38
Chapter 1 LINEAR FUNCTIONS 1.1 Slopes and Equations of Lines 1. Find the slope of the line through (4; 5) and (¡1; 2): m = 5 ¡ 2 4 ¡ (¡1) = 3 5 2. Find the slope of the line through (5; ¡4) and (1; 3): m = 3 ¡ (¡4) 1 ¡ 5 = 3+4 ¡4 = ¡ 7 4 3. Find the slope of the line through (8; 4) and (8; ¡7): m = 4 ¡ (¡7) 8 ¡ 8 = 11 0 The slope is unde…ned; the line is vertical. 4. Find the slope of the line through (1; 5) and (¡2; 5): m = 5 ¡ 5 ¡2 ¡ 1 = 0 ¡3 =0 5. y = x Using the slope-intercept form, y = mx + b, we see that the slope is 1. 6. y =3x ¡ 2 This equation is in slope-intercept form, y = mx + b. Thus, the coe¢cient of the x-term, 3, is the slope. 7. 5x ¡ 9y = 11 Rewrite the equation in slope-intercept form. 9y =5x ¡ 11 y = 5 9 x ¡ 11 9 The slope is 5 9 : 8. 4x +7y =1 Rewrite the equation in slope-intercept form. 7y =1 ¡ 4x 1 7 (7y)= 1 7 (1) ¡ 1 7 (4x) y = 1 7 ¡ 4 7 x y = ¡ 4 7 x + 1 7 The slope is ¡ 4 7 : 9. x =5 This is a vertical line. The slope is unde…ned. 10. The x-axis is the horizontal line y =0: Horizontal lines have a slope of 0. 11. y =8 This is a horizontal line, which has a slope of 0. 12. y = ¡6 By rewriting this equation in the slope-intercept form, y = mx + b; we get y =0x ¡ 6; with the slope, m; being 0. 13. Find the slope of a line parallel to 6x ¡ 3y = 12: Rewrite the equation in slope-intercept form. ¡3y = ¡6x + 12 y =2x ¡ 4 The slope is 2, so a parallel line will also have slope 2. 56

c:swp2507calwaism2001CWA CH 1 FINAL

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: c:swp2507calwaism2001CWA CH 1 FINAL

Chapter 1

LINEAR FUNCTIONS

1.1 Slopes and Equations of Lines

1. Find the slope of the line through (4; 5) and (¡1; 2):

m =5¡ 2

4¡ (¡1)=3

5

2. Find the slope of the line through (5;¡4) and(1; 3):

m =3¡ (¡4)1¡ 5

=3 + 4

¡4 = ¡74

3. Find the slope of the line through (8; 4) and (8;¡7):

m =4¡ (¡7)8¡ 8

=11

0

The slope is unde…ned; the line is vertical.

4. Find the slope of the line through (1; 5) and (¡2; 5):

m =5¡ 5¡2¡ 1 =

0

¡3 = 0

5. y = x

Using the slope-intercept form, y = mx + b, wesee that the slope is 1.

6. y = 3x¡ 2This equation is in slope-intercept form,y = mx+ b. Thus, the coe¢cient of the x-term,3, is the slope.

7. 5x¡ 9y = 11Rewrite the equation in slope-intercept form.

9y = 5x¡ 11y =

5

9x¡ 11

9

The slope is 59 :

8. 4x+ 7y = 1

Rewrite the equation in slope-intercept form.

7y = 1¡ 4x1

7(7y) =

1

7(1)¡ 1

7(4x)

y =1

7¡ 47x

y = ¡47x+

1

7

The slope is ¡47 :

9. x = 5

This is a vertical line. The slope is unde…ned.

10. The x-axis is the horizontal line y = 0: Horizontallines have a slope of 0.

11. y = 8

This is a horizontal line, which has a slope of 0.

12. y = ¡6

By rewriting this equation in the slope-interceptform, y = mx + b; we get y = 0x ¡ 6; with theslope, m; being 0.

13. Find the slope of a line parallel to 6x¡ 3y = 12:

Rewrite the equation in slope-intercept form.

¡3y = ¡6x+ 12y = 2x¡ 4

The slope is 2, so a parallel line will also have slope2.

56

Page 2: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.1 Slopes and Equations of Lines 57

14. Find the slope of a line perpendicular to8x = 2y ¡ 5:First, rewrite the given equation in slope-interceptform.

8x = 2y ¡ 58x+ 5 = 2y

4x+5

2= y

or y = 4x+5

2

Let m be the slope of any line perpendicular tothe given line. Then

4 ¢m = ¡1

m = ¡14:

15. The line goes through (1; 3); with slope m = ¡2:Use point-slope form.

y ¡ 3 = ¡2(x¡ 1)y = ¡2x+ 2+ 3y = ¡2x+ 5

16. The line goes through (2; 4); with slope m = ¡1:Use point-slope form.

y ¡ 4 = ¡1(x¡ 2)y ¡ 4 = ¡x+ 2

y = ¡x+ 6

17. The line goes through (¡5;¡7) with slope m = 0.Use point-slope form.

y ¡ (¡7) = 0[x¡ (¡5)]y + 7 = 0

y = ¡7

18. The line goes through (¡8; 1); with unde…ned slope.Since the slope is unde…ned, the line is vertical.The equation of the vertical line passing through(¡8; 1) is x = ¡8:

19. The line goes through (4; 2) and (1; 3):Find the slope, then use point-slope form witheither of the two given points.

m =3¡ 21¡ 4

= ¡13

y ¡ 3 = ¡13(x¡ 1)

y = ¡13x+

1

3+ 3

y = ¡13x+

10

3

20. The line goes through (8;¡1) and (4; 3):Find the slope, then use point-slope form witheither of the two given points.

m =3¡ (¡1)4¡ 8

=3 + 1

¡4=

4

¡4 = ¡1

y ¡ (¡1) = ¡1(x¡ 8)y + 1 = ¡x+ 8

y = ¡x+ 7

21. The line goes through¡23 ;

12

¢and

¡14 ;¡2

¢.

m =¡2¡ 1

214 ¡ 2

3

=¡42 ¡ 1

2312 ¡ 8

12

m =¡52

¡ 512

=60

10= 6

y ¡ (¡2) = 6μx¡ 1

4

y + 2 = 6x¡ 32

y = 6x¡ 32¡ 2

y = 6x¡ 32¡ 42

y = 6x¡ 72

Page 3: c:swp2507calwaism2001CWA CH 1 FINAL

58 Chapter 1 LINEAR FUNCTIONS

22. The line goes through¡¡2; 34¢ and ¡23 ; 52¢ :

m =52 ¡ 3

423 ¡ (¡2)

=104 ¡ 3

423 +

63

=7483

=21

32

y ¡ 34=21

32[x¡ (¡2)]

y ¡ 34=21

32x+

42

32

y =21

32x+

42

32+3

4

y =21

32x+

21

16+12

16

y =21

32x+

33

16

23. The line goes through (¡8; 4) and (¡8; 6):

m =4¡ 6

¡8¡ (¡8) =¡20

which is unde…ned.This is a vertical line; the value of x is always ¡8:The equation of this line is x = ¡8:

24. The line goes through (¡1; 3) and (0; 3):

m =3¡ 3¡1¡ 0 =

0

¡1 = 0

This is a horizontal line; the value of y is always3. The equation of this line is y = 3:

25. The line has x-intercept ¡6 and y-intercept ¡3.Two points on the line are (¡6; 0) and (0;¡3).Find the slope; then use slope-intercept form.

m =¡3¡ 00¡ (¡6) =

¡36= ¡1

2

b = ¡3

y = ¡12x¡ 3

26. The line has x-intercept ¡2 and y-intercept 4.Two points on the line are (¡2; 0) and (0; 4): Findthe slope; then use slope-intercept form.

m =4¡ 0

0¡ (¡2) =4

2= 2

y =mx+ b

y = 2x+ 4

27. The vertical line through (¡6; 5) goes through thepoint (¡6; 0); so the equation is x = ¡6:

28. The line is horizontal, through (8; 7):The line has an equation of the form y = k wherek is the y-coordinate of the point. In this case,k = 7; so the equation is y = 7:

29. Write an equation of the line through (¡4; 6), par-allel to 3x+ 2y = 13:Rewrite the equation of the given line in slope-intercept form.

3x+ 2y = 13

2y = ¡3x+ 13

y = ¡32x+

13

2

The slope is ¡32 :

Use m = ¡32 and the point (¡4; 6) in the point-

slope form.

y ¡ 6 = ¡32[x¡ (¡4)]

y = ¡32(x+ 4) + 6

y = ¡32x¡ 6 + 6

y = ¡32x

30. Write the equation of the line through (2;¡5);parallel to y ¡ 4 = 2x: Rewrite the equation inslope-intercept form.

y ¡ 4 = 2xy = 2x+ 4

The slope of this line is 2.Usem = 2 and the point (2;¡5) in the point-slopeform.

y ¡ (¡5) = 2(x¡ 2)y + 5 = 2x¡ 4

y = 2x¡ 931. Write an equation of the line through (3;¡4); per-

pendicular to x+ y = 4:Rewrite the equation of the given line as

y = ¡x+ 4:The slope of this line is ¡1: To …nd the slope of aperpendicular line, solve

¡1m = ¡1:m = 1

Page 4: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.1 Slopes and Equations of Lines 59

Use m = 1 and (3;¡4) in the point-slope form.y ¡ (¡4) = 1(x¡ 3)

y = x¡ 3¡ 4y = x¡ 7

32. Write the equation of the line through (¡2; 6); per-pendicular to 2x¡ 3y = 5:Rewrite the equation in slope-intercept form.

2x¡ 3y = 5¡3y = ¡2x+ 5

y =2

3x¡ 5

3

The slope of this line is 23 : To …nd the slope of a

perpendicular line, solve

2

3m = ¡1:

m = ¡32

Use m = ¡32 and (¡2; 6) in the point-slope form.

y ¡ 6 = ¡32[x¡ (¡2)]

y ¡ 6 = ¡32(x+ 2)

y ¡ 6 = ¡32x¡ 3

y = ¡32x+ 3

33. Write an equation of the line with y-intercept 4,perpendicular to x+ 5y = 7:Find the slope of the given line.

x+ 5y = 7

5y = ¡x+ 7

y = ¡15x+

7

5

The slope is ¡15 , so the slope of the perpendicular

line will be 5. If the y-intercept is 4, then usingthe slope-intercept form we have

y = mx+ b

y = 5x+ 4:

34. Write the equation of the line with x-intercept¡23 ;

perpendicular to 2x¡ y = 4:Find the slope of the given line.

