cs2403 ppt

Embed Size (px)

Citation preview

  • 8/21/2019 cs2403 ppt

    1/46

     

    Om Sakthi

    Adhiparasakthi Engineering CollegeMelmaruvathur – 603319

    CS2403 Digital Signal Processing

    Lecture Notes by

    R. Sivarajan, AP/ECE/APEC

    Department of Electronics and Communication

    Engineering

  • 8/21/2019 cs2403 ppt

    2/46

     

    Unit – I Signals and Systems

  • 8/21/2019 cs2403 ppt

    3/46

     

    Basic Elements of DSP

  • 8/21/2019 cs2403 ppt

    4/46

     

    Contd…

    Advantages of DSP over ASP:Stable, reliable, flexible, predictable, repeatable 

    Choose any accuracy by increasing or decreasing number of

    bits

    Sharing of digital processor

    Achieve linear phase characteristics

    Multi rate processing is possible

    Digital circuits connected in cascade without any loadingproblem

    Storage of digital data very easy

    For processing low frequency signal (seismic signal), analogcircuits requires inductor and capacitor of very large size, so

    we prefer digital processor for such application 

  • 8/21/2019 cs2403 ppt

    5/46

     

    Contd…

    Disadvantages of DSP over ASP:Needs pre and post processing (ADC & DAC)

    Suffer from frequency limitation

    Analog circuits don’t need much power where digital circuit

    needs more power consumption

    Applications of DSP:

     Telecommunication

    MilitaryConsumer Electronics

    Instrumentation and Control

    SeismologyImage processing

    Speech processing

    Medicine, Signal filtering

  • 8/21/2019 cs2403 ppt

    6/46

     

    Concept of Frequency in Analog and Digital Signal

    Continuous time sinusoid signal Simple harmonic oscillation  defined by sinusoid signal as    = + ,−∞ < < ∞ A – amplitude of sinusoids; Ω – frequency in rad/sec; θ –

    phase in radians and  related as = 2  Thus,

      = 2 + ,−∞ < < ∞ 

    Properties of CT sinusoid signal    is periodic;   = + ,  = 1 ⁄ ,   is afundamental period of sinusoids

    CT sinusoid signal with distinct frequency themselves differIncrease in F result in increase in rate of oscillation of the

    signal

  • 8/21/2019 cs2403 ppt

    7/46

     

    Contd…

    Relationship of sinusoid signal in terms of exponential

    signal

      = 2   + 2 ,−∞ < < ∞ Sinusoidal signal   adding two equal amplitude complex

    conjugate exponential signal

    Positive frequency   counter clockwise uniform angular

    motion

    Negative frequency  clockwise uniform angular motion

  • 8/21/2019 cs2403 ppt

    8/46

     

    Contd…

    Discrete time sinusoid signal  The DT sinusoid signal expressed as  = + , −∞ < < ∞A – amplitude of sinusoids; ω – frequency in rad/samples; θ

     – phase in radians;  and   related as = 2  Thus,   = 2 + , −∞ < < ∞ Properties of DT sinusoid signal 

       is periodic only if its frequency is rational number;  + = , smallest value of  is fundamental periodDT sinusoids whose frequency separated by an integer

    multiples of 2π are identicalhe highest rate of oscillation in a discrete time sinusoids is

    attained when =   (or = −) or equivalently   =   (or  = −

    )

  • 8/21/2019 cs2403 ppt

    9/46

     

    Contd…

    Relationship of sinusoid signal in terms of exponential

    signal

        = 2  + 2 ,−∞ < < ∞Sinusoidal signal   adding two equal amplitude complex

    conjugate exponential signal

    Positive frequency   counter clockwise uniform angular

    motion

    Negative frequency  clockwise uniform angular motion

  • 8/21/2019 cs2403 ppt

    10/46

     

    Sampling Theorem

    Sampling  continuous time to discrete time signal

    Sampling performed by taking samples of CT signal at

    definite interval of time

     Time interval between successive samples  sampling time

    Inverse of sampling period  sampling frequency Fs. = / If highest frequency of analog signal is   is  =  andsignal is sampled at  > 2 ≈ 2, then    can easilyextracted from its sample value using interpolation function

     = 22  Sampling rate

     = 2 = 2, Nyquist rate

  • 8/21/2019 cs2403 ppt

    11/46

     

