29
1 CURSO Concreto Armado I Características de los Materiales Componentes del Concreto Armado Ing. Omart Tello Malpartida Introducción CONCRETO El concreto es un material pétreo, artificial, obtenido de la mezcla, en proporciones determinadas, de cemento, agregados y agua. El cemento y el agua forman una pasta que rodea a los agregados, constituyendo un material heterogéneo. Algunas veces se añaden ciertas sustancias llamadas aditivos que mejoran o modifican algunas propiedades del concreto. Concreto Armado I Ing. Omart Tello Malpartida

Cualidades Del Acero

Embed Size (px)

Citation preview

Page 1: Cualidades Del Acero

1

CURSO

Concreto Armado I

Características de los Materiales Componentes del Concreto Armado

Ing. Omart Tello Malpartida

Introducción

CONCRETOEl concreto es un material pétreo, artificial, obtenido de la mezcla, en proporciones determinadas, de cemento, agregados y agua.

El cemento y el agua forman una pasta que rodea a los agregados, constituyendo un material heterogéneo.

Algunas veces se añaden ciertas sustancias llamadas aditivos que mejoran o modifican algunas propiedades del concreto.

Concreto Armado I Ing. Omart Tello Malpartida

Page 2: Cualidades Del Acero

2

Introducción

Se presenta una dosificación típica para un concreto f’c= 250 kg/cm2 y un asentamiento (slump) entre 5” y 6”.

La intención es dar una idea de la cantidad de cada uno de los elementos presentes en una mezcla de concreto.

Es interesante anotar que el contenido de pasta de cemento, constituido por la suma del cemento, el agua y el aire atrapado, constituye cerca del 30 % del volumen.

Concreto Armado I Ing. Omart Tello Malpartida

Introducción

El concreto simple, sin refuerzo, es resistente a la compresión, pero es débil a la tensión, de echo en los cálculos se suele despreciar la resistencia a la tracción.

Para resistir tensiones, se emplea refuerzo de acero, en forma de barras, colocadas en zonas donde se prevé que desarrollaran tensiones bajo solicitaciones de servicio.

La combinación de concreto simple con refuerzo constituye lo que se llama Concreto Reforzado

Concreto Armado I Ing. Omart Tello Malpartida

Page 3: Cualidades Del Acero

3

CONCRETO

Resistencia a la Compresión ( f’c)

El valor de f’c, se utiliza generalmente como indicador de la calidad del concreto. Es claro que pueden existir otros indicadores mas importantes dependiendo de las solicitaciones y de la función del elemento estructural o estructura.

Por ejemplo en el diseño de pavimentos la resistencia a la tracción por flexión es un indicador importante. Otro indicador importante puede ser la durabilidad.

Las Normas o Códigos relacionan las características mecánicas del concreto ( modulo de elasticidad, resistencia a la tracción, resistencia al corte, adherencia, etc.) con el valor de f’c.

Concreto Armado I Ing. Omart Tello Malpartida

Page 4: Cualidades Del Acero

4

La resistencia a la compresión del concreto se obtiene a partir de ensayos de laboratorio en probetas estándar (12” de altura por 6” de diámetro ) cargados axialmente.

La confección de las probetas y el ensayo están reguladas por las normas ASTM

acortamiento.

Resistencia a la Compresión ( f’c)

Concreto Armado I Ing. Omart Tello Malpartida

Principales Factores que Afectan la Resistencia ( f’c)

Page 5: Cualidades Del Acero

5

Relación agua cemento (w/c)

Concreto Armado I Ing. Omart Tello Malpartida

Efecto de w/c en concretos con y sin aire incorporado

Concreto Armado I Ing. Omart Tello Malpartida

Page 6: Cualidades Del Acero

6

El aire incorporado

Concreto Armado I Ing. Omart Tello Malpartida

Condiciones de curado y edad del concreto

Concreto Armado I Ing. Omart Tello Malpartida

Page 7: Cualidades Del Acero

7

Velocidad de la carga

Concreto Armado I Ing. Omart Tello Malpartida

Carga Rápida.- Las probetas se cargan longitudinalmente en una tasa lenta de deformación para alcanzar la deformación máxima en 2 o 3 minutos a una velocidad de carga de 2.5 kg/cm2/seg

La curva que se presenta corresponde a un ensayo de corta duración del orden de unos cuantos minutos.

Carga Rápida

fc’= Máxima resistencia cilíndrica a la compresión

Concreto Armado I Ing. Omart Tello Malpartida

Page 8: Cualidades Del Acero

8

Carga Lenta.- se muestra resultados de ensayos de cilindros realizados a distintas velocidades de carga.