2x¡ y = 42x¡ 4 = y

The slope of this line is 2. Since the lines areperpendicular, the slope of the needed line is ¡1

2 :

The line also has an x-intercept of ¡23 : Thus, it

passes through the point¡¡2

3 ; 0¢:

Using the point-slope form, we have

y ¡ 0 = ¡12

·x¡

μ¡23

¶¸

y = ¡12

μx+

2

3

y = ¡12x¡ 1

3

35. Do the points (4; 3); (2; 0), and (¡18;¡12) lie onthe same line?Find the slope between (4; 3) and (2; 0).

m =0¡ 32¡ 4 =

¡3¡2 =

3

2

Find the slope between (4; 3) and (¡18;¡12).

m =¡12¡ 3¡18¡ 4 =

¡15¡22 =

15

22

Since these slopes are not the same, the points donot lie on the same line.

36. (a) Write the given line in slope-intercept form.

2x+ 3y = 6

3y = ¡2x+ 6

y = ¡23x+ 2

This line has a slope of ¡23 : The desired line has

a slope of ¡23 since it is parallel to the given line.

Use the de…nition of slope.

m =y2 ¡ y1x2 ¡ x1

¡23=2¡ (¡1)k ¡ 4

¡23=

3

k ¡ 4¡2(k ¡ 4) = (3)(3)¡2k + 8 = 9

¡2k = 1

k = ¡12

(b) Write the given line in slope-intercept form.

5x¡ 2y = ¡12y = 5x+ 1

y =5

2x+

1

2

Page 5: c:swp2507calwaism2001CWA CH 1 FINAL

60 Chapter 1 LINEAR FUNCTIONS

This line has a slope of 52 : The desired line has aslope of ¡2

5 since it is perpendicular to the givenline. Use the de…nition of slope.

m =y2 ¡ y1x2 ¡ x1

=2¡ (¡1)k ¡ 4

¡25=2 + 1

k ¡ 4¡25=

3

k ¡ 4¡2(k ¡ 4) = (3)(5)¡2k + 8 = 15

¡2k = 7

k = ¡72

37. A parallelogram has 4 sides, with opposite sidesparallel. The slope of the line through (1; 3) and(2; 1) is

m =3¡ 11¡ 2 =

2

¡1 = ¡2:

The slope of the line through¡¡5

2 ; 2¢and

¡¡72 ; 4¢

is

m =2¡ 4

¡52 ¡¡¡7

2

¢ =¡21= ¡2:

Since these slopes are equal, these two sides areparallel.The slope of the line through

¡¡72 ; 4¢and (1; 3) is

m =4¡ 3¡72 ¡ 1

=1

¡92

= ¡29:

Slope of the line through¡¡5

2 ; 2¢and (2; 1) is

m =2¡ 1¡52 ¡ 2

=1

¡92

= ¡29:

Since these slopes are equal, these two sides areparallel.Since both pairs of opposite sides are parallel, thequadrilateral is a parallelogram.

38. Two lines are perpendicular if the product of theirslopes is ¡1:The slope of the diagonal containing (4; 5) and(¡2;¡1) is

m =5¡ (¡1)4¡ (¡2) =

6

6= 1:

The slope of the diagonal containing (¡2; 5) and(4;¡1) is

m =5¡ (¡1)¡2¡ 4 =

6

¡6 = ¡1:

The product of the slopes is (1)(¡1) = ¡1; so thediagonals are perpendicular.

39. The line goes through (0; 2) and (¡2; 0)

m =2¡ 0

0¡ (¡2) =2

2= 1

The correct choice is (a).

40. The line goes through (1; 3) and (2; 0):

m =3¡ 01¡ 2 =

3

¡1 = ¡3

The correct choice is (f).

41. The line appears to go through (0; 0) and (¡1; 4):

m =4¡ 0¡1¡ 0 =

4

¡1 = ¡4

42. The line goes through (¡2; 0) and (0; 1):

m =1¡ 0

0¡ (¡2) =1

2

43. (a) See the …gure in the textbook.Segment MN is drawn perpendicular to segmentPQ: Recall thatMQ is the length of segmentMQ:

m1 =4y4x =

MQ

PQ

From the diagram, we know that PQ = 1: Thus,m1 =

MQ1 ; so MQ has length m1:

(b) m2 =4y4x =

¡QNPQ

=¡QN1

QN = ¡m2

Page 6: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.1 Slopes and Equations of Lines 61

(c) Triangles MPQ; PNQ; and MNP are righttriangles by construction. In triangles MPQ andMNP;

angle M = angle M;

and in the right triangles PNQ and MNP;

angle N = angle N:

Since all right angles are equal, and since triangleswith two equal angles are similar, triangle MPQis similar to triangle MNP and triangle PNQ issimilar to triangle MNP:

Therefore, triangles MPQ and PNQ are similarto each other.

(d) Since corresponding sides in similar trianglesare proportional,

MQ = k ¢ PQ and PQ = k ¢QN:MQ

PQ=k ¢ PQk ¢QN

MQ

PQ=PQ

QN

From the diagram, we know that PQ = 1:

MQ =1

QN

From (a) and (b), m1 =MQ and ¡m2 = QN:

Substituting, we get

m1 =1

¡m2:

Multiplying both sides by m2; we have

m1m2 = ¡1:

44. y = x¡ 1Three ordered pairs that satisfy this equation are(0;¡1); (1; 0); and (4; 3): Plot these points anddraw a line through them.

45. y = 4x+ 5

Three ordered pairs that satisfy this equation are(¡2;¡3), (¡1; 1), and (0; 5). Plot these pointsand draw a line through them.

46. y = ¡4x+ 9

Three ordered pairs that satisfy this equation are(0; 9); (1; 5); and (2; 1): Plot these points and drawa line through them.

47. y = ¡6x+ 12

Three ordered pairs that satisfy this equation are(0; 12); (1; 6); and (2; 0): Plot these points anddraw a line through them.

Page 7: c:swp2507calwaism2001CWA CH 1 FINAL

62 Chapter 1 LINEAR FUNCTIONS

48. 2x¡ 3y = 12Find the intercepts.If y = 0, then

2x¡ 3(0) = 122x = 12

x = 6

so the x-intercept is 6.If x = 0, then

2(0)¡ 3y = 12¡3y = 12y = ¡4

so the y-intercept is ¡4.Plot the ordered pairs (6; 0) and (0;¡4) and drawa line through these points. (A third point maybe used as a check.)

49. 3x¡ y = ¡9Find the intercepts.If y = 0, then

3x¡ 0 = ¡93x = ¡9x = ¡3

If x = 0, then

3(0)¡ y = ¡9¡y = ¡9y = 9

so the y-intercept is 9.Plot the ordered pairs (¡3; 0) and (0; 9) and drawa line through these points. (A third point maybe used as a check.)

50. 3y ¡ 7x = ¡21

Find the intercepts.If y = 0; then

3(0) + 7x = ¡21¡7x = ¡21x = 3

so the x-intercept is 3.If x = 0; then

3y ¡ 7(0) = ¡213y = ¡21y = ¡7

so the y-intercept is ¡7.Plot the ordered pairs (3; 0) and (0;¡7) and drawa line through these points. (A third point maybe used as a check.)

51. 5y + 6x = 11

Find the intercepts.If y = 0; then

5(0) + 6x = 11

6x = 11

x =11

6

so the x-intercept is 116 .If x = 0; then

5y + 6(0) = 11

5y = 11

y =11

5

so the y-intercept is 115 .

Page 8: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.1 Slopes and Equations of Lines 63

Plot the ordered pairs¡116 ; 0

¢and

¡0; 115

¢and draw

a line through these points. (A third point maybe used as a check.)

52. y = ¡2

5The equation y = ¡2; or, equivalently, y = 0x¡2; always gives the same y-value, ¡2; for any valueof x: The graph of this equation is the horizontalline with y-intercept ¡2:

53. x = 4

For any value of y; the x-value is 4. Because allordered pairs that satisfy this equation have thesame …rst number, this equation does not repre-sent a function. The graph is the vertical line withx-intercept 4.

54. x+ 5 = 0

This equation may be rewritten as x = ¡5: Forany value of y; the x-value is ¡5: Because allordered pairs that satisfy this equation have thesame …rst number, this equation does not repre-sent a function. The graph is the vertical line withx-intercept ¡5:

55. y + 8 = 0

This equation may be rewritten as y = ¡8, or,equivalently, y = 0x + ¡8: The y-value is ¡8 forany value of x: The graph is the horizontal linewith y-intercept ¡8:

56. y = 2x

Three ordered pairs that satisfy this equation are(0; 0); (¡2;¡4); and (2; 4): Use these points todraw the graph.

Page 9: c:swp2507calwaism2001CWA CH 1 FINAL

64 Chapter 1 LINEAR FUNCTIONS

57. y = ¡5xThree ordered pairs that satisfy this equation are(0; 0); (¡1; 5); and (1;¡5): Use these points todraw the graph.

58. x+ 4y = 0

If y = 0; then x = 0; so the x-intercept is 0. Ifx = 0; then y = 0; so the y-intercept is 0. Bothintercepts give the same ordered pair, (0; 0):To get a second point, choose some other value ofx (or y): For example if x = 4; then

x+ 4y = 0

4 + 4y = 0

4y = ¡4y = ¡1;

giving the ordered pair (4;¡1): Graph the linethrough (0; 0) and (4;¡1):

59. 3x¡ 5y = 0If y = 0, then x = 0, so the x-intercept is 0. Ifx = 0, then y = 0, so the y-intercept is 0. Bothintercepts give the same ordered pair (0; 0).To get a second point, choose some other value ofx (or y). For example, if x = 5, then

3x¡ 5y = 03(5)¡ 5y = 015¡ 5y = 0¡5y = ¡15y = 3

giving the ordered pair (5; 3). Graph the linethrough (0; 0) and (5; 3):

60. (a) The line goes through (2; 27,000) and (5; 63,000):

m =63,000¡ 27,000

5¡ 2 = 12,000

y ¡ 27,000 = 12,000(x¡ 2)y ¡ 27,000 = 12,000x¡ 24,000

y = 12,000x+ 3000

(b) Let y =100,000; …nd x:

100,000 = 12,000x+ 300097,000 = 12,000x8:08 = x

Sales would surpass $100,000 after 8 years, 1 month.

61. (a)

The number of subscribers is increasing and thedata appear to be nearly linear.

(b) Find the slope using (3; 44:04) and (11; 182:14).