    Discrete Time Signals

    Representation of Signals 

    Functional representation

     Tabular representation

    Sequence representation

    Graphical representation

    Some elementary DT Signals:

    Unit sample sequence = 1 = 0; = 0 ≠ 0Unit step sequence

    = 1 ≥ 0; = 0 < 0Unit ramp sequence = ≥ 0; = 0 < 0 

  • 8/21/2019 cs2403 ppt

    12/46

     

    Contd…

    Exponential sequence:  =    

    > 1 Grows exponentially

    < < 1 

    Decays exponentially < −1 Grows exponentially; Alternates between +ve and –ve

    − < < 0 Decays exponentially; Alternates between +ve and –ve

  • 8/21/2019 cs2403 ppt

    13/46

     

    Contd…

    Discrete Time Sinusoid Signal:

    = + ; −∞ < < +∞ 

    = + ; −∞ < < +∞

     – frequency in radians/ sampleθ – phase in radians

        = 2 

  • 8/21/2019 cs2403 ppt

    14/46

     

    Contd…

    Deterministic Signal: Nature and amplitude of signal can

    be predicted

    Random Signal: Nature and amplitude of signal cannot be

    predicted

    Periodic Signal: + = , −∞ < < ∞ Aperiodic Signal: + ≠ , −∞ < < ∞ Even Signal:

    = − 

    Odd Signal: = −− Even component of signal: =   + − Odd component of signal:

    =  − −

     

    Causal Signal: Right Sided Sequence, = 0, < 0,  defined at ≥ 0;Non Causal Signal: Two Sided Sequence,

     defined at

    both ≥ 0 and > 0;

  • 8/21/2019 cs2403 ppt

    15/46

     

    Contd…

    Anti Causal Signal: Left Sided Sequence,  defined at ≤ 0. Energy and Power Signal: 

     

    Energy signal: finite energy and zero average power

      Power signal: infinite energy and finite average power

      Energy of the signal: 

    = lim→    ||    Power of the Signal: 

    = lim→ 12 + 1    ||  

  • 8/21/2019 cs2403 ppt

    16/46

     

    Discrete Time Systems

    Representation of Systems:

    Block diagram representationSignal flow graph

    Element Block Diagram

    Representation

    Signal flow Graph

    Adder

    Constant Multiplier

    Unit delay element

    Unit advance

    element

  • 8/21/2019 cs2403 ppt

    17/46

     

    Classification of Systems 

    Static System:Output depends on present input not on past or future inputNo memoryDynamic System: 

    Output depends on both present and past inputHas a memoryLinear System: Superposition principle holds

    H[a*x(n)+b*y(n)]=a*H[x(n)]+b*H[y(n)]

    Non Linear System: Superposition principle does not holdsTime Inariant System: Input Output relationship does notvary with time

    H[x(n-k)]=y(n-k)

    Time Variant System: Input Output relationship vary withtime

    Linear Time Invariant (LTI) System: System which satisfy

    both linearity and time invariant condition called LTI System

  • 8/21/2019 cs2403 ppt

    18/46

     

    Contd…

    Causal System: Output depends only on present and pastinput and does not depends on future inputNon Causal System: Output depends on present, past and

    future input

    Stable and Unstable System: System said to be bounded input bounded output (BIBO)stable, if every bounded input produces bounded outputBounded signal has amplitude which remains finite

    BIBO stable system produces bounded output for anybounded input so that it does not grow unreasonable largeConditions: If system transfer function is a rational fraction, then degree

    of numerator must no longer than degree of denominatorPoles lie in left half plane of S – plane or within unit circle inZ – planeNo repeated poles lie on the imaginary axis

  • 8/21/2019 cs2403 ppt

    19/46

     

    Analysis of Discrete Time LTI Systems

    Techniques for the analysis of linear system:

    Input output equation for system

    = − 1, − 2, , − , , − 1, , −  For an LTI system, input output relationship can be

    expressed as

     =  −

      −  −

     

     This input output relationship is called difference equation

  • 8/21/2019 cs2403 ppt

    20/46

     

    Contd…

    Response of LTI systems to arbitrary inputs: The

    Convolution Sum:

     =     ℎ −

     

    Properties of Convolution:

    Commutative Property:

    ∗ ℎ = ℎ ∗  Associative Property:

    [ ∗ ℎ] ∗ = ∗ [ℎ ∗ ] 

    Distributive Property: ∗ [ℎ + ] = [ ∗ ℎ] + [ ∗ ] 

  • 8/21/2019 cs2403 ppt

    21/46

     

    Contd...

