau-Lifshitz-Gilbert equation is more appropriate to describe magnetization dynamics.

Landau-Lifshitz vs Gilbert

ESM Cluj-Napoca - August 2015

A. Einstein & W.J. de Haas, Experimenteller Nachweis der Amperèschen Molekülströme, Verhandl. Deut. Phys. Ges. 17, 152 (1915) S.J. Barnett, Magnetization by rotation, Phys. Rev. 6, 239 (1915)

To remember: magnetization = angular momentum

5

Einstein – de Haas & Barnett effects

ESM Cluj-Napoca - August 2015

Angular momentum transfer and two ways of reversal

6

H!

M!

H!

M!

( ) !"

#$%

&×+×−=dtdMM

MHM

dtdM eff α

γ( ) !"

#$%

&×+×−=dtdMM

MHM

dtdM eff α

γ

precessional (fast)usual (practical)

from spins to field

ESM Cluj-Napoca - August 2015

Angular momentum transfer and two ways of reversal

6

H!

M!

H!

M!

( ) !"

#$%

&×+×−=dtdMM

MHM

dtdM eff α

γ( ) !"

#$%

&×+×−=dtdMM

MHM

dtdM eff α

γ

precessional (fast)usual (practical)

from spins to latticefrom spins to field

ESM Cluj-Napoca - August 2015

Angular momentum transfer and two ways of reversal

6

H!

M!

H!

M!

( ) !"

#$%

&×+×−=dtdMM

MHM

dtdM eff α

γ( ) !"

#$%

&×+×−=dtdMM

MHM

dtdM eff α

γ

precessional (fast)usual (practical)

from spins to latticefrom spins to field

ESM Cluj-Napoca - August 2015

measuring the damping

7

ESM Cluj-Napoca - August 2015

measuring the damping

7

ESM Cluj-Napoca - August 2015

Example 1: thin film configuration

8

from the condition that the net torque on M is zero:

ESM Cluj-Napoca - August 2015

FMR resonance

9

ESM Cluj-Napoca - August 2015

FMR resonance

9

ESM Cluj-Napoca - August 2015

FMR resonance

9

ESM Cluj-Napoca - August 2015

FMR versus applied field angle

10

isotropic out of plane easy axis easy plane

ESM Cluj-Napoca - August 2015

FMR linewidth

11

ESM Cluj-Napoca - August 2015

FMR linewidth

11

ESM Cluj-Napoca - August 2015

Example 2: optical pump-probe measurement

12

Damping in a Bi:YIG garnet film as a function of temperature

pump

probe

ESM Cluj-Napoca - August 2015

Example 2: optical pump-probe measurement

12

0 200 400 600 800 1000 1200 1400

370 K

380 K

390 K

395 K

400 K

405 K

410 K

415 K

Fara

day

rota

tion

Delay time (ps)

420 K

Damping in a Bi:YIG garnet film as a function of temperature

pump

probe

TC

ESM Cluj-Napoca - August 2015

Energy flow via spin waves??

13

ESM Cluj-Napoca - August 2015

Semi-quantitative analysis

14

ESM Cluj-Napoca - August 2015

Semi-quantitative analysis

14

radius laser spot ~20 µm; observed τ < 200 ps; ⇒ s

kmv 100>

ESM Cluj-Napoca - August 2015

Semi-quantitative analysis

14

k

ω

radius laser spot ~20 µm; observed τ < 200 ps; ⇒ s

kmv 100>

ESM Cluj-Napoca - August 2015

Semi-quantitative analysis

14

k

ω0≈=

dkdvgω

radius laser spot ~20 µm; observed τ < 200 ps; ⇒ s

kmv 100>

ESM Cluj-Napoca - August 2015

Semi-quantitative analysis

14

k

ω0≈=

dkdvgω

Magnetostatic modes; picture from Demokritov & Hillebrands

radius laser spot ~20 µm; observed τ < 200 ps; ⇒ s

kmv 100>

ESM Cluj-Napoca - August 2015

Semi-quantitative analysis

14

k

ω0≈=

dkdvgω

Magnetostatic modes; picture from Demokritov & Hillebrands

skmvg 10≤

radius laser spot ~20 µm; observed τ < 200 ps; ⇒ s

kmv 100>

ESM Cluj-Napoca - August 2015

µ-magnetic simulations [Eilers et al, PRB 74, 054411 (2006)]

15

skm

psmv 6

704.0

≈≈µ

ESM Cluj-Napoca - August 2015

Experiment: propagation of spin waves

16

JH!