(c) m =182:14¡ 44:04

11¡ 3 =138:1

8= 17:2625

y ¡ 182:14 = 17:2625(x¡ 11)y ¡ 182:14 = 17:2625x¡ 189:89

y = 17:2625x¡ 7:75Rounding the slope to the nearest hundredth, theequation is y = 17:26x¡ 7:75:The year 2005 corresponds to x = 2005¡ 1993 =12.

y = 17:26(12)¡ 7:75y = 199:37

Page 10: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.1 Slopes and Equations of Lines 65

The approximation using the equation is less thanthe actual number of subscribers.

62. (a) The line goes through (0; 8) and (5; 50).

m =50¡ 85¡ 0 = 8:4

n¡ 8 = 8:4(t¡ 0)n = 8:4t+ 8

(b) Let n = 75; solve for t.

75 = 8:4t+ 8

67 = 8:4t

8 ¼ t8 years after 2006, or in the year 2014, the numberof models should exceed 75.

(c) The year 2025 is too far in the future; toomany other factors may a¤ect the demand for hy-brid vehicles over that span of years.

63. (a) The line goes through (0; 100) and (24; 201:6).

m =201:6¡ 10024¡ 0 ¼ 4:23

b = 100

y = 4:23x+ 100

(b) The year 2000 corresponds to x = 18.

y = 4:23(18) + 100

y = 176:14

The estimate is more than, but close to, the actualCPI.

(c) It is increasing at a rate of 4.23 per year.

64. (a) The line goes through (4; 0:17) and (7; 0:33):

m =0:33¡ 0:177¡ 4 =

0:16

3¼ 0:053

y ¡ 0:33 = 0:16

3(x¡ 7)

y ¡ 0:33 = 0:053x¡ 0:373y ¼ 0:053x¡ 0:043

(b) Let y = 0:5; solve for x:

0:5 = 0:053x¡ 0:0430:543 = 0:053x

10:2 = x

In about 10.2 years, half of these patients will haveAIDS.

65. (a) Let x = age.

u = 0:85(220¡ x) = 187¡ 0:85xl = 0:7(220¡ x) = 154¡ 0:7x

(b) u = 187¡ 0:85(20) = 170l = 154¡ 0:7(20) = 140

The target heart rate zone is 140 to 170 beats perminute.

(c) u = 187¡ 0:85(40) = 153l = 154¡ 0:7(40) = 126

The target heart rate zone is 126 to 153 beats perminute.

(d) 154¡ 0:7x = 187¡ 0:85(x+ 36)154¡ 0:7x = 187¡ 0:85x¡ 30:6154¡ 0:7x = 156:4¡ 0:85x

0:15x = 2:4

x = 16

The younger woman is 16; the older woman is16 + 36 = 52: l = 0:7(220 ¡ 16) ¼ 143 beats perminute.

66. Let x represent the force and y represent the speed.The linear function contains the points (0:75; 2)and (0:93; 3):

m =3¡ 2

0:93¡ 0:75 =1

0:18=

118100

=100

18=50

9

Use point-slope form to write the equation.

y ¡ 2 = 50

9(x¡ 0:75)

y ¡ 2 = 50

9x¡ 50

9(0:75)

y =50

9x¡ 75

18+ 2

y =50

9x¡ 13

6

Now determine y; the speed, when x; the force, is1.16.

y =50

9(1:16)¡ 13

6

=58

9¡ 136

=77

18¼ 4:3

The pony switches from a trot to a gallop at ap-proximately 4.3 meters per second.

Page 11: c:swp2507calwaism2001CWA CH 1 FINAL

66 Chapter 1 LINEAR FUNCTIONS

67. Let x = 0 correspond to 1900. Then the “lifeexpectancy from birth” line contains the points(0; 46) and (104; 77:8):

m =77:8¡ 46104¡ 0 =

31:3

102= 0:306

Since (0; 46) is one of the points, the line is givenby the equation

y = 0:306x+ 46:

The “life expectancy from age 65” line containsthe points (0; 76) and (104; 83:7):

m =83:7¡ 76104¡ 0 =

7:7

104¼ 0:074

Since (0; 76) is one of the points, the line is givenby the equation

y = 0:074x+ 76:

Set the two equations equal to determine wherethe lines intersect. At this point, life expectancyshould increase no further.

0:306x+ 46 = 0:074x+ 76

0:232x = 30

x ¼ 129

Determine the y-value when x = 129: Use the …rstequation.

y = 0:306(129) + 46

= 39:474 + 46

= 85:474

Thus, the maximum life expectancy for humans isabout 86 years.

68. y = 34x+ 230

Let y = 1000:

1000 = 34x+ 230

770 = 34x

x ¼ 22:6

According to this formula, approximately 23 acornsper square meter would result in 1000 deer ticklarvae per 400 square meters.

69. (a) m =27:4¡ 22:845¡ 5 =

4:6

40= 0:115

y ¡ 22:8 = 0:115(x¡ 5)y ¡ 22:8 = 0:115x¡ 0:575

y = 0:115x+ 22:2

(b) m =25:8¡ 20:645¡ 5 =

5:2

40= 0:13

y ¡ 20:6 = 0:13(x¡ 5)y ¡ 20:6 = 0:13x¡ 0:65

y = 0:13x+ 19:95

(c) Since 0:13 > 0:115, women have the fasterincrease.

(d) Let y = 30 and use the equation from part (a)to solve for x.

30 = 0:115x+ 22:2

7:8 = 0:115x

68 ¼ x68 years after 1960, or in the year 2028, men’smedian age at …rst marriage will reach 30.

(e) Let x = 68 and use the equation from part (b)to …nd y.

y = 0:13(68) + 19:95

y = 8:84 + 19:95

y = 28:79

The median age for women at …rst marriage willbe about 28.8 years.

70. (a) The line goes through the points (0; 86,821)and (30, 252; 920).

m =252,920¡ 86,821

30¡ 0=166,09930

¼ 5536:63Since one of the points is (0; 86,821); the line isgiven by the equation

y = 5536:63x+ 86,821.

(b) The year 2010 corresponds to x = 40.

y = 5536:63(40) + 86,821y ¼ 308,286.

We predict that the number of immigrants to Cal-ifornia in 2010 will be about 308,286.

Page 12: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.1 Slopes and Equations of Lines 67

71. (a) The line goes through (0; 1:59) and (24; 5:08).

m =5:08¡ 1:5924¡ 0 =

3:49

24¼ 0:145

b = 1:59

y = 0:145x+ 1:59

(b) The year 2014 corresponds to x = 30.

y = 0:145(30) + 1:59

y = 5:94

In 2010, the number of cohabitating adults will beabout 5.94 million.

72. (a) If the temperature rises 0.3C± per decade, itrises 0.03C± per year.

m = 0:03

b = 15; since a point is (0; 15):

T = 0:03t+ 15

(b) Let T = 19; …nd t:

19 = 0:03t+ 15

4 = 0:03t

133:3 = t

133 ¼ t1970 + 133 = 2103

The temperature will rise to 19±C in about theyear 2103.

73. (a) Plot the points (15; 1600); (200; 15,000),(290; 24,000), and (520; 40,000).

The points lie approximately on a line, so thereappears to be a linear relationship between dis-tance and time.

(b) The graph of any equation of the form y =mxgoes through the origin, so the line goes through(520; 40,000) and (0; 0):

m =40,000¡ 0520¡ 0 ¼ 76:9

b = 0

y = 76:9x+ 0

y = 76:9x

(c) Let y = 60,000; solve for x:

60,000 = 76:9x780:23 ¼ x

Hydra is about 780 megaparsecs from earth.

(d) A =9:5£ 1011

m;m = 76:9

A =9:5£ 101176:9

= 12:4 billion years

74. (a) m =13,660¡ 10,770

15¡ 0 =2890

15¼ 192:7

This means that each year there is an increase ofabout 193 stations.

(b) b = 10,770y = 192:7x+ 10,770

(c) Let y = 15,000 and solve the equation for x:

15,000 = 192:7x+ 10,7704230 = 192:7x22 ¼ x

The estimated year when it is expected that thenumber of stations will …rst exceed 15,000 is 2012.

75. (a)

Yes, the data appear to lie roughtly along a straightline.

(b) m =21,235¡ 16,072

5¡ 0 =5163

5= 1032:6

b = 16,072y = 1032:6x+ 16,072

Page 13: c:swp2507calwaism2001CWA CH 1 FINAL

68 Chapter 1 LINEAR FUNCTIONS

The slope 1032.6 indicates that tuition and feeshave increased approximately $1033 per year.

(c) The year 2025 is too far in the future to relyon this equation to predict costs; too many otherfactors may in‡uence these costs by then.

1.2 Linear Functions andApplications

1. f(2) = 7¡ 5(2) = 7¡ 10 = ¡3

2. f(4) = 7¡ 5(4) = 7¡ 20 = ¡13

3. f(¡3) = 7¡ 5(¡3) = 7 + 15 = 22

4. f(¡1) = 7¡ 5(¡1) = 7 + 5 = 12

5. g(1:5) = 2(1:5)¡ 3 = 3¡ 3 = 0

6. g(2:5) = (2:5)¡ 3 = 5¡ 3 = 2

7. gμ¡12

¶= 2

μ¡12

¶¡ 3 = ¡1¡ 3 = ¡4

8. gμ¡34

¶= 2

μ¡34

¶¡ 3 = ¡3

2¡ 3 = ¡9

2

9. f(t) = 7¡ 5(t) = 7¡ 5t

10. g(k2) = 2(k2)¡ 3 = 2k2 ¡ 3

11. This statement is true.When we solve y = f(x) = 0; we are …nding thevalue of x when y = 0; which is the x-intercept.When we evaluate f(0); we are …nding the valueof y when x = 0; which is the y-intercept.

12. This statement is false.

The graph of f(x) = ¡5 is a horizontal line.

13. This statement is true.Only a vertical line has an unde…ned slope, but avertical line is not the graph of a function. There-fore, the slope of a linear function cannot be de-…ned.

14. This statement is true.

For any value of a;

f(0) = a ¢ 0 = 0;so the point (0; 0); which is the origin, lies on theline.

15. The …xed cost is constant for a particular prod-uct and does not change as more items are made.The marginal cost is the rate of change of cost ata speci…c level of production and is equal to theslope of the cost function at that speci…c value; itapproximates the cost of producing one additionalitem.

19. $10 is the …xed cost and $2.25 is the cost per hour.

Let x = number of hours;R(x) = cost of renting a snowboard for

x hours.

Thus,

R(x) = …xed cost + (cost per hour)¢ (number of hours)

R(x) = 10 + (2:25)(x)

= 2:25x+ 10

20. $10 is the …xed cost and $0.99 is the cost per down-loaded song—the marginal cost.

Let x = the number of downloaded songs andC(x) = cost of downloading x songs

Then,

C(x) = (marginal cost)¢ (number of downloaded songs)+ …xed cost

C(x) = 0:99x+ 10:

21. 50/c is the …xed cost and 35/c is the cost per half-hour.

