106
Patrice BRUNETON Chile July 2013

Dahlkamp 2009

  • Upload
    letuyen

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dahlkamp 2009

Patrice BRUNETON Chile July 2013

Page 2: Dahlkamp 2009
Page 3: Dahlkamp 2009

Classifications of uranium deposits follow

two general approaches, focusing on: descriptive features such as the geotectonic

position (Russian geologists), the host rock type, the orebody morphology, …… : « geologic classification »

or on genetic aspects : « genetic classification »

Page 4: Dahlkamp 2009

In the late 80’s, a collect of information was

organized by the IAEA to produce a geological classification which could be internationnally used

15 deposit types were defined and listed in the 1991 Red Book

The IAEA classification was largely inspired by the work of F.J.Dahlkamp

Page 5: Dahlkamp 2009

1) Unconformity-related 23 2) Sandstones 250 3) Quartz-pebble conglomerates 22 4) Veins 128 5) Breccia complexes 1 6) Intrusive 13 7) Phosphorites 10 8) Collapse breccia pipes 10 9) Volcanic 43 10) Surficial 16 11) Metasomatites 12 12) Metamorphic 10 13) Lignite-coal 22 14) Black shales 9 15) Other types (carbonates) 13 (582)

Deposits were conventionally listed in order of economic ranking

Page 6: Dahlkamp 2009

In 1993, Dahlkamp, in his book, “Uranium Ore Deposits”, recognizes 16 types of uranium deposits based on host environment and ore geometry

More than 40 subtypes

and classes were also defined

Page 7: Dahlkamp 2009

In 2009, following the publication of new information and new research data on uranium deposits, Dahlkamp presents in his book “Uranium deposits of the world – Asia”, a rearrangement and refinement of the classification proposed by the author in 1993

The terminology selected for types and subtypes refers primarily to the host environment or geotectonic setting of the types: 20 types of uranium deposits including 40 subtypes and classes are recognized

Page 8: Dahlkamp 2009

2009

2010

Page 9: Dahlkamp 2009

Genetic classifications

They are based on the dominant mechanism supposed to be at the origin of the primary uranium concentration The most recent and comprehensive classification is proposed by M. Cuney (2010-2012) However, it is difficult to obtain a reliable genetic classification for various reasons:

• Succession of concentration episodes within a single deposit with very different mechanisms spanning over a long period of time • Secondary processes may affect the primary uranium concentration mechanisms • Insufficient knowledge of the genetic conditions

Page 10: Dahlkamp 2009

The 2013 IAEA classification is a combination between the IAEA classification used in the Red Book since 1991 and the Dahlkamp (1993, 2009) classifications: 15 main types of deposits and 43 subtypes/classes have been retained

Page 11: Dahlkamp 2009

• 1) Unconformity-related (McArthur, Ranger) • 2) Sandstones (Mynkuduk, Arlit) • 3) Hematite breccia complexes (Olympic Dam) • 4) Quartz-pebble conglomerates (Witwatersrand) • 5) Veins (Limousin) • 6) Intrusive (Rossing, Ilimaussaq) • 7) Volcanic and caldera-related (Streltsovska) • 8) Metasomatites (Michurinskoye) • 9) Surficial (Langer Heinrich) • 10) Collapse breccia pipes (Arizona Strip) • 11) Phosphorites (Gantour) • 12) Other types (metamorphic, limestones, coal) • 13) Rock types with elevated U content (pegmatites, granites, black shales, ….)

2012 « Red Book » uranium deposits classification

Page 12: Dahlkamp 2009

1. Intrusive anatectic and plutonic 81 2. Granite-related 128 3. Polymetallic iron-oxide breccia complex 12 4. Volcanic-related 117 5. Metasomatite 74 6. Metamorphite 106 7. Proterozoic unconformity 84 8. Collapse breccia pipe 16 9. Sandstone-hosted 615 10. Paleo-quartz pebble conglomerate 62 11. Surficial 66 12. Coal-lignite 32 13. Carbonate 8 14. Phosphate 41 15. Black shales 43

(1489)

Page 13: Dahlkamp 2009

ROCKS

VolcanicCalcretes/Lignite/Coal

PhosphatesBlack Shales

RollfrontTabularTectonolithologic

Unconformity

Magmatic(crystal fract.)

