20
CS 471G Wednesday, 16 January 2013 Introduction 2-1

CS 471G Wednesday, 16 January 2013protocols.netlab.uky.edu/~calvert/classes/471/slides/20130116-03.pdf · 16/01/2013  · Introduction Packet Switching: queueing delay, loss A B R

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • CS 471G Wednesday, 16 January 2013

    Introduction 2-1

  • Announcements, Recap

    v  No Class Monday! (MLK Holiday) v  No Calvert Office Hours today v  Monday’s attendance quiz recap:

    §  What is packet switching? •  Sharing transmission channels by multiplexing packets •  What UPS does, only with data

    §  Name two kinds of access network •  Cable, DSL, [WiFi, WiMax, Cellular, Ethernet, ...]

    §  How long to transmit a 1Mbit packet from A to B via one switch, where links are 1Mbps

    •  First link: 1M bits/1Mbits/sec = 1 sec •  Second link: ditto Total: 2 sec

    Introduction 2-2

  • Introduction

    Packet Switching: queueing delay, loss

    A

    B

    C R = 100 Mb/s

    R = 1.5 Mb/s D

    E queue of packets waiting for output link

    1-3

    queuing and loss: v  If arrival rate (in bits) to link exceeds transmission rate of

    link for a period of time: §  packets will queue, wait to be transmitted on link §  packets can be dropped (lost) if memory (buffer) fills up

  • Network Layer 4-4

    Two key network-core functions forwarding: move packets from router’s input to appropriate router output

    routing: determines source-destination route taken by packets

    §  routing algorithms

    routing algorithm

    local forwarding table header value output link

    0100 0101 0111 1001

    3 2 2 1

    1

    2 3

    dest address in arriving packet’s header

  • Introduction

    Alternative core: circuit switching end-end resources allocated

    to, reserved for “call” between source & dest:

    v  In diagram, each link has four circuits. §  call gets 2nd circuit in top

    link and 1st circuit in right link.

    v  dedicated resources: no sharing §  circuit-like (guaranteed)

    performance v  circuit segment idle if not used

    by call (no sharing) v  Commonly used in traditional

    telephone networks 1-5

  • Introduction

    Circuit switching: FDM versus TDM

    FDM

    frequency

    time TDM

    frequency

    time

    4 users Example:

    1-6

  • Introduction

    Packet switching versus circuit switching

    example: §  1 Mb/s link §  each user:

    •  100 kb/s when “active” •  active 10% of time

    v circuit-switching: §  10 users

    v packet switching: §  with 35 users, probability >

    10 active at same time is less than .0004 *

    packet switching allows more users to use network!

    N users

    1 Mbps link

    Q: how did we get value 0.0004?

    Q: what happens if > 35 users ?

    …..

    1-7 * Check out the online interactive exercises for more examples

  • Introduction

    v  great for bursty data §  resource sharing §  simpler, no call setup

    v  excessive congestion possible: packet delay and loss §  protocols needed for reliable data transfer, congestion

    control v  Q: How to provide circuit-like behavior?

    §  bandwidth guarantees needed for audio/video apps §  still an unsolved problem (chapter 7)

    is packet switching a “slam dunk winner?”

    Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

    Packet switching versus circuit switching

    1-8

  • Internet structure: network of networks

    v  End systems connect to Internet via access ISPs (Internet Service Providers) §  Residential, company and university ISPs

    v  Access ISPs in turn must be interconnected. v  So that any two hosts can send packets to each other

    v  Resulting network of networks is very complex v  Evolution was driven by economics and national policies

    v  Let’s take a stepwise approach to describe current Internet structure

  • Internet structure: network of networks Question: given millions of access ISPs, how to connect them together?

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net access

    net

    access net

    … … …

  • Internet structure: network of networks Option: connect each access ISP to every other access ISP?

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net access

    net

    access net

    … … …

    connecting each access ISP to each other directly doesn’t

    scale: O(N2) connections.

  • Internet structure: network of networks

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net access

    net

    access net

    … … …

    Option: connect each access ISP to a global transit ISP? Customer and provider ISPs have economic agreement.

    global ISP

  • Internet structure: network of networks

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net access

    net

    access net

    … … …

    But if one global ISP is viable business, there will be competitors ….