Let x = the number of half-hours;C(x) = the cost of parking a car for

x half-hours.

Thus,

C(x) = 50 + 35x

= 35x+ 50:

22. $44 is the …xed cost and $0.28 is the cost per mile.

Let x = the number of miles;R(x) = the cost of renting for x

miles.

Thus,

R(x) = …xed cost + (cost per mile)¢ (number of miles)

R(x) = 44 + 0:28x:

Page 14: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.2 Linear Functions and Applications 69

23. Fixed cost, $100; 50 items cost $1600 to produce.

Let C(x) = cost of producing x items.C(x) = mx+ b; where b is the …xed

cost.

C(x) =mx+ 100

Now,

C(x) = 1600 when x = 50; so

1600 = m(50) + 100

1500 = 50m

30 = m:

Thus, C(x) = 30x+ 100:

24. Fixed cost: $35; 8 items cost $395.

Let C(x) = cost of x itemsC(x) = mx+ b; where b is the …xed costC(x) = mx+ 35

Now, C(x) = 395 when x = 8, so

395 =m(8) + 35

360 = 8m

45 =m:

Thus, C(x) = 45x+ 35.

25. Marginal cost: $75; 50 items cost $4300.

C(x) = 75x+ b

Now, C(x) = 4300 when x = 50.

4300 = 75(50) + b

4300 = 3750 + b

550 = b

Thus, C(x) = 75x+ 550:

26. Marginal cost, $120; 700 items cost $96,500 to pro-duce.

C(x) = 120x+ b

Now, C(x) = 96,500 when x = 700:

96,500 = 120(700) + b96,500 = 84,000+ b12,500 = b

Thus, C(x) = 120x+12,500.

27. D(q) = 16¡ 1:25q(a) D(0) = 16¡ 1:25(0) = 16¡ 0 = 16When 0 watches are demanded, the price is $16.

(b) D(4) = 16¡ 1:25(4) = 16¡ 5 = 11When 400 watches are demanded, the price is $11.

(c) D(8) = 16¡ 1:25(8) = 16¡ 10 = 6When 800 watches are demanded, the price is $6.

(d) Let D(q) = 8: Find q:

8 = 16¡ 1:25q5

4q = 8

q = 6:4

When the price is $8, 640 watches are demanded.

(e) Let D(q) = 10: Find q:

10 = 16¡ 1:25q5

4q = 6

q = 4:8

When the price is $10, 480 watches are demanded.

(f) Let D(q) = 12: Find q:

12 = 16¡ 1:25q5

4q = 4

q = 3:2

When the price is $12, 320 watches are demanded.

(g)

(h) S(q) = 0:75q

Let S(q) = 0: Find q:0 = 0:75q

0 = q

When the price is $0, 0 watches are supplied.

Page 15: c:swp2507calwaism2001CWA CH 1 FINAL

70 Chapter 1 LINEAR FUNCTIONS

(i) Let S(q) = 10: Find q:

10 = 0:75q

40

3= q

q = 13:3

When the price is $10, about 1333 watches aresupplied.

(j) Let S(q) = 20: Find q:

20 = 0:75q

80

3= q

q = 26:6

When the price is $20, about 2667 watches aredemanded.

(k)

(l) D(q) = S(q)

16¡ 1:25q = 0:75q16 = 2q

8 = q

S(8) = 0:75(8) = 6

The equilibrium quantity is 800 watches, and theequilibrium price is $6.

28. D(q) = 5¡ 0:25q(a) D(0) = 5¡ 0:25(0) = 5¡ 0 = 5When 0 quarts are demanded, the price is $5.

(b) D(4) = 5¡ 0:25(4) = 5¡ 1 = 4When 400 quarts are demanded, the price is $4.

(c) D(8:4) = 5¡ 0:25(8:4) = 5¡ 2:1 = 2:9When 840 quarts are demanded, the price is $2.90.

(d) Let D(q) = 4:5. Find q.

4:5 = 5¡ 0:25q0:25q = 0:5

q = 2

When the price is $4.50, 200 quarts are demanded.

(e) Let D(q) = 3:25. Find q.

3:25 = 5¡ 0:25q0:25q = 1:75

q = 7

When the price is $3.25, 700 quarts are demanded.

(f) Let D(q) = 2:4. Find q.

2:4 = 5¡ 0:25q0:25q = 2:6

q = 10:4

When the price is $2.40, 1040 quarts are demanded.

(g)

(h) S(q) = 0:25q

Let S(q) = 0. Find q.

0 = 0:25q

q = 0

When the price is $0, 0 quarts are supplied.

(i) Let S(q) = 2: Find q.

2 = 0:25q

q = 8

When the price is $2, 800 quarts are supplied.

(j) Let S(q) = 4:5: Find q.

4:5 = 0:25q

q = 18

When the price is $4.50, 1800 quarts are supplied.

Page 16: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.2 Linear Functions and Applications 71

(k)

(l) D(q) = S(q)

5¡ 0:25q = 0:25q5 = 0:5q

10 = q

S(10) = 0:25(10) = 2:5

The equilibrium quantity is 1000 quarts and theequilibrium price is $2.50.

29. p = S(q) =2

5q; p = D(q) = 100¡ 2

5q

(a)

(b) S(q) = D(q)

2

5q = 100¡ 2

5q

4

5q = 100

q = 125

S(125) =2

5(125) = 50

The equilibrium quantity is 125, the equilibriumprice is $50

30. (a)

(b) S(q) = p = 1:4q ¡ 0:6D(q) = p = ¡2q + 3:2

Set supply equal to demand and solve for q:

1:4q ¡ 0:6 = ¡2q + 3:21:4q + 2q = 0:6 + 3:2

3:4q = 3:8

q =3:8

3:4

q ¼ 1:12S(1:12) = 1:4(1:12)¡ :6

= 0:968

The equilibrium quantity is about 1120 pounds;the equilibrium price is about $0.96

31. (a) C(x) = mx+ b; m = 3:50; C(60) = 300

C(x) = 3:50x+ b

Find b:300 = 3:50(60) + b

300 = 210 + b

90 = b

C(x) = 3:50x+ 90

(b) R(x) = 9x

C(x) = R(x)

3:50x+ 90 = 9x

90 = 5:5x

16:36 = x

Joanne must produce and sell 17 shirts.

(c) P (x) = R(x)¡C(x); P (x) = 500500 = 9x¡ (3:50x+ 90)500 = 5:5x¡ 90590 = 5:5x

107:27 = x

To make a pro…t of $500, Joanne must produceand sell 108 shirts.

Page 17: c:swp2507calwaism2001CWA CH 1 FINAL

72 Chapter 1 LINEAR FUNCTIONS

32. (a) C(x) = mx+ b

C(1000) = 2675; b = 525

Find m:

2675 = m(1000) + 525

2150 = 1000m

2:15 = m

C(x) = 2:15x+ 525

(b) R(x) = 4:95xC(x) = R(x)

2:15x+ 525 = 4:95x

525 = 2:80x

187:5 = x

In order to break even, he must produce and sell188 books.

(c) P (x) = R(x)¡C(x); P (x) = 10001000 = 4:95x¡ (2:15x+ 525)1000 = 4:95x¡ 2:15x¡ 5251000 = 2:80x¡ 5251525 = 2:80x

544:6 = x

In order to make a pro…t of $1000, he must pro-duce and sell 545 books.

33. (a) Using the points (100; 11:02) and (400; 40:12);

m =40:12¡ 11:02400¡ 100 =

29:1

300= 0:097:

y ¡ 11:02 = 0:097(x¡ 100)y ¡ 11:02 = 0:097x¡ 9:7

y = 0:097x+ 1:32

C(x) = 0:097x+ 1:32

(b) The …xed cost is given by the constant inC(x): It is $1.32.

(c) C(1000) = 0:097(1000) + 1:32 = 97 + 1:32= 98:32

The total cost of producing 1000 cups is $98.32.

(d) C(1001) = 0:097(1001) + 1:32 = 97:097 + 1:32= 98:417

The total cost of producing 1001 cups is $98.417.

(e) Marginal cost = 98:417¡ 98:32= $0:097 or 9:7/c

(f) The marginal cost for any cup is the slope,$0.097 or 9:7/c: This means the cost of producingone additional cup of co¤ee would be 9:7/c:

34. C(10,000) =547,500; C(50,000) =737,500

(a) C(x) = mx+ b

m =737,500 ¡ 547,50050,000 ¡ 10,000

=190,00040,000

= 4:75

y ¡ 547,500 = 4:75(x¡ 10,000)y ¡ 547,500 = 4:75x¡ 47,500

y = 4:75x+ 500,000C(x) = 4:75x+ 500,000

(b) The …xed cost is $500,000.

(c) C(100,000) = 4:75(100,000) + 500,000= 475,000+ 500,000= 975,000

The total cost to produce 100,000 items is $975,000.

(d) Since the slope of the cost function is 4.75, themarginal cost is $4.75. This means that the cost ofproducing one additional item at this productionlevel is $4.75.

35. (a) (100,000)(50) = 5,000,000

Sales in 1996 would be 100,000 + 5,000,000 =5,100,000.

(b) The ordered pairs are (1, 100,000) and(6, 5,100,000).

m =5,100,000¡ 100,000

6¡ 1 =5,000,000

5= 1,000,000

y ¡ 100,000 = 1; 000,000(x¡ 1)y ¡ 100,000 = 1; 000,000x¡ 1,000,000

y = 1; 000,000x¡ 900,000S(x) = 1; 000,000x¡ 900,000

(c)Let S(x) = 1,000,000,000. Find x:

1,000,000,000 = 1,000,000x¡ 900,0001,000,900,000 = 1,000,000x

x = 1000:9

Sales would reach $1 billion in about 1991 + 1000.9= 2991.9, or during the year 2991.Sales would have to grow much faster than lin-early to reach $1 billion by 2003.

Page 18: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.2 Linear Functions and Applications 73

(d) Use ordered pairs (13, 356,000,000) and(14, 479,000,000).

m =479,000,000¡ 356,000,000

14¡ 13 = 123,000,000

S(x)¡ 356,000,000 = 123,000,000(x¡ 13)S(x)¡ 356,000,000 = 123,000,000x¡ 1,599,000000

S(x) = 123,000,000x¡ 1,243,000,000

(e) The year 2005 corresponds to x = 2005 ¡1990 = 15:

S(15) = 123,000,000(15)¡ 1,243,000,000S(15) = 602,000,000

The estimated sales are $602,000,000, which is lessthan the actual sales.

(f) Let S(x) = 1,000,000,000. Find x.