Se puede observar que la resistencia de un cilindro en el que la carga máxima se alcanza en centésimas de segundo es aproximadamente el 50% mayor que la de uno que alcanzo su carga máxima en 66 segundos.

Por otra parte para un cilindro en que la carga máxima se alcanza en 69 minutos, la resistencia disminuye en un 10%.

Carga Lenta

Concreto Armado I Ing. Omart Tello Malpartida

Efecto de la velocidad de deformación

No afecta sustancialmente en la resistencia.La influencia fuerte se presenta en la forma de las curvas.La diferencia de las formas de las curvas para velocidades lentas se debe al efecto del creep o flujo plástico.

Concreto Armado I Ing. Omart Tello Malpartida

Page 9: Cualidades Del Acero

9

Curvas típicas del concreto simple en compresión

El concreto simple (sin armadura de refuerzo) es un material frágil de baja capacidad de deformación que no tiene punto de fluencia ni rango de deformación plástica ni endurecimiento por deformación como el acero.

A mayor resistencia (f’c) tiene menor capacidad de deformación. La deformación máxima que puede alcanzar el concreto comprimido (εcu) disminuye al aumentar f’c.

La deformación εo correspondiente al valor de f’c, varia entre 0.0015 y 0.0030.Al aumentar f’c aumenta εo

La curva es aproximadamente lineal hasta 0.4, 0.5 de f’c.

Concreto Armado I Ing. Omart Tello Malpartida

ResumenSe puede observar que el concreto no es un material elástico, sin embargo se puede considera una zona recta hasta aproximadamente el 50% de la carga máxima (fc’/2 > fc)

En los ensayos de cilindros de concreto simple, la carga máxima se alcanza a una deformación unitaria del orden de 0.002.

El colapso de la probeta que corresponde al extremo de la rama descendente se presenta en ensayos de corta duración a deformaciones que varían entre 0.003 y 0.007, según las condiciones del espécimen y de la maquina de ensayo.

Curvas típicas del concreto simple en compresión

Concreto Armado I Ing. Omart Tello Malpartida

Page 10: Cualidades Del Acero

10

Se han propuesto numerosas ecuaciones o modelos para describir analíticamente la curva esfuerzo-deformación del concreto en compresión

El problema es complejo ya que intervienen numerosas variables entre ellas la presencia del confinamiento

Sin embargo cuando es necesario calcular (investigar) con mayor precisión la resistencia y ductilidad de un elemento, es necesario utilizar algún modelo de comportamiento.

Modelos para el concreto

Modelo Hognestad ( 1951) concreto no confinado

En este modelo se suele adoptar un valor de εo = 0.002 y un valor de εcu comprendido entre 0.003 y 0.004

Concreto Armado I Ing. Omart Tello Malpartida

Concretos de Alta Resistencia

Se definen asi a partir de un f’c superior a 420 kg/cm2( 6000psi). En Estados Unidos se han usado concretos con f’c de hasta 1300 kg/cm2 en la construcción de algunos edificios altos.

Se logran con el uso de relaciones w/c muy bajas, con la ayuda de superplastificantes, micro sílice y el empleo de agregados resistentes, angulosos y de superficie rugosa. El concreto resultante tiene un volumen de vacíos menor que los concretos convencionales.

La falla suele ocurrir por la fractura de los agregados, con deformaciones laterales bastante menores que las asociadas a concretos convencionales, esto conlleva a a concluir que el refuerzo transversal de confinamiento sea menos efectivo en incrementar la resistencia y la deformación de rotura del concreto.

La expresión para el calculo de Ec, ya no es valida para estimar el modulo de elasticidad del concreto. Esta es valida para concretos de hasta f’c = 420 kg/cm2.

Ing. Omart Tello Malpartida

Page 11: Cualidades Del Acero

11

Concretos Livianos

Los concretos livianos se definen para pesos específicos entre los 1,400 y 1,900 kg/m3.

para su fabricación se utilizan agregados livianos, en algunos casos artificiales. Se utiliza arena de peso normal o arena liviana.

El modulo de elasticidad ( Ec ) y la resistencia a la tracción (ft) es inferior a los correspondientes para los concretos de peso normal

Son mas costosos que los de peso normal, por los agregados que utiliza en su fabricación. En nuestro medio se utiliza muy poco por la poca o nula disponibilidad de agregados livianos.

Concreto Armado I Ing. Omart Tello Malpartida

Compresión Triaxial (esfuerzos combinados)En muchas estructuras el concreto esta sujeto a esfuerzos directos y cortantes que actúan en varias direcciones. Considerando el equilibrio de las fuerzas que actúan en un elemento de concreto, se demuestra que se puede deducir cualquier combinación de esfuerzos combinados a tres esfuerzos normales que actúan en tres planos perpendiculares.