M A N T L E

Conglomerates

IOCG(U)

T °C

HTMetamorphic

Na-metasomatism

100100

200

300400

600

25

Breccia Pipes

800

CONTINENTALCRUST1.7ppm U

HKCa

AlaskitesPAl

Upper cont. crust2.7 ppm U

Primitive Mantle : 21ppbCarb. chondrites : 7ppb

Veins

PAk

Basal

LTMetamorphic

PAk

PAl

HKCa

SEDIMENTARYROCKS

IGNEOUSROCKS

METAMORPHICROCKS

ROCKS

VolcanicCalcretes/Lignite/Coal

PhosphatesBlack Shales

RollfrontTabularTectonolithologic

Unconformity

Magmatic(crystal fract.)

M A N T L E

Conglomerates

IOCG(U)

T °C

HTMetamorphic

Na-metasomatism

100100

200

300400

600

25

Breccia Pipes

800

CONTINENTALCRUST1.7ppm U

HKCa

AlaskitesPAl

Upper cont. crust2.7 ppm U

Primitive Mantle : 21ppbCarb. chondrites : 7ppb

Veins

PAk

Basal

LTMetamorphic

PAk

PAl

HKCa

SEDIMENTARYROCKS

IGNEOUSROCKS

METAMORPHICROCKS

Cuney 2010

Page 14: Dahlkamp 2009

Type of deposit Number of deposits Subtype

Number of deposits

1 Intrusive 81 Anatectic Plutonic

50 31

2 Granite-related 128 Endogranitic Perigranitic

79 49

3 Polymetallic iron-oxide

breccia complex 15 15

4 Volcanic-related 119 Structure-bound

Strata-bound Volcano-sedimentary

97 18 4

5 Metasomatite 75 Na-metasomatite K-metasomatite

Skarn

54 17 4

6 Metamorphite 106 Strata-bound

Structure-bound Marble-hosted

5 92 9

7 Proterozoic unconformity 84

Unconformity-contact Basement-hosted

Stratiform fracture-controlled

36 43 5

8 Collapse breccia pipe 16 16

Page 15: Dahlkamp 2009

Type of deposit Number of deposits Subtype

Number of deposits

9 Sandstone 615

Basal channel Tabular

Rollfront Tectonic-lithologic Mafic dykes/sills

77 285 227 18 8

10 Paleo quartz pebble

conglomerate 62

U-dominant Au-dominant

22 40

11 Surficial 62

Peat-bog Fluvial valley

Lacustrine-playa Pedogenic/fracture-fill

2 37 20 3

12 Lignite-coal 32 Stratiform

Fracture-controlled 30 2

13 Carbonate 10 Stratabound Cataclastic

Karst

1 7 2

14 Phosphate 41 Organic phosphorite

Minerochemical phosphorite Continental phosphate

6 31 4

15 Black shale 43 Stratiform Stockwork

24 19

Page 16: Dahlkamp 2009
Page 17: Dahlkamp 2009

IAEA-NEA Red Book (2012): « Uranium deposit : a mass of naturally occurring mineral from which uranium could be exploited at present or in the future » IAEA-UDEPO Database:

no economic connotation: geological database with geological resources 300 t U minimum no restrictions for the grade 1489 deposits listed end of 2012

« DEPOSITS »

Page 18: Dahlkamp 2009

Uranium deposits associated to intrusive rocks consist of disseminated primary uranium minerals dominantly uraninite, uranothorianite and/or uranothorite in rocks of intrusive magmatic or anatectic origin

These deposits are generally low-grade (20-500 ppm), but may contain large resources