    Condition for Stability of LTI Systems:

      |ℎ|

      < ∞ 

    FIR System: Finite number of samples, Requires a memory

    of length N, Described by a difference equation,

     =   −  IIR System: Infinite number of samples, Requires a infinitememory, Described by a difference equation,

     =  −   −  −

     

  • 8/21/2019 cs2403 ppt

    22/46

     

    Z Transform

    Two Sided Z Transform:

      = [] =    

    ∞ 

    One Sided Z Transform:

      = [] =  ∞

     

    Inverse Z transform: =   12  

  • 8/21/2019 cs2403 ppt

    23/46

     

    ROC

    Definition:

    ROC (Region of Convergence) of   is the set of all values of, for which   attains a finite value.Properties:

    ROC of   is a ring or disk in Z plane, with center at origin.If   is finite duration right sided (causal) signal, then the ROCis entire Z plane except = 0.If

      is finite duration left sided (anti causal) signal, then the

    ROC is entire Z plane except = ∞.If   is finite duration two sided (non causal) signal, then theROC is entire Z plane except

    = 0and

    =∞.

    If  is infinite duration right sided (causal) signal, then ROC isexterior of the circle of radius .If  is infinite duration left sided (anti causal) signal, then ROCis interior of the circle of radius

    .

  • 8/21/2019 cs2403 ppt

    24/46

     

    Contd…

    If   is infinite duration both sided (non causal) signal, thenROC is the region in between two circles of radius and .If   is rational, then ROC does not include any poles of  .If    is rational, and if   is right sided (causal), then ROC isexterior of the circle whose radius corresponds to the pole withlargest magnitude.

    If

      is rational, and if

     is left sided (anti causal), then ROC

    is interior of the circle whose radius corresponds to the pole withsmallest magnitude.

    If   is rational, and if  is two sided (non causal), then ROCis region in between two circles whose radius corresponds to the

    pole of causal part with largest magnitude and pole of anti causal

    with smallest magnitude.

  • 8/21/2019 cs2403 ppt

    25/46

     

    Properties of Z Transform

    Linearity Property:

    +  = [] + [] = +  Proof:

    [ + ] =  [ + ]∞∞  

    [ + ] =     ∞

    ∞ +     ∞

    ∞  

    [ + ] =    

    ∞ +    

    ∞ 

    [ + ] = +  

  • 8/21/2019 cs2403 ppt

    26/46

     

    Contd…

    Multiplication by exponential sequence

    :

    [] =  

    Proof:

    [] =     ∞

     

    [] =     ∞

    ∞ 

    [] =     ∞

    ∞  [] =  

    [

    ] =

     

  • 8/21/2019 cs2403 ppt

    27/46

     

    Contd…

    Multiplication by n:

    [] = −  Proof:

      =     ∞

     

      =     ∞

    ∞  

      =       ∞

    ∞     =     −

    ∞ 

  • 8/21/2019 cs2403 ppt

    28/46

     

    Contd…

    −   =    ∞

    ∞ 

      = [] 

    [] = −  

  • 8/21/2019 cs2403 ppt

    29/46

     

    Contd…

    Shifting property:

    If [] = , then[ − ] =   [ + ] =   Proof:

    [ − ] =     −

    ∞ 

    Let = − , then = +  If = −∞, then = −∞ If

    = ∞, then

    = ∞ 

    [ − ] =     ∞∞

     

  • 8/21/2019 cs2403 ppt

    30/46

     

    Contd…

    [ − ] =     ∞

    ∞ 

    [ − ] =   ∞

     

    [ − ] =   Similarly, we can prove

    [ − ] =

      

  • 8/21/2019 cs2403 ppt

    31/46

     

    Contd…

    Convolution Theorem:

    If [] =   and [] = , then [ ∗ ] =  where,

    ∗  =     −  

    Proof:

    [ ∗ ] =    [ ∗ ]∞

     

    [ ∗ ] =     −   ∞

    ∞ 

    Let

    = − , then

    = +  

     