Efecto del confinamiento ( Estados Triaxiales)

Concreto Armado I Ing. Omart Tello Malpartida

Page 12: Cualidades Del Acero

12

Esfuerzo de compresión en elementos con estribos

Concreto Armado I Ing. Omart Tello Malpartida

Ensayos en el Estado Triaxial

Los ensayos efectuados en probetas de concreto bajo comprensión triaxial muestran que la resistencia y deformación unitaria correspondiente crecen al aumentar la presión lateral de confinamiento.

En estos ensayos, el estado triaxial de esfuerzos se crea rodeando el espécimen de aceite a cierta presión y aplicando una carga axial hasta la falla mediante dispositivos como el ilustrado en la Fig.(a).

fc’= Máxima resistencia cilíndrica a la compresión

f1= Resistencia a la compresión axial del espécimen

f2= Presión de confinamiento lateral

Concreto Armado I Ing. Omart Tello Malpartida

Page 13: Cualidades Del Acero

13

En la Fig.(b) se presentan curvas esfuerzo- deformación obtenidas de ensayos, correspondientes a distintas presiones de confinamiento lateral (f2).

El efecto de la presión lateral sobre la resistencia se ilustra en la Fig.( c).

f1 = f´c +4.1 f2

Esfuerzos de Compresión (Estado Triaxial)

Si : f2 = f´c/4

f1 = 2 f´c

Concreto Armado I Ing. Omart Tello Malpartida

Resistencia a la tracción ( ft)

Tracción Pura (ft)Es difícil encontrar una manera sencilla y reproducible de determinar la resistencia a tracción.

Siendo el concreto bajo esta condición un material frágil, es necesario que la sección transversal del espécimen variégradualmente. Para evitar fallas prematuras debidas a concentraciones de esfuerzos.

ft ≈ 10 % f’c

Concreto Armado I Ing. Omart Tello Malpartida

Page 14: Cualidades Del Acero

14

Prueba Brasileña

Prueba BrasileñaSe utilizado la prueba brasileña, que en esencia consiste en someter una probeta de concreto a compresión lineal diametral como se muestra en la figura:

Concreto Armado I Ing. Omart Tello Malpartida

Prueba Brasileña

ftb = ( 1.59 a 1.86 ) √ f’c ≈ 1.7 √ f’c

fr > ftb > ft

ft ≈ (0.5 a 0.9 ) ftb ≈ 10 % f’c

Concreto Armado I Ing. Omart Tello Malpartida

Page 15: Cualidades Del Acero

15

Esfuerzos de Tracción flexión ( fr)Para algunas aplicaciones, tales como pavimentos de concreto, esnecesario conocer aproximadamente la resistencia a la tracción por flexión del concreto simple.

Esta se determina frecuentemente ensayando prismas de concreto simplemente apoyado, sujeto a dos cargas concentradas. La falla es brusca, con una grieta única que fractura el espécimen.

El esfuerzo teórico de tracción por flexión, en la fibra inferior se calcula mediante la expresión:

fr = M.c/ I (kg/cm2)

El valor usual aproximado encontrado para el modulo de rotura es:

fr = 2 √ fc’ (kg/cm2)

Modulo de Rotura ( fr )

Concreto Armado I Ing. Omart Tello Malpartida

Dispositivo del Ensayo

Concreto Armado I Ing. Omart Tello Malpartida

Page 16: Cualidades Del Acero

16

Modelo del Ensayo

fct = M.C/ I

M = P.L/ 6

C = h/ 2

I = h4/ 12

fct = (P.L/ 6)(h/2)h4/ 12

fct = P.L ≈ frh3

Concreto Armado I Ing. Omart Tello Malpartida

Accesorios para Ensayo a Flexión

Concreto Armado I Ing. Omart Tello Malpartida

Page 17: Cualidades Del Acero

17

Ensayo de Tracción por Flexión

Concreto Armado I Ing. Omart Tello Malpartida

MODULO DE ELASTICIDAD DEL CONCRETO ( Ec )

Él modulo de elasticidad es función principalmente de la resistencia del concreto y de su peso volumétrico.