    ISP B

    ISP A

    ISP C

  • Internet structure: network of networks

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net access

    net

    access net

    … … …

    But if one global ISP is viable business, there will be competitors …. which must be interconnected

    ISP B

    ISP A

    ISP C

    IXP

    IXP

    peering link

    Internet exchange point

  • Internet structure: network of networks

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net access

    net

    access net

    … … …

    … and regional networks may arise to connect access nets to ISPS

    ISP B

    ISP A

    ISP C

    IXP

    IXP

    regional net

  • Internet structure: network of networks

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net

    access net access

    net

    access net

    … … …

    … and content providers (e.g., Google, Microsoft, Akamai ) may run their own network, to bring services, content close to end users

    ISP B

    ISP A

    ISP B

    IXP

    IXP

    regional net

    Content provider network

  • Introduction

    Internet structure: network of networks

    v  at center: small # of well-connected large networks §  “tier-1” commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national &

    international coverage §  content provider network (e.g, Google): private network that connects

    it data centers to Internet, often bypassing tier-1, regional ISPs

    1-17

    access ISP

    access ISP

    access ISP

    access ISP

    access ISP

    access ISP

    access ISP

    access ISP

    Regional ISP Regional ISP

    IXP IXP

    Tier 1 ISP Tier 1 ISP Google

    IXP

  • Introduction

    Tier-1 ISP: e.g., Sprint

    to/from customers

    peering

    to/from backbone

    ………

    POP: point-of-presence

    1-18

  • Traceroute to cs.utexas.edu 1 128.163.146.2 (128.163.146.2) 0.986 ms 0.280 ms 0.280 ms 2 pks2-04-pop2-new.net.uky.edu (128.163.221.33) 0.447 ms 0.353 ms 0.330 ms 3 uk-i2-kyron.net.uky.edu (128.163.221.90) 0.487 ms 0.505 ms 0.464 ms 4 i2-v501.lou.ky-ron.net (216.249.136.197) 3.124 ms 2.974 ms 2.839 ms 5 i2-v501.i2.ky-ron.net (216.249.136.198) 13.255 ms 15.375 ms 13.299 ms 6 xe-1-0-0.0.rtr.hous.net.internet2.edu (64.57.28.112) 36.714 ms 36.636 ms 36.670 ms 7 rt1-hardy-hstn-xe-0-1-0-3018.tx-learn.net (74.200.187.6) 37.622 ms 37.268 ms 79.213 ms 8 tx-bb-i2-hstn.tx-learn.net (74.200.187.26) 37.293 ms 37.384 ms 37.278 ms 9 aust-utnoc-core-ge-5-0-0-706.tx-bb.net (192.88.12.50) 40.769 ms 40.666 ms 40.772 ms 10 192.88.12.26 (192.88.12.26) 40.740 ms 40.702 ms 40.690 ms 11 nocb10-n7k-e1-2-noca2.gw.utexas.edu (146.6.10.205) 41.108 ms 40.876 ms 40.768 ms 12 cs-nocb10-v690.gw.utexas.edu (146.6.10.34) 41.017 ms 40.824 ms 40.846 ms 13 cs65k-cs45k-po1-p2p.aces.utexas.edu (128.83.37.66) 40.847 ms 40.988 ms 40.831 ms 14 cs.utexas.edu (128.83.120.11) 40.807 ms 40.786 ms 40.811 ms

    Introduction 2-19

  • Traceroute to my house... 1 dazzler.netlab.uky.edu (128.163.140.1) 1.052 ms 1.094 ms 1.142 ms 2 128.163.142.33 (128.163.142.33) 0.407 ms 0.455 ms 0.524 ms 3 pks2-04-pop2-new.net.uky.edu (128.163.221.33) 0.499 ms 0.616 ms 0.628 ms 4 128.163.221.142 (128.163.221.142) 0.576 ms 0.574 ms 0.554 ms 5 64.57.21.106 (64.57.21.106) 2.921 ms 2.890 ms 2.885 ms 6 64.57.21.105 (64.57.21.105) 26.591 ms 26.655 ms 26.609 ms 7 107.14.16.81 (107.14.16.81) 24.819 ms 24.984 ms 24.847 ms 8 ae-2-0.cr0.dca20.tbone.rr.com (66.109.6.164) 30.037 ms 107.14.19.134 (107.14.19.134) 27.542 ms 25.828 ms 9 ae15.tr00.clevohek.mwrtn.rr.com (66.109.6.71) 27.937 ms ae14.tr00.clevohek.mwrtn.rr.com (107.14.19.15) 28.282 ms 27.282 ms 10  network-065-189-140-167.mwrtn.rr.com (65.189.140.167) 30.583 ms 30.002 ms

    29.986 ms 11 74.128.11.10 (74.128.11.10) 29.734 ms 29.880 ms 29.713 ms 12 * * * 13 74-131-52-155.dhcp.insightbb.com (74.131.52.155) 42.942 ms 42.920 ms 42.912 ms

    Introduction 2-20