Page 19: Dahlkamp 2009

2 sub-types: • 1.1. anatectic: pegmatites-alaskites • 1.2. plutonic: a) granite-monzonites, b) peralcaline complexes, c) carbonatites

Dahlkamp 2009

Page 20: Dahlkamp 2009

Pegmatites/alaskites (Rossing, Namibia; Bancroft, Canada)

U essentially

50 anatectic deposits in UDEPO

Only one producing deposit, Rossing : 2.289 t in 2012, 100.000 t since 1976

Page 21: Dahlkamp 2009

The Rossing mine

Page 22: Dahlkamp 2009

The Rossing deposit

Page 23: Dahlkamp 2009

3 classes of deposits are separated: 1.2.1. Granites-monzonites (porphyry copper) (7 deposits) 1.2.2. Peralcaline complexes (13 deposits) 1.2.3. Carbonatites (11 deposits)

Uranium can be recovered as a by-product of

Cu-Au-Mo, Nb-Ta-Zr, TREE, P, Th, …..

30 intrusive deposits in UDEPO are related to magmatic differentiation and are classified as “Unconventional resources »

Orsay 2011

Page 24: Dahlkamp 2009

128 deposits in UDEPO Most deposits in the Hercynian belt of Europe Production of 213.000 t U (1950-2000):

Germany: 96.000 t France: 60.000 t Czech Republic: 56.000 t

Districts in Spain-Portugal: 30-40.000 t Resources in Algeria, China Small production only in China ?

Page 25: Dahlkamp 2009

Two subtypes: 1) intragranitic and 2) perigranitic with veins-stockwork and/or disseminated mineralization in granite internal episyenite bodies that are often gradational to veins

Dahlkamp 2009

Page 26: Dahlkamp 2009
Page 27: Dahlkamp 2009

Uranium vein system of the La Crouzille District, Limousin (France)

(production of 25.000 t U, 0.20% from about 45 deposits)

Page 28: Dahlkamp 2009

Margnac-Peny deposit: 9.900 t U, 0.25 %

Page 29: Dahlkamp 2009

100m 200m0m

AMAS PROFOND SUD

AMAS PROFOND NORD

COLONNE BERNARDAN OUEST

AVAL APN TÊTE AMAS NOËL

AMAS NOËLAVAL PROFOND APN

TÊTE APN

AMAS EST

AMAS CENTRAL

AMASINTERMEDIAIRE

AMAS SUD EST

AMAS SUD OUEST

NORTHSOUTH

BARREN EPISYENITE

ORE BODIES

EXHAUSTED ORE BODIES

OPEN PIT

AMAS N27 1-2, 3, 4

AMAS P14

Episyenites: the Bernardan deposit (France)

(6.600 t, 0.56 %)

Page 30: Dahlkamp 2009

Deposits of this group occur in hematite-rich breccias and contain uranium in association with copper, gold, silver and rare earths

They are classically called Iron-Oxide-Copper-Gold systems (IOCG) and IOCGU when U-enriched

Page 31: Dahlkamp 2009

15 deposits in UDEPO 2 main provinces, Gawler Craton (Australia)

and Carajas District (Brazil) One deposit , Olympic Dam (Australia) with

the largest uranium resources in the world : 2.200.000 t U, 230 ppm

Within hematite-rich breccia complex Polymetallic : Cu, Au, Ag, U, REE 3.386 t U in 2012 as by-product of Cu-Au-Ag

Page 32: Dahlkamp 2009

Olympic Dam (Australia)

Page 33: Dahlkamp 2009

Volcanic-related uranium deposits occur mainly within or close to caldeira complexes in the form of predominantly structure-bound and minor stratabound mineralization in effusive and intrusive volcanic rocks

119 deposits in UDEPO

Page 34: Dahlkamp 2009

Three main sub-types are distinguished within volcanic deposits: 4.1. Structure-bound (97 deposits) 4.2. Stratabound (18 deposits) 4.3. Volcano-sedimentary (4 deposits)