1; 000; 000; 000 = 123,000,000x¡ 1,243,000,0002,243,000,000 = 123,000,000x

x ¼ 18:2

Sales would reach $1 billion in about 1990 + 18.2= 2008.2, or during the year 2009.

36. C(x) = 5x+ 20; R(x) = 15x

(a) C(x) = R(x)

5x+ 20 = 15x

20 = 10x

2 = x

The break-even quantity is 2 units.

(b) P (x) = R(x)¡C(x)P (x) = 15x¡ (5x+ 20)

P (100) = 15(100)¡ (5 ¢ 100 + 20)= 1500¡ 520 = 980

The pro…t from 100 units is $980.

(c) P (x) = 500

15x¡ (5x+ 20) = 50010x¡ 20 = 500

10x = 520

x = 52

For a pro…t of $500, 52 units must be produced.

37. C(x) = 12x+ 39; R(x) = 25x

(a) C(x) = R(x)

12x+ 39 = 25x

39 = 13x

3 = x

The break-even quantity is 3 units.

(b) P (x) = R(x)¡C(x)P (x) = 25x¡ (12x+ 39)P (x) = 13x¡ 39

P (250) = 13(250)¡ 39= 3250¡ 39= 3211

The pro…t from 250 units is $3211.

(c) P (x) = $130; …nd x:

130 = 13x¡ 39169 = 13x

13 = x

For a pro…t of $130, 13 units must be produced.

38. C(x) = 85x+ 900R(x) = 105x

Set C(x) = R(x) to …nd the break-even quantity.

85x+ 900 = 105x

900 = 20x

45 = x

The break-even quantity is 45 units. You shoulddecide not to produce since no more than 38 unitscan be sold.

P (x) = R(x)¡C(x) = 105x¡ (85x+ 900)= 20x¡ 900

The pro…t function is P (x) = 20x¡ 900.39. C(x) = 105x+ 6000

R(x) = 250x

Set C(x) = R(x) to …nd the break-even quantity.

105x+ 6000 = 250x

6000 = 145x

41:38 ¼ xThe break-even quantity is about 41 units, so youshould decide to produce.

P (x) = R(x)¡C(x)= 250x¡ (105x+ 6000)= 145x¡ 6000

The pro…t function is P (x) = 145x¡ 6000.

Page 19: c:swp2507calwaism2001CWA CH 1 FINAL

74 Chapter 1 LINEAR FUNCTIONS

40. C(x) = 70x+ 500R(x) = 60x

70x+ 500 = 60x

10x = ¡500x = ¡50

This represents a break-even quantity of¡50 units.It is impossible to make a pro…t when the break-even quantity is negative. Cost will always begreater than revenue.

P (x) = R(x)¡C(x) = 60x¡ (70x+ 500)= ¡10x¡ 500

The pro…t function is P (x) = ¡10x¡ 500.

41. C(x) = 1000x+ 5000R(x) = 900x

900x = 1000x+ 5000

¡5000 = 100x¡50 = x

It is impossible to make a pro…t when the break-even quantity is negative. Cost will always begreater than revenue.

P (x) = R(x)¡C(x)= 900x¡ (1000x+ 5000)= ¡100x¡ 5000

The pro…t function is P (x) = ¡100x¡5000 (alwaysa loss).

42. Use the formulas derived in Example 7 in this sec-tion of the textbook.

F =9

5C + 32

C =5

9(F ¡ 32)

(a) F = 58; …nd C:

C =5

9(58¡ 32)

C =5

9(26)

C = 14:4

The temperature is 14.4±C:

(b) F = ¡20; …nd C.

C =5

9(F ¡ 32)

C =5

9(¡20¡ 32)

C =5

9(¡52)

C = ¡28:9

The tempereature is ¡28:9±C.(c) C = 50; …nd F:

F =9

5C + 32

F =9

5(50) + 32

F = 90 + 32

F = 122

The temperature is 122±F.

43. Use the formula derived in Example 7 in this sec-tion of the textbook.

F =9

5C + 32

C =5

9(F ¡ 32)

(a) C = 37; …nd F:

F =9

5(37) + 32

F =333

5+ 32

F = 98:6

The Fahrenheit equivalent of 37±C is 98.6±F.

(b) C = 36:5; …nd F:

F =9

5(36:5) + 32

F = 65:7 + 32

F = 97:7

C = 37:5; …nd F .

F =9

5(37:5) + 32

= 67:5 + 32 = 99:5

The range is between 97.7±F and 99.5±F.

Page 20: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.3 The Least Squares Line 75

44. If the temperatures are numerically equal, thenF = C:

F =9

5C + 32

C =9

5C + 32

¡45C = 32

C = ¡40The Celsius and Fahrenheit temperatures are nu-merically equal at ¡40±:

1.3 The Least Squares Line2. For the set of points (1; 4); (2; 5); and (3; 6);Y = x+ 3: For the set (4; 1); (5; 2); and (6; 3);Y = x¡ 3:

3. (a)

(b) x y xy x2 y2

1 0 0 1 0

2 0:5 1 4 0:25

3 1 3 9 1

4 2 8 16 4

5 2:5 12:5 25 6:25

6 3 18 36 9

7 3 21 49 9

8 4 32 64 16

9 4:5 40:5 81 20:25

10 5 50 100 25

55 25:5 186 385 90:75

r =n(Pxy)¡ (Px)(

Py)p

n(Px2)¡ (Px)2 ¢pn(Py2)¡ (P y)2

=10(186)¡ (55)(25:5)p

10(385)¡ (55)2p10(90:75)¡ (25:5)2¼ 0:993

(c) The least squares line is of the formY =mx+ b. First solve for m.

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

=10(186)¡ (55)(25:5)10(385)¡ (55)2

= 0:5545454545 ¼ 0:55Now …nd b.

b =

Py ¡m(Px)

n

=25:5¡ 0:5545454545(55)

10

= ¡0:5Thus, Y = 0:55x¡ 0:5.

(d) Let x = 11. Find Y:

Y = 0:55(11)¡ 0:5 = 5:55

4. x y xy x2 y2

6:8 0:8 5:44 46:24 0:64

7:0 1:2 8:4 49:0 1:44

7:1 0:9 6:39 50:41 0:81

7:2 0:9 6:48 51:84 0:81

7:4 1:5 11:1 54:76 2:25

35:5 5:3 37:81 252:25 5:95

r =5(37:81)¡ (35:5)(5:3)p

5(252:25)¡ (35:5)2 ¢p5(5:95)¡ (5:3)2 ¼ 0:6985r2 = (0:6985)2 ¼ 0:5

The answer is choice (c).

Page 21: c:swp2507calwaism2001CWA CH 1 FINAL

76 Chapter 1 LINEAR FUNCTIONS

5. nb+ (Px)m =

Py

(Px)b+ (

Px2)m =

Pxy

nb+ (Px)m =

Py

nb = (Py)¡(Px)m

b =

Py¡m(Px)

n

(Px)

μPy¡m(Px)n

¶+(Px2)m =

Pxy

(Px)[(Py)¡m(Px)]+nm(Px2) = n(Pxy)

(Px)(Py)¡m(Px)2+nm(

Px2) = n(

Pxy)

nm(Px2)¡m(Px)2 = n(

Pxy)¡(Px)(Py)

m£n(Px2)¡(Px)2

¤= n(

Pxy)¡(Px)(Py)

m =n(Pxy)¡(Px)(Py)

n(Px2)¡(Px)2

6. (a) m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =7(223,963.8)¡ (707)(2212)

7(71,435)¡ 7072m = 19:70714286 ¼ 19:71

b =

Py ¡m(Px)

n

b =2212¡ (19:70714286)(707)

7¼ ¡1674:42

Y = 19:71x¡ 1674:42

(b) The year 2010 corresponds to x = 110:

Y = 19:71(110)¡ 1674:42 = 493:68

The expenditures in 2010 will reach about $493.68 billion.

(c) Let Y = 750 and …nd x.

750 = 19:71x¡ 1674:422424:42 = 19:71x

x ¼ 123

The expenditures will reach $750 billion in about the year 2023.

(d) r =7(223,963.8)¡ (707)(2212)p

7(71,435)¡ 7072 ¢p7(709,879.52)¡ 22122¼ 0:999

This indicates that the line …ts the data points very well.

Page 22: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.3 The Least Squares Line 77

7. (a) m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Py)

m =10(8501.39)¡ (995)(85.65)

10(99,085)¡ 9952m = ¡0:2519393939 ¼ ¡0:2519

b =

Py ¡m(Px)

n

b =85:65¡ (¡0:2519393939)(995)

10¼ 33:6330

Y = ¡0:2519x+ 33:6330(b) The year 2010 corresponds to x = 110:

Y = ¡0:2519(110) + 33:6330 ¼ 5:924 (in thousands)

If the trend continues, there will be about 5924 banks in 2010.

(c) r =10(8501:39)¡ (995)(85:65)p

10(99,085)¡ 9952 ¢p10(739:08)¡ 85:652 ¼ ¡0:977This means that the least squares line …ts the data points very well. The negative sign indicates that thenumber of banks is decreasing as the years increase.

8. (a)

Yes, the data points lie in a linear pattern.

(b) x y xy x2 y2

206 95 19; 570 42; 436 9025

802 138 110; 676 643; 204 19; 044

1771 228 403:788 3; 136; 441 51; 984

1198 209 250; 382 1; 435; 204 43; 681

1238 269 333; 022 1; 532; 644 72; 361

2786 309 860; 874 1; 761; 796 95; 481

1207 202 243; 814 1; 456; 849 40; 804

892 217 193; 564 795; 664 47; 089

2411 109 262; 799 5; 812; 921 11; 881

2885 434 1; 252; 090 8; 323; 225 188; 356

2705 399 1; 079; 295 7; 317; 025 159; 201

948 206 195; 288 898; 704 42; 436

2762 239 660; 118 7; 628; 644 57; 121

2815 329 926; 135 7; 924; 225 108; 241

24; 626 3383 6; 791; 415 54; 708; 982 946; 705

r =14(6,791,415)¡ (24,626)(3383)p

14(54,708,892)¡ 24,6262 ¢p14(946,705)¡ 33832 ¼ 0:693There is a positive correlation between the price and the distance.

Page 23: c:swp2507calwaism2001CWA CH 1 FINAL

78 Chapter 1 LINEAR FUNCTIONS

(c) m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =14(6,791,415)¡ (24,626)(3383)14(54,708,982)¡ 24,6262

m = 0:0737999664 ¼ 0:0738

b =

Py ¡m(Px)

n

b =3383¡ (0:0737999664)(24,626)

14¼ 111:83

Y = 0:0738x+ 111:83

The marginal cost is about 7.38 cents per mile.