El Reglamento ACI a propuesto la siguiente expresión para estimar él modulo de elasticidad:

Ec = 0.14 w1.5 √ fc’

Para : w = 2300 kg/cm2fc’ = (175, 210, 280, 350,420) kg/cm2

El ACI y la NTE-060 permite estimar Ec mediante :

Ec = 15000 √ fc’ kg/cm2

Modulo de Elasticidad del Concreto (Ec)

Concreto Armado I Ing. Omart Tello Malpartida

Page 18: Cualidades Del Acero

18

EL COEFICIENTE DE POISSON (u)

u = 0.11 a 0.21

u ≈ 0.15

MODULO DE CORTE ( Gc )

Gc = Ec / 2 ( 1+u)

Gc = Ec/2.3 ( kg/cm2)

Modulo de Corte del Concreto (Gc)

Concreto Armado I Ing. Omart Tello Malpartida

Cuando se aplica una carga a un espécimen de concreto, este adquiere una deformación inicial. Si la carga permanece aplicada, la deformación aumenta con el tiempo, aun cuando no se incrementa la carga.

Las deformaciones que ocurren con el tiempo en el concreto se deben a dos causas:

a.- Contracción de fragua b.- Flujo plástico “Creep”

EFECTO DEL TIEMPO EN EL CONCRETO ENDURECIDO

Concreto Armado I Ing. Omart Tello Malpartida

Page 19: Cualidades Del Acero

19

Contracción de fraguaSe debe esencialmente a la perdida de humedad durante el endurecimiento y el secado del concreto. La contracción tiende a producir esfuerzos debido a la restricción al libre desplazamiento del elemento. Se puede estimar que las deformaciones unitarias debidas a contracción varían entre 0.0002 y 0.0010.

Condiciones para reducir la contracción por fragua:Reducir el contenido de agua en la mezclaDebe curarse el concreto durante 15 a 20 días a partir de su endurecimientoLos agregados gruesos restringen la contracciónLas mezclas ricas en cemento se contraen masEl refuerzo bien dispuesto restringe la contracción

EFECTO DEL TIEMPO EN EL CONCRETO ENDURECIDO

Concreto Armado I Ing. Omart Tello Malpartida

Flujo plástico “Creep”Es un fenómeno relacionado con la aplicación de la carga; se trata esencialmente de un fenómeno de deformación bajo carga continua, debido a un reacomodo interno de partículas que ocurren al mismo tiempo que la hidratación del cemento.

EFECTO DEL TIEMPO EN EL CONCRETO ENDURECIDO

Concreto Armado I Ing. Omart Tello Malpartida

Page 20: Cualidades Del Acero

20

ACERO DE REFUERZO

El acero es una aleación de diversos elementos entre ellos el carbono, manganeso, silicio, cromo, níquel y vanadio. El carbono es él más importante de todos y el que determina sus propiedades mecánicas.

El acero de refuerzo para el concreto se presenta en tres formas: varillas, alambres y mallas de alambre electro soldadas, las cuales se fabrican de acuerdo con las normas ASTM.

Los valores más importantes que determinan la característica de un refuerzo son su punto de fluencia y su modulo de elasticidad.

El modulo de elasticidad es prácticamente el mismo para todos los aceros de refuerzo.

Es = 2’000,000 (kg/cm2)

ACERO DE REFUERZO

Concreto Armado I Ing. Omart Tello Malpartida

Page 21: Cualidades Del Acero

21

Características de las varillas corrugadas

Concreto Armado I Ing. Omart Tello Malpartida

El acero de refuerzo en concreto armado son varillas de sección redonda, las cuales tienen corrugaciones cuyo fin es restringir el movimiento relativo longitudinal de las varillas respecto al concreto que las rodea. Existen tres calidades distintas de acero corrugado, grado 40, grado 60 y grado 75, en nuestro país solo se utiliza el grado 60.

Características de las varillas corrugadas

Concreto Armado I Ing. Omart Tello Malpartida

Page 22: Cualidades Del Acero

22

Identificación de barras de refuerzo

IdentificaciónLas barras llevan en alto relieve la siguiente identificación

Concreto Armado I Ing. Omart Tello Malpartida

Calidades del Acero de Refuerzo

Los aceros de refuerzo que se producen en el Perú ( SiderPerú, Aceros Arequipa) deben cumplir con las siguientes Normas:

Norma A615

Norma A706

Concreto Armado I Ing. Omart Tello Malpartida

Page 23: Cualidades Del Acero

23

Calidades del Acero de Refuerzo

Concreto Armado I Ing. Omart Tello Malpartida

Propiedades Mecánicas de las Barras de Refuerzo

Concreto Armado I Ing. Omart Tello Malpartida

Page 24: Cualidades Del Acero

24

Propiedades Mecánicas de las Barras de Refuerzo

Concreto Armado I Ing. Omart Tello Malpartida

Concreto Armado I Ing. Omart Tello Malpartida

Page 25: Cualidades Del Acero

25

Propiedades de las Barras Grado 60

Características Mecánicas - ASTM A615:

fy min = 4,200 kg/cm2 (fluencia nominal, valor mínimo).

fu min = 6,300 kg/cm2 (esfuerzo máximo o último o resistencia a la tracción).