Dahlkamp 2009

Page 35: Dahlkamp 2009

4.1. Structure-bound deposits The Streltsovska caldeira, Russia

270.000 t U in 20 deposits 147.000 t production

Page 36: Dahlkamp 2009

4.2 Stratabound volcanic deposits: the Dornot orefield (Mongolia)

Dahlkamp 2009 46.000 t U, 0.10 %, 12 orebodies

Page 37: Dahlkamp 2009

The Anderson Mine Date Creek Basin,

Arizona (USA) 6.460 t U, 0.046 %

4.3. Volcano-sedimentary

deposits

Dahlkamp 2010

Page 38: Dahlkamp 2009

Metasomatite uranium deposits are confined to areas of tectono-magmatic activity affected by intense Na-, Na- and Ca or K-metasomatism that has produced albitized and/or illitized facies along deeply rooted fault systems

Protoliths include granite, gneiss, migmatite, metasedimentary and metavolcanic rocks

Deposits are structurally controlled by intersections, bifurcations or abrupt bending of faults

Page 39: Dahlkamp 2009

Dahlkamp 2009

3 subtypes: • 5.1. Na-metasomatite (Kirovograd District, Ukraine) • 5.2. K-metasomatite (Elkon District, Russia) • 5.3. Skarn (Mary Kathleen, Australia)

Page 40: Dahlkamp 2009

75 deposits in UDEPO

1900 t U produced in 2012 from Ukraine and Brazil

Large deposits/districts developping on « old cratons »: Elkon (Russia): 342.000 t, 9 deposits Ukraine: 180.000 t , 8 deposits Brazil: Lagoa Real : 100.000 t Coles Hill (USA): 45.850 t Central Mineral Belt (Canada): 57.000 t, 10 deposits Valhalla (Australia): 29.400 t

Page 41: Dahlkamp 2009

5.1. Na-metasomatite: the Novokonstantinovskoye

deposit (Ukraine) 93.600 t, 0.139 %

(Starostenko et al. 2010)

Page 42: Dahlkamp 2009

5.2. K-metasomatite: Elkon District (Russian Federation) (342.000 t U, 0.135 %, 13 deposits)

(Boitsov and Nikolsky, 2001)

Page 43: Dahlkamp 2009

Druznoye deposit 109.000 t, 0.134 %

(Au-Ag-Mo)

Page 44: Dahlkamp 2009

Metamorphite deposits correspond to veins, stockworks and shear zones within metasedimentary-metavolcanic formations of various ages

The vein modes are similar in structural control, ore and gangue mineral association and wall rock alteration to perigranitic deposits. Major differences include absence of granitic or other magmatic complexes

106 deposits in UDEPO

Page 45: Dahlkamp 2009

3 sub-types: 6.1. Stratabound deposits (5): disseminated uranium

distributed strata-concordant in metasediments. This type of deposit is not common (Forstau, Austria)

6.2. Structure-bound deposits (92): - 6.2.1. Monometallic veins/stockworks (Schwartzwalder, USA;

Kokshetau District, Kazakhstan; Beaverlodge District, Canada; Rozna, Czech Republic)

- 6.2.2. Polymetallic veins/stockworks associated with Co, Cu, Fe, Mo, Ni, Pb, Zn (Shinkolobwe, Democratic Republic of the Congo; Kokshetau District, Kazakhstan; Lac Cinquante, Eldorado Mine, Canada)

6.3. Marble-hosted phosphate deposits (9): Itataia (Brazil) is a complex hydrothermal metasomatic Cambrian-Ordovician uraniferous collophane (apatite) deposit

Page 46: Dahlkamp 2009

(Dahlkamp 2009)

6.1. Stratabound deposits

6.2. Structure-bound deposits

Page 47: Dahlkamp 2009

6.2. Structure-bound: The Kosachinoye deposit (Kazakhstan) (95.700 t, 0.106 %)

(Dahlkamp, 2009)

Page 48: Dahlkamp 2009

6.3. Marble-hosted phosphate: Itataia-Santa Quiteria District (Brazil)

(122.000 t U, 0.08%)