(d) In 2000, the marginal cost was 2.43 cents per mile. It increased to 7.38 cents per mile by 2006.

(e) Phoenix is the outlier.

9. x y xy x2 y2

97 6247 605; 959 9409 39; 025; 009

98 6618 648; 565 9604 43; 797; 924

99 7031 696; 069 9801 49; 434; 961

100 7842 784; 200 10; 000 61; 496; 964

101 8234 831; 634 10; 201 67; 798; 756

102 8940 911; 880 10; 404 79; 923; 600

103 9205 948; 115 10; 609 84; 732; 025

104 9312 968; 448 10; 816 86; 713; 344

804 63; 429 6; 394; 869 80; 844 512; 922; 583

(a)

Yes, the pattern is linear.

(b) m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =8(6,394,869)¡ (804)(63,429)

8(80,844)¡ 8042m = 482:25

Page 24: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.3 The Least Squares Line 79

b =

Py ¡m(Px)

n

b =63,429¡ 482:25(804)

8= ¡40,537.5

Y = 482:25x¡ 40,537.5

The least squares line seems to be a good …t.

(c) r =8(6,394,869)¡ (804)(63,429)p

8(80,844)¡ 8042 ¢p8(512,922,583)¡ 63,4292 ¼ 0:987

This con…rms the least squares line is a good …t.

(d) Let Y = 12,000 and solve for x:

12,000 = 482:25x¡ 40,537.552,537.5 = 482:25x

x ¼ 109

If the trend continues, credit card debt will reach $12,000 in 1900 + 109, or the year 2009.

10. x y xy x2 y2

92 12.8 1177.6 8464 163.8493 13.9 1292.7 8649 193.2194 15.0 1410.0 8836 225.0095 14.7 1396.5 9025 216.0996 15.1 1449.6 9216 228.0197 15.1 1464.7 9409 228.0198 15.9 1558.2 9604 252.8199 16.9 1673.1 9801 285.61100 17.4 1740.0 10,000 302.76101 17.1 1727.1 10,201 292.41102 16.8 1713.6 10,404 282.24103 16.6 1709.8 10,609 275.56104 16.9 1757.6 10,816 285.611274 204:2 20,070.5 125,034 3231.16

Page 25: c:swp2507calwaism2001CWA CH 1 FINAL

80 Chapter 1 LINEAR FUNCTIONS

(a) m =n(Pxy)¡ (Px)(

Py)p

n(Px2)¡ (Px)2

m =13(20,070.5)¡ (1274)(204.2)

13(125,034)¡ 12742m = 0:3236263736 ¼ 0:324

b =

Py ¡m(Px)

n

b =204:2¡ 0:3236263736(1274)

13

¼ ¡16.01Y = 0:324x¡ 16:01

r =13(20,070.5)¡ (1274)(204.2)p

13(125,034)¡ 12742 ¢p13(3231:16)¡ 204:22¼ 0:898

(b) x y xy x2 y2

93 13:9 1292:7 8649 193:21

95 14:7 1396:5 9025 216:09

97 15:1 1464:7 9409 228:01

99 16:9 1673:1 9801 285:61

101 17:1 1727:1 10; 201 292:41

103 16:6 1709:8 10; 609 275:56

588 94:3 9263:9 57; 694 1490:89

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =6(9263:9)¡ (588)(94:3)6(57,694)¡ 5882

m = 0:3214285714 ¼ 0:321

b =

Py ¡m(Px)

n

b =94:3¡ 0:3214285714(588)

6¼ ¡15:78

Y = 0:321x¡ 15:78

r =6(9263:9)¡ (588)(94:3)p

6(57,694)¡ 5882 ¢p6(1490:89)¡ 94:32¼ 0:906

11. (a)

Yes, the points lie in a linear pattern.

(b) Using a calculator’s STAT feature, the corre-lation coe¢cient is found to be r ¼ 0:959. Thisindicates that the percentage of successful huntsdoes trend to increase with the size of the huntingparty.

(c) Y = 3:98x+ 22:7

12. (a)

Yes, the data appear to be linear.

(b) x y xy x2 y2

5:8 8:6 49.88 33.64 73.961:5 1:9 2.85 2.25 3.612:3 3:1 7.13 5.29 9.611:0 1:0 1.0 1.0 1.03:3 5:0 16.5 10.89 25.013:9 19:6 77:36 53.07 113.18

Page 26: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.3 The Least Squares Line 81

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

=5(77:36)¡ (13:9)(19:6)5(53:07)¡ 13:92

= 1:585250901 ¼ 1:585

b =

Py ¡m(Px)

n

=19:6¡ 1:585250901(13:9)

5

¼ ¡0:487Y = 1:585x¡ 0:487

(c) No, it gives negative values for small widths.

(d) r =5(77.36)¡ (13:9)(19:6)p

5(53.07)¡13:92 ¢p5(113:18)¡19:62¼ 0:999

13. (a) x y xy x2 y2

88:6 20:0 1772 7849:96 400:0

71:6 16:0 1145:6 5126:56 256:0

93:3 19:8 1847:34 8704:89 392:04

84:3 18:4 1551:12 7106:49 338:56

80:6 17:1 1378:26 6496:36 292:41

75:2 15:5 1165:6 5655:04 240:25

69:7 14:7 1024:59 4858:09 216:09

82:0 17:1 1402:2 6724 292:41

69:4 15:4 1068:76 4816:36 237:16

83:3 16:2 1349:46 6938:89 262:44

79:6 15:0 1194 6336:16 225

82:6 17:2 1420:72 6822:76 295:84

80:6 16:0 1289:6 6496:36 256:0

83:5 17:0 1419:5 6972:25 289:0

76:3 14:4 1098:72 5821:69 207:36

1200:6 249:8 20,127.47 96,725.86 4200:56

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

=15(20,127.47)¡ (1200:6)(249:8)

15(96,725.86)¡ 1200:62= 0:211925009 ¼ 0:212

b =

Py ¡m(Px)

n

=249:8¡ 0:212(1200:6)

15

¼ ¡0:315Y = 0:212x¡ 0:315

(b) Let x = 73; …nd Y:Y = 0:212(73)¡ 0:315¼ 15:2

If the temperature were 73±F, you wouldexpect to hear 15.2 chirps per second.

(c) Let Y = 18; …nd x:18 = 0:212x¡ 0:315

18:315 = 0:212x

86:4 ¼ xWhen the crickets are chirping 18 timesper second, the temperature is 86.4±F.

(d)

r =15(20,127)¡ (1200:6)(249:8)p

15(96,725.86)¡(1200:6)2 ¢p15(4200:56)¡(249:8)2= 0:835

14. (a) x y xy x2 y2

5 26.9 134.5 25 723.6110 25.8 258:0 100 665.6415 24.7 370:5 225 610.0920 22.3 446:0 400 497.2930 18.7 561:0 900 349.6935 17.9 626:5 1225 320.4140 17.2 688:0 1600 295.8445 17.3 778:5 2025 299.2950 16.0 800:0 2500 256.0055 15.5 852:5 3025 240.25305 202.3 5515:5 12,025 4258.11

Page 27: c:swp2507calwaism2001CWA CH 1 FINAL

82 Chapter 1 LINEAR FUNCTIONS

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =10(5515:5)¡ (305)(202:3)

10(12,025)¡ 3052m = ¡0:240459137 ¼ ¡0:240

b =

Py ¡m(Px)

n

b =202:9¡ (¡0:2428317077)(302)

10

¼ 27:6Y = ¡0:240x+ 27:6

(b) The year 2010 corresponds to x = 60. Letx = 60. Solve for Y:

Y = ¡0:243(60) + 27:6 ¼ 13

The ratio in 2010 should be about 13.

(c) r =10(5500:2)¡ (302)(202:9)p

10(11,704)¡3022 ¢p10(4277:07)¡202:92¼ ¡0:975

The value indicates a strong negative linear corre-lation.

15. (a)

Yes, the data appear to lie along a straight line.

r =8(2159:635)¡ (140)(95:364)p

8(3500)¡1402 ¢p8(1366:748)¡95:3642¼ 0:999

Yes, there is a strong positive linear correlationbetween the income and the year.

(c) m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =8(2159:635)¡ (140)(95:364)

8(3500)¡ 1402m = 0:4673952381 ¼ 0:467

b =

Py ¡m(Px)

n

b =95:364¡ 0:4673952381(140)

8

¼ 3:74Y = 0:467x+ 3:74

(d) The year 2020 corresponds to x = 50:

Y = 0:467(50) + 3:74 = 27:09

The predicted poverty level in the year 2020 is$27,090.

16. (a)

x y xy x2 y2

540 20 10; 800 291,600 400

510 16 8160 260,100 256

490 10 4900 240,100 100

560 8 4480 313,600 64

470 12 5640 220,900 144

600 11 6600 360,000 121

540 10 5400 291,600 100

580 8 4640 336,400 64

680 15 10,200 462,400 225

560 8 4480 313,600 64

560 13 7280 313,600 169

500 14 7000 250,000 196

470 10 4700 220,900 100

440 10 4400 193,600 100

520 11 5720 270,400 121

620 11 6820 384,400 121

680 8 5440 462,400 64

550 8 4400 302,500 64

620 7 4340 384,400 49

10,490 210 115,400 5,872,500 2522

Page 28: c:swp2507calwaism2001CWA CH 1 FINAL

Section 1.3 The Least Squares Line 83

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =19(115,400)¡ (10,490)(210)19(5,872,500)¡ 10,4902

m = ¡0:0066996227 ¼ ¡0:0067

b =

Py ¡m(Px)

n

b =210¡ (¡0:0066996227)(10,490)

19

¼ 14:75Y = ¡0:0067x+ 14:75(b) Let x = 420; …nd Y:

Y = ¡0:0067(420) + 14:75 = 11:936 ¼ 12

(c) Let x = 620; …nd Y:

Y = ¡0:0067(620) + 14:75 = 10:596 ¼ 11

(d)

r =19(115,400)¡ (10,490)(210)p

19(5,872,500)¡(10,490)2 ¢p19(2522)¡2102¼ ¡0:13

(e) There is no linear relationship between a stu-dent’s math SAT and mathematics placement testscores.