Es ≈ 2'000,000 kg/cm2 (módulo de elasticidad).

Deformación en el inicio de la fluencia εy = (fy / Es). ≈ 0.0021

Longitud de la plataforma de fluencia = variable.

Deformación de rotura > Deformación de fluencia (30 a 40 veces).

Elongación a la rotura entre el 7% y 9%

Coeficiente de dilatación ≈ 11x10-6 1/C°. Valor muy parecido al del concreto el cual es ≈ 10x10-6 1/C°. Ambos coeficientes de dilatación dependen de la temperatura

Concreto Armado I Ing. Omart Tello Malpartida

Soldabilidad

ACERO ASTM A615El acero ASTM A615. por su composición química (carbono equivalente mayor a 0.5 %) no es soldable en esencia.

El alto contenido de carbono equivalente lo hace un acero difícil de soldar, con una alta posibilidad que se originen uniones frágiles y de baja resistencia.

Es necesario utilizar procedimientos muy cuidadosos para lograr una soldadura "decente" como por ejemplo precalentar las barras y luego de soldar controlar el enfriamiento y usar electrodos de bajo contenido de hidrógeno E-7018 ó E-8018.

En general no es recomendable soldar este acero, salvo bajo procedimientos supervisados y con mano de obra especializada.

Concreto Armado I Ing. Omart Tello Malpartida

Page 26: Cualidades Del Acero

26

ACERO ASTM A706El acero fabricado bajo la Norma ASTM A706, sí es soldable. pues su composición química esta diseñada especialmente para hacerlo soldable.

Su uso es recomendable en zonas de alto riesgo sísmico ya que facilita las reparaciones y/o refuerzo de estructuras dañadas luego de sismos intensos, o cuando se requiere reforzar o ampliar una estructura. También su uso facilita los empalmes de barras por soldadura, si fuesen necesarios.

En general todos los aceros son soldables si se emplea el electrodo y las soldaduras adecuadas, que no recalienten el acero y lo hagan perder sus propiedades.

Los puntos de soldadura deben indicarse en los planos, con sus detalles y debe especificarse el procedimiento de soldado, el cual será compatible con las características del acero a soldar.

Soldabilidad

Concreto Armado I Ing. Omart Tello Malpartida

Page 27: Cualidades Del Acero

27

CARACTERISTICAS DE LAS BARRAS

Concreto Armado I Ing. Omart Tello Malpartida

Mallas Electro Soldadas

Las mallas electro soldadas se usan en elementos como losas, pavimentos, estructuras laminares y muros, en los cuales se tiene un patrón regular de distribución de refuerzo.

Están constituidos por alambres lisos o corrugados dispuestos en mallas cuadradas o rectangulares y soldados en los puntos de unión del refuerzo.

Concreto Armado I Ing. Omart Tello Malpartida

Page 28: Cualidades Del Acero

28

Mallas Electro Soldadas

Concreto Armado I Ing. Omart Tello Malpartida

Mallas Electro Soldadas

Fy=Fr

FrFy

Las Normas ASTM establecen las características que deben tener tanto las mallas como los alambres que la componen, por ejemplo la ASTM A496 especifica las características del alambre corrugado utilizado para la fabricación de mallas electro soldadas.

En este caso el acero debe tener un esfuerzo de fluencia mínimo de 4,900 kg/cm2 y un esfuerzo ultimo mínimo de 5, 600 kg/cm2.

Concreto Armado I Ing. Omart Tello Malpartida

Page 29: Cualidades Del Acero

29

El uso de las mallas electro soldadas debe evaluarse cuidadosamente en aquellas estructuras que requieran ductilidad, como lo son las estructuras que deban soportar sismos y en las cuales las fuerzas de diseño se han obtenido reduciendo el espectro elástico de respuesta.

Esto se debe a que el alambre con el cual se fabrican las malla suele ser frágil con una elongación a la rotura entre el 1% y el 3%, valores bastante menores a los exigidos para el acero corrugado de refuerzo.

La reducción en la ductilidad se origina por el proceso de estiramiento en frío (trefilado) al cual son sometidos los alambres.

Este proceso conlleva a un endurecimiento por deformación del acero y elimina el escalón de fluencia.

Mallas Electro Soldadas

Concreto Armado I Ing. Omart Tello Malpartida

GRACIAS …..