(Dahlkamp, 2009)

Page 49: Dahlkamp 2009

Uranium deposits associated to a proterozoic unconformity comprise massive pods, veins and/or disseminations of uraninite spatially associated with major unconformities that separate Archaean-metamorphic basement from overlying Paleoproterozoic-Mesoproterozoic siliciclastic basins

Page 50: Dahlkamp 2009

World-class deposits 2012 production : 12.145 t U 21 % of world production (58.344 t U) from 3

deposits : McArthur River (Canada) : 7520 t Ranger 3 (Australia) : 3146 t Eagle Point (Canada) : 1479 t

2011 Identified Resources : 631.000 t U , 12% of the world resources

84 deposits in UDEPO

Page 51: Dahlkamp 2009

3 sub-types are recognized: 42 basement-hosted : 20 in Australia, 22 in Canada 36 unconformity-contact: 35 in Canada, 1 in Russia 5 stratiform fractured-controlled in India

Page 52: Dahlkamp 2009

Ranger 3 (Australia) 215.000 t 0.084 % McArthur River (Canada): 200.800 t 19.5 % Cigar Lake (Canada): 135.000 t 16.59 % Jabiluka 2 (Australia): 120.500 t 0.41 % Key Lake (Canada): 73.000 t 2.0 % Eagle Point (Canada): 51.000 t 1.51 % Ranger 1 (Australia): 48.500 t 0.35 % Kintyre (Australia) 30.500 t 0.127 % Ranger Deeps (Australia): 29.000 t 0.29 % Phoenix (Canada) 23.300 t 15.00 % Andrew Lake (Canada) 22.750 t 0.38 % Millenium (Canada): 21.800 t 3.19 %

Page 53: Dahlkamp 2009

Paleoproterozoic basins of western

Canada

Athabasca Basin 720.000 t U, 52 deposits

Thelon Basin 52.000 t U, 6 deposits

Page 54: Dahlkamp 2009

P-Patch

Eagle Point

Cigar Lake

Key Lake

Page 55: Dahlkamp 2009

Shea Creek District, Kianna deposit

(15.340 t U,

1.20%)

Page 56: Dahlkamp 2009

McArthur River massive mineralization 30.47% U/30.50 m (55.49% U/14 m)

56.7 85.9

84.2 78.2

72.8

73.9 74.9 51.4 62.5

32.4 67.7 33.5

63.2 63.3 56.8

52.4 54.5 58.4 29.2 43.3

75.9 74.0 80.9

77.8 75.6

84.7

82.4

85.5

Page 57: Dahlkamp 2009
Page 58: Dahlkamp 2009

Jabiluka unconformity

Page 59: Dahlkamp 2009
Page 60: Dahlkamp 2009

7.3 - Stratiform fracture-controlled deposits of India

Page 61: Dahlkamp 2009

Lambapur deposit

(1.370 t, 0.094%)

Peddagattu deposit (4-5.000 t, 0.04%)

Page 62: Dahlkamp 2009

Collapse breccia pipes form by solution and collapse of caverns in a karst environment

Only present in the USA Several hundred pipes, a few of them

mineralized Small, but rich (100-2500 t, 0.4-1 %) Polymetallic: Cu, Ag, Ni, Co, Pb, Zn, As, Mo,

…. One producing mine, Arizona 1 16 deposits in UDEPO

Page 63: Dahlkamp 2009

(Weinrich and Titley, 2008)

Page 64: Dahlkamp 2009

31.246 t U in 2012: 54 % of world production from 30 deposits

Main producers: Kazakhstan, Uzbekistan, Niger, USA, Malawi, …

ISL mining: 45 % world production 615 deposits in UDEPO Proterozoic to recent in age