0.5 ns, 40 Oe pulse

part with T. Korn & U. Ebels, SPINTEC, Grenoble

ESM Cluj-Napoca - August 2015

Experiment: propagation of spin waves

16

JH!

0.5 ns, 40 Oe pulse

part with T. Korn & U. Ebels, SPINTEC, Grenoble

ESM Cluj-Napoca - August 2015

Experiment: propagation of spin waves

16

skm

nsmv 140

5.3500

≈≈µ

JH!

0.5 ns, 40 Oe pulse

part with T. Korn & U. Ebels, SPINTEC, Grenoble

ESM Cluj-Napoca - August 2015

Conclusion 1

17

!

not everything what you measure is damping!

ESM Cluj-Napoca - August 2015

Damping channels: intrinsic vs extrinsic

18

ESM Cluj-Napoca - August 2015

19

damping via magnetoelastic interactions

breathing Fermi-surface in metals

extrinsic: two-magnon scattering

ESM Cluj-Napoca - August 2015

19

damping via magnetoelastic interactions

breathing Fermi-surface in metals

extrinsic: two-magnon scattering

ESM Cluj-Napoca - August 2015

Phenomenology based on magneto-elasticity

20

ESM Cluj-Napoca - August 2015

‘Dissipative’ part of magnetic field

21

ESM Cluj-Napoca - August 2015

‘Dissipative’ part of magnetic field

21

so that the total effective field is

ESM Cluj-Napoca - August 2015

Heating rate

22

ESM Cluj-Napoca - August 2015

Heating rate

22

ESM Cluj-Napoca - August 2015

Heating rate

22

ESM Cluj-Napoca - August 2015

Magnetostriction

23

the adiabatic magnetostriction coefficients are defined as

ESM Cluj-Napoca - August 2015

Magnetostriction

23

the adiabatic magnetostriction coefficients are defined as

the time-varying magnetostrictive strain is then

ESM Cluj-Napoca - August 2015

Finally: the Gilbert damping tensor

24

thus, a changing M produce a changing strain; the crystal viscosity tensor determines the heating rate per unit volume

ESM Cluj-Napoca - August 2015

Finally: the Gilbert damping tensor

24

thus, a changing M produce a changing strain; the crystal viscosity tensor determines the heating rate per unit volume

ESM Cluj-Napoca - August 2015

Finally: the Gilbert damping tensor

24

thus, a changing M produce a changing strain; the crystal viscosity tensor determines the heating rate per unit volume

from this, the Gilbert damping tensor is rigorously given by

ESM Cluj-Napoca - August 2015

Experiments vs theory

25

ESM Cluj-Napoca - August 2015

Experiments vs theory

25

the theoretical prediction is that

ESM Cluj-Napoca - August 2015

Theoretical vs measured damping parameters

26

ESM Cluj-Napoca - August 2015

Theoretical vs measured damping parameters

27

ESM Cluj-Napoca - August 2015

28

damping via magnetoelastic interactions

breathing Fermi-surface in metals

extrinsic: two-magnon scattering

ESM Cluj-Napoca - August 2015

28

damping via magnetoelastic interactions

breathing Fermi-surface in metals

extrinsic: two-magnon scattering

ESM Cluj-Napoca - August 2015

Ferromagnetism of metals

29

ESM Cluj-Napoca - August 2015

‘breathing’ Fermi-surface

30

following Steiauf and Fähnle, PRB 72, 0064450 (2005); see Kambersky, Can J. Phys. 48, 2906 (1970); Kunes and Kambersky, PRB 65, 212411 (2002)

ESM Cluj-Napoca - August 2015

1. Adiabatic regime

31

we confine the treatment to the adiabatic regime: several ps to nanoseconds (single-electron spin fluctuations can be integrated out):

ESM Cluj-Napoca - August 2015

2. Dissipative free-energy functional

32

the existence of such functional is postulated:

ESM Cluj-Napoca - August 2015

2. Dissipative free-energy functional

32

the existence of such functional is postulated:

ESM Cluj-Napoca - August 2015

3. Translate this to the electronic level

33

as outputted from the density functional theory

ESM Cluj-Napoca - August 2015

3. Translate this to the electronic level

33

as outputted from the density functional theory

ESM Cluj-Napoca - August 2015

3. Translate this to the electronic level

33

as outputted from the density functional theory

as the total number of states is conserved

ESM Cluj-Napoca - August 2015

3. Translate this to the electronic level

33

as outputted from the density functional theory

as the total number of states is conserved

ESM Cluj-Napoca - August 2015

3a. Spin-orbit coupling

34

ESM Cluj-Napoca - August 2015

3a. Spin-orbit coupling

34

for a lattice of simple cubic symmetry this gives

ESM Cluj-Napoca - August 2015

3a. Spin-orbit coupling

34

for a lattice of simple cubic symmetry this gives

N.B.: this is a difficult point, usually not much discussed!

ESM Cluj-Napoca - August 2015

4. Semiempirical extension of DFT

35

Redistribution of the occupation numbers provided by scattering processes

ESM Cluj-Napoca - August 2015

4. Semiempirical extension of DFT

35

Redistribution of the occupation numbers provided by scattering processes

Approximated by

ESM Cluj-Napoca - August 2015

5. Consider homogeneous situation

36

ESM Cluj-Napoca - August 2015

5. Consider homogeneous situation

36

ESM Cluj-Napoca - August 2015

Anisotropy and ‘damping’ fields:

37

where the damping matrix:

ESM Cluj-Napoca - August 2015

7. Same relaxation times around the Fermi surface

38

ESM Cluj-Napoca - August 2015

Finally: equation-of-motion

39

scalar damping parameter is

ESM Cluj-Napoca - August 2015

sidenote: damping vs anisotropy

40

In many discussion you find the direct relation between damping and magnetocrystalline anisotropy - equations show that this is not entirely correct:

ESM Cluj-Napoca - August 2015

Results: Fe, Co, Ni

41

bcc Fe hcp Co fcc Ni

two eigenvalues of the damping matrix vs direction of M

ESM Cluj-Napoca - August 2015

Anisotropic FMR linewidth

42

ESM Cluj-Napoca - August 2015

Anisotropic FMR linewidth

42

ESM Cluj-Napoca - August 2015

Temperature dependence of damping

43

the higher T, the shorter => less damping?? is this reasonable??

ESM Cluj-Napoca - August 2015

Temperature dependence of damping

43

the higher T, the shorter => less damping?? is this reasonable??

ESM Cluj-Napoca - August 2015

Temperature dependence of damping - 2

44

Bhagat, Lubitz, PRB 10, 179 (1974)

ESM Cluj-Napoca - August 2015

Interband transitions at higher temperature

45

note that this also includes the ‘breathing Fermi surface’ part for transitions inside the same band

Gilmore et al, PRL 99, 027204 (2007)

ESM Cluj-Napoca - August 2015

Interband transitions at higher temperature

45

note that this also includes the ‘breathing Fermi surface’ part for transitions inside the same band

Gilmore et al, PRL 99, 027204 (2007)

ESM Cluj-Napoca - August 2015

46

damping via magnetoelastic interactions

breathing Fermi-surface in metals

extrinsic: two-magnon scattering

ESM Cluj-Napoca - August 2015

46

damping via magnetoelastic interactions

breathing Fermi-surface in metals

extrinsic: two-magnon scattering

ESM Cluj-Napoca - August 2015

Two-magnon scattering

47

FMR is the lowest frequency, isn’t it??

ESM Cluj-Napoca - August 2015

Spin waves in thin films

48

ESM Cluj-Napoca - August 2015

Dispersion relations

49

ESM Cluj-Napoca - August 2015

Dispersion relations

49

States available for scattering

ESM Cluj-Napoca - August 2015

Angular dependence of 2-magnon damping

50

ESM Cluj-Napoca - August 2015

Different types of defects

51

ESM Cluj-Napoca - August 2015

Experiments??

52

films with different anisotropy, roughly corresponding to the initially defined ones.

Srivastava et al, J. Appl. Phys. 85, 7838 (1999);

ESM Cluj-Napoca - August 2015

Summary:

53

!

not obvious experimentally, lots of artefacts

intrinsic versus extrinsic mechanisms

phenomenology versus ab-initio

ESM Cluj-Napoca - August 201554