29
Cytoskeleton Mark Wiser

Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Embed Size (px)

Citation preview

Page 1: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Cytoskeleton

Mark Wiser

Page 2: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Mitochondria

PlasmaMembrane

NucleusLysosome

ER

Golgi

Page 3: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
Page 4: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Three Major Filamentous Systems of the Cytoskeleton

Cytoskeletal Element

Description (diameter)

Protein Composition

microfilamentsthin filaments (6-7 nm)

actin + associated proteins

microtubulestubular structures (25 nm)

tubulin + associated proteins

intermediate filaments

rope-like fibers (~10 nm)

IF proteins

Page 5: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Actin and Microfilaments• highly conserved globular protein (G-actin)• polymerizes into thin filaments (F-actin)

• exhibits polarity (+ and – ends)• (barbed and pointed ends)

• filaments stabilized by other proteins

Page 6: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Actin Polymerization• requires nucleation (activation)• elongation primarily at “+” end (= barbed end)• ATP/ADP

• G-actin has bound ATP• ADP-actin more likely to dissociate

• actin-binding proteins• monomer sequestration (eg., profilin)• capping proteins (eg., gelsolin)

• cellular regulation• rho family (ras-like G-proteins)• trimeric G-protiens

• drugs• cytochalasins (prevent assembly)• phalloidin (prevent disassembly)

Page 7: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
Page 8: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Examples of Actin-Binding Proteins

Page 9: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Membrane Interactions

• submembrane cytoskeleton (eg., RBC)• focal adhesions (ECM interactions)• adherens junctions (cell-cell interactions)

Page 10: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Focal Adhesions

Page 11: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Myosin and Force Generation

• large family of proteins (16)• actin-activated ATPase• converts chemical energy

into mechanical energy

Page 12: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Ameboid Movement

• reorganization of cytoskeleton in pseudopodia

• force for protrusion?• force for traction?

Page 13: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
Page 14: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
Page 15: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

MicrotubulesMajor Roles:

1. Mechanical/Cell Shape2. Mitotic Spindle3. Cilia/Flagella

Tubulin:

• highly conserved• heterodimer (, )• in vivo assembly

from MTOC

Page 16: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Microtubule Organizing Centers• centrioles

• aka basal bodies of flagella• barrel-shaped (triplets of T)

• centrosomes• amorphous matrix ( centrioles)• organizes cytoplasmic T array• forms spindle during cell division

• spindle pole bodies• located on nuclear membrane• forms mitotic spindle in many

lower eukaryotes

Page 17: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
Page 18: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
Page 19: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi
Page 20: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

microtubules + microribbons

lateral crest containing actin and myosin

Page 21: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Flagellar Movement

Page 22: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Motor Proteins

F associated

• myosin

associated

• dynein– cilia/flagella– cytoplasmic

• kinesin

Page 23: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Kinesins• large superfamily of proteins

– defined by 'motor' domain• tail regions highly divergent (function)• chemomechanical cycle

– similarities to myosin– two motors needed

Page 24: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Kinesins and Mitosis• reorganization ofT during mitosis

– disassembly of cytoplasmic T– assembly of spindle apparatus

• duplication of centrosome to form spindle apparatus

• at least 4 kinesins implicated– separation of poles– migration of chromosomes

Page 25: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

possible kinesin roles:

• stabilize metaphase plane• sliding T to drive poles apart• pull asters toward membrane• kinetochore: chromosome

movement

Page 26: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Intermediate Filaments• rope-like fibers extending

from nucleus periphery• extremely stable

– resistant to detergent extraction

• only in metazoa• subunits are part of large

multigene family– related to nuclear lamins– tissue specific expression

Page 27: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

Intermediate Filament ProteinsType Examples Cell Type Size (kDa)

I acidic keratins epithelial 40-60

II basic-neutral keratins

epithelial 50-70

III vimentin mesenchymal 53

desmin muscle 52

GFAP glial cells 51

IV neurofilament neurons 57-150

V lamins (A, B, C) nuclear lamina 60-70

heptad repeatshead tail

Page 28: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

IF Proposed Structure

Page 29: Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi

IF Function• mechanical support

• abundant in cells and structures under mechanical stress (eg, epithelia, hair, nails, muscle, etc)

• genetic defects linked to keratin: epidemolysis Bullosa simplex, epidermolytic hyperkeratosis

• links to membranes and other cytoskeletal elements

• specialized function in differentiated cells• tissue specific expression• markers for tumor diagnosis