Page 65: Dahlkamp 2009

IMOURAREN (Niger) 213.700 t 0.07 % MYNKUDUK (Kazakhstan) 203.400 t 0.04 % INKAI (Kazakhstan) 188.500 t 0.045 % MOYUNKUM (Kazakhstan) 66.100 t 0.058 % AMBROSIA LAKE (USA) 64.970 t 0.14 % KORSAN (Kazakhstan) 61.000 t 0.05 % KARASAN (Kazakhstan) 59.300 t 0.10 % NYOTA (Tanzania) 55.100 t 0.025 % RIET KUIL (South Africa) 55.000 t 0.04 % AKOUTA (Niger) 53.500 t 0.35 % UCHKUDUK (Uzbekistan) 49.300 t 0.129 % SUGRALY (Uzbekistan) 43.000 t 0.17 % KARAMURUN (Kazakhstan) 31.600 t 0.070 % EBALA (Niger) 30.000 t 0.22 %

Page 66: Dahlkamp 2009

Sandstone deposits are divided into 5 sub-types: • 9.1. Basal channel (77 deposits): Dalmatovskoye

(Russia) and Beverley (South Australia) • 9.2. Tabular (285 deposits): Akouta, Imouraren and

Arlit (Niger), • 9.3. Roll front (227 deposits): Moinkum, Inkai and

Mynkuduk (Kazakhstan), Smith Ranch (USA) • 9.4. Tectonic-lithologic (18 deposits) : Mikouloungou

(Gabon) • 9.5. Mafic dikes/sills in Proterozoic sandstones (8 deposits) : Matoush (Canada), Wesmoreland

District (Australia)

Page 67: Dahlkamp 2009

(Dahlkamp, 2009)

Page 68: Dahlkamp 2009

77 deposits in UDEPO 500 -30.000 t, 0.02 to 0.20 % largest districts: Trans Ural and Vitim

districts (Russia) > 100.000 t U 3 producing deposits, Beverley

(Australia) 459 t, Dalur 529 t and Khiagda 332 t (Russia)

Page 69: Dahlkamp 2009

The Vitim District (Russia)

8 deposits 52.000 t U

The Khiagda deposit

(15.000 t U, 0.055%) 332 t production 2012

Page 70: Dahlkamp 2009

227 deposits in UDEPO Largest districts :

Kazakhstan: Chu Saryssu and Syr Daria Basins (765.000 t , 0.04-0.10 %, 120.000 t production)

Uzbekistan: Kyzylkum District (250.000 t, 0.05-0.15 %, 130.000 t production)

USA: Wyoming basins (255.000 t, 0.05-0.10 %, 80.000 t production), Texas (120.000 t, 30.000 t production)

China: Yili Basin (20.000 t) ISL production mainly

Page 71: Dahlkamp 2009

Wyoming roll-fronts

Page 72: Dahlkamp 2009

120 140130

160

130

140

150

110

120

Permis d'explorationde TORTKUDUKLicence n° 1337

MOUYUNKUMCENTRE

Permis d'exploitation deMOUYUNKUM SUD Licence n° 886

KANJOUGAN 0 42 6 8 10Km

ZONEARTESIENNE

LIMITE

DELA

FAILLEDE SOUZAK

IKANSK

KANJOUGAN SUP.

UYUK

KANJOUGAN INF.

3 i Gisement Ikansk n° 32 u Gisement Uyukk n° 27 k Gisement Kanjougan n° 7

11u

13u

18u

17u

19u16u

10u

10u

10u

1u

2u2i

14k

20k

7k4i

3i

19k

6i

17k

7i

1i12i

22k

15k

18k21k 9i

11i

8i

INFOGRAPHIE VEL - 115/TR/001/F - 2/04/1998

12k

The Moynkum project

(Kazakhstan)

66.000 t U, 0.060 %

Page 73: Dahlkamp 2009

Roll morphologies

Page 74: Dahlkamp 2009

285 deposits in UDEPO

Main districts: Colorado Plateau (USA) with 35 mining districts:

745.000 t, production of 131.000 t U Tim Mersoi Basin with Akouta-Arlit-Imouraren (Niger):