17. (a)

x y xy x2 y2

150 5000 750,000 22,500 25,000,000175 5500 962,500 30,625 30,250,000215 6000 1,290,000 46,225 36,000,000250 6500 1,625,000 62,500 42,250,000280 7000 1,960,000 78,400 49,000,000310 7500 2,325,000 96,100 56,250,000350 8000 2,800,000 122,500 64,000,000370 8500 3,145,000 136,900 72,250,000420 9000 3,780,000 176,400 81,000,000450 9500 4,275,000 202,500 90,250,0002970 72,500 22,912,500 974,650 546,250,000

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =10(22,912; 500)¡ (2970)(72,500)

10(974,650)¡ 29702m = 14:90924806 ¼ 14:9

b =

Py ¡m(Px)

n

b =72,500¡ 14:9(2970)

10

¼ 2820Y = 14:9x+ 2820

(b) Let x = 150; …nd Y:

Y = 14:9(150) + 2820

Y ¼ 5060; compared to actual 5000

Let x = 280; …nd Y:

Y = 14:9(280) + 2820

¼ 6990; compared to actual 7000

Let x = 420; …nd Y:

Y = 14:9(420) + 2820

¼ 9080; compared to actual 9000

(c) Let x = 230; …nd Y:

Y = 14:9(230) + 2820

¼ 6250

Adam would need to buy a 6500 BTU air condi-tioner.

18. (a)

(b) L T LT L2 T 2

1:0 1:11 1:11 1 1:2321

1:5 1:36 2:04 2:25 1:8496

2:0 1:57 3:14 4 2:4649

2:5 1:76 4:4 6:25 3:0976

3:0 1:92 5:76 9 3:6864

3:5 2:08 7:28 12:25 4:3264

4:0 2:22 8:88 16 4:9284

17:5 12:02 32:61 50:75 21:5854

Page 29: c:swp2507calwaism2001CWA CH 1 FINAL

84 Chapter 1 LINEAR FUNCTIONS

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =7(32:61)¡ (17:5)(12:02)

7(50:75)¡ 17:52m = 0:3657142857 ¼ 0:366

b =

PT ¡m(PL)

n

b =12:02¡ 0:3657142857(17:5)

7

¼ 0:803Y = 0:366x+ 0:803The line seems to …t the data.

(c) r =7(32:61)¡ (17:5)(12:02)p

7(50:75)¡17:52 ¢p7(21:5854)¡12:022= 0:995; which indicates a good …t and

con…rms the conclusion in part (b).

19. (a) Use a calculator’s statistical features to obtainthe least squares line.

y = ¡0:1358x+ 113:94

(b) y = ¡0:3913x+ 148:98

(c) Set the two equations equal and solve for x.

¡0:1358x+ 113:94 = ¡0:3913x+ 148:980:2555x = 35:04

x ¼ 137

The women’s record will catch up with the men’srecord in 1900 + 137, or in the year 2037.

(d) rmen ¼ ¡0:9823rwomen ¼ ¡0:9487

Both sets of data points closely …t a line with neg-ative slope.

(e)

20. (a)

r =10(399:16)¡ (500)(20:668)p

10(33,250)¡5002 ¢p10(91:927042)¡(20:668)2= ¡0:995

Yes, there does appear to be a linear correlation.

(b) m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =10(399:16)¡ (500)(20:668)

10(33,250)¡ 5002m = ¡0:0768775758 ¼ ¡0:0769

b =

Py ¡m(Px)

n

b =20:668¡ (¡0:0768775758)(500)

10

¼ 5:91Y = ¡0:0769x+ 5:91

(c) Let x = 50

Y = ¡:0769(50) + 5:91 ¼ 2:07

The predicted number of points expected when ateam is at the 50 yard line is 2.07 points.

Page 30: c:swp2507calwaism2001CWA CH 1 FINAL

Chapter 1 Review Exercises 85

21. (a) m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =10(5496)¡ (110)(466)10(1540)¡ 1102

m = 1:121212121 ¼ 1:12

b =

Py ¡m(Px)

n

b =466¡ 1:121212121(110)

10

¼ 34:27Y = 1:12x+ 34:27

(b) =10(5496)¡ (110)(466)p

10(1540)¡ 1102 ¢p10(22,232)¡ 4662¼ 0:8963

Yes, the value indicates a good …t of the leastsquares line to the data.

(c) The year 2005 corresponds to x = 25:

Y = 1:12(25) + 34:27 = 62:27 ¼ 62

The predicted length of a game in 2005 is 2 hours+ 62 minutes, or 3:02.

22. (a) Convert the time from hours and minutes intohours.

average speed =101:7

29:583¼ 3:44

Apt’s average speed was about 3.44 miles per hour.

(b)

Yes, the data appear to lie approximately on astraight line.

(c) x y

0 02.233 9.64.133 16.56.167 21.67.167 31.610.85 42.412.7 49.8

14.333 5816.5 65.2

18.033 68.419.417 73.723.117 83.126.15 89.628.3 95.8

29.583 101.7218.683 807

Using a graphing calculator,

Y = 3:39x+ 4:32:

(d) Using a graphing calculator,

r = 0:994

Yes, this value indicates a good …t of the leastsquares line to the data.

(e) A good value for Apt’s average speed wouldbe

m = 3:39 miles per hour.

This value is slower than the average speed foundin part (a).

Chapter 1 Review Exercises2. To complete the coe¢cient of correlation, you needto compute the following quantities:

Px;Py;P

xy;Px2;

Py2; and n:

3. Through (¡3; 7) and (2; 12)

m =12¡ 72¡ (¡3) =

5

5= 1

4. Through (4;¡1) and (3;¡3):

m =¡3¡ (¡1)3¡ 4

=¡3 + 1¡1

=¡2¡1 = 2

Page 31: c:swp2507calwaism2001CWA CH 1 FINAL

86 Chapter 1 LINEAR FUNCTIONS

5. Through the origin and (11;¡2)

m =¡2¡ 011¡ 0 = ¡

2

11

6. Through the origin and (0; 7)

m =7¡ 00¡ 0 =

7

0

The slope of the line is unde…ned.

7. 4x+ 3y = 63y = ¡4x+ 6

y = ¡43x+ 2

Therefore, the slope is m = ¡43 :

8. 4x¡ y = 7¡y = ¡4x+ 7y = 4x¡ 7m = 4

9. y + 4 = 9y = 5

y = 0x+ 5

m = 0

10. 3y ¡ 1 = 143y = 14 + 1

3y = 15

y = 5

This is a horizontal line. The slope of a horizontalline is 0.

11. y = 5x+ 4

m = 5

12. x = 5y

1

5x = y

m =1

5

13. Through (5;¡1); slope 23

Use point-slope form.

y ¡ (¡1) = 2

3(x¡ 5)

y + 1 =2

3(x¡ 5)

3(y + 1) = 2(x¡ 5)3y + 3 = 2x¡ 10

3y = 2x¡ 13

y =2

3x¡ 13

3

14. Through (8; 0); with slope ¡14

Use point-slope form.

y ¡ 0 = ¡14(x¡ 8)

y = ¡14x+ 2

15. Through (¡6; 3) and (2;¡5)

m =¡5¡ 32¡ (¡6) =

¡88= ¡1

Use point-slope form.

y ¡ 3 = ¡1[x¡ (¡6)]y ¡ 3 = ¡x¡ 6

y = ¡x¡ 3

16. Through (2;¡3) and (¡3; 4)

m =4¡ (¡3)¡3¡ 2 = ¡7

5

Use point-slope form.

y ¡ (¡3) = ¡75(x¡ 2)

y + 3 = ¡75x+

14

5

y = ¡75x+

14

5¡ 3

y = ¡75x+

14

5¡ 155

y = ¡75x¡ 1

5

17. Through (¡1; 4); unde…ned slopeUnde…ned slope means the line is vertical.The equation of the vertical line through(¡1; 4) is x = ¡1:

18. Through (¡2; 5); with slope 0Horizontal lines have 0 slope and an equation ofthe form y = k:

The line passes through (¡2; 5) so k = 5: An equa-tion of the line is y = 5:

19. Through (3;¡4) parallel to 4x¡ 2y = 9Solve 4x¡ 2y = 9 for y:

¡2y = ¡4x+ 9

y = 2x¡ 92

m = 2

Page 32: c:swp2507calwaism2001CWA CH 1 FINAL

Chapter 1 Review Exercises 87

The desired line has the same slope. Use thepoint-slope form.

y ¡ (¡4) = 2(x¡ 3)y + 4 = 2x¡ 6

y = 2x¡ 10

20. Through (0; 5); perpendicular to 8x+ 5y = 3Find the slope of the given line …rst.

8x+ 5y = 3

5y = ¡8x+ 3

y =¡85x+

3

5

m = ¡85

The perpendicular line has m = 58 :

Use point-slope form.

y ¡ 5 = 5

8(x¡ 0)

y =5

8x+ 5

21. Through (2;¡10), perpendicular to a line with un-de…ned slopeA line with unde…ned slope is a vertical line. Aline perpendicular to a vertical line is a horizontalline with equation of the form y = k: The desiredline passed through (2;¡10); so k = ¡10: Thus,an equation of the desired line is y = ¡10:

22. Through (3;¡5); parallel to y = 4Find the slope of the given line.y = 0x + 4; so m = 0; and the required line willalso have slope 0.Use the point-slope form.

y ¡ (¡5) = 0(x¡ 3)y + 5 = 0

y = ¡5

23. Through (¡3; 5); perpendicular to y = ¡2The given line, y = ¡2; is a horizontal line. A lineperpendicular to a horizontal line is a vertical linewith equation of the form x = h:

The desired line passes through (¡3; 5); soh = ¡3: Thus, an equation of the desired lineis x = ¡3:

24. y = 4x+ 3

Let x = 0: y = 4(0) + 3

y = 3

Let y = 0: 0 = 4x+ 3

¡3 = 4x

¡34= x

Draw the line through (0; 3) and¡¡3

4 ; 0¢:

25. y = 6¡ 2xFind the intercepts.Let x = 0:

y = 6¡ 2(0) = 6

The y-intercept is 6.Let y = 0:

0 = 6¡ 2x2x = 6

x = 3

The x-intercept is 3.Draw the line through (0; 6) and (3; 0):

Page 33: c:swp2507calwaism2001CWA CH 1 FINAL

88 Chapter 1 LINEAR FUNCTIONS

26. 3x¡ 5y = 15¡5y = ¡3x+ 15

y =3

5x¡ 3

When x = 0; y = ¡3:When y = 0; x = 5:Draw the line through (0;¡3) and (5; 0):

27. 4x+ 6y = 12

Find the intercepts.When x = 0; y = 2; so the y-intercept is 2.When y = 0; x = 3; so the x-intercept is 3:Draw the line through (0; 2) and (3; 0):

28. x¡ 3 = 0x = 3

This is the vertical line through (3; 0):

29. y = 1

This is the horizontal line passing through (0; 1):

30. y = 2x

When x = 0; y = 0:When x = 1; y = 2:Draw the line through (0; 0) and (1; 2):

31. x+ 3y = 0

When x = 0; y = 0:When x = 3; y = ¡1:Draw the line through (0; 0) and (3;¡1):

32. (a) E = 352 + 42x (where x is in thousands)

(b) R = 130x (where x is in thousands)

(c) R > E

130x > 352 + 42x

88x > 352

x > 4

For a pro…t to be made, more than 4000 chipsmust be sold.