  • 8/21/2019 cs2403 ppt

    32/46

    Contd…

    [ ∗ ] =       ∞

    ∞ 

    [ ∗ ] =    

        ∞

    ∞  [ ∗ ] =  

     

  • 8/21/2019 cs2403 ppt

    33/46

    Contd…

    Initial Value Theorem:

    If [] = , then

    0 = lim→  

    Proof:

      =  ∞

     

      = 0 + 1

      + 2

      + ∞ 

     Taking limit → ∞, lim→  = 0 

     

  • 8/21/2019 cs2403 ppt

    34/46

    Contd…

    Final Value Theorem:

    If [] = , then∞ = lim→  1 −   

     

  • 8/21/2019 cs2403 ppt

    35/46

    Inverse Z Transform

    Residue Method

    Long Division MethodPartial Fraction Method

     

  • 8/21/2019 cs2403 ppt

    36/46

    Convolution

    Linear Convolution

    yn =     xkhn − k

     

    Circular Convolution:

     = ○  =     −  

     = ○  =     −  Various Methods of calculating both Linear and Circular

    Convolution between two sequences areGraphical Method

     Tabular MethodMatrix method

     

    C l i

  • 8/21/2019 cs2403 ppt

    37/46

    Correlation

    Auto Correlation:

     =     − ∞

    ∞  

    Cross Correlation:

     =     − ∞

     

     

  • 8/21/2019 cs2403 ppt

    38/46

    Unit – II Frequency Transformation

     

    Di t F i t f

  • 8/21/2019 cs2403 ppt

    39/46

    Discrete Fourier transform

    N point DFT

      =   ⁄

      , = 0, 1, 2, , − 1 

    N point IDFT

     = 1

       ⁄

      , = 0, 1, 2, , − 1 

     

    Properties of DFT

  • 8/21/2019 cs2403 ppt

    40/46

    Properties of DFT

    Periodicity property:

    If   is an N point DFT of , then  +  =   

      +  =   

    Linearity property:If    and   are the N point DFT of   and  respectively, and  and  are arbitrary constants either realor complex valued, then [ + ] = +  Convolution property:

    If

       and

      are the N point DFT of

      and

     

    respectively, then [ ∗ ] =  

     

    Contd

  • 8/21/2019 cs2403 ppt

    41/46

    Contd…

    Time reversal property:

    If   is the N point DFT of the sequence , then 

    [ − ] = −  

    Circular time shift property:If   is the DFT of the sequence , then [ − , ] = ⁄  Circular frequency shift property:If   is the DFT of the sequence , then  ⁄   = − ,  Circular convolution property of DFT.If [] = and [] = , then[] = [⨂] =   

     

    Contd

  • 8/21/2019 cs2403 ppt

    42/46

    Contd…

    Complex conjugate property:

    If [] = , then[∗] = ∗−, = ∗ −  

    [ ∗] = 1  ∗ ⁄

      = 1     ⁄

      ∗ 

    Circular correlation property:

    If

    [] = and

    [] = , then

    [] = 1  =  ∗ where,

     = ∗ − ,  

     

    Contd

  • 8/21/2019 cs2403 ppt

    43/46

    Contd…

    Multiplication of two sequences property:

    If [] = and [] = , then [] = [] = 1

    [ ⨂] 

    Parseval’s property:For complex valued sequence and , if [] =  and [] = ,

     ∗   = 1  ∗  If  = , then

    ||   = 1 | |  

     

    DITFFT Algorithm to calculate DFT

  • 8/21/2019 cs2403 ppt

    44/46

    DITFFT Algorithm to calculate DFT

     

    DIFFFT Algorithm to Calculate DFT

  • 8/21/2019 cs2403 ppt

    45/46

    DIFFFT Algorithm to Calculate DFT

     

    Filtering Method based on DFT

  • 8/21/2019 cs2403 ppt

    46/46

    Filtering Method based on DFT

     – Input (Length M)ℎ – System impulse response (Length N)

     - Response of the system to an input (Length L = M+N-1)

     = ∗ ℎ Make length of  and ℎ to M+N-1 by appending zerosMake length of  and ℎ in the order of 2 where  is theinteger (length must be 2 = 4, 2 = 8, 2 = 16, etc)Find L point DFT of , i.e.,   Find L point DFT of

    ℎ, i.e.,

     

    Multiply   and  Find IDFT of [ ]