530.000 t, 120.000 t production East Africa Karoo Formation: 245.000 t, production of

2.700 t at Kayelekera (Malawi)

Open pit and underground mining

Page 75: Dahlkamp 2009

Akouta-Arlit district (Niger)

610.000 t ressources Production: 120.000 t

4.667 t in 2012

Page 76: Dahlkamp 2009

Arlit (Niger)

Akouta

Page 77: Dahlkamp 2009

Tectonic-lithologic sandstone deposits are discordant to the surrounding strata

18 deposits in UDEPO

Thick, steeply dipping ore bodies referred to as “stack” deposits in the USA can result from redistribution of primary tabular to roll-type uranium into fault zones or permeable sedimentary units

Page 78: Dahlkamp 2009

The Permian Lodève Basin (France)

(18.000 t U, 0.22 %)

Page 79: Dahlkamp 2009

These deposits correspond to U-(Au) mineralization associated to mafic dikes/sills located in Proterozoic sandstone basins

8 deposits in UDEPO, 40.000 t resources

2 districts: the Wesmoreland District, McArthur Basin (Australia) and the Otish Basin, Quebec (Canada)

Page 80: Dahlkamp 2009

9.5. Mafic dikes in Proterozoic sandstones (Westmoreland District, Australia)

Page 81: Dahlkamp 2009

The Matoush deposit (Quebec)

10.400 t, 0.47 %

Page 82: Dahlkamp 2009

Quartz-pebble conglomerate uranium deposits are defined as stratiform and stratabound deposits of uraninite and brannerite hosted in pyrite-rich quartz-pebble conglomerates

They are restricted to early Proterozoic intracratonic basins (older than 2.3-2.4 Ga) developed on Archean basement assemblages

Page 83: Dahlkamp 2009

62 deposits in UDEPO Placers deposits Two large districts:

Witwatersrand Basin (South Africa): 730.000 t U resources, 170.000 t produced as Au by-product, 465 t U in 2012

Elliot Lake District (Canada): 430.000 t ressources, 140.000 t produced (± REE-Th)

Page 84: Dahlkamp 2009

Two subtypes of quartz-pebble conglomerate uranium deposits :

• 10.1. Au dominant ±(U-REE) (Witwatersrand Basin, South Africa) (40 deposits) • 10.2. U dominant ± (REE-Th) (Blind River-Elliot Lake area, Canada) (22 deposits)

Dahlkamp 2009)

Page 85: Dahlkamp 2009

Denison Mine (Canada) (Resources: 180.000 t, production: 55.300 t)

Page 86: Dahlkamp 2009

Surficial uranium deposits are broadly defined as young (Tertiary to Recent) near-surface uranium concentrations in sediments or soils

These deposits usually have secondary cementing minerals including in approximate order of importance, calcite, gypsum, dolomite, ferric oxide, strontianite and halite

Page 87: Dahlkamp 2009

62 deposits in UDEPO Medium to large resources (2.000 to

70.000 t), low grade (100-400 ppm) One producing deposit, Langer Heinrich

(Namibia) : 1.955 t in 2012, resources : 66.600 t, 470 ppm

2 major provinces, Namib Desert (Namibia) and Western Australia with several advanced projects

Page 88: Dahlkamp 2009

4 subtypes:

11.1. Peat-bog (Flodelle Creek, USA; Kamushanovskoye, Kyrgyzstan) (2 deposits) 11.2. Fluvial valley (Langer Heinrich, Namibia; Yeelirrie, Australia) (37 deposits) 11.3. Lacustrine-playa (Lake Maitland , Australia; Manyoni District, Tanzania) (20 deposits) 11.4. Pedogenic and structure fill (Beslet-Senokos, Bulgaria) (3 deposits)

Page 89: Dahlkamp 2009

11. SURFICIAL deposits subtypes

(Dahlkamp, 2009)

