23
CS148: Introduction to Computer Graphics and Imaging Displays CS148 Lecture 11 Pat Hanrahan, Fall 2011 Topics Spatial resolution Temporal resolution Tone mapping Display technologies

CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148: Introduction to Computer Graphics and Imaging

Displays

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Topics

Spatial resolutionTemporal resolutionTone mapping

Display technologies

Page 2: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Resolution

World is continuous, digital media is discrete …Three aspects:

Spatial resolution (x, y)Physical limits: pixel size and display sizeHuman limits: photoreceptor density

Temporal resolution (t)Physical limits: �lm speed, channel bandwidthHuman limits: neuronal response time

Color and intensity resolutionPhysical limits: color “pigments”, 1-bit vs n-bit tonesHuman limits: just-noticeable differences

Spatial Resolution

Page 3: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Contrast Sensitivity Function

Maximum sensitiviy @ 4 cycles/degree

Maximum resolving power @ 60 cycles/deg = 1 arcmin

Page 4: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Visual Acuity / Snellen Chart

20/20 vision = 1 arcmin

~1/16” at 20’

Monitor viewing range:

~1/100” at 3’

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Photoreceptor Density in the Retina

Rods: 100 million total

Cones (3 subtypes L, M, S): 5 million totalFovea

Size of photoreceptors: ~1 umAngular resolution:

S: 10 arcminsL, M: 0.5 arcmins

Periphery10 um

Page 5: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Display Resolution History

Compound annual growth rate = 1.1Rate of increase slow compared to CPU, disk, ...

Date Format and Technology Bandwidth Rate

1980 1024 x 768 x 60Hz, CRT 0.14 GB

1988 1280 x 1024 x 72Hz, CRT 0.29 GB 1.1

1996 1920 x 1080 x 72Hz, HD CRT 0.60 GB 1.1

2001 3840 x 2400 x 56Hz, active LCD 1.55 GB 1.2

Slide from K. Akeley

CS148 Lecture 11 Pat Hanrahan, Fall 2011

IBM T221

Resolution: 3840 x 2400 (QXGA)Size: 21.5” x 17.3” (204 dpi)

Page 6: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

PowerWall

UC-Davis

CS148 Lecture 11 Pat Hanrahan, Fall 2011

PowerWall

Resolution: 3 * 1280 x 2 * 1024 = 3040 x 2048Size: 18’ x 9’ (18dpi)

Page 7: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

iPhone 4 Retinal Display

Resolution: 960 x 640Size: 3.5” diagonal (326 dpi)

OsiriX Radiological Viewer

Temporal Resolution

Page 8: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Temporal Resolution

Critical �icker fusion rateHigh ambient light, large �eld of view: 80 HzLow ambient light, 20-30 Hz

Frames per second (FPS)Film (double framed) 24 FPSTV (interlaced) 30 FPSComputer (progressive) 60-75 FPS

Tone Reproduction

Page 9: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Real World = High Dynamic Range

The absolute amount of light of the marked pixels

1.0

46.2

1907

1511618.0

Sensation (S) vs. Intensity (I)

Stevens Power Law:

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Perception of Intensities

Sense Exponent

Lightness 0.33

Smell 0.55

Loudness 0.60

Taste 0.80

Length 1.00

Heaviness 1.45 B = I1/3

S = Ip

Page 10: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

World:Possible: 100,000,000,000:1Typical: 100,000:1

People: 100:1

Adapt to the ambient light level

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Contrast = Max/Min

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Estimating Gamma

Page 11: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Displays are Nonlinear

I = g(V − Vb)γ

Monitor: ! = 2.5

~ Pixel Value

The amount of light (intensity) produced is a power function of the input value (voltage)

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Monitor + Perception = Linear

Monitor Perception

Amazing coincidence!

FB

~Linear

Page 12: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

World:Possible: 100,000,000,000:1Typical: 100,000:1

People: 100:1

Media:Printed page: 10:1Displays: 80:1 (1000:1)Typical viewing conditions: 5:1

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Displays have Limited Dynamic Range

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Correcting Exposure

Rancho de Taos, Taos, NMPat Hanrahan

Photoshop demonstration

Page 13: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Tone Mapping

Problem: Image has a higher dynamic range than the display (100,000:1 maps down to 20:1)

Solutions:1. Linear map (min -> 0, max -> 255)

Bad: Independent of absolute brightness2. Logarithmic map

Models camera exposureRoughly maps into perceptual space

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Tone Reproduction Algorithms

Linear map Logarithmic map

Page 14: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 13 Pat Hanrahan, Fall 2010

Better Tone Reproduction Algorithms

Adaptive histogram With glare, contrast, blur

Display Technologies

Page 15: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Cathode Ray Tube

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Phosphors

Delta Gun Inline

Page 16: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Screen Mask

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Plasma

Page 17: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Liquid Crystal Displays

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Liquid Crystal Displays

Page 18: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

3D TV - LCD Shutter Glasses

Double Frame Rate to 120 HzAlternate Left and Right Eyes

http://www.reghardware.com

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Responsive Workbench

Page 19: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

LCD Displays

CS148 Lecture 11 Pat Hanrahan, Fall 2011

RGBW PenTile

Page 20: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Dynamic Micro-Mirror Device (DMD)

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Digital Light Processing (TI) - DLP

Page 21: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

eBooks

Kindle

Page 22: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Electronic Ink (Re�ective Display)

Page 23: CS148: Introduction to Computer Graphics and Imaging Displaysgraphics.stanford.edu/courses/cs148-11-fall/lectures/displays.pdf · 20/20 vision = 1 arcmin ~1/16” at 20’ Monitor

CS148 Lecture 11 Pat Hanrahan, Fall 2011

Things to Remember

PhysicsLimits of materials and fabrication

PerceptionHuman limits: properties of the eye and brain

Spatial resolutionTemporal resolutionTone reproduction