13
Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral Ep–Lp and Ep– Eiso Relations: The Origin of Dispersion and Its Improvement [email protected] GRB Cosmology Project

Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Embed Size (px)

DESCRIPTION

Tully-Fisher Relation (Rotation–Luminosity) Type Ia Supernovae HR diagram Cepheid Variable (Period–Luminosity) parallax redshift z = Cosmic Distance Ladder (Distance Indicators) When we measure the energy density of D-E and D-M, we need “distance” and “redshift” relation. Just after the Big Bang (CMB) L ≡ 4 π d L 2 F Gamma-Ray Bursts z = 8.2 ! z = 1.755

Citation preview

Page 1: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.),R. Tsutsui, T. Nakamura (Kyoto Univ.),K. Takahashi (Nagoya Univ.)

The Spectral Ep–Lp and Ep–Eiso Relations:

The Origin of Dispersion and Its Improvement

[email protected]

GRB Cosmology Project

Page 2: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

102 known redshift samples with ( Ep, 1 sec peak flux, fluence ).Lp is calculated by 1 sec peak flux in the obs. frame.

νFν

∝ Eα

∝ Eβ

ピークエネルギー (Ep)

Briggs et al. 2000

■ Application for the GRB Cosmology■ Investigate the characteristic of GRB itself

Introduction

C.C. = 0.890d.o.f. = 100

Page 3: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Tully-Fisher Relation (Rotation–Luminosity)

Type Ia Supernovae

HR diagram

Cepheid Variable(Period–Luminosity)

parallaxredshift

z = 1.755

Cosmic Distance Ladder (Distance Indicators) When we measure the energy density of D-E and D-M,

we need “distance” and “redshift” relation.

Just after the Big B

ang (CM

B)

L ≡ 4πdL2 F

  Gamma-Ray Bursts    z = 8.2 !

z = 1.755

Page 4: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Calibrated Epeak-Luminosity relation52 GRBs ( z<1.755 )

Epeak(1+z) [keV]

Pea

k Lu

min

osity

[1051

erg

/sec

]

Lp = 5.93 x 1047 [ Epeak (1+z) ]1.85

5.93 x 1047 [ Epeak (1+z) ]1.85

4πFdL 2 =

Page 5: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Redshift

Lum

inos

ity D

ista

nce

(cm

)10

2610

2710

2810

29

0.01 0.1 1 10

Type Ia SNe New!GRB

CalibratedGRB

Hubble Diagram ( 1.8 < z < 8.2)■ GRB data (z < 1.755)■ GRB data (1.755 < z < 8.2)+ Type Ia SNe

(Ωm, ΩΛ) = (1, 0)

(0.3, 0.7)

(0, 1)

z = 8.2

Page 6: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

ΩΛ

Cosmological Parameters (1.8 < z < 8.2 )D

ark

Ene

rgy

: ΩΛ

Matter : Ωm

( 0.24±0.10 , 0.76±0.10)(Ωm, ΩΛ) =

First Measurement of DM & DEin the early universe of z > 2.

Tsutsui, DY + (2009)

( flat universe )

Poster-094Tsutsui et al.

Page 7: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Origin of Data Dispersions

Peak Flux Redshift

We classified 102 GRB events into 3 groups,according to the bolometric peak flux and the redshift.

We found a redshift evolution in the Ep-Lp relation in 2 s significance, but there is no peak flux dependence.

Ep-Lp Ep-LpBrightMiddleDim

High-zMiddle-zLow-z

Page 8: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

We systematically overestimate the peak luminosityfor higher redshift GRBs.

Rel

ativ

e P

eak

Flux

in O

bs. F

ram

e

Time Scale of Peak Flux (sec)

64msec512msec

1024msec

Redshift Evolution ?

1sec@ z=0

1sec@ z=1

1sec@ z=2

Page 9: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Original Ep – Lp

58 GRBs Konus & Swift

~ 3 sec

31 Konus data

2088 msec ~ 3 sec

Redefinition of the peak luminosity ( Lp,GRB )

We searched the best time scalefor the peak luminosity in the GRB frame.

Time Scale of Peak Luminosity in GRB Frame (sec)

Cor

rela

tion

Coe

ffici

ent

Page 10: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Lp = 1048.70 [ Ep(1+z) ]1.46

Deviation : σsys = 0.213

1sec Peak Luminosity ( measured in Obs. frame )

Cor. Coef = 0.890

Ep (1+z) [keV]

Pea

k Lu

min

osity

[erg

/sec

]

Page 11: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Lp = 1048.18 [ Ep(1+z) ]1.53

Deviation : σsys = 0.180

3sec Peak Luminosity (measured in GRB frame )

Cor. Coef = 0.921

Ep (1+z) [keV]

Pea

k Lu

min

osity

[erg

/sec

]

Page 12: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

Fluence Redshift

Ep-Eiso Ep-Eiso

We found a fluence dependence in the Ep-Eiso relation in 2 s significance, but there is no redshift evolution.

Similar analysis for the Ep – Eiso relation.

BrightMiddleDim

High-zMiddle-zLow-z

Page 13: Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral EpLp and

■ We measured the cosmological parameters,

1.755 < z < 8.2( 0.24±0.10 , 0.76±0.10 )(Ωm, ΩΛ) =

■ We succeeded in extending the cosmic distance ladder toward z=8.2 with the Ep – Lp relation.

Redshift evolution

Peak Flux/Fluence Dependence

Ep – Lp Yes (2s C.L.) NoEp – Eiso No Yes (2s C.L.)

■ Possible origins of data dispersion

■ Using the NEW definition of “Lp,GRB (~ 3sec in GRB frame)”, we succeeded in canceling the redshift evolution, and in improving the Ep – Lp relation.

Summary