Page 90: Dahlkamp 2009

11.1 Peat-bog Kamushanovskoye deposit

(Kyrgyzstan) Pangea Energy Ltd

1.775 t U, 0.037 %

Page 91: Dahlkamp 2009

Kamushanovskoye deposit

Page 92: Dahlkamp 2009

Surficial deposits of Namibia

15 deposits 500-70.000 t

Resources: 214.000 t

Grade: 0.01 to 0.050%

Page 93: Dahlkamp 2009

11.2. Fluvial valley: Langer Heinrich

deposit 67.000 t U, 0.051 %

1925 t production in 2012

Page 94: Dahlkamp 2009

11.3. Lacustrine-playa: Lake Way

4.470 t, 0.045 % Centipede

5.540 t, 0.042 %

Page 95: Dahlkamp 2009

• 12.1. Stratiform: stratiform syngenetic uniformly disseminated U. Very low (20-150 ppm) to medium (0.05-0.10%) grade mineralization (North Dakota, USA; Nizhne Iliskoye, Kazhakstan)

• 12.2. Mixed stratiform/fracture-controlled spotty and irregularly distributed epigenetic mineralization with strong tenor variations (0.02-0.25%) (Freital type, Germany)

(Dahlkamp 2009)

Page 96: Dahlkamp 2009

13.1. Stratabound: only one deposit of this kind is known around the world, Tumalappalle in India. The deposit is hosted in phosphatic dolostone

13.2. Cataclastic: mineralization is structure-bound in organic-rich (bituminous/petroliferous) calcareous sediments (Mailuu-Suu, Kyrgyzstan; Todilto District, USA)

13.3. Paleokarst: deposits are developed in solution collapse breccias occurring in limestone (Bentou/Sanbaqi, China)

Page 97: Dahlkamp 2009

13.1. Stratabound: the Tummalapalle

deposit (India)

- K-U-Th-rich granite as basement

(30-60 ppm U)

- Mineralized dolostone: Vempalle Formation for 160 km

Page 98: Dahlkamp 2009

72.000 t, 0.040 % U

13.1. Stratabound carbonate deposit

Page 99: Dahlkamp 2009

Production of 2.830 t U from 42 mines

Page 100: Dahlkamp 2009

3 sub-types are recognized:

• 14.1. Microchemical phosphorites • Bedded phosphorites: North Africa (8-15 Mt U, 100-150 ppm), Phosphoria Formation, USA (7 Mt U, 50-100 ppm) • Land pebble phosphorites (Florida): 800.000 t, 90-100 ppm

• 14.2. Organic phosphorites (Caspian Sea): 145.000 t, 0.05-0.10%

• 14.3. Continental phosphate (Bakouma): 50.000 t, 0.15-0.30%

Page 101: Dahlkamp 2009

14.2. Organic phosphorite deposits of the Karagiin

orefield (Kazakhstan)

Melovoye deposit 60.000 t, 0.03-0.06%

U, Sc, REE Pyrite, phosphate

as co-products

(Dahlkamp 2009)

Page 102: Dahlkamp 2009

14.3. Continental phosphate:

the Bakouma deposits (Central African Republic) 38.000 t U, 0.15 %

Page 103: Dahlkamp 2009

Hundreds of black shales formations and deposits are recorded around the world from Proterozoic to Cenozoic times

43 black shales deposits/districts are listed in the UDEPO Database

2 sub-types are recognized: 15.1. stratiform black shales deposits 15.2. stockwork black shales deposits

Page 104: Dahlkamp 2009

1. Intrusive anatectic and plutonic 2. Granite-related 3. Polymetallic hematite breccia complex 4. Volcanic-related 5. Metasomatite 6. Metamorphite 7. Proterozoic unconformity 8. Collapse breccia pipe 9. Sandstone 10. Paleo-quartz pebble conglomerate 11. Surficial 12. Coal-lignite 13. Carbonate 14. Phosphate 15. Black shales

Page 105: Dahlkamp 2009

A new technical document on

« Geological classification of uranium deposits and description

of selected examples »

will be published by the Agency in 2014

Page 106: Dahlkamp 2009