Page 34: c:swp2507calwaism2001CWA CH 1 FINAL

Chapter 1 Review Exercises 89

33. S(q) = 6q + 3; D(q) = 19¡ 2q(a) S(q) = D(q) = 10

10 = 6q + 3

7 = 6q

7

6= q (supply)

10 = 19¡ 2q¡9 = ¡2q9

2= q (demand)

When the price is $10 per pound, the supply is76 pounds per day, and the demand is

92 pounds

per day.

(b) S(q) = D(q) = 15

15 = 6q + 3

12 = 6q

2 = q (supply)

15 = 19¡ 2q¡4 = ¡2q2 = q (demand)

When the price is $15 per pound, the supply is2 pounds per day, and the demand is 2 poundsper day.

(c) S(q) = D(q) = $18

18 = 6q + 3

15 = 6q

5

2= q (supply)

18 = 19¡ 2q¡1 = ¡2q1

2= q (demand)

When the price is 52 pounds per day, the demand

is 12 pound per day.

(d)

(e) The graph shows that the lines representingthe supply and demand functions intersect at thepoint (2; 15): The y-coordinate of this point givesthe equilibrium price. Thus, the equilibrium priceis $15.(f) The x-coordinate of the intersection point givesthe equilibrium quantity. Thus, the equilibriumquantity is 2, representing 2 pounds of crabmeatper day.

34. Using the points (60; 40) and (100; 60);

m =60¡ 40100¡ 60 =

20

40= 0:5:

p¡ 40 = 0:5(q ¡ 60)p¡ 40 = 0:5q ¡ 30

p = 0:5q + 10

S(q) = 0:5q + 10

35. Using the points (50; 47:50) and (80; 32:50);

m =47:50¡ 32:5050¡ 80 =

15

¡30 =¡12= ¡0:5:

p¡ 47:50 = ¡0:5(q ¡ 50)p¡ 47:50 = ¡0:5q + 25

p = ¡0:5q + 72:50D(q) = ¡0:5q + 72:50

36. S(q) = D(q)

0:5q + 10 = ¡0:5q + 72:50q = 62:5

S(62:5) = 0:5(62:5) + 10 = 31:25 + 10 = 41:25

The equilibrium price is $41.25, and the equilib-rium quantity is 62.5 diet pills.

Page 35: c:swp2507calwaism2001CWA CH 1 FINAL

90 Chapter 1 LINEAR FUNCTIONS

37. Eight units cost $300; …xed cost is $60.The …xed cost is the cost if zero units are made.(8; 300) and (0; 60) are points on the line.

m =60¡ 3000¡ 8 = 30

Use slope-intercept form.

y = 30x+ 60

C(x) = 30x+ 60

38. Fixed cost is $2000; 36 units cost $8480.Two points on the line are (0; 2000) and (36; 8480); so

m =8480¡ 200036¡ 0 =

6480

36= 180:

Use point-slope form.

y = 180x+ 2000

C(x) = 180x+ 2000

39. Twelve units cost $445; 50 units cost $1585. Pointson the line are (12; 445) and (50; 1585):

m =1585¡ 44550¡ 12 = 30

Use point-slope form.

y ¡ 445 = 30(x¡ 12)y ¡ 445 = 30x¡ 360

y = 30x+ 85

C(x) = 30x+ 85

40. Thirty units cost $1500; 120 units cost $5640.Two points on the line are (30; 1500); (120; 5640);so

m =5640¡ 1500120¡ 30 =

4140

90= 46:

Use point-slope form.

y ¡ 1500 = 46(x¡ 30)y = 46x¡ 1380 + 1500y = 46x+ 120

C(x) = 46x+ 120

41. C(x) = 200x+ 1000R(x) = 400x

(a) C(x) = R(x)

200x+ 1000 = 400x

1000 = 200x

5 = x

The break-even quantity is 5 cartons.

(b) R(5) = 400(5) = 2000

The revenue from 5 cartons of CD’s is $2000.

42. (a) C(x) = 3x+ 160; R(x) = 7x

C(x) = R(x)

3x+ 160 = 7x

160 = 4x

40 = x

The break-even quantity is 40 pounds.

(b) R(40) = 7 ¢ 40 = $280The revenue for 40 pounds is $280.

43. Let y represent imports from China in billions ofdollars. Using the points (1; 102) and (5; 243),

m =243¡ 1025¡ 1 =

141

4= 35:25

y ¡ 102 = 35:25(x¡ 1)y ¡ 102 = 35:25x¡ 35:25

y = 35:25x+ 66:75:

44. Let y represent imports to China in billions of dol-lars. Using the points (1; 19) and (5; 42),

m =42¡ 195¡ 1 =

23

4= 5:75

y ¡ 19 = 5:75(x¡ 1)y ¡ 19 = 5:75x¡ 5:75

y = 5:75x+ 13:25:

45. Using the points (97, 44,883) and (105, 46,326);

m =46,326¡ 44,883

105¡ 97 =1443

8¼ 180:4

I ¡ 44,883 = 180:4(x¡ 97)I ¡ 44,883 = 180:4x¡ 17,498.8

I(x) = 180:4x+ 27,384.2.

Rounded to the nearest dollar,

I(x) = 180:4x+ 27,384.

Page 36: c:swp2507calwaism2001CWA CH 1 FINAL

Chapter 1 Review Exercises 91

46. (a) x y

80 7.585 1290 1695 20.45100 24.9105 28.4

Using a graphing calculator, Y = 0:8437x¡59:84:(b) Y = 0:8437(110)¡ 59:84 = 32:967The average cost of a new car in the year 2010 ispredicted to be about $32,967.

(c)Using a graphing calculator, r = 0:999. Yes,the line is a good …t for the data.

(d)

No, the scatterplot suggests that the trend is lin-ear.

47. (a) x y

1960 43

2840 74

2060 54

3630 79

2420 63

3160 74

3220 78

2550 70

3140 80

3790 77

Using a graphing calculator, r = 0:881: Yes, thedata seem to …t a straight line.

(b)

The data somewhat …t a straight line, but thereis also a nonlinear trend.

(c) Using a graphing calculator,Y = 0:0173x+ 19:3:

(d) Let x = 3400. Find Y:

Y = 0:0173(3400) + 19:3 ¼ 78:1

The predicted life expectancy in the United King-dom, with a daily calorie supply of 3400, is about78.1 years. This agrees with the actual value of78 years.

48. (a) x y xy x2 y2

130 170 22,100 16,900 28,900138 160 22,080 19,044 25,600142 173 24,566 20,164 29,929159 181 28,779 25,281 32,761165 201 33,165 27,225 40,401200 192 38,400 40,000 36,864210 240 50,400 44,100 57,600250 290 72,500 62,500 84,1001394 1607 291,990 255,214 336,155

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =8(291,990)¡ (1394)(1607)

8(225,214)¡ 13942m = 0:9724399854 ¼ 0:97

b =

Py ¡m(Px)

n

b =1607-0.97(1394)

8

¼ 31:85Y = 0:97x+ 31:85

(b) Let x = 190; …nd Y:

Y = 0:97(190) + 31:85

Y = 216:15 ¼ 216

The cholesterol level for a person whoseblood sugar level is 190 would be about 216.

(c)

r =8(291,990)¡ (1394)(1607)p

8(255,214)¡13942 ¢p8(336,155)¡16072= 0:933814 ¼ 0:93

Page 37: c:swp2507calwaism2001CWA CH 1 FINAL

92 Chapter 1 LINEAR FUNCTIONS

49. Using the points (74; 142:3) and (104; 118:4);

m =118:4¡ 142:3104¡ 74 =

¡23:930

= ¡0:797

y ¡ 142:3 = ¡0:797(x¡ 74)y ¡ 142:3 = ¡0:797x+ 59

y = ¡0:797x+ 201:3:50. Using the points (95; 55) and (105; 67);

m =67¡ 55105¡ 95 =

12

10= 1:2

y ¡ 55 = 1:2(x¡ 95)y ¡ 55 = 1:2x¡ 114

y = 1:2x¡ 59:051. (a) Using a graphing calculator, r = 0:749:

The data seem to …t a line but the …t is not verygood.

(b)

(c) Using a graphing calculator,

Y = 3:81x+ 98:24

(d) The slope is 3.81 thousand (or 3810). Onaverage, the governor’s salary increases $3810 foreach additional million in population.

Extended Application: UsingExtrapolation to Predict LifeExpectancy1. x y xy x2 y2

1970 74.7 147,159.0 3,880,900 5580.091975 76.6 151,285.0 3,900,625 5867.561980 77.4 153,252.0 3,920,400 5990.761985 78.2 155,227.0 3,940,225 6115.241990 78.8 156,812.0 3,960,100 6209.441995 78.9 157,405.5 3,980,025 6225.212000 79.5 159,000.0 4,000,000 6320.252005 80.8 162,004.0 4,020,025 6528.64

15,900 624.9 1,242,144.5 31,602,300 48,837.19

m =n(Pxy)¡ (Px)(

Py)

n(Px2)¡ (Px)2

m =8(1,242,144.5)¡ (15,900)(624.9)

8(31,602,300)¡ 15,9002m = 0:1483333333

b =

Py ¡m(Px)

n

b =624.9¡ 0:1483333333(15,900)

8

¼ ¡216:7Y = 0:148x¡ 216:7

2. Let x = 1900. Find Y:

Y = 0:1483333333(1900)¡ 216:7 = 65:1

From the equation, the guess is the life expectancyof females born in 1900 is 65.1 years.

3. The poor prediction isn’t surprising, since we wereextrapolating far beyond the range of the originaldata.

4. x y Predicted value Residual1970 74.7 75.52 ¡0:821975 76.6 76.26 0:34

1980 77.4 77.00 0:40

1985 78.2 77.74 0:46

1990 78.8 78.48 0:32

1995 78.9 79.22 ¡0:322000 79.5 79.97 ¡0:472005 80.8 80.71 0.09

Page 38: c:swp2507calwaism2001CWA CH 1 FINAL

Extended Application: Using Extrapolation to Predict Life Expectancy 93

5. It’s not clear that any simple smooth function will…t this data. This will make it di¢cult to predictthe life expectancy for females born in 2015.

6. You’ll get 0 slope and 0 intercept, because you’vealready subtracted out the linear component ofthe data.

7. They used a regression equation of some type topredict this value.